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The diagonal of quartic fivefolds

Nebojsa Pavic and Stefan Schreieder

Abstract

We show that a very general quartic hypersurface in P6
k over a field of characteristic

different from 2 does not admit a decomposition of the diagonal, hence is not retract
rational. This generalizes a result of Nicaise–Ottem, who showed stable irrationality
over fields of characteristic zero. To prove our result, we introduce a new cycle-theoretic
obstruction that may be seen as an analogue of the motivic obstruction for rationality
in characteristic zero, introduced by Nicaise–Shinder and Kontsevich–Tschinkel.

1. Introduction

A variety X over a field k is rational if it is isomorphic to PdimX
k after removing proper closed

subvarieties from both sides; it is stably rational if X × Pn
k is rational for some n ⩾ 0. Moreover,

X is retract rational if there exist an integer N and rational maps f : X 99K PN and g : PN 99K X
such that g◦f is defined and coincides with the identity: g◦f = idX . Finally, X is unirational if it
receives a dominant rational map from some projective space. We have the following well-known
implications:

rational =⇒ stably rational =⇒ retract rational =⇒ unirational . (1.1)

By [BCSS85] and [AM72], the first and last implications are both strict over algebraically closed
fields; it is an open problem whether this holds true for the second implication as well.

Retract rational varieties admit a decomposition of the diagonal, which means that the point
of the diagonal δX ∈ Xk(X) is rationally equivalent to zk(X) for some k-rational point z ∈ X.
In [Voi15], with improvements in [CP16, Sch19a], Voisin used this implication to initiate a cycle-
theoretic degeneration technique which, roughly speaking, allows one to disprove retract rational-
ity for varieties X that admit a degeneration to a mildly singular variety Y with a cohomological
obstruction for the existence of a decomposition of the diagonal, such as global differential forms
[Tot16] or unramified cohomology [CP16, HPT18, Sch19b]. This method can be extended to
cases where the special fibre of the degeneration breaks up into several pieces (see for example
[Tot16, Lemma 2.4], [Sch21a, Proposition 6.1] and [Sch21b, Theorem 8.5]). However, at least
over algebraically closed fields, it is crucial that at least one component Yi0 of the special fibre Y
is irrational with some cohomological obstruction, while that obstruction class must vanish on
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The diagonal of quartic fivefolds

the intersection of Yi0 with any other component Yj (for example if each component of Yi0 ∩ Yj
is rational).

Using the weak factorization theorem, Nicaise–Shinder [NS19] and Kontsevich–Tschinkel
[KT19] introduced powerful motivic obstructions for rationality and stable rationality in charac-
teristic zero. Their approach proves (stable) irrationality for varieties that admit degenerations
to simple normal crossing varieties Y =

⋃
i∈I Yi such that[

PdimY
k

]
+

∑
∅≠J⊂I

(−1)|J |
[
YJ × P|J |−1

k

]
is non-zero in the free abelian group generated by (stable) birational equivalence classes of
smooth projective k-varieties, where YJ =

⋂
j∈J Yj . For instance, it follows from this formula

that a variety that specializes to a union of two smooth rational varieties that meet along a
stably irrational variety is stably irrational. This approach has been implemented successfully
by Nicaise–Ottem [NO22], who used it to prove that a very general quartic fivefold over an
uncountable algebraically closed field of characteristic zero is not stably rational, by writing
down a degeneration into two components (that may be chosen to be rational) such that their
intersection is stably irrational by the work of Hassett–Pirutka–Tschinkel [HPT18].

The motivic method of Nicaise–Shinder and Kontsevich–Tschinkel does not seem to generalize
to detect retract rationality. In particular, one may speculate that the motivic obstruction from
[NS19, KT19] could be a suitable tool to distinguish retract rational varieties from stably rational
varieties, and quartic fivefolds treated in [NO22] yield the first potential candidates regarding
the strictness of the second implication in (1.1).

In this paper, we prove that quartic fivefolds are in fact not retract rational and hence do not
give counterexamples to strictness of the second implication in (1.1).

Theorem 1.1. Let k be an uncountable field of characteristic different from 2. A very general
quartic X ⊂ P6

k does not admit a decomposition of the diagonal, hence is not retract rational.

By a theorem of Morin (see [CM98]), a general quartic fivefold X ⊂ P6
k as in Theorem 1.1 is

known to be unirational. On the other hand, over fields of positive characteristic, even rationality
of quartic fivefolds was previously open.

The rationality problem for Fano hypersurfaces X ⊂ Pn+1
k is a classical problem in algebraic

geometry; see for example [CG72, IM71, Kol95, CP16, Tot16, Sch19b, Sch21a]. In arbitrary
dimension, the best-known bound is due to [Sch19b, Sch21a], where it is shown that over un-
countable fields k, very general hypersurfaces of dimension n ⩾ 3 and degree d ⩾ log2 n + 2
(or d ⩾ log2 n + 3 if char(k) = 2) do not admit a decomposition of the diagonal and hence
are neither retract rational nor stably rational. The case of cubic threefolds [CG72, Mur73], the
aforementioned result of Nicaise–Ottem [NO22] and Theorem 1.1 above are the only cases where
this bound has been improved.

In order to use a similar degeneration in Theorem 1.1 as Nicaise–Ottem used in [NO22],
we, roughly speaking, face the problem of disproving the existence of a decomposition of the
diagonal for the geometric generic fibre of a family that degenerates into a union of two rational
components Y = Y1 ∪Y2 such that Y12 = Y1 ∩Y2 is integral and does not admit a decomposition
of the diagonal. The naive idea is to perform a 2 : 1 base change and to blow up Y12, to arrive at
a semi-stable model whose special fibre has three components: two rational end components and
a component in the middle that is a P1-bundle over Y12 and hence does not admit a decomposition
of the diagonal.
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At this point, the following problem arises: we could have started with the trivial family
Pn
R → SpecR, blown up a subvariety Z of the special fibre and then blown up a general point

of the exceptional divisor above Z. If Z does not admit a decomposition of the diagonal, then
we arrive at a degeneration of Pn into a chain of three components where again the two end
components are rational, while the component in the middle does not admit a decomposition of
the diagonal. So how can we tell apart this degeneration from the one discussed above?

1.1 Method

We describe our solution to the above-mentioned problem briefly in this section. For this, let R
be a discrete valuation ring, and let X → SpecR be a projective strictly semi-stable R-scheme
with special fibre Y =

⋃
i∈I Yi. There is a canonical map

ΦX : CH1(Y ) −→ ker

(
deg :

⊕
i∈I

CH0(Yi) → Z
)
, γ 7−→

∑
i∈I

ι∗i (ι∗γ) ,

where ι : Y → X and ιi : Yi → X denote the respective closed immersions, cf. Section 3.1 below.
It is easy to see that ΦX does not depend on X but in fact only on the special fibre Y . Indeed,
if γ ∈ CH1(Y ) is supported on Yi0 , then the contribution ΦX ,Yi(γ) ∈ CH0(Yi) is given by

ΦX ,Yi(γ) =


γ|Yi∩Yi0

if i ̸= i0 ,

−
∑
j ̸=i0

γ|Yi∩Yj if i = i0 ,

where γ|Yi∩Yj is the zero-cycle on Yi given by the intersection of γ (viewed as a 1-cycle on Yi)
with Yi ∩ Yj (viewed as a divisor on Yi). This description allows one to compute ΦX effectively.

If A/R is an unramified extension of discrete valuation rings (dvr’s), then the base change
XA is again strictly semi-stable, and we get a map ΦXA

as above. Even if the residue field κ
of R is algebraically closed, the residue field of A may be a function field over κ (for example
κ(Yi) for some i), in which case ΦXA

is a map between Chow groups of varieties over interesting
non-closed fields. In particular, even if ΦX is surjective, this may very well fail for ΦXA

.

Theorem 1.2. Let R be a discrete valuation ring with algebraically closed residue field, and let
π : X → SpecR be a projective strictly semi-stable R-scheme.

(i) If the generic fibre of π admits a decomposition of the diagonal, then for any unramified
extension A/R of dvr’s, the map ΦXA

is surjective.

(ii) If the geometric generic fibre of π admits a decomposition of the diagonal and the dual
graph of the special fibre is a straight line (that is, the components form a chain), then for
any unramified extension A/R of dvr’s, the map ΦXA

is surjective modulo 2.

If the geometric generic fibre of π admits a decomposition of the diagonal, then up to a base
change and a modification of the total space, we arrive at a situation where the generic fibre
admits such a decomposition, and so item (i) may be applied. While this route could be taken
to prove Theorem 1.1, it is significantly easier to work with the enhanced version in item (ii),
where no additional base change and blow-ups are necessary, and so it allows us to work with
a special fibre that has only few components.

We like to think about Theorem 1.2 as a cycle-theoretic analogue of the motivic method from
[NS19, KT19] exploited in [NO22]. Note however that there is no direct relation among the two
methods, and it may be possible to find situations where one applies but not the other.
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To give an idea of how to apply Theorem 1.2, we state the following consequence as an
example. The used notion of torsion order is introduced in Section 2.3.

Corollary 1.3. Let R be a dvr with algebraically closed residue field k, and let π : X → SpecR
be a projective strictly semi-stable R-scheme whose special fibre Y = Y1∪Y2 has two components.
Assume that

– Y is universally CH1-trivial in the sense that for any field extension L/k, the natural map
CH1(Y ) → CH1(YL) is surjective;

– Y12 := Y1 ∩ Y2 is integral, and its torsion order is even.

Then the geometric generic fibre of π does not admit a decomposition of the diagonal.

Theorem 1.1 will be deduced from Theorem 1.2 and a degeneration that is inspired by [NO22].
Note however that checking that the condition in item (ii) of Theorem 1.2 is violated is subtle
and requires several additional degenerations. In particular, even though Corollary 1.3 illustrates
well the basic idea, the technical details are more complicated, and we are not able to literally
apply the statement of Corollary 1.3. The key input of course remains the striking example of
Hassett–Pirutka–Tschinkel in [HPT18].

The problem of finding cycle-theoretic obstructions for rationality that are sensitive to semi-
stable degenerations into unions of rational varieties has also been considered in [BGvG22a,
BGvG22b]. Their approach relies on explicit identities in the prelog Chow ring and is different
from ours.

Remark 1.4. In [NO22, Theorem 7.1], Nicaise–Ottem showed that a very general complete inter-
section X23 ⊂ P6

k of type (2, 3) is not stably rational over any uncountable algebraically closed
field k of characteristic zero. Similarly to the case of quartic fivefolds, this result generalizes
as follows: for any uncountable field of characteristic different from 2, a very general complete
intersection X23 ⊂ P6

k of type (2, 3) does not admit a decomposition of the diagonal and hence
is not retract rational. While this can also be deduced from Theorem 1.2, the case of complete
intersections of type (2, 3) in P6 is in fact much easier than the case of quartic fivefolds treated in
this paper. Indeed, by [NO22, proof of Theorem 7.1], such complete intersections admit a degen-
eration into a union of two varieties meeting along a rational variety, such that one component
does not admit a decomposition of the diagonal, and so [Tot16, Lemma 2.4] applies to give the
result. In [Ska23], Skauli proves an enhancement of this result by actually constructing examples
over Q, where due to additional singularities in the special fibre, slightly more careful arguments
are necessary. Note that these lines of arguments do not work for quartic fivefolds, where the
‘obstruction for rationality’ lies really in the intersection of the components of the degeneration
and not in the components themselves.

2. Notation and conventions

2.1 Conventions

All schemes are separated. A variety is an integral scheme of finite type over a field. If X is
a scheme over a ring R and A/R is ring extension, then we write XA := X ×R A. A very general
point of an irreducible scheme is a closed point outside a countable union of proper closed subsets.
For an integral scheme X over a field k, we write k(X) or κ(X) for the function field of X; we
use the latter whenever we prefer to make the ground field of X not explicit in our notation.
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For an abelian group G, we write G/2 instead of G ⊗ Z/2Z. If G1 → G2 is a group homo-
morphism of abelian groups, then we write by abuse of notation G2/G1 := coker(G1 → G2).

2.2 Decomposition of the diagonal

Let X be a variety over a field k. We denote by CHi(X) the Chow group of algebraic cycles of X
of dimension i. One says that X admits a decomposition of the diagonal if

[∆X ] = [z ×k X] + [Z] ∈ CHdim(X)(X ×k X) , (2.1)

where ∆X ⊂ X ×k X denotes the diagonal, z is a zero-cycle on X and Z is a cycle on X ×k X
which does not dominate the second factor. Now let k(X) denote the fraction field of X, and
write Xk(X) := X ×k k(X). We denote by

δX ∈ CH0(Xk(X))

the zero-cycle on Xk(X) that is induced by pulling back ∆X via Xk(X) → X×kX. By the localiza-
tion sequence [Ful98, Proposition 1.8], relation (2.1) is equivalent to δX = zk(X) ∈ CH0(Xk(X)).

A proper variety X over k is said to have universally trivial Chow group of zero-cycles if for
any field extension F ⊃ k, the degree map deg : CH0(XF ) → Z is an isomorphism. If X is in
addition geometrically integral and smooth (over k), thenX has universally trivial Chow group of
zero-cycles if and only if X admits a decomposition of the diagonal (see [CP16, Proposition 1.4]).

2.3 Torsion order

The torsion order Tor(X) of a proper k-variety is the smallest positive integer N such that N ·∆X

admits a decomposition as in (2.1) or, equivalently, such that N · δX = zk(X) ∈ CH0(Xk(X)) for
some zero-cycle z ∈ CH0(X). The torsion order is ∞ if no such integer exists; cf. [CL17, Sch21a].

Lemma 2.1. Let X be a smooth projective variety over an algebraically closed field k. Assume
that the torsion order of X is finite and divisible by e ⩾ 2. Then for any z ∈ CH0(X), the
following holds in CH0(Xk(X)):

δX − zk(X) ̸≡ 0 mod e .

Proof. For a contradiction, assume that δX ≡ zk(X) mod e. Then there is a zero-cycle ϵ ∈
CH0(Xk(X)) with δX = zk(X) + eϵ. By our assumptions, there is also a positive integer d such
that Tor(X) = d · e. Hence, ed∆X = z′ ×X + R for some zero-cycle z′ on X and some cycle R
on X ×X that does not dominate the second factor. Base changing everything to k(X), we get
a similar decomposition of ed ·∆Xk(X)

. Since ∆Xk(X)
acts as the identity on CH0(Xk(X)), we find

that

ed · ϵ = ed ·∆∗
Xk(X)

(ϵ) = deg(ϵ) · z′k(X) .

Hence,

dδX = dzk(X) + ed · ϵ = z′′k(X)

for some zero-cycle z′′ ∈ CH0(X). This implies that Tor(X) divides d and so e = 1, which
contradicts our assumptions. This proves the lemma.

2.4 Chains of divisors

We call a closed and reduced subscheme D =
⋃n

i=1Di of a scheme X with irreducible compo-
nents Di of pure codimension 1 a chain of divisors if the scheme-theoretic intersections Di−1∩Di

and Di∩Di+1 are disjoint from each other in Di for all 1 < i < n and if all the other intersections
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Di ∩ Dj with i ̸= j are empty. We call D =
⋃
Di a chain of Cartier divisors if the Di are in

addition Cartier in X.

2.5 Semi-stable models

Let R be a discrete valuation ring with residue field k and fraction field K. A proper flat R-
scheme X → SpecR is called strictly semi-stable if the special fibre Y = X×Rk is a geometrically
reduced simple normal crossing divisor on X . In other words, the components of Y are smooth
Cartier divisors, and the intersection of r different components is either empty or smooth of
codimension r. The total space X of a strictly semi-stable R-scheme is automatically regular
because the special fibre is contained in the regular locus by assumption and X is proper over R,
so that any point of the generic fibre specializes to a point of the special fibre. The special
fibre Y is called a chain of Cartier divisors if Y ⊂ X is a chain of Cartier divisors in the sense of
Section 2.4.

3. Chow-theoretic obstruction: The generic fibre

3.1 The obstruction map

Definition 3.1. Let R be a discrete valuation ring, and let X → SpecR be a strictly semi-stable
R-scheme with special fibre Y . Let Yi with i ∈ I be the irreducible components of Y , and let
ι : Y → X and ιi : Yi → X denote the natural embeddings. We define ΦX ,Yi : CH1(Y ) → CH0(Yi)
to be the composition

ΦX ,Yi : CH1(Y )
ι∗−→ CH1(X )

ι∗i−→ CH0(Yi) , (3.1)

and we denote by ΦX the direct sum

ΦX :=
∑
i∈I

ΦX ,Yi : CH1(Y ) −→
⊕
i∈I

CH0(Yi) . (3.2)

We have the following simple but useful lemma, which shows that ΦX depends only on the
special fibre Y of the R-scheme X .

Lemma 3.2. In the notation of Definition 3.1, let Yij := Yi ∩ Yj , denote by ιij : Yij → Yj and
ιi : Yi → Y the natural inclusions, and write γi|Yji := ι∗jiγi for γi ∈ CH1(Yi).

(i) For any γi ∈ CH1(Yi), we have

ΦX ,Yj ((ιi)∗γi) =


(ιij)∗(γi|Yji) ∈ CH0(Yj) for j ̸= i ,

−
∑
k∈I,
k ̸=i

(ιki)∗(γi|Yki
) ∈ CH0(Yi) for j = i .

(ii) Let γ =
∑

i∈I(ιi)∗γi ∈ CH1(Y ). Then

ΦX ,Yi(γ) =
∑

j∈I\{i}

(ιji)∗γj |Yji −
∑

j∈I\{i}

(ιji)∗γi|Yji ∈ CH0(Yi) .

Proof. Note that the restrictions ι∗ji are well defined because Y is a simple normal crossing divisor
on X . Then in the case j ̸= i, the first item follows directly from the definition of the intersection
product (see [Ful98, Theorem 6.2(a)]), while in the case j = i, it follows from the fact that
[Yi] = −

∑
k ̸=i[Yk] in Pic(X ). The second item is a direct consequence of the first.
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3.2 Obstructing decompositions on the generic fibre

The homomorphism ΦX from Definition 3.1 will be our main tool to obstruct the existence of
decompositions of the diagonal in this paper. This rests on two observations. Firstly, if γ ∈
CH1(Y ), then

deg(ΦX (γ)) = deg

(∑
i∈I

ι∗i ι∗γ

)
= deg(ι∗ι∗γ) = 0 ,

and so the image of ΦX is always contained in the kernel of the degree map

deg :
⊕
i∈I

CH0(Yi) −→ Z , (zi)i∈I 7−→
∑
i∈I

deg(zi) .

Secondly, whenever A/R is an unramified extension of dvr’s, XA := X ×R A is a strictly semi-
stable A-scheme. In particular, if L denotes the residue field of A (which will be an extension of
the residue field of R), then we get from Definition 3.1 a homomorphism

ΦXA
: CH1(YL) −→ ker

(
deg :

⊕
i∈I

CH0(Yi,L) → Z
)
. (3.3)

Item (i) in Theorem 1.2 is a consequence of the following result.

Proposition 3.3. Let R be a discrete valuation ring with residue field k and fraction field K.
Let X → SpecR be a strictly semi-stable projective R-scheme whose generic fibre X admits
a decomposition of the diagonal. Let Yi with i ∈ I be the components of the special fibre Y .
Then for any unramified extension A/R of dvr’s, the homomorphism in (3.3) is surjective.

Proof. By Lemma 3.2, ΦXA
depends only on the special fibre YL, and hence it remains the

same after replacing A by its completion. In particular, we may assume that A is complete. Let
(zi)i∈I ∈ ⊕i∈I CH0(Yi,L) be a collection of zero-cycles with

∑
i deg(zi) = 0. By the moving lemma

(see for example [Rob72] or [Lev05, Theorem 2.13]), we may assume that the support of each zi
is contained in the smooth locus of YL.

Combining inflation of local rings (see Lemma 4.2) with Hensel’s lemma (see for example
[Gro67, Theorem 18.5.17]), it follows that any zero-cycle supported on the smooth locus of YL
lifts to a 1-cycle on XA. In particular, there is a 1-cycle z ∈ CH1(XA) that is flat over A and such
that z ∩ Yi,L = zi for all i ∈ I.

The restriction of z to the generic fibre of XA → SpecA is then a zero-cycle of degree zero, and
so it is rationally equivalent to zero because X has universally trivial Chow group of zero-cycles
by assumption. The restriction map CH1(XA) → CH0(XFracA) fits into the following localization
exact sequence (see [Ful75, Section 4.4]):

CH1(YL)
ι∗−→ CH1(XA) −→ CH0(XFracA) −→ 0 ,

and so we find that there is a 1-cycle γ ∈ CH1(YL) with

z = ι∗γ ∈ CH1(XA) . (3.4)

Since z ∩ Yi,L = zi for all i ∈ I, this implies that ΦXA
(γ) = (zi)i∈I ∈

⊕
i∈I CH0(Yi,L). Hence,

ΦXA
in (3.3) is surjective, as we want.

4. Chow-theoretic obstruction: The geometric generic fibre

The purpose of this section is to prove item (ii) of Theorem 1.2. This yields an obstruction to
decompositions of the diagonal of a smooth projective variety which specializes to a chain of
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smooth varieties such as the union Y = Y1 ∪ Y2 of two smooth varieties meeting along a smooth
irreducible divisor Y1 ∩ Y2. We will apply this obstruction later to a degeneration of quartic
fivefolds that is similar to the one in [NO22]. The precise statement of our obstruction is as
follows.

Theorem 4.1. Let R be a discrete valuation ring with algebraically closed residue field, and
let X → SpecR be a strictly semi-stable projective R-scheme whose special fibre Y =

⋃
i∈I Yi

is a chain of Cartier divisors. Assume that the geometric generic fibre of X → SpecR has
a decomposition of the diagonal. Then for any unramified extension A/R of dvr’s, with induced
extension L/k of residue fields, the natural map

ΦXA
: CH1(YL)/2 −→ ker

(
deg :

⊕
i∈I

CH0(Yi,L)/2 → Z/2
)

given by reduction modulo 2 of (3.3) is surjective.

In applications it will be useful to note that by inflation of local rings, an unramified extension
A/R of dvr’s exists for any given extension L/k of residue fields.

Lemma 4.2. Let R be a discrete valuation ring with residue field k. For any field extension L/k,
there is an unramified extension of dvr’s A/R which induces L/k on the residue fields.

Proof. By inflation of local rings, see [Bou06, Chapter IX, Appendice, Corollaire du Théorème 1],
there is a flat local R-algebra A such that A is a dvr with mA = mRR and L = A/mA. In
particular, A/R is an unramified extension of dvr’s which induces L/k on the residue fields, as
we want.

Theorem 4.1 will follow from Proposition 3.3 together with a careful analysis of the effect of
ramified base changes R ⊂ R̃ of dvr’s.

4.1 A preliminary lemma

The following simple lemma will be needed in the proof of Theorem 4.1.

Lemma 4.3. Let X → SpecR be a strictly semi-stable R-scheme such that the special fibre
Y =

⋃n
i=1 Yi of X is a chain of Cartier divisors. Let Yi,i+1 := Yi ∩ Yi+1, and let A/R be an

unramified extension of dvr’s with induced extension L/k of residue fields. Then we have the
following, where on the right-hand side of (4.1), (4.2), (4.3) and (4.4) below, we leave out the
respective pushforward maps by the natural inclusions by slight abuse of notation.

(i) Let

γ = γ1 + . . .+ γn ∈ CH1(YL) , (4.1)

where γi is in CH1(Yi,L). Then for all i, we have

ΦXA,Yi,L
(γ) = γi−1|Yi−1,i,L

− γi|Yi−1,i,L
− γi|Yi,i+1,L

+ γi+1|Yi,i+1,L
∈ CH0(Yi,L) . (4.2)

(ii) If, additionally, for some 0 < i < n, the intersections Yi−1,i and Yi,i+1 are isomorphic and if
Yi is a P1

k-bundle over Yi−1,i ≃ Yi,i+1 with projection qi : Yi → Yi−1,i, then any γ ∈ CHl(YL)
is of the form

γ = γ1 + · · ·+ γi−1 + q∗i αi + γi+1 + · · ·+ γn ∈ CHl(YL) (4.3)

for some αi ∈ CH0(Yi−1,i,L) and γj ∈ CH1(Yj,L), and we have that

ΦXA,Yi,L
(γ) = γi−1|Yi−1,i,L

− 2αi + γi+1|Yi,i+1,L
∈ CH0(Yi,L) . (4.4)

761



N. Pavic and S. Schreieder

Proof. Item (i) follows directly from Lemma 3.2. Moreover, (4.4) follows from (4.3) and item (i),
and so it suffices to prove (4.3). That is, we need to show that CH1(YL) is generated by

CH1(Y1,L)⊕ · · · ⊕ CH1(Yi−1,L)⊕ q∗i CH0(Yi,i−1,L)⊕ CH1(Yi+1,L)⊕ · · · ⊕ CH1(Yn,L) . (4.5)

As Yi,L is a P1
k-bundle over Yi−1,i,L and as ιi−1,i : Yi,i−1,L ↪→ Yi,L is a section of qYi : Yi,L →

Yi−1,i,L, we can write any x in CH1(Yi,L) as

x = q∗i (x0) + (ιi−1,i)∗(y)

with x0 in CH0(Yi−1,i,L) and y in CH1(Yi−1,i,L) (see for example [Ful98, Theorem 3.3(b)]). It is
clear, however, that (ιi−1,i)∗(y) in CH1

(
ỸL

)
is an element which comes from CH1(Yi−1,L). This

proves (4.5), which concludes the proof of the lemma.

4.2 Analyses of base change

Let R̃/R be a finite (possibly ramified) extension of discrete valuation rings, and let X → SpecR
be a strictly semi-stable R-scheme. We consider the base change XR̃ := X ×R R̃. Following Hartl
[Har01, proof of Proposition 2.2], there is a finite sequence of blow-ups

X̃ := Xr −→ Xr−1 −→ . . . −→ X1 −→ XR̃ ,

where each step Xi+1 → Xi is the consecutive blow-up of (strict transforms of) all irreducible
components of Y that are not Cartier, such that

X̃ → Spec R̃ (4.6)

is strictly semi-stable. In particular, the special fibre Ỹ of X̃ is given by

Ỹ = Y1 ∪
r⋃

j=1

R1,j ∪ Y2 ∪
r⋃

j=1

R2,j ∪ · · · ∪ Yn . (4.7)

Note that Ỹ is again a chain of non-singular Cartier divisors, and there is a P1
k-bundle structure

of Ri,j over Yi,i+1 for all j > 0 and all i. We denote the corresponding projection by qRi,j : Ri,j →
Yi,i+1. Moreover, the intersections Yi ∩ Ri,1 and Ri,j ∩ Ri,j+1 are isomorphic to Yi,i+1, for all
1 ⩽ i < n and all 1 ⩽ j ⩽ r.

Proposition 4.4. Let R be a discrete valuation ring with algebraically closed residue field k.
Let X → SpecR be a strictly semi-stable R-scheme such that the special fibre Y =

⋃n
i=1 Yi of X

is a chain of Cartier divisors. Let R ⊂ R̃ be a finite extension of discrete valuation rings, and let
X̃ → Spec R̃ be as in (4.6) with special fibre Ỹ as in (4.7). Let A/R be an unramified extension
of dvr’s with induced extension L/k of residue fields, and denote by X̃Ã the base change of X̃ to

an unramified extension Ã of R̃ which induces L/k on the residue fields (Ã exists by Lemma 4.2).
Then the following holds: if ΦX̃Ã

is surjective modulo 2, then ΦXA
is surjective modulo 2.

Proof. We will split the proof of the proposition into two cases, depending on the parity of the
integer r appearing in (4.7). Before we do so, let us first make some general observations, which
will be used in both cases.

By (4.3), any γ ∈ CH1(ỸL) can be written as

γ = γY1 +
r∑

j=1

q∗R1,j
αR1,j + γY2 +

r∑
j=1

q∗R2,j
αR2,j + · · ·+ γYn
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for some γYi ∈ CH1(Yi,L) and αRi,j ∈ CH0(Yi,i+1,L), where Yi,i+1,L := Yi,L∩Yi+1,L. We then have
that

ΦX̃Ã,Ri,j,L
(γ) ≡ αRi,j−1 − 2αRi,j + αRi,j+1 ≡ αRi,j−1 + αRi,j+1 mod 2

in CH0(Ri,j,L)/2 for all 1 < j < r and all i, where in the first equality we use (4.4). (Here and in
what follows we neglect, by slight abuse of notation, the respective pushforwards to Ri,j,L and
to Yi,L in our notation whenever no confusion is likely to arise.) Moreover, we have that

ΦX̃Ã,Ri,1,L
(γ) ≡ γYi |Yi,i+1,L

+ αRi,2 mod 2 ,

ΦX̃Ã,Ri,r,L
(γ) ≡ αRi,r−1 + γYi+1 |Yi,i+1,L

mod 2

by Lemma 4.3(i).

Let us now assume that ΦX̃Ã,Ri,j,L
(γ) ≡ 0 mod 2 for all j > 0 and all i. Pushing the above

equations forward via qRi,j : Ri,j,L → Yi,i+1,L for j > 0, we then obtain

γYi |Yi,i+1,L
≡ αRi,2 ≡ αRi,4 ≡ · · · ≡ αRi,2⌊r/2⌋ mod 2 ,

αRi,r−2⌊r/2⌋+1
≡ · · · ≡ αRi,r−3 ≡ αRi,r−1 ≡ γYi+1 |Yi,i+1,L

mod 2 ,

αRi,1 ≡ αRi,3 ≡ · · · ≡ αRi,2⌈r/2⌉−1
mod 2

(4.8)

in CH0(Yi,i+1,L)/2.

Case 1. The integer r appearing in (4.7) is even.

In this case we will prove that for any γ ∈ CH1(ỸL) such that ΦX̃Ã,Ri,j,L
(γ) ≡ 0 mod 2 for all

j and all i, we have that

ΦXA
(q∗(γ)) = q∗ΦX̃Ã

(γ) ∈
⊕
i

CH0(Yi,L)/2 , (4.9)

where q : Ỹ → Y denotes the morphism induced by X̃ → X . This clearly implies that if ΦX̃Ã
is

surjective modulo 2, then ΦXA
is surjective modulo 2.

To prove (4.9), first note that since r is even, (4.8) reads as

γYi |Yi,i+1,L
≡ αRi,2 ≡ αRi,4 ≡ · · · ≡ αRi,r mod 2,

αRi,1 ≡ αRi,3 ≡ · · · ≡ αRi,r−1 ≡ γYi+1 |Yi,i+1,L
mod 2

(4.10)

in CH0(Yi,i+1,L)/2. Furthermore, we note that the morphism q : Ỹ → Y is the identity morphism
onto its image when restricted to the components Yi and is the projection qRi,j : Ri,j → Yi,i+1

when restricted to the components Ri,j . This, together with the assumption ΦX̃Ã,Ri,j,L
(γ) ≡

0 mod 2 for all j and all i, implies that

q∗ΦX̃Ã
(γ) =

n∑
i=1

αRi−1,r − γYi |Yi−1,i,L
− γYi |Yi,i+1,L

+ αRi,1 ∈
⊕
i

CH0(Yi,L)/2 ,

where we used Lemma 4.3(i). (Here, αR0,r , γY1 |Y0,1,L
, γYn |Yn,n+1,L

and αRn,1 are defined to be 0.)
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Using the relations in (4.10), we can then further rewrite this equation as

q∗ΦX̃Ã
(γ) ≡

n∑
i=1

γYi−1 |Yi−1,i,L
− γYi |Yi−1,i,L

− γYi |Yi,i+1,L
+ γYi+1 |Yi,i+1,L

mod 2 ,

≡
n∑

i=1

ΦXA
(γYi) ≡ ΦXA

(q∗γ) mod 2 ,

where in the second equation we used Lemma 4.3(i) again (γY0 |Y0,1,L
and γYn+1 |Yn,n+1,L

are set to
be 0 here). This proves (4.9) and hence concludes the proof of the proposition in the case where
r is even.

Case 2. The integer r appearing in (4.7) is odd.

We assume that ΦX̃Ã
is surjective modulo 2 and that r is odd. We then need to show that ΦXA

is surjective modulo 2. A simple formula analogous to (4.9) does not seem to hold in this case.
Instead, our argument relies on the claim that since r is odd and ΦX̃Ã

is surjective modulo 2, we

have that

Ψ :

n⊕
i=1

CH1(Yi,L) −→
n−1⊕
i=1

CH0(Yi,i+1,L) ,
∑
i

γi 7−→
∑
i

γi|Yi,i+1,L
+ γi+1|Yi,i+1,L

(4.11)

is surjective modulo 2. Indeed, let α′ = α′
1 + . . . + α′

n−1 be in
⊕

iCH0(Yi,i+1,L) with α′
i in

CH0(Yi,i+1,L). Denote by ιi : Yi,i+1,L → Yi,L the natural embedding, and let ιi,j : Yi,i+1,L → Ri,j,L

denote the embeddings Yi,L∩Ri,1,L ⊂ Ri,1,L for j = 1 and Ri,j−1,L∩Ri,j,L ⊂ Ri,j,L for 1 < j ⩽ r.
We then consider

z :=

n−1∑
i=1

ιi∗α
′
i − ιi,1∗α

′
i ∈

n−1⊕
i=1

CH0(Yi,L)⊕ CH0(Ri,1,L),

which by (4.7) is an element in the direct sum of the Chow groups of zero-cycles of the components
of ỸL. It is clear from the definition of z that deg(z) = 0. Hence, by the surjectivity of ΦX̃Ã

modulo 2, there is a class

γ̄ = γ̄Y1 +

r∑
j=1

q∗R1,j
ᾱR1,j + γ̄Y2 +

r∑
j=1

q∗R2,j
ᾱR2,j + . . .+ γ̄Yn ∈ CH1(ỸL)/2

with γ̄Yi ∈ CH1(Yi,L)/2 and ᾱRi,j ∈ CH0(Yi,i+1,L)/2 such that ΦX̃Ã,Ri,1
(γ̄) ≡ −ιi,1∗α

′
i mod 2 and

ΦX̃Ã,Ri,j
(γ̄) ≡ 0 mod 2 for j > 1 an all i.

Using a similar computation as in (4.8) and Lemma 4.3(ii), we then see that

−α′
i ≡ γ̄Yi |Yi,i+1,L

+ ᾱRi,2 mod 2 ,

ᾱRi,2 ≡ ᾱRi,4 ≡ . . . ≡ ᾱRi,r−1 mod 2 ,

−ᾱRi,r−1 ≡ γ̄Yi+1 |Yi,i+1,L
mod 2

in CH0(Yi,i+1,L)/2, where we used the assumption that r is odd.

Combining these equations, we obtain that Ψ(
∑

γ̄Yi) = α′ modulo 2, and so we have showed
that Ψ from (4.11) is surjective modulo 2, as we want.

Let us now show that ΦXA
is surjective modulo 2. Let βi ∈ CH0(Yi,L)/2 for i = 1, . . . , n with
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i deg(βi) ≡ 0 mod 2. Since ΦX̃Ã

is surjective modulo 2, there is a class γ ∈ CH1(ỸL) with

ΦX̃Ã,Yi,L
(γ) = βi ∈ CH0(Yi,L)/2

for all i = 1, . . . , n and

ΦX̃Ã,Ri,j,L
(γ) = 0 ∈ CH0(Ri,j,L)/2

for all i = 1, . . . , n− 1 and j = 1, . . . , r.

As before, we can write

γ = γY1 +

r∑
j=1

q∗R1,j
αR1,j + γY2 +

r∑
j=1

q∗R2,j
αR2,j + . . .+ γYn

for some γYi ∈ CH1(Yi,L) and αRi,j ∈ CH0(Yi,i+1,L). Then, as r is odd, (4.8) implies that

γYi |Yi,i+1,L
≡ αRi,2 ≡ αRi,4 ≡ . . . ≡ αRi,r−1 ≡ γYi+1 |Yi,i+1,L

mod 2 , (4.12)

αRi,1 ≡ αRi,3 ≡ . . . ≡ αRi,r−2 ≡ αRi,r mod 2 (4.13)

in CH0(Yi,i+1,L)/2 for i = 1, . . . , n− 1. Moreover, βi = ΦX̃Ã,Yi,L
(γ) modulo 2 means that

β1 = γY1 |Y1,2,L
+ αR1,1 ∈ CH0(Y1,L)/2 , (4.14)

βn = γYn |Yn−1,n,L
+ αRn−1,r

= γYn |Yn−1,n,L
+ αRn−1,1 ∈ CH0(Yn,L)/2 (4.15)

and

βi = γYi |Yi−1,i,L
+ γYi |Yi,i+1,L

+ αRi−1,r + αRi,1

= γYi |Yi−1,i,L
+ γYi |Yi,i+1,L

+ αRi−1,1 + αRi,1 ∈ CH0(Yi,L)/2 (4.16)

for all 2 ⩽ i ⩽ n− 1. Note that we used (4.13) in the second equation of (4.15) and (4.16).

By the surjectivity of Ψ in (4.11), we get classes γ′Yi
∈ CH1(Yi,L) with

αRi,1 = γ′Yi
|Yi,i+1,L

+ γ′Yi+1
|Yi,i+1,L

∈ CH0(Yi,i+1,L)/2 (4.17)

for all i = 1, . . . , n− 1. Combining this with (4.14)–(4.16), we find

γY1 |Y1,2,L
+ γ′Y1

|Y1,2,L
+ γ′Y2

|Y1,2,L
= β1 ∈ CH0(Y1,L)/2 ,

γYn |Yn−1,n,L
+ γ′Yn−1

|Yn−1,n,L
+ γ′Yn

|Yn−1,n,L
= βn ∈ CH0(Yn,L)/2

and

γYi |Yi−1,i,L
+ γYi |Yi,i+1,L

+ γ′Yi−1
|Yi−1,i,L

+ γ′Yi
|Yi−1,i,L

+ γ′Yi
|Yi,i+1,L

+ γ′Yi+1
|Yi,i+1,L

= βi ∈ CH0(Yi,L)/2

for 2 ⩽ i ⩽ n− 1. Now let

γ′ =

n∑
i=1

γ′Yi
∈ CH1(YL)/2 and γeven :=

⌊n/2⌋∑
j=1

γY2j ∈ CH1(YL)/2 .

Using the relation γYi |Yi,i+1,L
= γYi+1 |Yi,i+1,L

modulo 2 from (4.12), we then conclude from the
above computation that

ΦXA,Yi,L
(γ′ + γeven) = βi ∈ CH0(Yi,L)/2
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for all i = 1, . . . , n. Hence, ΦXA
is surjective modulo 2, as we want. This concludes the proof of

the proposition.

4.3 Proof of Theorem 4.1

Proof of Theorem 4.1. Since ΦX depends only on the special fibre (see Lemma 3.2) and because
the base change of X to the completion of R remains a strictly semi-stable family, we may
replace R with its completion and assume that R is complete. As the geometric generic fibre
XK̄ of X → SpecR has a decomposition of the diagonal, it follows that there is a finite field
extension F ⊃ K such that XF has a decomposition of the diagonal.

Now let RF be the integral closure of R in F . Since R is complete, RF is again a dvr. We
consider the strictly semi-stable model X̃ → SpecRF constructed as in (4.6), with special fibre
Ỹ as described in (4.7) and with the induced morphism Ỹ → Y .

The residue field k of R is algebraically closed by our assumptions. It follows that the residue
field of RF is given by k as well. Let A/R be any unramified extension of dvr’s with induced
extension L/k of residue fields. We denote by X̃Ã the base change of X̃ to an unramified extension

Ã of RF that induces L/k on residue fields (see Lemma 4.2). By Proposition 3.3, the map ΦX̃Ã
is

surjective, hence surjective modulo 2. It then follows from Proposition 4.4 that ΦXA
is surjective

modulo 2 as well, as we want. This concludes the proof of the theorem.

4.4 Proofs of Theorem 1.2 and Corollary 1.3

Proof of Theorem 1.2. As aforementioned, item (i) of Theorem 1.2 follows from Proposition 3.3,
and item (ii) follows from Theorem 4.1.

Proof of Corollary 1.3. The main strategy here is to argue by contradiction. Indeed, we are going
to assume that the geometric generic fibre has a decomposition of the diagonal, and we want to
conclude that Y12 has odd torsion order, which contradicts the assumptions of the corollary.

First note that the Chow group of Y12 does not appear in the target of ΦX , and so we need to
modify our strictly semi-stable family. More concretely, we perform a 2 : 1 base change and blow
up Y12 to arrive at a strictly semi-stable model X ′ → SpecR′ with special fibre Y ′ = Y1∪P ∪Y2,
where q : P → Y12 is a P1-bundle that meets Y1 and Y2 along disjoint sections. This implies
CH1(Y

′
L) ≃ CH1(YL) ⊕ q∗CH0((Y12)L) for any field extension L/k. By the construction of the

above map, ΦX ′,P is zero modulo 2 on q∗CH0((Y12)L). Since CH1(Y ) → CH1(YL) is surjective
by assumption, we conclude that for any unramified extension A/R′ of dvr’s,

im(ΦX ′
A,PL

) ≡ im(ΦX ′,P ) mod 2 . (4.18)

If the geometric generic fibre of π admits a decomposition of the diagonal, then, by Theorem 1.2,
the map ΦX ′

A,PL
is surjective modulo 2 for A the local ring of X ′ at the generic point of P .

By (4.18), this implies that up to some multiples of 2, the point δP is contained in im(CH0(P ) →
CH0(Pk(P )) and so P has odd torsion order (see Lemma 2.1). Since the torsion order is a stable
birational invariant of smooth projective varieties, we find that Y12 has odd torsion order as well,
which contradicts our assumptions.

Remark 4.5. The above proof shows that Corollary 1.3 remains true if for any field extension L/k,
the map CH1(Y ) → CH1(YL) is surjective modulo 2.
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5. Very general quartic fivefolds have no decomposition of the diagonal

5.1 Overview

We aim to write down a smooth quartic fivefold X ⊂ P6 which has no decomposition of the
diagonal. We sketch our construction here, before we give the technical details below.

As in [NO22, Theorem 5.1], we start by degenerating a general quartic fivefold to a union
Y1∪Y2 of general quartic double covers of P5 (see Section 5.2). The two components Y1 and Y2 are
isomorphic to each other via an exchange of variables, and they intersect each other in a general
quartic double cover Y1∩Y2 = Z of P4, which degenerates to the double quartic fourfold Z0 → P4

studied by Hassett–Pirutka–Tschinkel [HPT19]. The total space X of this degeneration is singular
along a codimension 1 subvariety S of Z.

The blow-up X ′ := BlY2 X resolves the singularities of the total space, and its special fibre
is the union Y1 ∪ Ỹ2, where Ỹ2 is the blow-up of Y2 along S. Moreover, this family is strictly
semi-stable. A further 2 : 1 base change, followed by a blow-up along Z ≃ Y1∩ Ỹ2, gives a strictly
semi-stable family X̃ whose generic fibre is a general quartic fivefold and whose special fibre is
a union X̃0 = Y1 ∪ PZ ∪ Ỹ2, where PZ is a P1-bundle over Z (see Lemma 5.5).

Let A be the local ring of X̃ at the generic point of PZ , with residue field κ(PZ), where we
recall our convention from Section 2.1 that the function field of an integral scheme X over a field
is denoted by κ(X) whenever we prefer to make the ground field in our notation not explicit.
Then X̃A → SpecA is strictly semi-stable, and we get a map

ΦX̃A,PZ
: CH1

(
X̃0 × κ(PZ)

)
−→ CH0(PZ × κ(PZ)) ;

see Definition 3.1. The main technical result of this section is then the assertion that for a zero-
cycle z ∈ CH0(PZ) of degree 1, the zero-cycle

δPZ
− zκ(PZ) ∈ CH0(PZ × κ(PZ)) (5.1)

is not in the image of ΦX̃A
modulo 2; see Proposition 5.7. By Theorem 4.1, this implies that the

geometric generic fibre of X̃ → SpecR has no decomposition of the diagonal, as we want.

We assume that (5.1) is contained in the image of ΦX̃A
modulo 2 and aim to find a contra-

diction. The strategy is to repeatedly apply Fulton’s specialization map on Chow groups (in the
form of Lemma 5.8 below) to simplify the contribution from CH1

(
X̃0 × κ(PZ)

)
. The goal will

be to finally arrive at the conclusion that the diagonal point δZ0 ∈ CH0(Z0 × κ(Z0)) satisfies

δZ0 ∈ im(CH0(Z0) → CH0(Z0 × κ(Z0))) mod 2 .

We will show (see Lemma 5.13) that this contradicts some properties of the non-trivial unramified
cohomology class with Z/2-coefficients on Z0 from [HPT18, HPT19].

5.2 A strictly semi-stable family

Let k0 be an algebraically closed field of characteristic different from 2, and let

k := k0(λ, u, v, s)

be the algebraic closure of purely transcendental extension of k0 of degree 4.

Our construction relies on the following choices.

Definition 5.1. Let f, g ∈ k0[z0, . . . , z4] be general homogeneous polynomials with deg(f) = 4
and deg(g) = 3.
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(i) Let

fs := sf + f0 ∈ k[z0, . . . , z4] ,

where

f0 := z0z1z
2
3 + z0z2z

2
4 + z1z2

(
z20 + z21 + z22 − 2(z0z1 + z0z2 + z1z2)

)
. (5.2)

(ii) Let

gu := ug + z32 ∈ k[z0, . . . , z4] . (5.3)

(iii) For fs and gu as above, we define

F := Fv,u,s := v
(
z45 + z46

)
+ (z5 + z6)gu + fs ∈ k[z0, . . . , z6] , (5.4)

which is symmetric in z5 and z6.

Lemma 5.2. Let fs and gu be as in Definition 5.1. Then

{fs = 0} ⊂ P4
k , {gu = 0} ⊂ P4

k and {fs = gu = 0} ⊂ P4
k

are smooth complete intersections. Moreover,

D1 :=
{
vz45 + z5gu + fs = 0

}
⊂ P5

k (5.5)

is smooth, and

D̄1 := {z5gu + fs = 0} ⊂ P5
k (5.6)

has a singularity of multiplicity 3 at p = [0 : · · · : 0 : 1] and is smooth away from p.

Proof. It suffices to prove the assertion after specializing s → ∞ and u → ∞; that is, we may
replace fs with f and gu with g. Since f and g are general, we thus conclude from Bertini’s
theorem (which works over infinite fields) that {fs = 0} ⊂ P4

k and {gu = 0} ⊂ P4
k are smooth

hypersurfaces that meet in a smooth complete intersection {fs = gu = 0} ⊂ P4
k. This proves the

first assertion of the lemma; the rest follows easily from this.

Let R := k[[t]], and let PR

(
17, 2

)
:= Proj(R[z0, . . . , z6, w]) be the weighted projective space

such that the variables zi have weight 1 and the variable w has weight 2. Consider the R-scheme

X :=
{(

λw − z22
)
t− z5z6 = 0, w2 − F = 0

}
⊂ PR

(
17, 2

)
, (5.7)

where F is as in (5.4). The R-scheme X is flat over R, and the generic fibre XK is given by the
equation

XK =
{
λ−2

(
t−1z5z6 + z22

)2 − v
(
z45 + z46

)
− (z5 + z6)gu − fs = 0

}
⊂ P6

K ,

which is a smooth quartic fivefold. (We note that X is not regular; in fact, the Weil divisors Y1
and Y2 are not Cartier.)

The special fibre X0 of X has two irreducible components, X0 = Y1 ∪ Y2, such that

Yi =
{
w2 − F = 0, z7−i = 0

}
=

{
w2 − vz4i+4 − zi+4gu − fs = 0

}
⊂ Pk

(
16, 2

)
(5.8)

for i = 1, 2 is a smooth double quartic fivefold Yi → P5
[z0:···:z4:z4+i]

. Using the symmetry of F
in z5 and z6, we get a canonical isomorphism Y1 ≃ Y2. Moreover, the intersection Z := Y1 ∩Y2 ⊂
P
(
15, 2

)
is the double quartic fourfold Z → P4 given by the equation

Z :=
{
w2 − fs = 0

}
⊂ Pk

(
15, 2

)
. (5.9)

Since {fs = 0} is smooth, so is Z.
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Lemma 5.3. The singular locus of X in (5.7) is given by

S =
{
t = z5 = z6 = λw − z22 = w2 − fs = 0

}
⊂ X , (5.10)

which is smooth over k. Moreover, X has ordinary quadratic singularities of codimension 3
along S.

Proof. As described above, the special fibre X0 is given by the union Y1 ∪ Y2 of two smooth
projective varieties. It follows that X is regular outside of Y1 ∩ Y2, and so the singular locus S
is contained in {t = z5 = z6 = 0}. Considering the Jacobian matrix of X , the Jacobian criterion
then easily shows that S is given as claimed in (5.10). Since λ ∈ k is non-zero, S is isomorphic to{

λ−2z42 − fs = 0
}
⊂ P4

k ,

which is smooth over k because fs = sf + f0 with f general.

Let p ∈ S. Since S ⊂ {z5 = z6 = 0}, the z5- and z6-coordinates of p vanish, and so at least one
of the zi-coordinates with i = 0, . . . , 4 is non-zero. Since {fs = 0} ⊂ P4 is smooth, we further see
that for i = 0, . . . , 4, at least one partial ∂ziF = ∂zifs does not vanish at p (if they all vanished
simultaneously, then fs would vanish at p by the Leibniz identity, contradicting the smoothness of
{fs = 0} ⊂ P4). It follows that the tangent space of

{
w2−F = 0

}
at p intersects the tangent cone

of
{(

λw−z22
)
t−z5z6 = 0

}
at p transversely. The latter is Zariski locally isomorphic to the tangent

cone of the ordinary quadratic singularity {xt−yz = 0}, thus proving the claim in the lemma.

Lemma 5.4. Let X be the R = k[[t]]-scheme as defined in (5.7), let K := k((t)), and let Y1, Y2
be the components of the special fibre X0 of X . Then X ′ := BlY2X is strictly semi-stable with
special fibre Y1 ∪ Ỹ2, where Ỹ2 = BlSY2, and Y1 ∩ Ỹ2 = BlSZ = Z, where Z = Y1 ∩ Y2.

Proof. Note that Y1 → P5 is a double cover branched along D1. By Lemma 5.2, the divisor D1

is smooth, and so Y1 is smooth. Since Y2 ≃ Y1, the same holds true for Y2. We have seen above
that the singular locus S of X is also smooth. Locally at a point of S, the scheme X has ordinary
quadratic singularities of codimension 3 (see Lemma 5.3), and a local computation shows that
the special fibre of X ′ is given by Y1 ∪ Ỹ2, where Ỹ2 = BlSY2. Since Y2 and S are smooth, so is
Ỹ2. Moreover, Y1 ∩ Ỹ2 = BlSZ = Z, where the second equality comes from the fact that S ⊂ Z is
a divisor and Z is smooth. By construction, Ỹ2 is a Cartier divisor of X ; since the components of
X ′

0 are reduced and X0 is Cartier, we find that Y1 is Cartier as well. Since Y1, Ỹ2 and Y1∩ Ỹ2 = Z
are smooth and the components of X ′

0 are Cartier, it follows that X ′ is strictly semi-stable, as
we want.

Lemma 5.5. In the notation of Lemma 5.4, let X ′′ = X ′ ×R→R
t→t2

R. Then

X̃ := BlZX ′′ → SpecR (5.11)

is a strictly semi-stable R-scheme with special fibre X̃0 = Y1 ∪ PZ ∪ Ỹ2, where Ỹ2 is the blow-up
of Y2 along S and PZ is a P1

κ-bundle over Z. The intersections Y1 ∩ PZ and PZ ∩ Ỹ2 are disjoint
sections of PZ → Z. The generic fibre

X̃K =
{
λ−2

(
t−2z5z6 + z22

)2 − v
(
z45 + z46

)
− (z5 + z6)gu − fs = 0

}
⊂ P6

K (5.12)

of X̃ is a smooth quartic fivefold.

Proof. By Lemma 5.4, the map X ′ → SpecR is strictly semi-stable. The 2 : 1 base change X ′′

is thus regular away from the singular locus Z of the central fibre, and it has ordinary double
point singularities along Z (because étale locally at the non-smooth locus, X ′ is given by t = xy,
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and so X ′′ is given by t2 = xy; cf. [Har01, Proposition 1.3]). Those singularities are resolved by
the blow-up of Z, and the corresponding exceptional divisor will be a reduced component of the
special fibre; see for example [Har01, Proposition 2.2]. Hence, X̃ is regular, and the special fibre
is given by Y1 ∪PZ ∪ Ỹ2, where PZ → Z is a smooth conic bundle. Moreover, Y1 ∩PZ (as well as
Ỹ2∩PZ) is a section of PZ → Z, and so PZ → Z is a Zariski locally trivial P1-bundle, as claimed.
This proves the lemma.

5.3 The main result

Theorem 5.6. Let K be the algebraic closure of the fraction field K of R. Then the smooth
quartic fivefold X̃K ⊂ P6

K
given by the base change of (5.12) toK does not admit a decomposition

of the diagonal.

Proof. We aim to deduce Theorem 5.6 from Theorem 4.1. To this end, let A = OX̃ ,PZ
with

residue field κ(PZ). Then R → A is an unramified extension of dvr’s, and so it follows from
Lemma 5.5 that X̃A → SpecA is strictly semi-stable. By Definition 3.1, we get a map

ΦX̃A,PZ
: CH1

(
X̃0 × κ(PZ)

)
−→ CH0(PZ × κ(PZ)) .

By Theorem 4.1, Theorem 5.6 follows from Proposition 5.7 below, which is the main technical
result of this section.

Proposition 5.7. Let X̃ → SpecR be as in (5.11), and let A = OX̃ ,PZ
with residue field κ(PZ).

Then for any zero-cycle z ∈ CH0(PZ), the element

δPZ
− zκ(PZ) ∈ CH0(PZ × κ(PZ))/2 (5.13)

is not in the image of ΦX̃A,PZ
modulo 2, where δPZ

denotes the diagonal point of PZ × κ(PZ).

Proof. Recall from Lemma 5.5 that the special fibre of X̃ → SpecR is given by Y1∪PZ∪Ỹ2, where
Ỹ2 → Y2 is the blow-up along the smooth subvariety S ⊂ Z ⊂ Y2. Since blow-ups commute with
extensions of the base field, the blow-up formula for Chow groups yields a canonical isomorphism

CH1(Y2 × κ(PZ))⊕ CH0(S × κ(PZ)) ≃ CH1

(
Ỹ2 × κ(PZ)

)
.

Since PZ is a P1-bundle over Z, we have CH0(Z×κ(PZ))⊕CH1(Z×κ(PZ)) ≃ CH1(PZ×κ(PZ)).
Since Y1 ∩PZ is a section of PZ → Z, the contribution of CH1(Z × κ(PZ)) to CH1

(
X̃0 × κ(PZ)

)
is absorbed by CH1(Y1 × κ(PZ)), and we get a canonical surjection

CH1(Y1×κ(PZ))⊕CH0(Z×κ(PZ))⊕CH1(Y2×κ(PZ))⊕CH0(S×κ(PZ)) −↠ CH1

(
X̃0×κ(PZ)

)
.

We aim to compute the image of ΦX̃A,PZ
modulo 2. By Lemma 4.3(ii), the contribution of

CH0(Z × κ(PZ)) via ΦX̃A,PZ
is divisible by 2, and so we may neglect it in what follows. Using

the symmetry Y1 ≃ Y2 together with the fact that Y1 and Ỹ2 meet PZ in (disjoint) sections of
the P1-bundle PZ → Z, we thus conclude that

im(ΦX̃A,PZ
) = im

(
CH1(Y1 × κ(PZ))⊕ CH0(S × κ(PZ)) −→ CH0(PZ × κ(PZ))

)
mod 2 .

(5.14)

Here the map CH1(Y1×κ(PZ)) → CH0(PZ ×κ(PZ)) is given by restricting to the Cartier divisor
(Y1 ∩ PZ)× κ(PZ) and pushing forward the resulting zero-cycle to PZ × κ(PZ). Moreover, the
map CH0(S × κ(PZ)) → CH0(PZ × κ(PZ)) is the natural pushforward map, where we use the
section of the P1-bundle PZ → Z given by PZ ∩ Ỹ2 to identify S ⊂ Z with a subscheme of PZ .
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The idea is now to perform some specializations to Y1, S and PZ , to make their Chow groups
more accessible, so that we can control the image in (5.14). The main technical tool which allows
us to perform these specializations is the following result of Fulton.

Lemma 5.8. Let B be a discrete valuation ring with fraction field F and residue field L. Let
p : X → SpecB and q : Y → SpecB be a flat proper B-schemes with connected fibres. Denote
by Xη, Yη and X0, Y0 the generic and special fibres of p, q, respectively. Assume that there is
a component Y ′

0 ⊂ Y0 such that A = OY,Y ′
0
is a discrete valuation ring (this holds if Y0 is reduced

along Y ′
0), and consider the flat proper A-scheme XA → SpecA given by base change of π. Then

Fulton’s specialization map induces a specialization map

sp: CHi

(
Xη ×F F (Yη)

)
−→ CHi

(
X0 ×L L(Y ′

0)
)
,

where F and L denote the algebraic closures of F and L, respectively, such that the following
holds:

(i) The map sp commutes with pushforwards along proper maps and pullbacks along regular
embeddings.

(ii) If X = Y and X0 is integral, then sp(δXη) = δX0 , where δXη ∈ CH0

(
Xη ×F F (Xη)

)
and

δX0 ∈ CH0

(
X0 ×L L(X0)

)
denote the diagonal points.

Proof. Let n be the relative dimension of q : Y → SpecB. Consider the flat proper B-scheme
p× q : X ×B Y → SpecB. By [Ful98, § 20.3] (see also [Ful75, Theorem 3.3(b)]), there is a spe-
cialization map

sp: CHi+n

(
Xη ×F Yη ×F F

)
−→ CHi+n

(
X0 ×L Y0 ×L L

)
. (5.15)

This map is compatible with respect to pushforwards along proper maps and pullbacks along
regular embeddings; see [Ful98, Proposition 20.3]. For a given cycle γ on Xη ×F Yη ×F F , the
specialization sp(γ) is constructed by first performing a base change so that γ is defined on the
generic fibre of p×q. We may then take the closure γ of γ in the total space X ×BY and restrict γ
to the special fibre. The cycle sp(γ) is then given by the image of γ|X0×LY0 via the natural map

CHi+n(X0 ×L Y0) −→ CHi+n

(
X0 ×L Y0 ×L L

)
.

(Taking the image via this map is necessary to make the construction well defined because the
base change performed above may replace L by a finite extension.)

Pullback of cycles yields a canonical isomorphism

lim−→
∅≠U⊂Y ′

0

CHi+n

(
X0 ×L U ×L L

) ≃−→ CHi

(
X0 ×L L(Y ′

0)
)

whose inverse is given by taking closures of cycles. We may thus consider the induced pullback
(respectively, localization) map

CHi+n

(
X0 ×L Y0 ×L L

)
−→ CHi

(
X0 ×L L(Y ′

0)
)
. (5.16)

By the localization exact sequence [Ful98, Proposition 1.8], the kernel of (5.16) is generated by
cycles on X0 ×L Y0 ×L L that do not dominate Y ′

0 ×L L. Using this together with the above
description of the specialization map in (5.15), we find that the composition of (5.15) with (5.16)
factorizes through

CHi+n

(
Xη ×F Yη ×F F

)
−→ CHi

(
Xη ×F F (Yη)

)
as the kernel of the latter is again generated by cycles that do not dominate Yη ×F F . We
thus arrive at the specialization map as claimed in the lemma. The compatibility results with
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respect to proper pushforwards and pullbacks along regular embeddings follow from the respective
properties for (5.15), and the claim concerning the image of the diagonal point is clear from the
construction.

Since the specialization map in Lemma 5.8 commutes with pushforwards along proper maps
and pullbacks along regular embeddings, we may compute the specialization of (5.14) simply by
specializing the involved varieties. The assumption that (5.1) lies in (5.14) modulo 2 then implies
that the same holds true after specialization, and we aim to finally arrive at a contradiction after
specializing the parameters λ, v, u and s to zero.

Note that Z depends on s but not on λ, v and u, and so we write from now on Z = Zs.
Similarly, S depends on s and λ but not on u and v, and so we write S = Ss,λ. Also note that Y1
depends on v, u and s but not on λ, but we will not need to indicate this in our notation. The
required degenerations are captured in the following diagram:

Ss,λ ⊂ Zs ⊂ PZs

λ→0
// Ss ⊂ Zs ⊂ PZs ,

Y1
2:1−−→ P5 v→0

// Ȳ1
2:1−−→ P5 ,

Ts,u ⊂ Zs
u→0

// Ts ⊂ Zs ,

Ss ⊂ Zs , Ts ⊂ Zs
s→0

// Sred
0 = T red

0 ⊂ Z0 .

Here Ts,u ⊂ Zs ⊂ PZs is a hypersurface of Zs that depends on s and u and is such that

im
(
CH1

(
Ȳ1 × κ(PZs)

)
−→ CH0(PZs × κ(PZs))

)
⊂ im

(
CH0(Tu,s × κ(PZs)) −→ CH0(PZs × κ(PZs))

)
.

We explain our notation and construction in detail in the following four steps. In each step
Lemma 5.8 will be applied to a situation where the special fibre Y0 of Y is integral, so that
Y ′
0 = Y0. To simplify the notation, we will not write down the total spaces of our degenerations

explicitly but only indicate which parameter (that is λ, v, u or s) is sent to zero. For the same
reason, we will use the following convention: if the defining equation of X does not depend on
a parameter µ, then we denote the specialization of X via µ → 0 with the same letter. When
applying the above specializations, the ground field k = k0(λ, u, v, s) will change in each step in
the sense that one has to delete one transcendental parameter each time (note however that the
resulting field remains algebraically closed by the construction in Lemma 5.8). To simplify the
notation, we will not make this change of the ground field explicit in our notation.

5.3.1 Step 1. In the first step, we aim to simplify the contribution from S = Ss,λ by spe-
cializing λ → 0. The union Y1 ∪ PZs does not depend on λ. On the other hand, Ss,λ specializes
by (5.10) to the hypersurface

Ss =
{
z5 = z6 = z22 = w2 − fs = 0

}
(5.17)

given as the pullback of the non-reduced plane z22 = 0 via the double covering Zs → P4. We thus
find by Lemma 5.8 that the image of (5.14) via the specialization λ → 0 is given by

im
(
CH1(Y1 × κ(PZs))⊕ CH0(Ss × κ(PZs)) → CH0(PZs × κ(PZs))

)
mod 2 . (5.18)

5.3.2 Step 2. In the second step, we aim to get a hand on CH1(Y1). For this, we degenerate Y1
via v → 0, so that the double cover Y1 → P5 from (5.8) specializes to a singular double cover
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Ȳ1 → P5, branched along the quartic D̄1 ⊂ P5 from (5.6). By Lemma 5.2, the quartic D̄1 has a
triple point at p = [0 : · · · : 0 : 1] as its unique singularity. The triple point makes Ȳ1 rational,
and we will use this to control its first Chow group. Since Zs as well as Ss do not depend
on the parameter v, they specialize smoothly in this step. Hence the image of (4.18) via the
specialization λ → 0 followed by v → 0 is given by

im
(
CH1

(
Y 1 × κ(PZs)

)
⊕ CH0(Ss × κ(PZs)) → CH0(PZs × κ(PZs))

)
mod 2 . (5.19)

Let Ŷ1 be the blow-up of Y 1 along p. The projection from p given by [z0 : · · · : z5] 7→
[z0 : · · · : z4] induces a morphism

f : Ŷ1 −→ P4 .

Let

Cu := {gu = 0} ⊂ P4 .

Lemma 5.9. The base change of f : Ŷ1 → P4 to the open subset U = P4 \ Cu is a Zariski locally
trivial P1-bundle.

Proof. We identify P4 with the hyperplane H = {z5 = 0} ⊂ P5. For a point y ∈ H that is
not contained in Cu, the line through p and y in P5 meets D̄1 in exactly two points: in p with
multiplicity 3 and in another point q(y) with multiplicity 1. The fibre f−1(y) then identifies to
the double cover of P1 branched at p and q(y). Hence, f−1(y) is a smooth conic, and the branch
point p, which does not depend on y, yields a section of the base change of f to U . Hence,
f−1(U) → U is a smooth conic bundle with a section, and so it identifies to a Zariski locally
trivial P1-bundle. This proves the lemma.

Remark 5.10. In the above notation, one can check that for y ∈ Cu, the point q(y) collides with p,
and the fibre f−1(y) is given by two lines that meet in one point, corresponding to the point p.
We did not include this description as it will be irrelevant for our argument.

Corollary 5.11. The canonical map CH1

(
f−1(Cu)

)
→ CH1

(
Ŷ1

)
is universally surjective; that

is, it is surjective after any extension of the base field.

Proof. Since f−1(U) → U is a P1-bundle, by Lemma 5.9, the isomorphism CH1

(
f−1(U)

)
≃

CH0(U) ⊕ CH1(U) holds universally, that is, after any extension of the base field. By the lo-
calization exact sequence, we get an exact sequence CH0(Cu) → CH0

(
P4

)
→ CH0(U) → 0,

which holds again after any extension of the base field. Since Cu contains a rational point
(as it is defined over an algebraically closed field), the first arrow in the localization exact
sequence is surjective, and so CH0(U) = 0 holds after any extension of the base field. Sim-
ilarly, CH1(Cu) → CH1

(
P4

)
→ CH1(U) → 0 is exact after any extension of the base field.

Since Cu is a cubic threefold over an algebraically closed field, it contains a line, and so we
conclude that CH1(U) = 0 holds after any extension of the base field. Altogether, we find that
CH1

(
f−1(U)

)
= 0 after any extension of the base field. The result thus follows from the lo-

calization exact sequence CH1

(
f−1(Cu)

)
→ CH1

(
Ŷ1

)
→ CH1

(
f−1(U)

)
→ 0. This proves the

corollary.

Consider (5.19), and recall that the map

CH1

(
Y 1 × κ(PZs)

)
−→ CH0(PZs × κ(PZs)) (5.20)
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is given by intersecting a 1-cycle on Y 1 × κ(PZs) with(
Y 1 ∩ PZs

)
× κ(PZs) ≃ Zs × κ(PZs) .

The singular point of Y 1 does not meet the above intersection. To compute the image of (5.20),
we may thus replace Y 1 with the blow-up Ŷ1. Corollary 5.11 then shows that the image of (5.20)
is contained in the image of

CH0(Ts,u × κ(PZs)) −→ CH0(PZs × κ(PZs)) ,

where

Ts,u := f−1(Cu) ∩ Zs =
{
w2 − fs = gu = 0

}
⊂ P

(
15, 2

)
; (5.21)

cf. (5.9). We thus conclude that (5.19) is contained in

im
(
CH0(Ts,u × κ(PZs))⊕ CH0(Ss × κ(PZs)) → CH0(PZs × κ(PZs))

)
mod 2 . (5.22)

5.3.3 Step 3. In this step, we specialize u → 0. By the construction of gu in (5.3), this
specializes gu to g0 = z32 , and hence Ts,u specializes to

Ts :=
{
w2 − fs = z32 = 0

}
⊂ P

(
15, 2

)
.

Applying the specialization map from Lemma 5.8 that corresponds to u → 0 to (5.22), we then
get

im
(
CH0(Ts × κ(PZs))⊕ CH0(Ss × κ(PZs)) → CH0(PZs × κ(PZs))

)
mod 2 .

Comparing the above description of Ts with that of Ss in (5.17), we find that T red
s = Sred

s . Since
Chow groups depend only on the underlying reduced schemes, the above image simplifies further
to

im
(
CH0(T

red
s × κ(PZs)) → CH0(PZs × κ(PZs))

)
mod 2 . (5.23)

5.3.4 Step 4. In this final step, we specialize s → 0. This way Zs specializes to the double
cover Z0 → P4 branched along the quartic f0 of Hassett–Pirutka–Tschinkel from (5.2). Moreover,
T red
s specializes to

T red
0 =

{
w2 − f0 = z2 = 0

}
⊂ P

(
15, 2

)
.

Using the explicit description of f0 in (5.2), we find

T red
0 =

{
w2 − z0z1z

2
3 = z2 = 0

}
⊂ P

(
15, 2

)
.

Lemma 5.12. The scheme T red
0 has universally trivial Chow group of zero-cycles.

Proof. We write for simplicity T := T red
0 . The non-normal locus of T is given by the plane

{w = z3 = 0}. The normalization T̃ → T of T is locally given by the equation v2 − z0z1 = 0,
where we substituted v = w/z3. That is, T̃ is an integral quadric given by the equation

T̃ =
{
z24 − z0z1 = 0

}
⊂ P4

[z0:···:z4] .

Note that T̃ is a cone over a smooth conic with a rational point, hence a cone over P1, and so
it has universally trivial Chow group of zero-cycles. Since the non-normal locus of T is a plane,
which of course has universally trivial Chow group of zero-cycles as well, we conclude that T has
universally trivial Chow group of zero-cycles, as we want.
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By Lemma 5.12, the specialization of (5.23) under s → 0 is contained in

im
(
CH0(PZ0) → CH0(PZ0 × κ(PZ0))

)
mod 2 . (5.24)

Our initial assumption that (5.13) is contained in (5.14) then implies that δPZ0
is contained

in (5.24). Since PZ0 is a P1-bundle over Z0, the pushforward of cycles yields a universal isomor-
phism CH0(PZ0) ≃ CH0(Z0). Moreover, CH0(Z0 × κ(Z0)) ≃ CH0(Z0 × κ(PZ0)) because Chow
groups do not change under purely transcendental field extensions. Since δPZ0

maps to δZ0 via
the composition

CH0(PZ0 × κ(PZ0))
≃−→ CH0(Z0 × κ(PZ0))

≃−→ CH0(Z0 × κ(Z0)) ,

we thus conclude that

δZ0 ∈ im(CH0(Z0) → CH0(Z0 × κ(Z0))) mod 2 .

The proof of Proposition 5.7 is then completed by Lemma 5.13 below, where we note that Z0 is
defined over k0, and so the function field κ(Z0) of Z0 may also be written as k0(Z0).

Lemma 5.13. Let Z0 =
{
w2 − f0 = 0

}
⊂ Pk0

(
15, 2

)
, where f0 is as in (5.2). Then the class

δZ0 ∈ CH0(Z0,k0(Z0)) is non-zero in the quotient

0 ̸= δZ0 ∈
CH0(Z0,k0(Z0))/2

CH0(Z0)/2
. (5.25)

Proof. As noted in [HPT19], the fourfold Z0 is birational to the (2, 2) hypersurface in P2 × P3

as described in [HPT18]. The lemma thus follows from [HPT18, Proposition 11] and [Sch19b,
Theorem 9.2] by arguments similar to those in [Sch19b, Propositions 3.1 and 7.1]. We give some
details for the convenience of the reader.

Recall that the double cover Z0 → P4 is given by the equation

w2 = z0z1z
2
3 + z0z2z

2
4 + z1z2

(
z20 + z21 + z22 − 2(z0z1 + z0z2 + z1z2)

)
.

The branch locus in P4 has multiplicity 2 along the line ℓ := {z0 = z1 = z2 = 0}. Let Z ′
0 = BlℓZ0,

and let π : Z ′
0 → P2 denote the morphism induced by projection from ℓ. The generic fibre of π is

the quadric surface from [HPT18], and so α = (z1/z0, z2/z0) ∈ H2
(
k0
(
P2

)
,Z/2

)
satisfies

0 ̸= π∗α ∈ H2
nr(k0(Z

′
0)/k0,Z/2) ;

see [HPT18, Proposition 11] (this is written over the field of complex numbers, but the same
arguments work over any algebraically closed field of characteristic different from 2; cf. [Sch19b,
Example 4.2]). The exceptional divisor E of BlℓZ0 → Z0 is given by the equation

w2 = z0z1z
2
3 + z0z2z

2
4 .

This is a conic bundle over P2 whose generic fibre is the conic that corresponds to the symbol α,
and so π∗α vanishes when restricted to the generic point of E. If e ∈ E is a regular point, then
the pullback map H2(SpecOE,e,Z/2) → H2(k(E),Z/2) is injective (see for example [Sch21b,
Theorem 3.6(a)]), and so the restriction of π∗α to any regular point of E vanishes. In particular,
π∗α vanishes at any point of the generic fibre of E → P2. Now let τ ′ : Z ′′

0 → Z ′
0 be an alteration

whose degree is odd, which exists by Gabber’s theorem; see [IT14]. Since k0 is perfect, Z ′′
0 is

smooth.

Consider the composition τ : Z ′′
0 → Z0 of τ ′ with the blow-down map Z ′

0 → Z0. Clearly,
τ is an alteration of odd degree. The base change of τ to k0(Z0) is an alteration of odd degree
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of Z0,k0(Z0) that we denote by the same symbol. For a contradiction, we assume that there exist
a class z1 ∈ CH0(Z0,k0(Z0)) and a class z′ ∈ CH0(Z0) such that

δZ0 = 2z1 + z′k0(Z0)
∈ CH0(Z0,k0(Z0)) .

We restrict this class to the smooth locus of Z0,k0(Z0) and pull that back via f . The localization
exact sequence [Ful98, Proposition 1.8] then shows that

δτ = z2 + 2z′1 + z′′k0(Z0)
∈ CH0

(
Z ′′
0,k0(Z0)

)
,

where δτ is the zero-cycle on Z ′′
0,k0(Z0)

induced by the graph of τ , z2 is supported on τ−1
(
Zsing
0,k0(Z0)

)
and z′1 ∈ CH0

(
Z ′′
0,k0(Z0)

)
and z′′ ∈ CH0(Z

′′
0 ) are some classes.

We aim to compute the Merkurjev pairing (see for example [Mer08, Section 2.4], [Sch21b, Sec-
tion 5]) of the above zero-cycle with the unramified cohomology class τ∗α ∈ H2

nr(k0(Z
′′
0 )/k0,Z/2).

Here we find

⟨δτ , τ∗π∗α⟩ = deg(τ) · π∗α ∈ H2(k0(Z0),Z/2) .
This class is non-zero because deg(τ) is odd and π∗α is non-zero.

On the other hand,

⟨z2 + 2z′1 + z′′k0(Z0)
, τ∗π∗α⟩ = ⟨z2 + z′′k0(Z0)

, τ∗π∗α⟩ = ⟨z2, τ∗π∗α⟩ ,

where we used that ⟨z′′k0(Z0)
, τ∗π∗α⟩ = 0 as τ∗π∗α restricts to zero on any closed point of Z0

because k0 is algebraically closed. We claim ⟨z2, τ∗π∗α⟩ = 0, and it suffices to show our claim
in the case where z2 is a single point. If z2 does not map to the generic point of P2 via the
composition f := π ◦ τ : Z ′′

0 → P2, then the claim follows from [Sch19b, Theorem 9.2]. Otherwise,

since z2 is supported on τ−1
(
Zsing
0,k0(Z0)

)
and the generic fibre of π : Z ′

0 → P2 is smooth, τ(z2) is

a point on the generic fibre of E → P2. We have shown above that α vanishes when restricted
to any point on the generic fibre of E → P2, and this implies that ⟨z2, τ∗π∗α⟩ = 0, as we want.
Altogether we have thus shown that

0 ̸= deg(τ) · π∗α = ⟨δτ , τ∗π∗α⟩ = ⟨z2 + 2z′1 + z′′k0(Z0)
, τ∗π∗α⟩ = 0 ∈ H2(k0(Z0),Z/2) .

This gives a contradiction, which concludes the proof of the lemma.
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morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 5–361; http:
//www.numdam.org/item/PMIHES_1967__32__5_0/.

Har01 U.T. Hartl, Semi-stability and base change, Arch. Math. (Basel) 77 (2001), no. 3, 215–221;
doi:10.1007/PL00000484.

HPT18 B. Hassett, A. Pirutka, and Y. Tschinkel, Stable rationality of quadric surface bundles over
surfaces, Acta Math. 220 (2018), no. 2, 341–365; doi:10.4310/ACTA.2018.v220.n2.a4.

HPT19 , A very general quartic double fourfold is not stably rational, Algebr. Geom. 6 (2019),
no. 1, 64–75; doi:10.14231/ag-2019-004.
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