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Smoothing semi-smooth stable Godeaux surfaces
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Abstract

We show that all the semi-smooth stable complex Godeaux surfaces, classified in
[M. Franciosi, R. Pardini and S. Rollenske, Ark. Mat. 56 (2018), no. 2, 299–317], are
smoothable and that the moduli stack is smooth of the expected dimension 8 at the
corresponding points.

1. Introduction

A Godeaux surface is (the canonical model of) a minimal complex surface of general type with
K2 = 1 and h1(O) = h2(O) = 0. A stable Godeaux surface is a stable surface with the same
numerical invariants. It is semi-smooth if it has only double crossings and pinch points as singu-
larities; see Section 3.1.

The algebraic fundamental group of a Godeaux surface is cyclic of order m 6 5 (see [Miy75]).
Almost fifty years have passed since Reid’s seminal paper [Rei78] classifying Godeaux surfaces
when m > 3, but a classification in the simply connected case is still lacking, in spite of much
work on the subject (see Section 1.1 for a recap of known facts on Godeaux surfaces and their
moduli). In particular, the question of irreducibility has not been decided yet.

An approach to investigate the dimension and singularities of the moduli is to construct
non-canonical (that is, having worse than canonical singularities) stable surfaces X and show
that they admit a smoothing. The first such construction can be found in [LP07, § 7], but many
more examples are known nowadays (see, for instance, [SU16, § 5]). When the singularities are
non-isolated, this is technically more difficult and sometimes no smoothing exists, even for hy-
persurface singularities and surfaces with H2

(
TX
)

= 0 (see [Rol16]).

In [FFP20], we obtained deformation-theoretical results that allow us to treat here the case
of non-normal semi-smooth Godeaux surfaces; these are described explicitly in the classification
of non-canonical stable Gorenstein surfaces in [FPR18b].

We verify for such surfaces the assumptions of Tziolas’s formal smoothability criterion [Tzi10,
Theorem 12.5].
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Smoothing semi-smooth stable Godeaux surfaces

Theorem 1.1. Let X be a stable non-normal semi-smooth Godeaux surface. Then

(A) T 1
X is generated by global sections;

(B) H1
(
X, T 1

X

)
= 0;

(C) H2
(
X,TX

)
= 0.

We prove Theorem 1.1 in Section 4. The proof combines the explicit classification of the
relevant surfaces as push-outs of their normalizations from [FPR18b] (cf. Section 3) and the
computation of TX and T 1

X for a semi-smooth variety X, again in terms of its construction as
a push-out, carried out in [FFP20]. We find the proof of part (C) (see Section 4.2) particu-
larly interesting as it exploits the interplay between maps in cohomology and their geometrical
interpretations.

For stable surfaces, formal smoothability is equivalent to geometric smoothability (see Sec-
tion 2 for details); thus Theorem 1.1 has consequences on moduli.

Theorem 1.2. Let X be a non-normal stable semi-smooth Godeaux surface.

(i) The moduli stack of stable surfaces is non-singular at [X].

(ii) The general point of the unique irreducible component MX containing [X] corresponds to
a non-singular surface.

(iii) The irreducible component MX has (the expected) dimension 8.

Remark 1.3. The fundamental groups of semi-smooth non-normal Godeaux surfaces range over
all the groups Zm for m 6 5. By the semi-continuity of the fundamental group in families (cf.
[FPR18b, Proposition 4.5]), it follows that for m > 3, the semi-smooth Godeaux surfaces with
π1 = Zm can be smoothed to Godeaux surfaces with the same fundamental group. For m = 1, 2,
it is possible that the general surface in the same component of the moduli space has larger
fundamental group. However, by Theorem 1.2, each semi-smooth non-normal Godeaux surface
lies in exactly one component, and this component has the expected dimension 8.

We expect that the techniques developed in this paper can be extended to other singular
stable surfaces, in particular the surfaces mentioned in Remark 3.1.

1.1. Godeaux surfaces and their moduli. We give here some context on Godeaux surfaces,
with the purpose of better framing our results and methods.

Godeaux surfaces have been an object of intense study over the last decades, but a complete
classification and understanding of their moduli have not yet been achieved. As we recalled above,
the algebraic fundamental group πalg

1 of a Godeaux surface is cyclic of order m 6 5. It is a folklore
conjecture that for each value of m 6 5, the connected component of the moduli of Godeaux
surfaces with πalg

1 = Zm is irreducible and rational of dimension 8. This conjecture is known to
be true for m > 3 by [Rei78] (see also [CU18]) and for m = 2 by the recent preprint [DR20].

Many “sporadic” examples of Godeaux surfaces with trivial πalg
1 are known [Bar85, CG94,

LP07, SU16], and an irreducible component of dimension 8 of the moduli space has very recently
been constructed in [SS20] by homological algebra methods, but the geometry of the moduli
space is still mysterious. For instance, it is known [CP00, Theorem 0.31] that the local moduli
space of the surface in [CG94] is smooth of dimension 8 and that the same is true for the Barlow
surface [CL97], but in general one has no clue which among the various examples belong to the
same component of the moduli space.
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The most classical approach to the construction (and eventually the classification) of Godeaux

surfaces with πalg
1 = Zm goes back to [Rei78] and consists in writing down the canonical ring

of the universal cover of the surface, keeping track of the Zm-action. Clearly this method is
ineffective when m = 1, and different techniques have been used in order to produce examples
with trivial πalg

1 . One method (cf. [LP07, § 7] and also [SU16]) consists in constructing a normal
surface with rational singularities and showing that it admits a Q-Gorenstein smoothing to a
simply connected Godeaux surface. Namely, instead of constructing the Godeaux surface directly,
one produces a surface in the boundary of the moduli space of stable surfaces with K2 = 1 and
h1(O) = h2(O) = 0 and then proves its smoothability by deformation-theoretical arguments. In
this paper, we apply this approach to non-normal surfaces.

Our starting point is the systematic analysis of a part of the boundary of the moduli space
of stable Godeaux surfaces carried out in [FPR18b], where all non-canonical Gorenstein stable
Godeaux surfaces have been classified explicitly. The question of whether these surfaces actually
belong to the closure of the moduli space of smooth Godeaux surfaces is partially answered in
[FPR18b] and [FR18, Rol16], but the smoothability of some of the non-normal examples is still
to be decided.

In Theorem 1.2, we answer this question in the affirmative for semi-smooth surfaces; further-
more, we show that the moduli stack is smooth of dimension 8 at the corresponding points, as
predicted by the folklore conjecture mentioned above. In particular, the moduli stack is locally
irreducible near these points; so while it is possible that the closures of connected components of
the moduli space of canonical Godeaux with different fundamental groups meet at the boundary,
this does not happen at the points corresponding to semi-smooth stable surfaces.

2. Smoothability conditions

The local analysis of the moduli stack of stable surfaces relies on the study of deformations of
a stable surface. We recall here the smoothability criterion we will use.

Assumption 2.1. In this section, X is a proper, pure-dimensional complex variety with complete
intersection singularities (cf. [FFP20, Definition 2.2]). In particular, X is reduced.

We are interested in the existence of a geometric smoothing.

Definition 2.2. A geometric smoothing of X is a Cartesian diagram

X
ι−−−−→ Xy yπ

c −−−−→ C ,

where C is a smooth irreducible curve, c ∈ C is a closed point and π is a flat and proper
morphism that is generically smooth. We say that X is geometrically smoothable if it has a
geometric smoothing.

We denote by TX := Hom
(
ΩX ,OX

)
the tangent sheaf ofX and by T 1

X the sheaf Ext1
(
ΩX ,OX

)
.

The key theorem we use is the following result of Tziolas guaranteeing the existence of a formal
smoothing [Tzi10, Definition 11.6].
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Theorem 2.3 ([Tzi10, Theorem 12.5]). If the conditions

(A) T 1
X is generated by global sections,

(B) H1
(
X, T 1

X

)
= 0,

(C) H2
(
X,TX

)
= 0

hold, then X is formally smoothable; that is, it admits a formal smoothing.

Every geometric smoothing induces a formal smoothing, but the converse is in general not
true. However, in our case the existence of the formal smoothing is sufficient, in view of the
following result.

Theorem 2.4 ([Nob22]). If one of the conditions

(i) H2
(
X,OX

)
= 0,

(ii) either the dualizing sheaf ωX or its dual ω∨X is ample

holds, then X is formally smoothable if and only if it is geometrically smoothable.

Remark 2.5. In general, the assumptions (B) and (C) of Theorem 2.3 imply that X has un-
obstructed deformations. By [Ill71, Proposition 2.1.2.3], an obstruction space for deformations
is given by Ext2

(
LX ,OX

)
. Since X has complete intersection singularities and is reduced, the

cotangent complex LX of X is equivalent to ΩX in the derived category (cf. also [FFP20, § 2]).
Thus Ext2

(
ΩX ,OX

)
is an obstruction space for X. Since Ext2

(
ΩX ,OX

)
= 0 because X is re-

duced and has complete intersection singularities, the result follows by the local-to-global spectral
sequence of Ext.

Recall that a proper surface X is stable if it has semi-log canonical singularities (see [KS88,
§ 4 and in particular Definition 4.17]) and KX is ample as a Q-Cartier divisor.

Remark 2.6. By Remark 2.5, if X is a stable surface that satisfies conditions (B) and (C) of
Theorem 2.3, then the moduli stack of stable surfaces is smooth at [X] of dimension equal to
dim Ext1

(
ΩX ,OX

)
.

3. Semi-smooth stable Godeaux surfaces

3.1. Semi-smooth surfaces. We recall that a surface is semi-smooth if it is locally étale iso-
morphic to

{
u2 − v2w = 0

}
(“double crossings points”). The singular points corresponding to

the origin are called pinch points, and the remaining singular points are double crossings points
(see, for example, [KS88, Definition 4.1]).

Semi-smooth surfaces have a smooth normalization, and the preimage of the singular locus
via the normalization map is a smooth curve. More precisely, by [FFP20, Proposition 3.11], any
quasi-projective semi-smooth surface X can be obtained as follows. Let X̄ be a smooth surface,
Ȳ ⊂ X̄ a smooth curve and g : Ȳ → Y a double cover with Y smooth. Then X fits in the
following push-out diagram:

Ȳ
g−−−−→ Y

̄

y yj
X̄

f−−−−→ X .

(3.1)
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The maps j̄ and j are closed embeddings, and f is finite and birational (and so f is the normal-
ization map). The singular locus of X is Y , and the pinch points are the images of the branch
points of g. One sometimes says that X is obtained from X̄ by gluing/pinching along Ȳ via g
and writes X := X̄ tȲ Y .

3.2. Semi-smooth Godeaux surfaces. We call stable Godeaux surface a stable surface with
K2 = 1 and h1(O) = h2(O) = 0. The stable non-canonical (that is, with worse than canoni-
cal singularities) Gorenstein Godeaux surfaces have been completely classified in [FPR18b]. In
particular, the semi-smooth ones are of type (E+); namely, their normalization is the symmetric
product of an elliptic curve. Here we recall briefly the construction of these surfaces and set the
notation.

Fix an elliptic curve E, let P ∈ E be the origin, and let X̄ = S2E be the second symmetric
product of E. The addition map E ×E → E induces the Albanese map π : X̄ → E. The map π
gives X̄ the structure of a P1-bundle over E. In fact, we have X̄ = PE(E), where E is the only
non-trivial extension:

0→ OE → E → OE(P )→ 0 . (3.2)

We denote the numerical equivalence class of OPE(E)(1) by h and that of a fiber of π by F . The
images in X̄ of the “coordinate curves” {Q} × E are smooth curves of genus 1 representing h.
One has h2 = hF = 1.

We let Ȳ ⊂ X̄ be a smooth curve of class 3h − F . Since KX̄ is numerically equivalent to
−2h+ F , we have Ȳ 2 = 3 and KX̄ Ȳ = −1, so Ȳ has genus 2. We assume in addition that Ȳ
admits an involution ι with quotient a smooth curve Y of genus 1, and we denote the quo-
tient map by g : Ȳ → Y . The existence and classification of such (Ȳ , ι) has been established
in [FPR18b, FPR18a]. So we can define X := X̄ tȲ Y as the semi-smooth surface obtained by
pinching X̄ along Ȳ via g. By the Hurwitz formula, the branch locus of g consists of two points,
so X has two pinch points.

The line bundle ωX = OX
(
KX

)
is ample, K2

X = 1, and hi
(
OX
)

= 0 for i > 0; namely, X
is a stable Godeaux surface. By [FPR18b], all semi-smooth non-normal stable Godeaux surfaces
arise in this way.

Remark 3.1. In fact, the construction of type (E+) Godeaux surfaces in [FPR18b] also includes
non–semi-smooth surfaces, for special choices of the curve E. Assume that the curve E admits an
endomorphism of degree 2. In this case, X̄ contains a curve Ȳ of class 3h−F that decomposes as
Y1∪Y2, where Y1 has class h, Y2 has class 2h−F , and Y1 and Y2 meet transversely at one point R
and are both isomorphic to E. One can also take ι to be an involution of Ȳ that exchanges Y1

and Y2 leaving R fixed and set X := X̄ tȲ Y in this case. The surface X is again a Gorenstein
stable Godeaux surface, but it has worse singularities since it has a degenerate cusp at the image
point of R. In this case, our methods do not allow us to prove directly the smoothability of X.
However, X can be obtained as a limit of non-normal semi-smooth Godeaux surfaces, and so it
is smoothable too, but we do not know whether the moduli space is irreducible at [X].

4. Proofs of Theorems 1.1 and 1.2

Notation 4.1. We keep the notation of Section 3.2. In addition, we denote the fixed points of ι
on Ȳ by ȳi, for i = 1, 2, and we set yi = g(ȳi) ∈ Y . The action of ι induces a decomposition
into eigenspaces g∗OȲ = OY ⊕ L−1, where L is a line bundle. The multiplication map of g∗OȲ
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induces an isomorphism L⊗2 ∼= OY (B), where B := y1 + y2 is the branch locus of g.

4.1. The sheaf T 1
X . The points y1 and y2 are the pinch points of X. The singular scheme Xsing

of X is supported on Y , but it is non-reduced since it has embedded points at y1 and y2. Indeed,
locally in the étale topology, X is defined by the equation h(u, v, w) := u2 − v2w = 0, and Xsing

is the scheme defined by the vanishing of h and its derivatives, namely by u = vw = v2 = 0 (see
[FFP20, § 2.1]). The sheaf T 1

X is a line bundle on Xsing whose restriction to Y we denote by L.
So we have a short exact sequence

0→ K → T 1
X → L → 0 , (4.1)

where K is isomorphic to Cy1 ⊕ Cy2 . We now show how in this case claims (A) and (B) of
Theorem 1.1 follow easily from [FFP20, Theorem 5.5].

Lemma 4.2. (i) We have h0
(
T 1
X

)
= 7, and T 1

X is generated by global sections.

(ii) We have h1
(
T 1
X

)
= 0.

Proof. One has H i(K) = 0 for i > 0 because K has support of dimension zero, so taking global
sections in (4.1) gives an exact sequence

0→ H0(K)→ H0
(
T 1
X

)
→ H0(L)→ 0

and an isomorphism H1
(
T 1
X

) ∼= H1(L). It follows that T 1
X is generated by global sections if and

only if L is. By [FFP20, Theorem 5.5], there is an isomorphism g∗L ∼= g∗L⊗2 ⊗NȲ |X̄ ⊗ ι∗NȲ |X̄ ;
since degNȲ |X̄ = 3, we have deg g∗L = 10 and therefore degL = 5. Since Y is an elliptic curve,

we have h1(L) = 0, the line bundle L is generated by global sections and h0(L) = 5. Hence T 1
X

is generated by global section, and h0
(
T 1
X

)
= 5 + 2 = 7, proving assertions (i) and (ii).

4.2. The sheaf TX . The proof of claim (C) of Theorem 1.1 also relies on the results of [FFP20]
but is far more involved than the proofs of claims (A) and (B).

We start with some standard computations.

Lemma 4.3. (i) We have h0
(
X̄, TX̄

)
= h1

(
X̄, TX̄

)
= 1 and h2

(
X̄, TX̄

)
= 0,

(ii) We have h0
(
TX̄ |Ȳ

)
= 1 and h1

(
TX̄ |Ȳ

)
= 2.

Proof. (i) Taking the dual of the relative differentials sequence for the Albanese morphism
π : X̄ → E

0→ π∗ωE = OX̄ → Ω1
X̄ → ωX̄|E = ωX̄ → 0 ,

one gets

0→ OX̄
(
−KX̄

)
→ TX̄ → OX̄ → 0 . (4.2)

We have hi
(
−KX̄

)
= 0 for all i (see [CC93, § 2, Equation (5)]); hence the long cohomology

sequence associated with (4.2) gives isomorphisms H i
(
X̄, TX̄

) ∼= H i
(
X̄,OX̄

)
for every i. The

claim follows.

(ii) Twisting (4.2) by OX̄
(
−Ȳ
)
, we get

0→ OX̄(−C)→ TX̄
(
−Ȳ
)
→ OX̄

(
−Ȳ
)
→ 0 , (4.3)

where C is a divisor in the numerical class h (recall that KX̄ is numerically equivalent to −2h+F ).
Since both C and Ȳ are ample by [Har77, Proposition V.2.21], by the Kodaira vanishing theorem,
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the long exact sequence associated with (4.3) gives H0
(
TX̄
(
−Ȳ
))

= H1
(
TX̄
(
−Ȳ
))

= 0 and a
short exact sequence

0→ H2
(
X̄,OX̄(−C)

)
→ H2

(
X̄, TX̄

(
−Ȳ
))
→ H2

(
X̄,OX̄

(
−Ȳ
))
→ 0 .

By the Riemann–Roch theorem and Kodaira vanishing theorem, we have h2
(
X̄,OX̄(−C)

)
=

χ
(
OX̄(−C)

)
= 0 and h2

(
X̄,OX̄

(
−Ȳ
))

= χ
(
OX̄
(
−Ȳ
))

= 1, and so h2
(
X̄, TX̄

(
−Ȳ
))

= 1. Now
consider the sequence

0→ TX̄
(
−Ȳ
)
→ TX̄ → TX̄ |Ȳ → 0 . (4.4)

By the previous computations, taking cohomology, one gets an isomorphism H0
(
X̄, TX̄

) ∼=
H0
(
X̄, TX̄ |Ȳ

)
and an exact sequence

0→ H1
(
X̄, TX̄

)
→ H1

(
X̄, TX̄ |Ȳ

)
→ H2

(
X̄, TX̄

(
−Ȳ
))
→ 0 .

Therefore, we have h0
(
X̄, TX̄ |Ȳ

)
= 1 and h1

(
X̄, TX̄ |Ȳ

)
= h1

(
X̄, TX̄

)
+h2

(
X̄, TX̄

(
−Ȳ
))

= 1+1 =
2 by assertion (i).

The next step is an analysis of H0
(
NȲ |X̄

)
. Since Ȳ 2 = 3 and Ȳ has genus 2, by the Riemann–

Roch theorem, this is a 2-dimensional vector space. Consider the cohomology sequences

0→ OX̄ → OX̄
(
Ȳ
)
→ NȲ |X̄ → 0 (4.5)

and

0→ TȲ → TX̄ |Ȳ → NȲ |X̄ → 0 , (4.6)

and let γ : H0
(
NȲ |X̄

)
→ H1

(
OX̄
)

and δ : H0
(
NȲ |X̄

)
→ H1

(
TȲ
)

be the coboundary maps induced
by (4.5) and (4.6), respectively.

Lemma 4.4. (i) The kernels ker γ and ker δ have dimension 1.

(ii) We have H0
(
NȲ |X̄

)
= ker γ ⊕ ker δ.

Proof. By [Mum66, Lecture 15], there is a scheme P parametrizing the curves of X̄ algebraically
equivalent to Ȳ , and H0

(
NȲ |X̄

)
is canonically isomorphic to the tangent space to P at the

point
[
Ȳ
]
. Denote by Pic[Ȳ ]

(
X̄
)

the connected component of Pic
(
X̄
)

containing the class

of OX̄
(
Ȳ
)
, and let c : P → Pic[Ȳ ]

(
X̄
)

be the characteristic map, which sends [C] ∈ P to the
class of OX̄(C). Since the numerical class of Ȳ is 3h − F = h + KX̄ and h is ample, by the
Riemann–Roch theorem and Kodaira vanishing theorem, we have h0

(
OX̄(C)

)
= 2 for any curve

algebraically equivalent to Ȳ , so the map c gives P the structure of a P1-bundle over the genus 1
curve Pic[Ȳ ]

(
X̄
)
. The differential of c at

[
Ȳ
]

is γ, and the long cohomology sequence coming
from (4.5) shows that ker γ is the image of H0

(
OX̄(Ȳ )

)
→ H0

(
NȲ |X̄

)
and has dimension 1.

The diagonal action of E on E × E by translation descends to an action on X̄ = S2E. We
denote the automorphism of X̄ induced by translation by a point P ∈ E by gP ; it acts on
the curves in the numerical class of h as twisting by P , where we regard P as an element of
E = Pic0

(
X̄
)
. Since Ȳ is numerically equivalent to h + KX̄ , we have that g∗P Ȳ is in the linear

system
∣∣Ȳ − P ∣∣. So S :=

{[
g∗P Ȳ

]
|P ∈ E

}
⊂ P is a section of the P1-bundle P, and its tangent

space W at
[
Ȳ
]

is a 1-dimensional subspace of H0
(
NȲ |X̄

)
that is mapped isomorphically to

H1
(
OX̄
)
. We claim that W = ker δ.

Indeed, the elements of H0
(
NȲ |X̄

)
are the first-order deformations of Ȳ ⊂ X̄, and they are

mapped by δ to the corresponding deformation of Ȳ . Since S gives a trivial deformation of Ȳ , it
is clear that W is contained in ker δ. To finish the proof, it is enough to observe that ker δ has
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dimension 1. This follows from the long exact sequence associated with (4.6) since h1
(
NȲ |X̄

)
= 0

because Ȳ 2 = 3 and Ȳ has genus 2, h1
(
TȲ
)

= 3 and, by Lemma 4.3, we have h1
(
TX̄|Ȳ

)
= 2.

The next step is an analysis of H0
(
KȲ

)
. We start with a couple of general remarks.

Remark 4.5. Let h : C1 → C2 be a finite morphism of curves of positive genus, and write Ji :=
Jac(Ci) for i = 1, 2. Choosing base points x1 ∈ C1 and x2 := h(x1) ∈ C2, we have a commutative
diagram

C1
a1−−−−→ J1

h

y yh∗
C2 −−−−→

a2
J2 ,

where a1 and a2 are the Abel–Jacobi maps with base points x1 and x2, respectively, and h∗ is the
morphism of abelian varieties induced by h. The differential of h∗ at the origin is the transpose
of the pull-back map h∗ : H0

(
KC2

)
→ H0

(
KC1

)
, so the tangent space to kerh∗ at the origin is(

h∗
(
H0(KC2)

))⊥
.

Remark 4.6. In the situation of Remark 4.5, assume in addition that h does not factor through
a non-trivial étale cover of C2. This happens, for instance, if deg h is a prime and h is not étale.
Then the morphism h∗ : J2 = Pic0(C2)→ J1 = Pic0(C1) is injective, and therefore the kernel A
of the dual morphism h∗ : J1 → J2 is connected. In particular, if C2 has genus 1, then A is
a connected divisor with A · a1(C1) = deg h.

We now apply the previous remarks in our situation. Under the action of the involution ι
induced by the double cover g : Ȳ → Y , the vector space V := H0

(
KȲ

)
splits as the direct sum

V = V +⊕V − of 1-dimensional eigenspaces, with V + = g∗H0(KY ). Denote by σ the hyperelliptic
involution of Ȳ ; then σ and ι generate a group isomorphic to Z2

2, and σ acts on V as multiplication
by −1, so V − is invariant under the action of ι′ := ι ◦ σ. So if g′ : Ȳ → Y ′ := Ȳ /ι′ denotes the
quotient map, the curve Y ′ has genus 1 and V − = g′∗H0

(
KY ′

)
.

Set Z := V ∨; since ι acts trivially on H1
(
KȲ

)
, we have Z− =

(
V +
)⊥

and Z+ =
(
V −
)⊥

by

Serre duality. The space Z also contains the 1-dimensional subspace W :=
(
p∗H0

(
KE

))⊥
, where

p : Ȳ → E is the degree 3 morphism induced by the Albanese map of X̄.

We have the following.

Lemma 4.7. One has Z+ ∩W = Z− ∩W = 0.

Proof. Set J := Jac
(
Ȳ
)

and denote the image of Ȳ via the Abel–Jacobi map by Θ ⊂ J . By
definition, Z is the tangent space to J at the origin. By Remark 4.5, the subspace Z− is the
tangent space at the origin to the kernel D of g∗ : J → Jac(Y ), the subspace Z+ is the tangent
space at the origin to the kernel D′ of g′∗ : J → Jac(Y ′), and W is the tangent space to the
kernel E′ of p∗ : J → Jac(E). By Remark 4.6, the curves D, D′ and E′ are connected and satisfy
Θ · D = Θ · D′ = 2 and Θ · E′ = 3. Summing up, the three abelian subvarieties D, D′ and E′

are distinct; since an abelian subvariety is determined by its tangent space at the origin, Z+, Z−

and W are pairwise distinct.

The next result is the key ingredient of the proof of fact (C).

Lemma 4.8. We have Im δ ∩H1
(
TȲ
)+

= 0.

509



B. Fantechi, M. Franciosi and R. Pardini

Proof. The space H1
(
TȲ
)

is Serre dual to H0
(
2KȲ

)
. Since Ȳ has genus 2, the multiplication map

µ : H0
(
KȲ

)
⊗ H0

(
KȲ

)
→ H0

(
2KȲ

)
induces an isomorphism ρ : S2H0

(
KȲ

)
→ H0

(
2KȲ

)
. Via

these identifications, we have H1
(
TȲ
)+

=
(
Z+⊗Z+

)
⊕
(
Z−⊗Z−

)
. Also, there is an isomorphism

H1
(
TJ
) ∼= Z⊗Z, and the dual map tµ : H1

(
TȲ
)
→ Z⊗Z is the differential at

[
Ȳ
]

of the Torelli
map, sending a curve of genus 2 to its Jacobian.

To simplify the notation in what follows, we set ψ := p∗ : J → Jac(E) ∼= E. The differentials
sequence 0→ TJ/E → TJ → ψ∗TE → 0 can be rewritten more explicitly as

0→W ⊗OJ → Z ⊗OJ →W ′ ⊗OJ → 0 , (4.7)

where W ′ = H0
(
KE

)∨
is the tangent space to E at the origin. Following the notation of [Ser06,

§ 3.4.2], we denote the deformations with fixed target of the map ψ : J → E by Defψ/E . By
[Ser06, Theorem 3.4.8 and Lemma 3.4.7(iv)], the tangent space to Defψ/E is H1

(
TJ/E

)
= W ⊗Z;

moreover, the map H1
(
TJ/E

)
→ H1

(
TJ
)

is clearly an inclusion.

By Lemma 4.4, the image of δ is δ(ker γ); namely, it is generated by the first-order deforma-
tion ξ of Ȳ obtained by letting Ȳ vary in the linear pencil

∣∣Ȳ ∣∣ of X̄. The element tµ(ξ) is the
corresponding first-order deformation of J and, since ξ induces a first-order deformation of ψ
with fixed target, by the above discussion it lies in H1

(
TJ/E

)
= W ⊗ Z. Using Lemma 4.7, it is

an easy linear algebra exercise to show that the subspaces H1
(
TȲ
)+

=
(
Z+⊗Z+

)
⊕
(
Z−⊗Z−

)
and H1

(
TJ/E

)
= W ⊗ Z of H1

(
TJ
)

= Z ⊗ Z intersect only in 0.

4.3. Conclusion. We are finally ready complete the proofs.

Proof of Theorem 1.1. Claims (A) and (B) are proven in Lemmas 4.3 and 4.2, so we only have
to prove claim (C). We first recall some facts from [FFP20]. By [FFP20, Theorem 5.1], there
is a natural injective map α : TX → f∗TX̄ which is an isomorphism on the smooth locus of X.
Let G be the sheaf defined by the short exact sequence

0→ TX
α→ f∗TX̄ → G → 0 . (4.8)

The map α is an isomorphism on the smooth locus of X, so the sheaf G is supported on Y . By
the same theorem, there is an exact sequence

0→
(
g∗TȲ

)+ → g∗TX̄ |Ȳ → G → 0 . (4.9)

Since H2
(
f∗TX̄

)
= H2

(
X̄, TX̄

)
= 0 by Lemma 4.3, by (4.8) it is enough to show that h1(G) = 0

or, equivalently, that the map j : H1
((
g∗TȲ

)+) → H1
(
g∗TX̄ |Ȳ

)
is surjective. Since g is a finite

map, we can make identifications H1
((
g∗TȲ

)+) ∼= H1
(
TȲ
)+

and H1
(
g∗TX̄ |Ȳ

) ∼= H1
(
TX̄ |Ȳ

)
and

work on Ȳ .

Taking cohomology in (4.6), we get

0→ H0
(
TX̄ |Ȳ

)
→ H0

(
NȲ |X̄

) δ→ H1
(
TȲ
) j0→ H1

(
TX̄ |Ȳ

)
→ 0 . (4.10)

So the map j is just the restriction to H1
(
TȲ
)+

of the map j0 in (4.10); since both H1
(
TȲ
)+

and H1
(
TX̄ |Ȳ

)
have dimension 2, the map j is surjective if and only if it is an isomorphism if

and only if the kernel of j0, which is the image of δ, intersects H1
(
TȲ
)+

only in zero. This last
statement is precisely the content of Lemma 4.8, so fact (C) is proven.

Proof of Theorem 1.2. By Theorem 1.1, the assumptions of Theorem 2.3 are satisfied, so X
is formally smoothable. Since ωX is ample, or since H2

(
OX
)

= 0, Theorem 2.4 applies and,

510



Smoothing semi-smooth stable Godeaux surfaces

therefore, X is geometrically smoothable and claim (ii) is proven. Furthermore, by Remark 2.6,
the stack MX is smooth at [X] of dimension equal to dim Ext1

(
ΩX ,OX

)
.

To complete the proof, we need to show that Ext1
(
ΩX ,OX

)
has dimension 8. Since H2

(
TX
)

= 0, by the local-to-global exact sequence for Ext, we have

0→ H1
(
TX
)
→ Ext1

(
ΩX ,OX

)
→ H0

(
T 1
X

)
→ 0 ;

hence dim Ext1
(
ΩX ,OX

)
= h1

(
TX
)

+ h0
(
T 1
X

)
= h1

(
TX
)

+ 7, where the last equality follows
by Lemma 4.2. So we have to prove h1

(
TX
)

= 1. Again by the vanishing of H2
(
TX
)
, we have

h1
(
TX
)

= h0
(
TX
)
−χ
(
TX
)

= −χ
(
TX
)

since H0
(
TX
)

is the tangent space at the origin of Aut(X)
and Aut(X) is finite because X is stable (cf. [BHPS13, Lemma 2.5]). Finally, sequences (4.9)
and (4.8) give

χ
(
TX
)

= χ
(
TX̄
)
− χ(G)

= χ
(
TX̄
)
− χ

(
TX̄ |Ȳ

)
+ χ

((
g∗TȲ

)+)
= 0− (−1)− 2 = −1 ,

where the last equality follows by Lemma 4.3 and by observing that

χ
((
g∗TȲ

)+)
= −dimH1

(
TȲ
)+

= −2

(see the proof of Lemma 4.8).
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