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P-functor versions of the Nakajima operators

Andreas Krug

ABSTRACT

For a smooth quasi-projective surface X, we construct a series of P-functors between
derived categories of Hilbert schemes of points on X using the derived McKay corre-
spondence. They can be considered as analogues of the Nakajima operators. We also
study the induced autoequivalences and, in particular, obtain a universal braid relation
in the groups of derived autoequivalences of Hilbert squares of K3 surfaces. If we re-
place the surface X with a smooth curve, our functors become fully faithful and induce
a semi-orthogonal decomposition of the derived category of the symmetric quotient
stack of the curve.

1. Introduction

A central result in the theory of Hilbert schemes of points on surfaces is the identification of
their cohomology with the Fock space representation of the Heisenberg algebra by means of the
Nakajima operators qrn: H* (X x X Q) — H* (X[”M},Q); see [Nak97] and [Gro96]. They are
induced by the correspondences

X x X s x5 z6n .— (2, [€],[€]) | € € €, € and € only differ in 2} . (1.1)

Recently, there has been successful effort towards lifting this action from cohomology to other
invariants of the Hilbert schemes, in particular to K-theory and the derived category; see [FT11,
SV13, CL12, Kruls].

Also recently, autoequivalences of the (bounded) derived categories DP (X [”]) of Hilbert
schemes were intensively studied; see [Plo07, Add16, PS14, Meal5, Krulb, CLS14, KS15b]. In
particular, the notion of P"-functors was introduced in [Add16]. These are Fourier-Mukai trans-
forms F: D*(M) — DP(N) between derived categories of varieties (or, more generally, orbifolds)
having a right adjoint R: D’(NN) — D°(M) and the main property that

RoF=ideDe®D*®---@ D"
for some autoequivalence D: DY(M) — DP(M), called the P-cotwist of F. Every P"-functor F
induces an autoequivalence of the target category Db(N ), called the P-twist. In [Add16], the main

example of a P-functor is the Fourier-Mukai transform F, = FMz_: D°(X) — D° (X [”}) along
the ideal sheaf of the universal family 2 ¢ X x X[ for X a K3 surface and n > 2.
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P-FUNCTOR VERSIONS OF THE NAKAJIMA OPERATORS

An important tool for the investigation of derived categories of Hilbert schemes of points
on surfaces is the derived McKay correspondence of Bridgeland—King—Reid [BKR01] and Hai-
man [Hai01]. It is given by an equivalence of triangulated categories D° (X ["]) = Db@n (X™),
where D%n (X™) denotes the derived category of &,-equivariant coherent sheaves on the pro-
duct X™ or, equivalently, of coherent sheaves on the quotient stack [X"/&,,].

In [Krulb], it was shown that, for every smooth surface X, there is a natural P"~!-functor
Ho,: DY(X) — Dbgn (X™), namely the equivariant push-forward along the embedding of the
small diagonal. Under the derived McKay correspondence, Hy , corresponds to a P~ functor

D’(X) — Db( ”]) whose kernel is supported on Z%" = {(z,[¢']) | supp(¢’) = {}}; compare
with (1.1). Thus, one can regard Hy, as a lift of the Nakajlma operator ¢o,: H*(X,Q) —

H*( xln ]’Q),

1.1 Main results
The question is whether the other Nakajima operators gy ,: H* (X X XV],Q) — H* (X[”},Q),
for general £, have analogues in the form of P"~!-functors

Hy,,: Dng (X X Xz) ~ pb (X X XW) Db (X[n—&-ﬁ}) ~ e

6n+£ (

Xn-‘rf) )
To get an idea of what these functors should look like, consider the Ith partial diagonal
Ar:={(x1,. ., ¥pq) | wi = fori,j € Iy X" for I c {1,...,n+ ¢} with [I[| =n,

and note that A is isomorphic to X x X, the variety which defines the source category of our
desired functor Hy,. In view of the shape of the known P-functors Hp, and the corresponden-
ces ZU™ it makes sense to expect the functors Hy,,: Dng (X X Xg) — D%nH (X"J“f) to have the
property that the objects in its image are supported on the union of partial diagonals

vir = U A= {(wl, .y Tnte) | at least n of the x; coincide} c Xt
Ic{1,...04n}, |I|l=n

In this paper, we construct such P-functors Hy, for n > £. The construction for ¢ > 0, how-
ever, is considerably more complicated than the already known construction of Hy,. In par-
ticular, the (equivariant) Fourier-Mukai kernel of the functor Hy, is, for higher ¢, not concen-
trated in degree zero anymore, which means that it is a proper complex. The detailed definition
and description of the functors Hy, and their right adjoints Ry, is given in Sections 3.2, 3.3,
and 3.4.

As an interesting by-product, our construction gives fully faithful functors if we replace the
surface X with a curve. Note, however, that in the case of a curve, there is no McKay correspon-
dence, so we only get a statement about the derived categories of the symmetric quotient stacks,
not of the Hilbert schemes of points. See [PVdB19] for related results as part of a more general
conjecture concerning semi-orthogonal decompositions on quotient stacks.

THEOREM 1.1. There is a family of functors Hy,,: Db (X X XE) — D%me (X”H), for every
smooth variety X and every m > max{/,1}, such that every object in the image of Hy, is
supported on V%", with the following further properties:

(i) Let X = C be a smooth curve.

(a) We have Ry, o Hy, = id, which means that Hy,, is fully faithful.
(b) Let ¢', n' be positive integers with n’ + ¢ =mn+{ and ¢’ > . Then Ry ,y o Hy,, = 0.
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A. Kruc

In summary, there is a semi-orthogonal decomposition
Dme (Cm) = <A0,ma Al,mfh o aAT,mf?“a B> )
where Ap;m— := He,m—e(Db@Z (C’ X CK)) = Db@é (C’ X CZ) andr = |(m—1)/2].

(ii) Let X be a smooth surface. Then Hy, is a P~ !_functor with P-cotwist Sy', using the
notation Sx = (_) ® (wx W Ox¢)[2]. In particular,

RypoHy, 2idoSy @@ 5" Y.

We show that in both cases, that of surfaces and that of curves, there are induced autoequiv-
alences of D%H[ (X ”H) which can be regarded as ‘characteristic’ or ‘indicator functors’ of the

strata V4™, More precisely, the autoequivalence induced by H, ¢n acts on skyscraper sheaves of
generic &,-orbits of V™ as degree shift by a fixed non-zero number (2 — n = 1 — codim V™ in
the curve case and 2 — 2n = — codim V™! in the surface case) and acts as the identity on objects
of DbGnH (X "M) whose support is contained in the complement of V*™; see Proposition 7.1.

1.2 Structure and content of the text

In Section 2, we collect basic notions and results concerning equivariant Fourier—-Mukai trans-
forms, spherical functors, and P-functors.

In Section 3, we introduce the functors Hy, : DbGZ (X X XZ) — DbGnH (X"M) as the Fourier—

Mukai transforms along certain equivariant complexes Hy, € D%MGHe (X x Xt x X ”*Z). In
Proposition 3.2, we describe the relation between the left and the right adjoint of Hy, which
already confirms that one of the defining properties of a P-functor holds for Hy,,.

The main part of the proof of Theorem 1.1 consists of the computation of the composition
Ry, 0Hy,. For this purpose, in Sections 4.1 and 4.2, we collect some results on the compositions
of equivariant pull-backs and push-forward. In more fancy words, Theorem 1.1 is a statement
about the equivariant derived intersection theory of cartesian products, and Sections 4.1 and 4.2
treat the basics of that intersection theory.

The calculus of (equivariant) Fourier-Mukai transforms allows us to go back and forth be-
tween compositions of Fourier-Mukai transforms and the convolution products of their kernels.
Using the composition of functors makes things a bit easier combinatorially, compared to the
convolution product approach. The reason is that the kernels H,,, carry a linearisation by the
group &, x &1, while objects in the image of the functor Hy, are only &/ ,-linearised. On
the other hand, it is easier to trace the maps induced by the differentials of the complex H,,,
on the level of the convolution products than on the level of composition of functors. This is the
reason why we stay on the level of the kernels and avoid using the functors throughout Section 5,
where Theorem 1.1 is proved. However, before that, we carry out computations for small values
of ¢ on the level of functors in Sections 4.3-4.8. The purpose of Sections 4.3-4.8 is threefold:
They are supposed to prepare the reader for the combinatorially more involved computations of
Section 5 for general ¢. They show that the assumption n > max{/, 1} is really necessary for our
functors Hy,, to fulfil the properties described in Theorem 1.1 (see Section 4.8). Finally, they
show that the Hy , only give a partial categorification of Nakajima’s and Grojnowski’s Heisenberg
action; see Sections 4.7 and 6.2.

Let us sketch the structure of the proof of Theorem 1.1 as carried out in Section 5. First,
for X smooth of arbitrary dimension, we compute, in Sections 5.1-5.3, the convolution products
R?n *Ré > Where Ré,n is the right adjoint kernel of ”Hé’n, the degree 7 term of the complex Hy .
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P-FUNCTOR VERSIONS OF THE NAKAJIMA OPERATORS

There are spectral sequences relating the convolution products Rﬁm * HZ n 10 Ryp * Hep, the
convolution product which essentially encodes the statement of Theorem 1.1. We carry out the
computation of Ry, *Hy p first, in Sections 5.6 and 5.7, in the curve case and then, in Sections 5.9
and 5.10, in the surface case. This completes the proof of part (i)(a) of Theorem 1.1, and for
part (ii) it is only left to prove that Ry, o Hy , has the correct monad structure in the surface case,
which is proved in Section 5.11. For the proof of Theorem 1.1(i)(b), we also need to compute,
in the curve case, the convolution product Ry, * Ry for ' + ¢ =n+ £ and ¢’ > £. Here, we
only provide the results of the key steps of the computation in Section 5.8. The details of the
computation of Ry, x Ry, are left to the reader, which is justified by the fact that they are
straightforward generalisations of the computations of the special case (¢/,n’) = (¢,n), as carried
out in detail in the earlier subsections.

In Section 6, we further study the similarities between our P-functors Hy , and the Nakajima
operators gy . Concretely, the support of the kernel Hy,, coincides under the McKay correspon-
dence with Z%", the correspondence defining Qen; see Section 6.1. Furthermore, the fact that
the Hy, are P-functors gives a categorical analogue of many, though not all, of the relations
between the generators of the Heisenberg algebra; see Section 6.2.

In Section 7.1, we study the twists induced by the P-functors Hy,, in the surface case, making
the idea that they are ‘indicator autoequivalences’ for the strata V4" c X more precise.
In Section 7.2, we show that, in the case of a K3 surface, the twist along Hpo satisfies, in
Aut (Db (X [2])), a braid relation with the twist along the spherical functor that was constructed
in [Add16]. In Section 7.3, we show that the induction functor, which can be considered as
the extension of our series of functors Hy, to the case n = 1, is a P-functor too. Section 7.4
deals with the curve case. We identify a further piece of our semi-orthogonal decomposition
from Theorem 1.1(i) as D° (C(m)), the derived category of the symmetric quotient variety, and
construct autoequivalences of Dme (C™) with properties similar to the P-twists from the surface
case. In Section 7.5, we point out that, for X an abelian surface, our functors Hy , also restrict to
P-functors to the derived categories of generalised Kummer varieties. In the final Section 7.6, we
make a conjecture about certain cases in which we expect the twists along the Hy, to generate
the full group of derived autoequivalences of the Hilbert schemes and give an idea of which kind
of autoequivalences might still wait to be constructed.

Convention. We will work over the complex numbers throughout, though many parts remain
true over more general ground fields.

2. Preliminaries

2.1 Equivariant Fourier—Mukai transforms

For further details on equivariant derived categories and Fourier—-Mukai transforms, we refer to
[BKRO1, Section 4] and [Plo07]. Let G be a finite group acting on a variety M. Then we denote
by D% (M) := D¥(Cohg(M)) the bounded derived category of the category Cohg (M) of coherent
G-equivariant sheaves. Let U C G be a subgroup. Then there is the forgetful or restriction functor
ResY: D&% (M) — DY (M). It has the induction functor Ind$: D% (M) — DE(M) as a left and
right adjoint. For E € D% (M), we have Ind$(E) = ®lglevng 9" F with the G-linearisation given
as a combination of the U-linearisation of £ and the permutation of the direct summands. In
the following, we will often simply write Res and Ind for these functors when the groups G and U
should be clear from the context. In the case that G acts trivially on M, there is also the functor
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triv: D(M) — D& (M) which equips every object with the trivial G-linearisation. Its left and
right adjoint is given by the functor of invariants (_): D% (M) — D?(M).

Let G’ be a second finite group acting on M’. Then every object P € D%, .,(M x M') induces
the equivariant Fourier—Mukai transform

FMp := [pras (pris (L) @ P)] << DY (M) — DY, (M) (2.1)

For example, if M = M’ and G acts trivially, the functor triv: D?(M) — D& (M) is the Fourier—
Mukai transform along Oa € Db, (M x M) and (_)%: D%(M) — D?(M) is the Fourier Mukai
transform along Oa € D%, (M x M).

Let G” be a third finite group acting on M”, and let Q@ € D%, o (M’ x M"). Then we have
FMo o FMp = FMg,p, where Q x P is the equivariant convolution product

1xG'x1

Q*P = [praruasms (Prip s @ ® Pryrsar P)] e D% (M x M"). (2.2)

Remark 2.1. The functors triv and Res do not really change objects when applied to them but
only consider them canonically as equivariant objects with respect to a different group. Hence,
one can usually omit them from formulae without ambiguity, and we will do this occasionally in
order to keep formulae short. In fact, this is already the case in the definition of the equivariant
Fourier-Mukai transform. Namely, in (2.1), strictly speaking, the notation prj, stands, for the
composition

triv

pry
DY(M) % Dl i (M) 235 DYy 0 (M x M)
Note, however, that one has to mind all the functors triv and Res when taking the adjoint of

a composition of functors, as their adjoints, the functor of invariants and the induction functor,
act non-trivially on objects. This becomes relevant in Section 3.4.

Remark 2.2. For L € D%(M), the tensor product functor (_) ® L: D%(M) — D% (M) is given
by InngGé*L = @geq(l x g)«L, where § = (1 x 1): M — M x M is the diagonal embedding.
This can be confirmed quite easily using the principle for the computation of invariants explained
in Section 2.2. In particular, the identity functor id: D% (M) — D%(M) is the Fourier-Mukai
transform along the kernel InngG OA = @yec Or,-

2.2 Invariants of inductions
For the computation of the invariants of equivariant objects, we will frequently use the following
principle; compare with [Dan01, Lemma 2.2] and [Sca09, Remark 2.4.2]. Let M be a variety with
an action of a finite group G. Let £ = (E,\) € D%(M) be such that E = @;crE; in D(M) for
some finite index set I. Let us assume that there is an action of GG on I such that \j(E;) = g" Ey;)
for all © € I. We say that the G-action on I is induced by the G-linearisation of E. We denote
E; together with the Gij-linearisation (g, )geq; by & € D’éi (M), where G; = Stabg(i). The
induced action of G on [ is transitive if and only if £ & Indgi & for any i € I; see [BLO4,
Section 8.2].

Let G act trivially on M, and assume that G acts transitively on I. Then, for every i € I,
the projection E — E; induces an isomorphism £¢ = EZ.G *. The inverse is s = Dgjea,\a Ag(5)-

Now, let the action of G on I be not transitive, and let i1, . .., ix be a system of representatives
of the G-orbits. Then € = Indg, &, ® - @ Indg, &, and

g pE . (2.3)
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P-FUNCTOR VERSIONS OF THE NAKAJIMA OPERATORS

2.3 Some standard identities for equivariant functors

In this subsection, we collect some isomorphisms of functors between equivariant derived cate-
gories for later use; see, in particular, the proof of Proposition 3.3.

Let G be a finite group acting on a smooth variety M, and let U < G be a subgroup. We
have

IndS E® F 2 Ind} (F @ Res%()). (2.4)

This can be seen as a stacky version of the projection formula, using the identification of D%(M )
with the derived category of coherent sheaves on the quotient stack [M/G], but it can also be
deduced quite directly from the definitions of the functors Res and Ind.

Let N be a second smooth variety on which G acts, and let f: M — N be a G-equivariant
proper morphism. Then
Res of* =2 f*oRes?,, Reslof, = f, oResd,
Ind%of* = f*oInd%, Ind%of, = f, oIndY, . (2.5)
The isomorphisms involving the restriction functor are quite obvious. The isomorphisms involving
the induction functor follow from the ones involving the restriction functor by adjunction. If the
G-action on M and N is the trivial one, we also have
trivof* = f*otriv, trivof, = f, otriv,
G ~ G G ~ G
(7o ff=f o ()7, (D7 ofi=fio()”.
Now, let H be another finite group, let H act trivially on M, and let V' < H xG be a subgroup.
We identify H with the subgroup H x 1 < H X G and write mg: H X G — G for the projection
to the second factor. Then, for an object E € Dl"/(M ), its invariants E#7V carry a canonical

7 (V)-linearisation, which means that we have a functor (_)7"V: D% (M) — DZG () (M). There
is an isomorphism

()" olIndif % =1ndG 1) o) (2.8)

of functors from DY (M) to D%(M). This follows from the principle described in Section 2.2.
Indeed, for E € D% (M), we have Ind‘}/IXG(E) = @y\(axe)0 E with the H-linearisation of
Ind{jXG(E) inducing the action h: Vo + Voh™! on the index set V' \ (H x G). The stabiliser
of V under this action is V' N H, and the fibres of the natural map V' \ (H x G) — ng(V) \ G,
Vo — mq(V)mg(o) are exactly the H-orbits. Hence, by (2.3), we get

14
(ndt9)" = ( D oB) = D ¢ E") =, B
VA(HXG) ma(VO\G

2.4 P-functors

Let G and H be finite groups acting on varieties M and N. Following [Add16], a P"-functor
is an (equivariant) Fourier-Mukai transform F: D% (M) — D% (N) with right and left adjoints
FE FL: Db (N) — D% (M) such that the following hold:

(1) There is an autoequivalence D of D% (M), called the P-cotwist of F, such that
FiloF~ideDe D*® & D".
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(2) Let e: F o F — id be the counit of the adjunction, and consider the map

R
D&D*®-- @D = DoFRoF < FRoFoFRoF 8 FRoF ~id@D@---@D™, (2.9)

where the two isomorphisms and the embedding are given by the isomorphism of condi-
tion (1). The components D* — D7 of (2.9) are isomorphisms for i = j and are zero for
i < j (there is no condition on the components D* — D’ with i > j).

(3) There is an isomorphism F? 2 D" o FL. 1f D% (M) and DY (N) have Serre functors, this is
equivalent to Sy o F o D™ = F o Syy.

A P!-functor is the same as a split spherical functor. A general spherical functor is a Fourier—
Mukai transform S such that C := cone (id a2, SR o S) is an autoequivalence and S = C o ST,
Here, 7 is the unit of the adjunction. The cone is well defined as a Fourier—-Mukai transform
since the natural transform 7 is induced by a morphism between the kernels; see [AL12]. This is
the reason why we restrict ourself in the definition of spherical and P-functors to Fourier—Mukai
transforms between derived categories of coherent sheaves. More generally, one can work with
dg-enhanced triangulated categories; see [AL17].

2.5 Spherical and P-twists
For S: D% (M) — D% (N) a spherical functor, the associated spherical twist is defined as the

cone Ty := cone(S o S® 55 id) of the counit. It is an autoequivalence of D% (N) satisfying
TsoS=SoC[l], Ts(B)=B if S¥(B)=0; (2.10)

see [Add16, Section 2]. The construction of the P-twist Pp € Aut(D%(N)) associated with a
P-functor F: D% (M) — DY (N) is a bit more complicated. As we do not need the concrete
construction, we refer to [Add16, Section 4.3] for it. In analogy to (2.10), the twist Pr satisfies

PproF=FoD"[2], Pp(B)=B if FE(B)=0. (2.11)
Given additional autoequivalences ¥ € Aut(D%(M)) and ® € Aut(D4,(N)), we have
Tsop 2Ts, Ppow 2 Pp, Tpos 2 P0Ts0® ', Ppop=XPoPpod ! (2.12)

see [AA13, Proposition 13] and [Krul5, Lemma 2.3]. In the case that F is a P!-functor, that is,
split spherical, the spherical and the P-twist are related by TI% =~ Pp.

2.6 Braid relations between twists along spherical functors

We say that two elements a and b of a group satisfy the braid relation if aba = bab. Two twists T
and T along spherical objects satisfy the braid relation if Hom*(E, F') = C[n] for some n € Z;
see [STO1]. There is the following straightforward generalisation which gives a criterion for twists
along spherical functors to satisfy the braid relation; compare with [AL17, Theorem 1.2].

PROPOSITION 2.3. Let F = FMz, H = FMy;: D?(M) — D®(N) be two spherical functors such

that F¥o H =~ id and Hompo s vy (F, H) = C. Let G = cone (F 2, H) for 0 # ¢ € Hom(F,H),
and set G = FMg. Then G is also a spherical functor, and every pair of Tr, Tg, Ty spans
(Tr, T, Ty) and satisfies the braid relation. In particular, Tp o Ty o Tp = T o Tp o Tyy.

Proof. Composing the triangle F o F® — id — Tr with H and using that Ff o H = id, we get
the triangle F' — H — Tr o H. The map F' — H of this triangle is non-zero. Indeed, otherwise,
we would have Trpo H = H @ F[1], contradicting the fact that Tp o H is again spherical. Because
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of Hom(F,H) = C, it follows that G = Tr o H. This shows that G is spherical and, by (2.12),
there is the relation
Te=TroTyoTy". (2.13)

The exact triangle Tﬁl — id — H o H' induces the exact triangle TI;IF — ' — H since
HY o F 2 id. The latter triangle shows that Tj;'F = G[—1] and, by (2.12),

Te =Ty ' oTroTy. (2.14)
The assertion follows from the equations (2.13) and (2.14). O
If M and N are projective, the second assumption of the proposition, namely Hom(F, H) = C,

follows already from the first assumption, namely F o H 2 id.

3. The functors Hy,: Definition and first properties

3.1 Notation and conventions

(1) For a complex E, write s#*(E) for its ith cohomology, and set J*(E) := @;cz H(E)[—i].

(2) The alternating or sign representation a, of the symmetric group &,, is the 1-dimensional
representation on which o € &,, acts by multiplication by sgn(o). If &,, acts on a variety T', we
set Mg, := () ®a: Dl’Gn (T) — Dben (T). It is the autoequivalence which sends an object (E, \)
to (E, \), where the linearisation A is given by A\, = sgn(o) - \,.

(3) For u < v positive integers, we use the notation [u,v] := {u,u+1,...,v} C N and [v] :=
[1,v] ={1,...,v} CN,

(4) We set [0] := 0.

(5) For A, B C N two finite subsets of the same cardinality |A| = |B|, we let e: A — B denote
the unique strictly increasing bijection.

3.2 The Fourier—Mukai kernel

Let X be a smooth variety of arbitrary dimension d = dim X. In the following, we will construct
the functors Hy ,,: Dng (X X Xg) — D (X”H) for n,/ € Nwithn > 2. Fori=1,...,¢, we

6n+l

set

Index, (i) := {(I,J,p) | I C [€], |[I| =4, J C [n+4], |J| =n+i, p: I — J bijection},
where I := [{]\ I and J := [n + ¢] \ J denote the complements of I and .J, respectively. For
(I,J, 1) € Indexg (i), we consider the subvariety I'y j,, C X x X¢ x X" given by

IS {(x,:nl,...,xg,yl,...,yn+g) |z =zs =y Vac€l, b€ J xc=yye Vce f}.
This subvariety is invariant under the action of the subgroup

6 x6r,x6;:={(0,7)|o(l)=1,0(J)=J, (poo)r=(Tou)} CGrx &, (3.1)

and thus Oy j, := Or, , , carries a canonical linearisation by this subgroup. Note that there is
the isomorphism of groups & x &, x & = &; x &y—; x &;,4; given by (0, 7) = (011,01, 7s)- Let
a denote the 1-dimensional representation of &7 x &, x & on which the factor &; = {o = id}
acts by the sign of the permutations and the other factor & x &1, = {; = id;} acts trivially.
We set H(I,J, i) := Oy 7, ® ay and

i Gy x6G, . .
i 1= (&1 gy L+ D) = €D HU T

Index ,, (1)
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For ¢ € I, we have Lrogey,auin C I's,7,. This allows us to define a morphism d': H' —

(C)}au\l_\{c}
H*+L by letting the component H (I, J, ) — H(I U {c},J U {u(@)}s i gey) be (—1)#beTb<p(e)}
times the map given by restriction of sections and setting all components H.(I, J, u) —H(I', J', 1)

which are not of this form to be zero.
LEMMA 3.1. The morphisms d form a differential: d o d = 0.

Proof. For alocal section s € ’Hzn and (I, J, 1) € Index(j), we denote by s(I, J, ;1) the component
of s in H(I, J, u). We have to show that d?(s)(I,J, ) = 0 for every s € H' and every (I, J, 1) €
Index(i+2). By the definition of d, the only components of s possibly contributing to d?(s) ([, J, i)
are of the form s(I\{c,d}, J\{e, f}, it) with 2({c,d}) = {e, f} and fif = p. In fact, s(I\{c, d},
J\A{e, 1}, ,&) contributes via two different compositions of components of d* and d*t!, namely
H(I e T\ fes F1) = KO eh T\ o) = KO0,
H(I\A{e.d}, T\ e, [} ) = H(I\A{d}, T\ i)}, iygua) — HI, Jop) -

One can check that these two contributions are given by +s(I \ {c,d}, J \ {e, f}, ,&)‘FI . with
s JSip
opposite signs; hence, they cancel out.

Accordingly, we have defined a complex of (&, x &,,1¢)-equivariant sheaves
Hep = (0—=H = = H —0) €Dg,xq,,, (X x X\ x X",
and we define the functor Hy,, to be the equivariant Fourier-Mukai transform along this complex:

Hyp i=FMy, DbGe (X x X — D%M (X"

3.3 Adjoint kernels

Even though we do not assume that X is projective, since X x X* and X" are smooth and
supp Hern, = JI'1,5,, is finite, hence projective, over X x Xt as well as over X"+, the functor Hy,
has right and left adjoints Ry, Ly Db@n+£ (X ”*e) — D%é (X x X 8). They are the equivariant
Fourier-Mukai transforms Ry, = FMg, = and Ly, = FM,, ~with

R&n = Hzn () (wXXXZ & OXn+Z)[(€ + 1)d] s EZJL = Hz/’n & (OXXXZ IE an+Z)[(n =+ E)d] ; (32)

see, for example, [Kuz06, Section 2.1]. The left and the right adjoints of Hy, are related as
follows.

PROPOSITION 3.2. (i) Ifdim X is even, we have Ry, = 5’)_((”_1) oLgy.
(i) If dim X is odd, we have My, oRy, 22 S "V 0 Ly, o M

Aptre-

Proof. For the underlying non-equivariant functors D’ (X””) — Db (X X Xé), by (3.2), the

assertion amounts to the invariance of Hzn under tensor product by w'y Mw e Mw X}L 4} compare
with [Orl03, Proposition 2.1.6]. This invariance follows from the fact that

(wy Rwye ® w;(iﬂ)mw >~ Oy, forall0<i<fand (I,J,p) € Indexp (i) .

For the equivariant functors DbGW (X ”*e) — Db@[ (X X Xe), the difference between the cases
of odd and of even dimension is explained by the difference in the sign of the linearisations of
the equivariant canonical bundle of a product X™. Indeed, on the fibre wxm (x), the stabiliser
of x € X™ acts by permuting blocks of length d = dim X in the wedge product. Hence, if X is

even-dimensional, the &,,-equivariant canonical bundle of X" equals wxm = w?ém, where the
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linearisation is the one acting by permuting the factors, while in the odd-dimensional case, the
linearisation is given by wxm = w}gém @ Ay O
This already proves one first piece of Theorem 1.1, namely that for X a smooth surface, the

functor Hy, satisfies condition (3) of a P"~!-functor with cotwist Sy’ == (_)® (wy' K Ox¢)[-2].

3.4 Description of the functor
For I C [¢] and J C [n+ (] with |I| =4 and |J| = n + 4, we consider the closed embeddings

b X x X e X x XY, (T, 21, ) = (915, Y0), Yi = afori € I, y; =z fori ¢ 1,
Or: X x X0 X (w1, .. o) = (21, -5 Znge)s zj =afor j € J, zj = x ) for j ¢ J,

where e denotes the strictly increasing bijections [¢(] \ I — [¢ —i] and [n 4+ €]\ J — [¢ —i] in
the definitions of ¢y and d, respectively. The images of these closed embeddings are the partial
diagonals D C X x X% and Ay C X x X"+ given by

D[:{(.I,l‘l,...,xg)|$:JZGVCLEI}, AJ:{(y1,~-~,yn+£) ’ya:ybvaabej}'
We set ¢jg) = ¢g := id: X x X¢ = X x Xt

ProrosiTION 3.3. The functor Hé = FMHZ is isomorphic to the composition

DY, (X x X*) 2=,

O, ph(x x X Y

GntixGp

Db (XTH-E) ]

DY e, (X x x5 L ‘i 5 DY e, (X x X7 (3.3)

() M

GntixGp

(X xt)

O]« Ind

Db (Xn+’L % Xé—i)

GntixGp_;
Proof. Note that '\ yi.e = (43 5[n+i})(X 4_7’). Hence, by the projection formula,

Prxntes (O nrile @ Prye( ) = djnyis O Lfj) - (3.4)
Setting &(i) := &) X G[j41,4,e X Spyq) (compare with (3.1)), we get

(&)
P, 2 [prace, (IndGES = 1 -+ )00 prie e )]

2 e (0SS (34 + ,0) @ ResS g prie()]

(g) :IndgiiX)GEM (Prxnu*(H([i]? [n+il,e) ® Rese(x)eé, XSyn Pl xe ResG o Z(*)))}Ge
w Indgt O (O (A @ e Resgy () )] ;

(g\zi)lndg‘fﬂzlxelZ l<5[n+i} (@i ® Lie Rese e Z(*))>Gi

(’Q\Z)def::z]Xbe 1(5[n+i} (A © [tgae ReSG o Z(*)}GL)) .

For i = 0, the composition (3.3) reduces to

D (X x X0 T Db o (X x X1 Memph o (X x XY

5 DY e, (X7 x X0 DY (X7 (3.5)

n+£
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Using slightly shortened notation, the functor H, g?n is on the level of objects given by
Hi,:E— @ 5o ®(E)%0). (3.6)
JC[n+L)], #J=n+i

The right adjoint R};’n: D%nH (X ”H) — Dbee (X e) is given by the composition

DY, (X x X &4 DY o, (X x XY) DY e, (X x XY (3.7)
&y (X x x0T DY e (X x XP70) &l (X x X
Jra D%, e, , (X" x X070 &= Dl (x|

which on the level of objects F € DbGnH (X"H) means that
Ry, F @ vrx (A ® 5En+l-]F)6[”+i] . (3.8)

ICle], #1=i

4. Techniques and examples

4.1 Derived intersections

Given a vector bundle E of rank ¢ on a variety Z, we write A*E 1= ®¢_q A E[—i] and A™*E =
©S_o A" Eli] as objects in D?(Z).

THEOREM 4.1 ([AC12]). Let v: Z < M be a regular embedding of codimension c such that the

normal bundle sequence 0 — Tz — Tz — N, — 0 splits. Then there is an isomorphism
()~ ()@ AN

of endofunctors of D*(Z).

Recall that the right adjoint of ¢, is given by +' = M,, ot*[— codim (], where w, = Adm¢N,:
see [Har66, Corollary III 7.3]. We have A™*N,Y ® w,[— codim (] & A*N,.

COROLLARY 4.2. Under the assumptions of the previous theorem, there is an isomorphism
t1s(() =~ () ® A*N,.

In particular, the derived self-intersection 1*1,Oz of Z in M is given by t*1,07 = A"*N".
More general results for derived intersections, that is, for 1501,Oz, when v1: Zy — M, 10: Zy — M
are two different closed embeddings, are proven in [Gril4]. However, we will always be in the
following situation where Theorem 4.1 is sufficient. Assume that there is a diagram

where all the maps are regular closed embeddings, ¢ has a splitting normal bundle sequence, and
the intersection of Z; and Z5 inside of W is transversal.
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LEMMA 4. 3 Under the above assumptions, there is the isomorphism of functors t5u1.(_) =

u (vF(L) @ Nt|T) In particular, 15(11+0z,) = us (A~ Nt|T)
Proof. Indeed, we have
(4.1) -
Lol1e Z T s =t (s*( ) ® A *Nv) Erfs()® N A
~ w0 (L) ® N|Z >~ u, (v(L)® Nt|T)
where the prior-to-last isomorphism is the base change theorem [Kuz06, Corollary 2.27]. ]

COROLLARY 4.4. Under the same assumptions, we have
thira(L) 2wy (') ® Nt|T) ® Wy, [~ codim ta] = uy (v*(_) ® A*Nyr ® wy)[— codim v] .

In particular, tyt1.0z, = u,( A™* N)p) ® w,,[— codim to] = U (N Ny ® wy) [~ codim v].

T
Note that, by Grothendieck duality, 1o, S (L!QLl*Ozl) = 5xt%M(OZQ, Oz,).

Remark 4.5. In the above situation, consider in addition a variety W’ with Zo ¢ W/ ¢ W
such that w': W/ — W is a regular embedding and W’ and Z; intersect transversally. We set

=W'N Z;. We also consider Z; C W"” C W such that w”: W’ — W is a regular embedding
and W' and Z5 intersect transversally in Z) = W” N Z;. So we have the two diagrams of closed
embeddings

S, 7Lk,
N4 N LA

We set ' = tow' and ¢” = t o w”. The restriction map 1.0z, — 11,0z induces, for every
q=0,...,codim(t), the map

s (NINY) ® i, = ExtS ™D 71O, 07,) = ExtEI™ D0, 0,) 2w (N Njz) @ w, .

As one can check locally using the Koszul resolutions, this map is given by the gth wedge power
of the canonical map IV, t\|/W, — N,/. Similarly, for ¢ = 0,...,codim(t), the induced map

U (/\th//lT & UJU) Ex t((:QOdlm( )+q(OZN OZI) — Ex tCOdlm(U)+q(OZQ, OZ1) = Uy (/\th‘T ® wv)
is given by the gth wedge power of the canonical map Ny — Ny

Remark 4.6. Let G be a finite group acting on M such that all the subvarieties occurring above
are invariant under this action. Then all the normal bundles carry a canonically induced G-
linearisation. All the results of this subsection continue to hold as isomorphisms in the (derived)
categories of G-equivariant sheaves when considering the normal bundles as G-bundles equipped
with the canonical linearisations; compare with [LH09, Section 28].

4.2 Partial diagonals and the standard representation

Let I be a finite set of cardinality at least 2. The standard representation o of the symmetric
group &7 can be considered either as the subrepresentation o; C C! of the permutation represen-
tation consisting of all vectors whose components add up to zero, or as the quotient oy = C!/C
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by the 1-dimensional subspace of invariants. For I C I’, the first point of view gives a canonical
Gr-equivariant inclusion o; — ojs, while the second one gives a canonical Gr-equivariant surjec-
tion gy — or. For X a smooth variety and dp,;: X — X" the embedding of the small diagonal,
there is the &,,-equivariant isomorphism Ng[n] ~ Tx ® on; see [Krulb, Section 3]. More generally,
for I C [n], the normal bundle of the partial diagonal A; = X x X' is, as a G;-bundle, given
by

Ns, g(Tx®Q[)®OXf, N(;/I g(QX@Q[)‘XOXf. (4.2)

Furthermore, the normal bundle sequence of §; splits since Ay is the fixed-point locus of the
GSr-action on X™; see [AC12, Section 1.20).

Remark 4.7. For I C I' C [n], the embedding Ay — Ay induces maps Ns, — Ns;|a,, and
Ng?‘ 5y N g; ,- Under the isomorphisms (4.2), they are given by the canonical surjection oy — of
and the canonical embedding o; — g/, respectively.

For m > 2 and X a smooth variety of dimension d, we set
(m—1)d

A (X) = (N (Tx @ 0n) 7" = @D (N (Tx © 0m) ™" [i]. (43)
=0
LEMMA 4.8.
AT (X) = Ox|[0] for X a curve,
" -l ox[0] @ w2 @@ w}(m_l)[—Q(m —1)] for X a surface.

Proof. For the curve case, since A%(Tx ® o) = Ox is equipped with the trivial &,,-action, we
only have to show that A*(T'x ® o,,) has no invariants for ¢ > 1. For this, it is sufficient to consider
the fibres which are given by Afp,,. By [FH91, Proposition 2.12], the representations A’g,, are
irreducible. They are non-trivial for ¢ > 1; hence, their invariants vanish. For the surface case,
see [Sca09, Lemma B.5] and [Krul5, Corollary 3.5]. O

Remark 4.9. For d = dim X > 3, also vector bundles of higher rank occur as direct summands
of A¥,(X). For example, for m = 2, we have

AX)= P A*Tx]-2k].
0<k<d/2
This is the reason why the compositions Ry, o Hy, are particularly simple for dim X < 2 and

Theorem 1.1 only makes statements for dimensions 1 and 2.

DEFINITION 4.10. For X a smooth surface and ¢ € N, we consider the autoequivalence

Sx = (1) ® (wx B Oys)[-2]: D, (X x X*) - Dg, (X x X¥).
The reason for denoting this by Sy is that, for X projective and £ = 0, this agrees with the Serre
functor of D’(X). For 0 < a < b, we set 5’)_([‘1’6] =S50Sy e o5

Remark 4.11. For I C [n] of cardinality m := |I| > 2, consider the functor G = d, o triv and
G? o GGj. The latter is the composition

7 iv N Orx
DY (X x xT) v, DY, e, (X x XT) 25 DY o, (X7)

6‘

) ry (S I
— D, xe; (X x XT) == D (X x XT).

XG5
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Let pry: X x X7 = X be the projection to the first factor. Corollary 4.2 and Lemma 4.8 give

id for X a curve,

_ 4.4
S;([O’mfl] for X a surface. (44)

Gl oGr= (L) @pry A, (X) = {

4.3 The case £ =0

The fact that Hy,,: D*(X) — Dbgn (X™) is a P"~-functor was already proved in [Krul5], but let
us quickly recall one key part of the proof. Note that G|,) = Mg, oHon, and (4.4) gives

id for X a curve,

R o H =4 -
0,n 0,n {SX[O’"” for X a surface.

This proves the case ¢ = 0 of part (i)(a) and most of part (ii) of Theorem 1.1 (for the only missing
part of the proof, namely that condition (2) of a P"~!-functor holds for Hy ,, in the surface case,
see [Krulb, Section 3)).

Let us have a quick first look at the ¢ > 0 case, which we will treat in more detail throughout
the rest of the article. For E € Dbee (X*), note that Ojnj«(E) is a direct summand of Hgn(E); see

(3.5) and (3.6). Hence, Gﬁ]G[n}(E) = 5);[0’"_1](E) occurs as a direct summand of Rgann(E).

However, the other terms of H{ (E) also have to be taken into account, which leads to an
expression of the form

joann(E) &~ 5';[0’"_1] (E) @ (terms supported on partial diagonals of X x XE) . (4.5)

The ‘error terms’ supported on the partial diagonals of X x X* prevent the functor H 2 ,, from being

a P"~!-functor, which is the reason why we have to consider the more complicated functors H i
instead. Basically, the higher terms of the complex Hy, or, in other words, the functors Hj ,
lead to a cancellation of the error terms in (4.5).

4.4 The approach for general £

In order to establish Theorem 1.1, we need to compute the composition Ry, o Hy,, of the func-
tor Hy,, with its right adjoint, which amounts to the computation of its kernel Ry, * Hy .

Let us recall the notion of convolutions in triangulated categories; for details, we refer to
[CS07, Section 3.1]. A bounded complex in a triangulated category D is a sequence

dn dn—l dg
An An—l Al AO

such that d; o d;y1 = 0 for all 7. A left convolution of Ae is an object A € D together with
a morphism g: A — A, such that there is a diagram

A, dn @ A, d1 Ao
S N

A n__C 2o a0 A

i o AT i o

where the triangles involving an «; as a horizontal arrow are exact and the triangles involving

a d; as a horizontal arrow are commutative. One may think of this as A having a filtration whose
graded pieces are the A;. There is also a dual notion of right convolution.

dy

If D = D’(A) for some abelian category A, every complex A® of objects in A can be considered
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as a complex in D, and a convolution of this complex is A® itself, considered as one object in D;
see [CS07, Example 3.4]. In particular, H is a left convolution of ’H?n — e ’Hf - We set

Rin = (Hin)' ® (wxyxt BOxnse)[(€+1)d], d=dimX.

Since exact functors, hence in particular (_ )Y ® (wxy x¢ KO xn+e)[(£+1)d], preserve convolutions
[CS07, Remark 3.1], we see that Ry, is a left convolution of Ry, — -+ — R} — RY . We get
a commutative diagram

l L 0 ¢ L
RZ,n * /H&n Rﬁ,n * Hﬁ,n te R&n * HZJL

0 0 0 0 l
RZ,n * Hf,n Rf,n * Hf,n e Rf,n * Hf,n

0 l 0
R&n x /Hgm - Rf,n * Hf,n B Ré,n * H@,n )

where the R@ n* Hepn and Rgm*’Hz ,, are the left and right convolutions of the rows and columns,

respectively. That means, in particular, that Ry, *Hzm can be written as a multiple cone
cone(( - - - cone (cone (an * H%n — Rg;} * ’H%n) — Rgf * Hz’n) ) = Rzn * Hzn) )
The strategy of the proof of Theorem 1.1 is to start with the computation of the Réyn*Hg,n, then
use the results to compute Ry, * ’Hin, and finally deduce the desired formulae for Rzn *Hon-
In the following subsections, which are intended to give gentle examples illustrating how
the general proof works, we will do the computation in the case ¢ = 1 (and some of it for
¢ = 2) on the level of the functors instead of kernels. That means that we will compute the
compositions Rzn o H, Z,n. We will see that the undesired terms (see (4.5)) are of a form which
give them a good chance to cancel out when passing to the convolution Ry, o Hy,. However,
in the present section, we will not compute the induced maps Rzn o Hg’n — Ré,n o Hg;;l and
RZ,n oH Zn — RZ} oH gm, which would be necessary to see that the terms really cancel. Later
in Section 5, where the computations are performed for general ¢ on the level of the kernels, we
will see that the appropriate terms cancel, which leads to a rigorous proof of Theorem 1.1.

4.5 The case £ =1
We aim to compute Ry, 0 Hy,: DY(X x X) — D(X x X) using the descriptions (3.6) and (3.8)
of H{ , and R} .. For E € D"(X x X), we have

S
0 0 ~ ! [n]
B Y (B) 2 o @3y (@D Sweniar (B @ ) )| -
a€n+1]

For o € &), the &j-linearisation of @ae[nﬂ} 5En}5[n+1]\{a}*(E ® Afn41]\{a}) MAPs the summand

5En]6[”+1}\{a}*(E X a[n+1]\{a}) to 5En]6[”+1]\{0(a)}(E & a[n+1]\{g(a)}). Thus, the induced action on
the index set [n + 1] is given by a + o(a). Hence, there are two &j,j-orbits, namely [n] and
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{n +1}. We have Stabg, (n + 1) = &) and Stabg, (n) = &}, _y). As explained in Section 2.2,
it follows that

R(l],nH?,n(E) = 5En]5[n]*(E)6[n] D 5En}5[n71]u{n+1}*(E)e[n_l] . (47)
The first direct summand equals E ® prj A} (X) by (4.4).
CONVENTION 4.12. For {b} C [m], a set with one element, we set Ay, = X™. Furthermore, we

set A7(X) = Ox]|0]. This convention becomes relevant in this subsection in the case n = 2 and
later in the more general case n = ¢ + 1.

For the computation of the second summand of (4.7), consider the commutative diagram of
closed embeddings

S
v Oln—1]U{n+1}

Ap—1uin+1}

It fulfils the properties of diagram (4.1), which means that Ap,4.1) = Ap VA, _1jugn+1} and that
this intersection is transversal inside Ap,_;). Furthermore, the normal bundle sequence of dp,_q
splits; see Section 4.2. This allows us to apply Corollary 4.4 to get

O On—110fn4 13+ (B) = (0" (L) @ ANy, @ wo) [ codim v] (4.8)

Under the isomorphisms A, 1) & X and Ap,) & X X X = A, _qjufn+1}, the embeddings v and v
equal the diagonal embedding ¢: X < X x X. Thus, codimv = dim X = d and w, = A%N, = w)_(l.
Together with (4.2) and (4.3), this implies that after taking &, _;-invariants in (4.8), we get

5En]5[n_1]u{n+1}*(E)Glnfll >, (H(E) @A _(X)® w;(l) [—d]. In summary, (4.7) gives

R HY(B) 2 B @ pri AL(X) @ 0 (1(B) @ A (X) @ wy') [=d]. (4.9)

The computation of the other three functor compositions is easier. Note that we have dy, ] =

djn) © u and u' =2 u*(_) ® wy'[~d], and keep in mind the identification of u with the diagonal
embedding ¢: X — X x X. Then,

R?,nHll,n(E) = [a[n] ® 5En]6[n+1}*(b E® a[n—i—l])] )
(4.4)

2 6Ottt (E) S 22 1, (7 (B) @ Aj (X)) (4.10)
1 770 ~ ! N St (Z3) &
Rl,nHl,n(E) = lx [a[nJrl} ® 5[n+1} (@ 5[n+1]\{a}*(E ® a[nJrl]\{a}))] - L*(s[n+1}5[n]*(E) i
a=1
5N G} 5 * * -1
2 1410 01 O (B) 71 22 1, (F(B) @ A (X) @ wy ') [—d], (4.11)
RYHY o (B) 2 0 [8, 4  8snet™(B)] S0 22 1 (5(B) @ Ay (X)) - (4.12)

Now, let X = C be a smooth curve. By Lemma 4.8, we have A} (C) = O¢l[0] for all m > 1.
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Plugging this into (4.9)—(4.12), we get

R%,n o H?,n — R%,n o Hll,n U (L* (7) ® wal) [71] — "
l l o l l (4.13)
R?,n o Hlojn — R?,n oHj, id e, () ® wal) [—1] —— we™.

We will see in Section 5.6 that the right-hand vertical map of this diagram as well as the compo-
nent ¢, (¢*(_) @ wg')[~1] = 0 (¢*(_) ®wg')[~1] of the left-hand vertical map are isomorphisms.
Thus, by taking cones in the diagram (4.13), we get Rl,noHRn =~ id and Rl,nngl’n = 0; compare
with (4.6). Considering the triangle Ry ,, 0 Hy , — RoH%n — Ry oHllm shows Ry 0 Hyp = id.
This amounts to the case £ = 1 of Theorem 1.1(i)(a).

For X a smooth surface, we have (_) ® A} (X) = S)_([O’m_l]; see (4.4). This gives

Ri,oH}, — Ri,oH], sl Lo
R(l),n o H?,n E— R(l),n o Hll,” S;_[O,nfl] ® L*S;([l,nfl]L* L*S;([O’nil]L* ’

where S';(l =(_)®pr w)_(l [—2]. Again, we will see later that all components of the maps in the

k —k %

diagram of the form 1, S"t* — 1,55 ¢* are isomorphisms, which by taking cones gives

[0,n—1]

RinoHY, =Sy DSy 1], RinoHi, =Sy 1],

and, finally, Ry, 0 Hy ,, = 5';([0’"_1] as claimed in Theorem 1.1(b).

4.6 Orthogonality in the curve case
In this subsection, we compute that Ry, o Hy 41 = 0 for X = C a curve, which is one instance
of Theorem 1.1(i)(b). We have
G'n ~Y *
R%,nHO,n+1(E) L (5En+1]5[n+1]*(E)) = L*(E ® An+1 (X)> ) (4'14)
R Hons1 (E) 2 6y 8 1u(B) 2 80,0 (B)S = 1, (E@ AL(X)).  (4.15)

I

For X = C a curve, this gives Rin o Hopt1 = 1y and R?’n o0 Hont1 = 4. By the exact triangle
Rin ° H07n+1 — R(l),n © HO,TH—I — Rl,n © H07n+1 5 (416)
we get the desired vanishing Ry, o Hypq41 = 0.

4.7 Non-orthogonality in the surface case

For X a smooth surface, we have RinOHO,nJrl & L*S;([O’m and R(l)’nOHO7n+1 & L*S;([O’nfl] by (4.14)
and (4.15). Again, all the components L*S;(k — L*S;(k of the induced map Rin o Hypt1 —
R%n o Hy 41 are isomorphisms for k = 0,...,n — 1. Thus, by triangle (4.16), we get

Rl,n o HO,n—I—l = L*S)_(n[l] . (4.17)

This non-orthogonality prevents the functors Hy, from giving a complete categorification of the
Heisenberg action on the cohomology of the Hilbert schemes; compare with Section 6.2.
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4.8 The case £ =2, n = 2

We make computations concerning the composition R 20 Hao: DI’G2 (X X X2) — DI’G2 (X X X2)
in order to illustrate why the assumption n > ¢ is necessary for Theorem 1.1. We have

Sp2)
R872H872(E) = [am ® 5%2}( EB di(E® cu))] )
Jcl4), |J|=2
For J = [2], we get the direct summand 552]5[2]*(E)6[2] = E ® priy AS(X) of R8,2HS,2(E)-
For Hyo to be fully faithful in the curve case and a P-functor in the surface case, we would

need Ry2Hso(E) to be isomorphic to that direct summand. For J = [3,4], we consider the
diagram

A NAjggy —— Ap

L

)
[3,4] 4
A[374] — X s

which is a transversal intersection. Under the isomorphism Ap = X X X2, the subvariety
X x X = ApgNApgy C Ap equals X x Ax. Thus, for an appropriate choice of F, the di-
rect summand [afy ® 5{2}5[374}*(E ® a[3’4])]6[21 of R%QH%Q(E) is supported on the whole X x Ax.
On the other hand, one can easily see that all direct summands of RZQ,QH%’Q(E) for (7,7) # (0,0)
are supported on one of the subvarieties Dy}, Dyay, or Dpg of X x X 2 none of them contain-
ing X x Ax. It follows that the direct summand [ajg ® 6{2}5[374}*(E ® aj3,4)]° of RY,HY,(E)
survives taking the multiple cones in the diagram induced by (4.6) which prevents Ry 2Hs 2(FE)
from being isomorphic to £ ® pri A5(X).

5. Proof of the main results

Throughout this section, we fix a smooth variety X of dimension d := dim X (in later subsections,
d will be specified to be 1 or 2), and we fix numbers ¢,n € N with n > max{/¢,1}. In order to
keep the formulae reasonably short, we will mostly omit these fixed numbers from the indices.
For example, we write H instead of Hyy, H? instead of H};m, R instead of Ry, and so on.

In this section, we will prove Theorem 1.1. In order to achieve this, we will first compute the
convolution products R!«H/ for 4,5 € {0,...,£}. In the case that X is a curve or a surface, this
will lead to the desired formulae for R x H.

5.1 Computation of the direct summands

The sheaf H' is given by a direct sum of the structure sheaves Oy J,u; see Section 3.2. Hence, for
0 <1i,5 <4, afirst important step in the computation of the equivariant convolution product
R x H7 is the computation of the non-equivariant convolution product

R R
<0127J27M2) * Oh,Jhm = pr13*(pr§3(012,J2,M2> X prTZ Oh,h,m) )

where (O, 1.5)% = (O g )" ® (Wxxxt B Oxnie)[(€ + 1)d] for (I, J1,p1) € Index(j) and
(I2, Ja, 2) € Index(i). We carry out this computation in this subsection.

We set Ky :=1; U Ml_l(Jg), Ky:=1U ,uz_l(Jl) C 4], and k := |K1| = |K2| and consider the
bijection p := “i}]ﬁoullfﬁ between K; = [¢]\ K7 and K9 = [{]\ K. Furthermore, we consider
1 2
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the subvariety
L'y Koy = {(m,xl,...,wg,z,zl,...,zz) |2 =14 =2, =2Va€ Ky, bEKy, 1 = 2,V E f(l}

of X x X! x X x X* and set OKy Koy = (’)pKl’Kz,H. There is the commutative diagram

4
X x X° % F121J27M2

/ ' \
T X x X% Ajng x X x XE—Ls X x X0 x X7 5 X x X!
\ s /
™3 | 2 roggn X X x X¢ Pris (5.1)
g | &2
NN "~ Dj x X x X! X x XIx X x X! X
™ | ! pry
Dk, = Dy, X x X,

where T' := (I‘h,Jhm x X x Xf) N (X x Xt x F[27J2“u2), the maps 713 and 74 are the restrictions
of the projection prys, the maps 7 and 7] are the restrictions of the projection prq, the map
p is the projection to the third factor, and all the other arrows denote the appropriate closed
embeddings. Note that J; N Jo # () because of the assumption n > £. We have

_ LT=Ta =Yb= Zc= 2, Td = Yuy(d) = Zu(d)
T {($,SE1,...,l’g,yl,...,yn+g,z,21,..., v) Vae KL be Uy €Ky de Ky

We see that a point in 7' is determined by its (z,x1,...,xy)-component. Thus, 73 and m are
isomorphisms. Similarly, 774 is an isomorphism. Let mo: T'g; g, — X X X ¢ be the restriction of
the projection pry: X x X! x X x X* — X x X* to the second factor. By the adjunction formula,

-1
XxXxt»

-1 ~ —-1 —(k—j)

T13:Wy = W5 = Wy o5 @ *w S T Wa @ 7r2waXf > piwy ® Tow

where the last isomorphism is due to the fact that on I', k, , the projection to the first factor
X x X! x X x X! = X coincides with the projection p to the third factor. It follows that

k—
T13:Wy @ TaWx s xt 2P wX( = (5.2)

Note that |J1UJs| = n+k and |J1NJa| = n+i+j—k. Using this, one can check that diagram (5.1)
with the two bottom lines removed satisfies the properties of diagram (4.1). Concretely, the square
consisting of u, v, s, and r is a transversal intersection, with codim(t) = (n+i+j —k — 1)d and
codim(v) = (k — j + ¢+ 1)d. By Corollary 4.4, we get

Hom(prss Or, o s Pri2 On,sim) = 150150r, |, soxxxt = Or @ ANy @ wy[—(k = j + £+ 1)d].
Combining this with (5.2) and, noting that ¢ = idyx, ye X070, X idx, xe¢, with (4.2) gives
(O, au2) " % Ory gy iy 2 P13 HOm(pr Ot s P2 Or i i) @ P wi o xe[(£+1)d]
> Oy Koy @ P (N (Tx @ 01100) @ wxF ) [=(k = §)d] (5.3)
= Ok, i @0 (N H(Qx @ 0nn) @ W) (0 +i - 1d]. (5.4)
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5.2 The induced maps
Let ¢ € I with py(c) € Jo, and set I] = I; U {c}, J; = J1 U{ui(c)}, and ) := [1)7,\{c}- The
restriction O, ., uy — Oy jr 1 induces, for ¢ =0,..., (n+i+j—k)d, a map

VA ((sz,Jz,m)R * OhJL#l) — i ((012,J2,u2)R * OI{,J{:M) )

which under the isomorphism (5.4) corresponds to a map

(n-l—i—l)) (n-H'—l)) .

Ok Ko @ P* (AU (Qx @ 05100,) @ wy = OKy Ko @ 0" (A(Qx ® 051,) © Wy

By Remarks 4.5 and 4.7, this map is given by the canonical inclusion 0j,nj, — 0 N =
O(1NJ2)U{us ()} TO see this, compare the diagram

¢ id ?
X x X° % F121J27I~’»2 > X x X" X F127J27M2

T Ao, w A, X x XEx X x X x XY,

¢ 7 ¢
Fliﬂ]{vl"i XX xX *>1_‘[1,J17u1 XX xX

where AJ =X x XEx Ay x X x Xe, with the diagram of Remark 4.5.
Similarly, consider ¢ € I with us(c) € Ji, and set Ih := I, U {c}, J} := Jo U {p2(c)}, and
My = fig 1,0\ fc}- Then the restriction O, s, 1y — Or,,15 4, iInduces a map

B ((Olé,fé,u’g)R * OILJLNI) — B ((012,J27M2)R * 011,J17M1)

for g =0,...,(n+1i+ j — k)d, which under the isomorphism (5.3) corresponds to a map

(kg (ki
Ok, 1o @ P (A(Tx @ 05,07) @ ") = Ok, ko @ 0 (AU(Tx © 000) @y ).

This map is given by the canonical surjection Oy = O(JinJa)U{uz(c)} > QJinJs, again due to
Remarks 4.5 and 4.7. In particular, the induced map
—j k—j)d
%(k j)d((olé,Jé ! )R*Oh,h,ul) — %( 2 ((OIQ7J2,H2)R*OILJ1»H1)

7.u‘2

is given by the identity on Ok, K, ®p*w;((k*j),

5.3 Computation of the R* x HI

We make use of the principle explained in Section 2.2 to compute the convolution product
R x H) = prys, (priz R' ® pri, Hj)IXG"”XI. We set

R(L,J, 1) = H(I, 1) @ (wxsexe B Oxnse)[(0+1)d] = (Or,5,) @ ay,
s0 that R' = @ndex(iy R(L, J, ). The (& x &1 x &y)-linearisation of

Pri3« (pr§3 R' @ pris Hj) = @ Prlg*(Przs R(I2, J2, p2) @ pris H(I1, Ji, Ml))
Index(j) % Index (i)

induces on the index set Index(j) x Index(i) the action

o1 x 7 x o3 (I, Ji, gy 2, Jo, pi2) = (o1(1), 7(J1), 7o py ooy s 0(I2), 7(J2), T o pp o 0yt
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Let O(i, j) be a set of representatives of the (1 x &,,.4 x 1)-orbits in Index(j) x Index(7). One can
check that O(i,7) is in bijection with

Index(i, j) := {(IhKl,[Q,KmM) L KL Cll] D Ky D I, [I] = j, |12 = Zv}

|K1| = |Kal|, u: K1 — K> bijection
via the assignment (Iy, Jy, pu1; I2, Jo, p2) — (I1, K1, I3, Ko, u) where, exactly as in Section 5.1,
Ki=LuUp' (), Ky=LUpy'(h), p= Miﬁoﬂnfﬁ :

Furthermore, the &,,4 ¢-stabiliser of (11, J1, 1; Lo, J2, p2) is S jns,. It follows by (2.3) and (5.3)
that the equivariant convolution product R+ H7 is given by

R'«HI 2 pryg, (pras R' ® pri, /Hj)lxewXl

= (P pris. (prss RUz, Ja, p12) @ prip H(Iy, Jy, ) 072 (5.5)
O(i,5)

~ * * —(k—J .

= @ OKy Ko @ Og\1, @ Ag\1, © D (An+i+j—k(X) @ wy J)) [—(k —34)d]. (5.6)
Index(%,7)

We denote the direct summands of (5.6) by

* (A K —(k—j .
P, K1, 1>, Ko, p) = @ Ok, Ky pn®0x \1, g\ 1, @D (An+i+j—k(X)®wX( J))[—(k—ﬁd]-
Index(%,5)
Note that the (&, x &;)-linearisation of R’ H’ induces on O(i, j) = Index(i, j) the action
o1 % o2t (I, K1, Io, Ko, p) = (01(I1), 01(K1), 09(12), 09(K2), 00 0 ppo oy b) .

The (&, x &)-stabiliser of (I1, K1, Iz, K2, 1) is &1, X G\p, X G, , X &1, X &\ r,. With this
notation, we indicate the subgroup of &y x &, given by

{(o1,02) | o1(I1) = I, 01(K1) = K1, 02(I2) = Iz, 02(K3) = K3, (020 W), = (wo al)ll—ﬁ} )
Furthermore, the orbits of the (&, x &y)-action on Index(i, j) are given by
Index(i, j)k == {|K1| = |K2| = k} C Index(i,j) for k = max{s,j},...,¢.
A representative of the orbit Index(i, j)x is ([j], [k], [i], [k], €), where e = id}; ;1 4. We get

l
R« = @ Plijk,

k=max{i,j}
7)(7'7.7)16 = |ndg§§giﬂ.ngk’exgixgkﬂv P([j]v [k]7 [2]7 [k]u 6) . (57)

5.4 Spectral sequences

For j =0,...,¢, there is the spectral sequence £(j) associated with the complex pri; H and the
functor Hom (7, Pris 7-[]) given by

EGTY = Ext? (pryg H P pris HY) = ()T = Ext?™ (prigH, priy 1Y) ;

see, for example, [Huy06, Remark 2.67]. By Section 5.1, every term of this spectral sequence is
finitely supported over X x X* x X x X’ hence pry3,-acyclic. Since the functors (_)®»+¢ and
(_)®prswyy xe are exact, we can apply the functor prys, (_)>*Sn+1®@prs w ., v to every level of
the spectral sequence £(j) to get a spectral sequence with values in Cohg, x, (X x Xt x X x Xg).
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Shifting this spectral sequence by (¢ + 1)d in the g-direction, we get the spectral sequence E(j)
with the property

BT =1 (RP*xH) = E(j)PT =P (RxH).
Similarly, we get a spectral sequence

EP = 00 (RaHP) = EPH = APH(R < H). (5.8)

5.5 Cech-type exact complex for the sign representation
For k£ > 1, there is an exact complex of &p-representations

dt &
0—-C—--- Indb S al—+lnd6+lxgk i1 = —ap—0,
which we denote by é,:. We consider Ck as a complex in degrees [0, k]. The terms are
5 _ Sk oy
Cr =Indglyg, 0 = @ ar.
ICIk], [I]|=i

Under this identification, the differential d' is determined by its components a; — a7, which are
given by e75 = (—1)#{e€lla<bl if 7 — T U {b} and which are zero if I ¢ J. That the sequence
is exact can be checked either by hand or by considering it as a special case of a Cech complex.
We also set Ck = Ck ® ag. Then Ck is the exact complex

0—ap— - — Indgfok_i Ap_; IndG’“ i1 — - —C—0.

Git1X6k_;_1

Let M be a variety on which we consider &}, to act trivially. For £ € Coh(M), we set Cp(FE) :=
E ®c Cp. This is an exact complex in Cohg, (M) given by

d
B =indS o, (Eoa) T ndS o (E@an) - — Eoa.

There also is the exact complex é,;(E) =FE®c C,; >~ CrE) @ ay.

LEMMA 5.1. Let E € Coh(M) be simple; that is, Hom(E, E') = C. Then
Home, (Ci(E),Cit(E)) = C = Home, (CL(E),Ci™(F)).

Proof. By the adjunction Ind - Res, we have

Gix6p_;
Home, (CH),C{(E) = | @) Hom(E s oy E o)
[|=it+1
S XS _;
= [ &y Hom(EvE)®a[i]\I®aI\[i]:|
I]=it+1

For [i] ¢ I, we have |I \ [i]| > 2, and hence (Hom(E, E) ® aj; ® al\m)el\[i] = 0. It follows by
Section 2.2 that

Home, (CL(E),Cit(E)) = Hom(E ® ap), E ® ap4q)) "1 Sli+24 = Hom(E, E) = C.
The second assertion follows from the first one since é,; (E)2CrE) ® a. O

COROLLARY 5.2. Let E € Coh(M) be simple. Then, up to isomorphism, every non-zero -
equivariant morphism Ci(E) — C,’;r1 (E) equals d'(E), and every non-zero &-equivariant mor-
phism Ci(E) — (f}:rl(E) equals d'(E).
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CONVENTION 5.3. We also define C := C[0] =: (35 to be the one-term complex with C in degree
zero. Obviously, the complexes C§ and C§ are not exact, in contrast to the case £ > 1 described
above.

5.6 The curve case: Induced maps
We will need the following easy fact further on.

LEMMA 5.4. Let v: Z — M be a closed embeddings of an irreducible subvariety. Then we have
Homs(E, tsL) =0 for all L € Pic(Z) and E € Coh(M) with suppE 5 Z.

For the present and the next two subsections, let X = C be a smooth curve. By Lemma 4.8,
we have AY (C) = O¢]0]. Using the notation of Section 5.3, we get isomorphisms

NI ~ (G (G * k—j .
Pliy i)k = Indg! 38t wep o oxeixp s Olke ® 414 @ Gy p) @ P we "=k - j)]

= Indg %S e, s onen CF (O @i ) @ a [k = 5)] (5.9)

for k = max{i,j},...,¢. The second isomorphism is due to the general fact that for subgroups
V C U C G of a finite group G, there is an isomorphism of functors Ind‘G/ = Indg ) Ind‘[f.

In particular, P(4, ), is concentrated in degree k — j, so that (5.7) induces an isomorphism
AT (R« HI) 2 A5 (P (i, ).

LEMMA 5.5. Let max{i,j} < k < £. Under the isomorphism (5.9), the morphism
AT (RE % HI) 2 5T (P, §)i) — A (P(i — 1,5)5) =2 57 (R < 1)

induced by the differential Hi~' —H? is given by IndS¢* & (O .2 we™ ).

GjXGk_jXGZ_k’eXGk
Here, dk_i(O[k]’[k]’e ® p*wg(kfj)) denotes the differential in degree k& — ¢ of the complex
Je x —(k—j
C* (Opg e @ P ).

Proof. Recall that P (i, j)x = @index(ij), P (11, K1, I2, K2, 1); see Section 5.3. Under the isomor-
phism (5.9), this gives the direct-sum decomposition

Cl i (Oppe 0P 0" N @agal-k—N= @ PULIKL L [Ke).

IQC[k‘],‘Iﬂ:i
By Lemma 5.4, all the components P([j], [k], I2, [k],e) — P(I], K}, I}, K}, i) of the map
P[], [K], Lo, [K], €) = P (i )k — P(i — 1, 5)k (5.10)

are zero unless K| = K} = [k] and u = e. They are also zero for I # [j] since our morphism
RixH) — R=1 % HJ is given by the identity on the factor H#7, and P (I, K1, I>, Ko, 1) arises as
Pris. (pris R(I2, J2, pi2) @ priy H(Il,Jl,ul))IXG‘]m‘JQXl; see (5.5) and (5.6). In summary, all the
non-zero components of (5.10) are of the form P([j], [k], I2, [k],e) — P([4], [k], I}, [k],e). By the
adjunction Res - Ind, it follows that the map %~ (P(i, j)x) — "I (P(i — 1,;)x) is of the
form Indgjigi,jxm,k,exm(f) for some

1 G (O e @ ") = CE T (Op e @ prwg )

(k—j))_ For this purpose, by Corollary 5.2, it

and we need to prove that f = CZ’“*i(O[k],[;{]’6 ®prwe
is sufficient to show that the component

A3 (PU3), (K], [i], [K], €)= 279 (P((3], [K], [i = 1], [K], ) (5.11)
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of #XI(P(i,§)r) = A I (P(i —1,)k) is non-zero. By (5.5) and (5.6), we have
P (1), k], [1), [K], €) 2 [R([d), [n + i), €) x H([j], Ju, €)] inits)

where a possible choice of J; is J1 = [n+i+j—klU[n+i+ 1,n+ k]. In degree k — j, the
S yitj—k-action on R([z], [+ 1], e) *'H([j], J1, e) is trivial because given by the representation
/\Og[n+i+j_k}; see (5.3). Hence,

A (P15, K1, [1), (K], ) = o (R([i), [n + l, €) » H([5), J1€)) - (5.12)
Analogously, we get
AP KL= 1), (K, 0)) = 5 (R = 1) 2 +dl,¢) s () Je)) . (5.13)

Under (5.12) and (5.13), the morphism (5.11) corresponds to the morphism
AT (R[], [0+ i ) « H ([, T €)) — 57 (R([i =11, 2,0 + ], €) % H([j], 1, e))

induced by the restriction Op;_1)2n1il,e = Ol [n+i,e- AS pointed out at the end of Section 5.2,
this is an isomorphism. O

5.7 The curve case: Full faithfulness

PROPOSITION 5.6. For X = C a curve, we have R « H = Indgﬁ’ge Ong, oo
e

Proof. Consider the spectral sequences E(j)I'? = #1 (R‘p * Hj) — Pt (R * Hj); see
Section 5.4. By (5.9) and Lemma 5.5, for k = j,...,¢, the (k — j)th row of E(j); is given by
the complex Indgﬁigi_jxeg_mxek C,: (O[k},[k]ﬁ ®p*w;((k7])) ® agj11,5 shifted into degrees [k, 0].
The induction functor is exact. Thus, all the rows of the spectral sequences are exact with one
exception: the zero row of E(0); is given by the single non-zero object E(0)7% = s°(P(0,0)o);
see Convention 5.3. It follows that R « %/ = 0 for j > 1 and R x H® = 2#°(P(0,0),). Now,
by the spectral sequence (5.8) or, alternatively, by the fact that R x H is a left convolution of
RxHO = RxH! = - — RxHY, it follows that R+H = #°(P(0,0)0) = Indg"™* Oa_ ,. O

ct

Proof of Theorem 1.1(i)(a). The identity functor id: Dbez (CxCt) — Dbez (C x C*) equals the

equivariant FM transform with kernel Ind%’;)fZ Aoy cr; see Remark 2.2. Note that we have

(&r)a = 6y C 6¢ x &y. Thus, the assertion Ry, o Hy,, = id follows from Proposition 5.6. [J

5.8 The curve case: Orthogonality
In this section, we will outline the proof of Theorem 1.1(i)(b). Lemmas 5.7 and 5.8 below state
formulae for the convolution products Ré’,n/ * Hin for n +¢ = n’ + ¢ and the induced maps
between them. The proofs, which are completely analogous to the computations of Sections 5.1—
5.3 and 5.6, are left to the reader. The author decided to explicitly write down the computations
of Ré’,n’ * ”Hzn in the Sections 5.1 and 5.3 only in the special case (¢,n) = (¢,n) in order to
avoid the heavier notation that the general case would have required and because the special
case (¢,n) = (¢, n’) is entirely sufficient for parts (i)(a) and (ii) of Theorem 1.1. In particular, the
reader mainly interested in the surface case may safely skip the rest of the current subsection.
Let ¢,n,¢',n’ € Z be integers such that n > max{1,¢}, n’ > max{1,¢'}, and n+ ¢ =n' + (.
We introduce some notation which, for (¢,n) = (¢',n’), specialises to the notation of the previous
subsections. For I} C Ky C [(], Iy C Ko C [¢'], and u: K7 — K3 a bijection, we consider

Lry Koy = {(3},1‘1,...,IEg,Z,Zl,...,Zg/) |z =12,=2Vaec Ky, b€ Ko, .= Zue) Ve € f(l}
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as a subvariety of X x X x X x X¥. We set O, , . := Org,. and

Ko,p
% [ Ak —(k—j .
P(l, K1, I, Ko, 1) := Ofe, Ky ® a1, © G @ P (A i 1(X) © WX( ]))[—(k —7)d],
where j := |I1| and k := |K;|. Again, p: X x X! x X x X¥ — X denotes the projection to the
third factor. For 0 <@ < ¢, 0<j </, and max{n’ —n+1,j} <k < ¢, we set
P(i, 0, §,0) := IndS St P(4], [K], [i], [k +n —n'],e) .

Gj X@k,j X657k75X6¢X6k+n_n/_i

|~ l . .
LEMMA 5.7. Ry % Hp = D —main/—ntijy P s 5, Ok
Proof. This follows from computations analogous to those of Sections 5.1 and 5.3. 0

LEMMA 5.8. Let X = C' be a curve and ¢ > (. Then, for 0 < j < k < {, we have the vanishing
Y ( 0 *H%’n) =0 fori > k+n—n/, and the sequence
k—j (p>k-+n—n' j k—j (0 j
0= AT (REFT x My, ) = o= AT (R x Hy,) =0,
whose differentials are induced by the differentials of Hy ,, is isomorphic to

GyxGy Je * —(k’—j)
lnde XGk,j XGZ—k,eXGkJrnfn’ Ck'+7l_n, (O[k]v[k“”n*n/]:e ® p wC ) ® a[j+17k] '

In particular, it is an exact sequence.
Proof. This follows from computations analogous to those of Sections 5.2 and 5.6. O
PROPOSITION 5.9. Let X = C be a curve and ¢ > {. Then Ry ,y * Hypn = 0.

Proof. This follows from Lemma 5.8 together with spectral sequences analogous to those of
Section 5.4. n

5.9 The surface case: Induced maps
For the remainder of this section, let X be a smooth surface. Recall that p: X x X! x X x X! — X
denotes the projection to the third factor, and set

Sx = (_) ®@p'wx[2] € Aut (D%, e, (X x X' x X x X'))

and 5’)_([‘1’17] = g)_(“@g;((a+l)@- : -@g)}b for a < b two integers. By Lemma 4.8, we have p*A’ (X)) =
S)_([O’m_l]((’)XXXszsz). Hence, by the results of Section 5.3, for k = max{i, j},..., ¢, we get

s N~ g lk—gnti-1 Sy x6
Pi, ) 2= SIS e, oo, Ol ® 01 © iy

= S';([kij’nj%il} |nd6£><6£ éiélﬁ*i(o[k}’[k]ﬁ) . (5.14)

Gk XGE_]“@ XGk

Here, the inner term éllj_i is interpreted by considering &y as a subgroup of &, x &y by the
embedding into the second factor, while the outer term CA,]C is interpreted by considering &y as
a subgroup of &, x &, by the embedding into the first factor. In particular, we have

AP (P(i,)k) Z IS5 e, CLCE " (Opg e @ Pwy) fork—j<r<n+i—1. (5.15)

EXGp_ ke

LEMMA 5.10. Let k, k" € [max{i, j},{]. The components 4 (P(i,j)x) — H(P(i—1,5)) of the
morphism ' (R'xH7) — #Y(R*~'«P7) which is induced by the differential H'~' — H* are zero
for k # k'. Furthermore, under the isomorphism (5.15), for k —j < r < n+1i— 2, the component
AP (Pi, j)i) = A (P(i — 1, j)k) is given by Indg' & s CLA™ (O e ® PPwy")-

CrxGy_g.e
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Here, d ((’)[k} (K.e ® P'Wy ") denotes the differential of the complex C* (O[k],[k:},e ® prwy’).

Furthermore, we regard CJ as the functor IndG’“X S ((7) ®a;), which is applied to the morphism
A (Opp.e ® P'wy”) to give a morphism CJCy ™ (Opg e ® p'wy’) — GO (Opype ©
* —-Tr

Pwy’)-
Proof. The components H(I}, J5, i) — H(Ia, J2, o) of the differential H*~! — H® are non-zero
only if I} C Iy; compare with Section 3.2. Thus, following the computations of Section 5.3, the
only components P(i,7)r — P(i — 1, ) of RIxHI — R~ «HJ which are possibly non-zero are
those with k = k" or k — 1 = k. But P (i,5)r) — H#(P(i — 1,7)k—1) is zero by Lemma 5.4.

Exactly as in the curve case, we can reduce the proof of the second assertion to the claim that

A% (P[], [k, [d), [K], €)= 272 (P([j], [k), [i — 1, [K], ) (5.16)
is non-zero; see Corollary 5.2 and the proof of Lemma 5.5. By (5.5) and (5.6), we have
7 (P(), [K], 1], [k, €)) = 22 (R(1], [n + ), €)  H([j], v, €)) T2

where a possible choice of Jy is J1 = [n+i+j —k]U[n+1i+1,n+ k. Also,

6[2,n+i+j—k]

A2 (P, (K], [i = 1), k], €)) =22 (R([i — 1), [2,n + ], €) + H (L), 1, ))

)

Spntiti—k
g[ @ %”(R([i—l],[n+i]\{a},e)*’H([j],Jl,e))}[ |

a€[n+i+j—k]
where the second isomorphism is due to Section 2.2. As explained in Section 5.2, under the
isomorphism (5.3), the components of the induced map

A (R([d], [n+1],¢) x H([j], J1,¢€))
— @B AT(R(li -1, In+i]\{a},e) *H([j], J1,¢)) (5.17)
a€n+i+j—k]

are given by the canonical surjections o[, yitj—r — On+it+j—k\{a}- 1t follows by [Sca09, Lem-
ma B.6(3)] that the map induced by (5.17) on the &y, ;1 ;_g-invariants, which is exactly (5.16),
is an isomorphism. ]

LEMMA 5.11. Let k, k" € [max{i,j+ 1}, £]. The components 74 (P(i,j)i) — HP(i,j+ 1)) of
the morphism ' (R xH?) — A7 (R’ *Hj+1) which is induced by the differential H? — HI+!
are zero for k' ¢ {k,k +1}. For k —j < r > n +i — 1, the component A (P(i,5)k) —
AP (P(i,j + 1)) is given by Indgp;%i pox G d! (Clﬁ_z((’)[k] K].e ® prwy")).

Proof. The proof is analogous to that of Lemma 5.10. The first assertion follows from the fact
that the only non-zero components of H7 — H/T! are of the form H (I, J1, u1) — H(I], J}, i)
with I; C I7. The second assertion can be reduced to the non-vanishing of the component

A% (P[], [K], [, [K], €)= 2" (P([j + 11, [K]. [d), [K], €)) -
Set Jo:=[n+i+j+1—FklU[n+j+2n+k]. There are isomorphisms
A7 (P((j + 1], K], [0 (K], €)) = A7 (R[], Ja, €) % ([ + 1], [+ + 1], €)) T,
A7 (P([], [K], 14, [K], €))
[ Sntitjt1—k

@ A (R([i], J2v €) * H([5), In+ 5 + 1]\ {b},¢))

be[ntitj+1-k|
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Again following Section 5.2, under the isomorphism (5.4), the components of the induced map
D TR, ) x H () [0+ + 1\ {b} )
ben+itj+1—k|
— A (R([d], Jo,e) * H([j + 1], [n+j + 1], ¢€)) (5.18)

are given by the canonical injections op, itjr1—k\{p} — Ontitj+i—k- 1t follows by [Sca09,
Lemma B.6(4)] that (5.18) induces an isomorphism on the &, j41_g-invariants. O

In fact, one can compute that the component " (P (i, j)x) — S (P(i,j+1)g41) is induced
by the restriction O (k),e = O41],[k+1],e- But this will not be relevant for our purposes.

5.10 The surface case: The cohomology of R x H
Recall that, for 0 < m < k, there is the stupid truncation agmé,: with

cokerd™™ 1 for a =m,

Smee = (05C) = -+ = C"—0), H(cS"C) =
g k ( — k‘_> — k — ), (U k) {0 61867

where, for m = 0, we have coker d ! = CY. For max{i, j} < k < £, we set
o 55 (e . i —ije « —(nti-1
Qi. j,k) = Ind 5 e | e, CLITG,R)) s T(ik) i= A5 (071G (Opy g @ 7oy " 7Y)).
LEMMA 5.12. For 0 < j < /f and 1 <1 < {, we have
A —i,2(nti—1) .
E(j)Z BAniol) o Gai:max{i,j}Q(Z?]? k).

For j > 1, these are the only non-vanishing terms on the 2-level of E(j). For j = 0, there are the

additional non-vanishing terms E(O)g’% = Indgﬁte‘Z Oay o ®P'wy forr=0,...,n—1.

Proof. The terms E(j))"! = #7 (R™P « H7) are described by (5.7) together with (5.14). We see
that the only non-vanishing rows on the 1-level of F(j) have ¢ = 2r, where r =0,...,n+ ¢ — 1.
By Lemma 5.10, for ¢ > 1, row ¢ = 2(n + 4 — 1) is the complex

14
i 51 ( e x —(n+i—1
D S e, QOB o))
k=max{%,7}
14

= P (L e, GG ORI (519)
k=max{i,j}

Since the functor Indgiig_k,exgk CA,z:(i) is exact, it follows that the cohomology of row ¢ =

2(n 41— 1) is concentrated in degree —i and equal to @izmax{ij}Q(i,j, k). This proves the first
assertion. For r =0,...,n — 1, row ¢ = 2r of E(j); is given by

V4
P nde 5, e, CLCH(Op e @ pwy")) (K] -
k=j

Thus, it is an exact complex with one exception: in the case j = 0, the one-term complex
IndgﬁiGZ CH(C3(Op e ®prwy"))[0] = Indgﬁi&f Oa, e ®@P'wy [0] occurs as a direct summand;
compare with Convention 5.3. 0
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COROLLARY 5.13. For j =1,...,¢, we have

¢ . B o
A (RxHI) = {?k:max{i,j}Q(Z,],k) forq=2n—1)+1i,i=1,...,¢,

else.
Furthermore,
@izmax{i,j} Q(Z’ 0, k) for g = 2(” - 1) +i,i=1,...,¢,
%q (R*HO) = |ndgi§62 OAXXX[ ®p*w)—(7” forq:2fr; 7‘:07.”777/_]_7
0 else.

Proof. By the positioning of the non-vanishing terms, we see that all the E(j) degenerate at the

2-level. The result follows since E(j)? = 77 (R« H’); see Section 5.4. O
LEMMA 5.14. Let A be an abelian category and, for o = 1,...,m, let (C3,d,) be complexes
in A. Let C* be a complex with terms CV = C{ & --- & C}, and differentials of the form
a0 - 0
g d, - 0 |

where the stars stand for arbitrary morphisms. Then, if all the C?, are exact, C'* is exact too.

Proof. Let B® be the complex with terms B/ = C{ Q- D C%jnq and differentials

& 0 - 0
. * dj 0
dp=. 0 .
R

By induction, we can assume that B® is an exact complex. There is the short exact sequence
of complexes 0 — C», — C* — B®, where the first map is given by the inclusion of the last
direct summand and the second map is the projection to the first m — 1 direct summands. The
exactness of C* follows from the associated long exact cohomology sequence. O

For r € Z, we set S = ~;((Indg§:64 Oa ® p*w [2r]. We have
S}} = (5)1()*7 and

_ GzXGz
Xxxé)_ Ind@e,e OAXfo

FMg, = Sk = (1) @ (wk B Ox)[2r]: D, (X x X*) = Dg, (X x X).

PROPOSITION 5.15. " (R+H) = S)}[O’"_” =8 0S e -0 g}-{(n—l).

Proof. We consider the spectral sequence EP? = SR x HP) = P YR xH); see (5.8). By

Corollary 5.13, the only non-vanishing rows of £ are
¢q=0,2,...,2(n—1),2(n—1)+1,...,2(n—1) + ¢£.

Note that the terms of row ¢ = 2(n — 1) + 4, for i = 1,...,¢, equal those of the exact complex

@i:‘ Indgiig’i_k’exgk C2(T (i, k)). For j > k, we set Q(i, j,k) = 0 and a?i = 0. By Lemma 5.11,

1
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the map d’: E{’q = @ﬁziQ(i,j, k) — E{H’q = @iziQ(i,j + 1, k) is given by

! 0 - 0
oA, 0 . N o
& = . T o =ddd e, BT R))

0 0 x d
It follows by Lemma 5.14 that row ¢ = 2(n — 1) + i is exact for all i = 1,...,¢.

For r =0,...,n — 1, row ¢ = 2r has only one non-vanishing term, namely E?’Qr = S)_(T. In
summary, the only non-zero terms on the 2-level are Egm = S)_{T forr =0,...,n—1, from which
the proposition follows. ]

5.11 The surface case: Splitting and monad structure

LEMMA 5.16. Let A be an abelian category with enough injectives, and consider A®, B®,C*® €
DY(A) together with morphisms f: A* — C* and g: B®* — C* in DY(A). Let there be an m € 7Z
such that the cohomology of A® and B® is concentrated in degrees smaller than m and such that
H(f) as well as A (g) are isomorphisms for all i < m. Then A® = B® in Db(A).

Proof. We may assume A® = B® = 0 for all i > m; see [Huy06, Example 2.31]. Choose an injective
complex I* which is quasi-isomorphic to C'*. Then f and g are represented by morphisms of
complexes f®: A®* — I® and ¢°*: B®* — I°®; see [Huy06, Lemma 2.39]. These morphisms factor

through the smart truncation 7S~ 1I* and, by the hypothesis, these factorisations are quasi-
isomorphisms. Thus, they are isomorphisms in Db(A), which proves the assertion. O

PROPOSITION 5.17. R+ H = 80",
Proof. This follows by applying the previous lemma to the situation that f: R« H — R+ HC is
the map induced by the canonical map H — H" and g is the composition

5)_([0’"_1} S RO%H? - RxHY,

where the first map is the inclusion of the direct summand P(0,0) = 5’)_([0’”_1] under the
isomorphism (5.7) and the second map is induced by R® — R. O

Proof of Theorem 1.1(ii). By Proposition 5.17, the functor Hy, fulfils condition (1) of a P~
functor.

Set Fypn := Ofujs © Mg, otriv: Dg, (X x X*) = Dy ¢, (X" x X¥), so that H, = IndoFy,;
compare with (3.5). By (4.4), we have an oFp, = g)_([o’"_l]. The unit of adjunction n: id —

ResoInd gives a map of monads anﬂFe,ni FéRn oFp, — Rgn o H?n. On the level of the kernels,

5—[0,n—1]

it coincides with the inclusion S — RO x HO. Since Fy,, = Fy, X idpe (X)) the monad
K ’ 6[

multiplication p(Fpp): FZRn oFyppo FERn oFp, — FeRn o Fy, equals pu(Fp,) Mid. By [Krulb],
the functor Fp, is a P~ functor. In particular, the monad structure of Fy ., has the right

shape, which means that the components S)_(1 o S)_(k — S)_((kﬂ) of u(Fyy,) are isomorphisms for

)

k=0,...,n—2. Thus, also the components 5’;(1 ob_’)}k — 5’)}(“1 of p(Fy ) are isomorphisms for

k=0,...,n—2. Equivalently, on the level of the kernels, the components 5)_(1 o S)_(k — S)E(kﬂ)

of the monad multiplication

R(0,[n], e) x H(D, [n], €) x R(D, [n], €) x H(D, [n], €) = R(D, [n], €) x H(D, [n], €),
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which we denote again by u(Fy,,), are isomorphisms. Let U := (X x Xf) \ (UpzrcigDr), and
let u: U — X x X% be the open embedding. Then annF&n: Fan oFy, — Rgn o Hgn is an
isomorphism over U x U, and Hy, ous = H 2n o uy. It follows that the components S;(l o S)}k —
S)_((kﬂ) of

p(Hep): RxH*xR+H = R+H

are isomorphisms over U x U. Since the S;(k [2k] are direct sums of line bundles on the graphs
of the Gp-action on X x X! and the codimension of the complement of U in X x X* is 2, it
follows that the components 3)_(1 o Sgk — 5)_((k+1) of p(Hy,y) are isomorphisms over the whole

X x Xt x X x X% Together with the fact that, for i < k, the components S)_(l ) ‘S_’)_(i — ‘S_')_((kﬂ)
are zero for degree reasons, this amounts to condition (2) of a P"~!-functor.

That the Hy, satisfy condition (3) of a P"~1_functor was already shown in Section 3.3. [

6. Similarities to the Nakajima operators
In this section, in order to justify the title of our paper, we will explain some similarities between
the P~ !-functors H ¢,n and the Nakajima operators gp .

Let us quickly recall Nakajima’s construction [Nak97]. Throughout this section, X will be
a smooth quasi-projective surface. The Nakajima operator qpn,: H* (X xX 4, Q) —» H* (X [n+4] Q)
is the linear map induced by the correspondence

X ox X x5 280 = {(2, (€, [€0) 1 € € €, w([€]) = w(E]) + -}, (6.1)

where p: X — x(m) = xm /Sy, denotes the Hilbert—Chow morphism and points in the
symmetric product are written as formal sums. For every a € H*(X, Q), by the Kiinneth formula,
there is the map

io: H* (X19,Q) —» H* (X x X9, Q) 2 H*(X,Q) @ H* (X19,Q), ia(B)=a®p.

The operators gp,(a) = qrp © iq: H" (X[g],(@) — H* (X[”M},@) are again called Nakajima
operators. Furthermore, g7 _p(a): H* (X[”M],Q) — H* (X[K],Q) is defined as the adjoint of
qen () with respect to the intersection pairing. One usually considers all of these operators for
varying values of ¢ together as operators on H := &> H* (X m,@) by setting
(@) == @ qup(a): ®H* (XY,Q) - @ H* (X" Q),
qn(a) = Drqr_n(a): & H* (X[”'W]’Q) — P H* (X[f]’ Q).

Then, as shown in [Nak97], the commutator relations between these operators are given by
[9n (@), @u (B)] = 10+ On (v, B) - id - (6.2)

This agrees with the relations between the generators of the Heisenberg algebra associated with
H*(X,Q), which shows that the Nakajima operators induce an action of the Heisenberg algebra
on H, the cohomology of the Hilbert schemes. Taking n = —n’ and considering the degree ¢ piece
of formula (6.2) for £ < n, we get

Gt,—n(@) 0 qen(B) =n - (a, B) -id: H* (X11,Q) — H* (X9, Q). (6.3)
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6.1 Support of the image under the McKay correspondence
For every m € N, by [BKRO1] and [Hai01], there is the derived McKay correspondence
®,, = FMo,. : D' (X)) S DY (x™).
It is the Fourier—Mukai transform along the structure sheaf of the isospectral Hilbert scheme
"X = (X" x iy X™) = {(€ w1, zm) [ ((€]) = 21 4+ 2} € X XM

We can translate our P-functors Hy , from the equivariant side to the Hilbert scheme side of the
McKay correspondence by setting

Hyp o= @71, 0 Hyp o (id8@3,): DY (X x X1) - DY (x[H4).
Recall that the Fourier-Mukai kernel of Hy , is supported on
supp Hep = U IrjuCX X Xt x xntt.
Indexg, (%)

compare with Section 3.2. Using [Orl03, Proposition 2.1.6] or, more precisely, its equivariant
analogue [KS15a, Lemma 2.7], one can deduce quite easily that the kernel of H ¢,n is supported
on Zt" ¢ X x X x X+ the correspondence defining the Nakajima operator qe¢n- Clearly,
it would be desirable to have a more concrete description of the kernel as an object in D (X X
Xl x x [”“Le]), but for the time being, we are unable to provide one except for the case £ = 0
and n = 2; see [Krul5, Section 4] and Section 7.2.

6.2 The functors Hy, as a partial Heisenberg categorification

In this subsection, let X be a projective surface with trivial canonical bundle wx = Ox, that is,
an abelian or a K3 surface. In this case, we will see that the functors Hy ,, together with their

right adjoints ﬁgm, fulfil some categorical versions of the Heisenberg relations (6.2).

Let X < X x X4 2 X[ be the projections. For E € D?(X), we consider the functor
Ip:=q'E®p*(): D" (X)) > Db (X x X)), Ip(F)=EXF.
Its right adjoint is I% = p.(¢*EY ® (_)). We set
Hyp(E) = Hyy o Ip: D (X)) — DY (x4 |
Ryn(E) := I o Ry,,: DY (XI77]) - DY (X 1)
For E, F € D’(X), by Theorem 1.1(ii), we get
Ryn(E)o Hyp(F) 2 TEoRypoHypolp 2 IR oIp([0]&[-2]® - & [-2(n—1)))
= () @cExt"(E,F)(0)®[-2]&---®[-2(n—-1)]).
On the level of the Grothendieck group, this gives
Ryn(E)o Hyp(F) =n-x(E,F)-id: K (X¥) - K (x1), (6.4)
which fits nicely with (6.3).

Remark 6.1. Note that the assumption n > £ is necessary for (6.3) to hold, as, for n < ¢, the
composition g () o qo,—n(a) contributes non-trivially to the commutator [, (), g, (5)]. Hence,
from the standpoint of categorification, we would not necessarily expect the Nakajima opera-
tors qp, with n < £ to lift to P-functors on the level of derived categories.
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Another special case of (6.2) is the relation g1, () o gont1(8) = 0. However, by (4.17), for
general E, F € DY(X), the composition éln(E) o ﬁ07n+1(F) does not induce the zero morphism
on the level of the Grothendieck groups. Thus, it seems like the collection of the Hy,, does not
give rise to a categorified action of the Heisenberg algebra.

Categorified Heisenberg actions on the Hilbert schemes were constructed in [CL12] and
[Krul8]. However, these categorical actions are constructed by lifting generators of the Heisen-
berg algebra different from the ¢, (). Hence, it would still be of interest to somehow adapt the
functors Hy,, such that they provide a categorification of the Heisenberg action.

7. Further remarks

7.1 Induced autoequivalences on the Hilbert schemes

Let X be a smooth quasi-projective surface. In this section, we study, for n > max{1,¢}, the

P-twists Pp,, € Aut (D%n (X")) =~ Aut (Db (X[”})) associated with the P-functors Hy,. Note

that Hopo and Hy g are P!-functors, which means that they are spherical. Hence, there are also

the associated spherical twist Ty, , and T4, ,, which satisfy TI%,O’2 = Py, , and TIQJM = Phy,-
All objects in the image of Hy,, are supported on

vhn = U Ar={(z1,...,zn40) | at least n of the z; coincide} C Xt

IC{1,....04n}
[I|=n

This follows from the fact that V%" is the image of supp Hen = UT1,, under the projection
X x X¢x X7 or, alternatively, from Proposition 3.3. Inside V%", there is the dense open subset

Vé’n = {ZL‘ e X | n(x) =n-yo+y1+- - +ye with pairwise distinct y; € X} c vhn c xntt
where 7: X" — X+ denotes the quotient morphism. For z € X", we denote the orbit of z
under the &, s-action on X" by orb(z) € X" We set C(z) := Oorb(z) ® Gnte € DZ’Gm (X™).
PROPOSITION 7.1. Let X be a smooth quasi-projective surface. For n > max{/¢, 1}, we have

C(z)[-2(n—1)] forze V5™,

Py, (C(z)) =< -
e, (C()) {(C(x) for x € X\ vin

C(x)[-1] forze A,
C(x) forx € X2\ A,

(x)[~1] forx e V12,

_ C
Tr, ,(C(x)) =< ~
.2 (C@)) {(C(a:) for z € X\ Vi,

Thy»(C(x)) = {

Proof. Every x € Vé’" has a point of the form y = (y,...,y,y1,...,y¢) in its &, g-orbit. Then,
by Proposition 3.3, we have Hym—o(C(y,y1,...,y0)) = C(y) = C(z), hence C(x) € im Hy,.
Furthermore, by (3.7), we have Ry,,—¢(C(z)) = 0 for z € X"\ V4", The assertion for the
P-twist follows by (2.11), and the assertion for the spherical twists follows by (2.10). O

7.2 Braid relation on (K3)[2!

As mentioned in the introduction, the first example of a P-functor was given by Addington
[Add16]. For X a K3 surface, it is the Fourier-Mukai transform F,, = FMz_ : D*(X) — D (X))
along the ideal sheaf of the universal subscheme =, C X x X™. For n = 2, we can describe the
relation to the Nakajima-type P-functor Hpo. We set F' := Fy and H := <I>2_1 o Hpp, both of
which are P'-functors, hence spherical, from D°(X) to D?(X?]).
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ProrosiTION 7.2. We have the isomorphism Lo F' = idDb(X), where L is the left adjoint of H.

Proof. We consider the commutative diagram with cartesian squares

N /
[N

x2 x(2)

pry X

[1]

Here, 7 and g are Gy-quotients, § and & are the diagonal embeddings, and p and p are the blow-
ups along the respective diagonals. Furthermore, 7 and j are the embeddings of the exceptional
divisor of the blow-ups, and v is the P!-bundle morphism of the exceptional divisor to the
centre X of the blow-ups. We have an exact triangle of Fourier-Mukai transforms F — F/ — F”
with

F' = FMOXXX[2] = OX[Q] ® H*(Xv—)v F' = FMOE = g« op* ° prf .
By [Krul5, Proposition 4.2], we have H 24, (v*(_) ® O,(—1)). Hence,

L2un(*()®0,(1) 2w (i*(L) ® O,(-1))[1].
As H*(E,0,(—-1)) = 0, we get L(Oy21) = 0, hence L o F’ = (. Furthermore, we compute

Lo F" 2 v, (i"qp* pri. () @ Op(=1))[1] 2 v (57¢"qup” pri. (L) ® Ou(=1))[1]. (7.1)
As the morphism wy, is a two-to-one cover branched over F, we have an exact triangle of Fourier—
Mukai transforms 7(_)* ® O=(—FE) — ¢*q« — idp(z), where 7 € &2 is the transposition; see
[Add16, Section 2.2(6)]. Combining this with (7.1) gives the exact triangle

v (55 (7 prin (L) ® O=(—E)) @ Oy (—1))[1] = Lo F" — v, (jp" pri. () ® O, (-1))[1] . (7.2)

We have j* o p* = v* 0 §* and §* o prj = id" = id. Hence, the rightmost term of the triangle
(7.2) is given by v (v *( )O,(—1))[1], which vanishes by the projection formula as v,O,(—1) = 0.
Similarly, since j* o 7% = j* and j*O=z(—FE) = O,(1), the leftmost term of (7.2) is given by
[1] o vy ov* = [1]. In summary, we have Lo F' = (0 and Lo F” = [1], and the assertion follows by
the exact triangle Lo F — Lo F’' — Lo F". O

The proposition implies that F®o H 2 id. Hence, by Proposition 2.3, we get the braid relation
TH OTF OTH = TF OTH OTF in Aut (Db (X[2}))

7.3 The case n = 1: Induction as a P-functor
In Section 3, we defined the functors Hp,: Db (X X XK) — DP (X"”) for n > 2. Regar-

ding (3.5), it is a natural extension to the case n =1 to set
HYy = Ind2™": DY, (X x X%) — Db, (X1,

While the functors Hy, are P"~!functors for n > 2 (in the surface case), the functor H21 is
a P’~functor (for dim X arbitrary) which can be seen as a special case of the following observation.

Let G be a finite group, and let H < G be a subgroup such that there is an element g € G of
order n = [G : H] such that 1,g,...,¢" ! forms a system of representatives of the right cosets.
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Let G act on a variety M. Recall that, in this case, the induction functor is given by
n—1
Ind := Indf;: DY (M) — D (M), Ind(A) = @Hg"4 (7.3)
k=0

with the linearisation of Ind(A) given by permutation of the summands.
LEMMA 7.3. The induction functor Ind is a P"~!-functor with P-cotwist g*.

Proof. The left and right adjoint of Ind is the restriction functor Res. By (7.3), we indeed
have Resolnd = id@®g*--- @ ¢ D*, which is condition (1) of a P" !-functor. Condition (3)
of a P"~!functor amounts to the fact that Res = ¢g("~1*Res. For (B, \) € D%(M), the counit
map ¢: IndoRes(B) = @Z;é ¢"* B — B is given by the components A;klz ¢"* B — B; compare
with [Elal4, Section 3]. Using this, one can compute that the monad structure has the desired
form. O

However, the induced twists are not very interesting.
LEMMA 7.4. For n =[G : H] = 2, we have Tjng = Mq[1].

Proof. Let (B,\) € D%(M), and consider the G-equivariant morphism ¢: B ® a — Ind Res(B)
with components id: B — B and —\,: B — g*B. This gives the exact triangle

B®a % IndRes(B) 5 B.
Since T is defined by the exact triangle Ind Res(B) < B — T, it follows that T = Mg[1]. [

By similar computations, one can show that, for n = [G : H] arbitrary, the associated P-twist
is given by Ping = [2].

7.4 Semi-orthogonal decomposition and induced autoequivalences in the curve case
Let X = C be a smooth curve. By Theorem 1.1(i), there is the semi-orthogonal decomposition

Dlém (Cm> = (.A(),m, A17m_1, . ,Ar,m_r, B> y A&m,e = Hg,m,g(DbGZ (C X CE)) , = \\TJ .
We can identify one part of the category B with the bounded derived category DP (C(m)) of
the symmetric product as follows. Since C is a smooth curve, the symmetric product C™ is
smooth. Hence, the pull-back along 7: C™ — C(™) preserves boundedness of complexes, which
means that we have a well-defined functor 7*otriv: DP (C(m)) — Dme(C'm). Since (m,Ocm)®m =
Ocmy, it follows by the projection formula that (_)Smm* triv 2 id, which means that 7* triv
is fully faithful. For I C [m] with |I| > 2, we have (_)®7 o My, 0d% o Resor* o triv = 0. Hence,
Ly e triv = 0 for all £ > 2, which shows that 7* triv(D® (C(m))) C B. A similar but, for m > 4,
finer, semi-orthogonal decomposition of Db@m(Cm) is constructed in [PVAB19] by very different
methods.

It turns out that, also in the curve case, the functors Hy,,, for n > max{¢,1} induce autoe-
quivalences of D%nH (C”H), similar to the P-twists from the surface case. To see this, let 2,1, C

Ante | DbG

Syt be the alternating group. The functor Res := Resg"™" : e (X)) — Dgln+€ (X7 s
spherical with cotwist My and twist 7%[1], where 7 is any element of &, \ 2,,4¢. This follows

by Lemmas 7.3 and 7.4 together with the fact that a functor is spherical if and only if its right
adjoint is spherical with the roles of the twist and cotwists exchanged; see [AL17, Theorem 1.1].
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The composition ResoHy,, with the fully faithful functor Hy, is again spherical. This follows
by [HS16, Theorem 4.14], whose assumptions are fulfilled due to Proposition 3.2(ii). We have
7" o ResoHy,, = ResoH;,. Thus, the spherical twist Ty, := TReson,, € Aut (Dgln+€ (X"M))
is 7-invariant, which means that 7* o Tg,n & fgm o 7%, by (2.12). Hence, f&n descends to an
autoequivalence 17 ,, € Aut (Db@nM (X™)); see [Plo07, Theorem 6] or [KS15a, Theorem 1.1].

One can check that the behaviour of the autoequivalences Ty, is similar to that of the Py, ,
as described in Proposition 7.1. Namely,

C(z)[—(n—2)] forzeVi",

_ 7.4
C(x) for x € Ctm\ Vh", (7.4)

T&n(@(x)) = {

7.5 Restriction to generalised Kummer varieties
In this subsection, let X = A be an abelian variety. For ¢,n € N, we consider the morphisms

n+/
£
En+g:An+ —>A, (al,...,an+€)'_>zai,
1=1

l
Tne: Ax A" = A, (b,al,...,ag)r—>n-b+2ai.
=1

Let F := (A X AK) x 4 A"t be the fibre product with respect to these two summation morphisms.
Note that, for every i € [0,¢] and every (I,J,u) € Indexy, (i), we have I'7 5, C F. It follows
that Hyp,: Dbez (A X AK) — Dl’GnH (A”J“f) is a relative Fourier—-Mukai transform over A. This

means that its kernel is of the form #,, = L*/f:[g,n for an object 7:15,” € DI’GZX@HR(F), where
11 F e Ax A" x A"t is the embedding of the fibre product. Now, let (A x AZ)O = E;%(O) and
ARt = 2;_51%(0), and consider the closed embedding i: (A x A%) x4 ARt s B We set

Hip =i Hon, Hen:=FMg, @ Dg, ((AxA")) = Dg,, (A7H).

6€+n

Using the calculus of relative Fourier-Mukai transforms and their restrictions (see, for example,
[LST13, Section 1]), it is not hard to deduce from Theorem 1.1 that, for n > max{¢, 1}, the
functor Hy,, is fully faithful if A is an elliptic curve and a P"~!-functor if A is an abelian
surface.

If A is an abelian surface, there is a variant of the Bridgeland—King—Reid-Haiman equivalence
as an equivalence D°(K,, 1 A) = Dme(AS”), where K,, 1A C A" is the generalised Kummer
variety; see [Nam02] or [Meal5]. Hence, we also get induced P-functors and autoequivalences on
the derived categories of the generalised Kummer varieties.

As shown in [Meal5], the Fourier-Mukai transform F,,: D°(A) — D®(K,,_1) along the ideal
sheaf of the universal family is again a P™~2 functor for m > 3. In analogy to Section 7.2, one
can show that the spherical twists T, T, , € Aut ( Db(KgA)) satisfy the braid relation.

7.6 Some conjectures

The twist autoequivalences induced by the functors ﬁg,n on the derived category DP (X [m}) of
the Hilbert scheme of points exist for every smooth quasi-projective surface X. In contrast, all of
the other autoequivalences on Hilbert schemes of points on surfaces constructed in the literature
[Plo07, Add16, PS14, Meals, Krul5, CLS14, KS15b] depend crucially on the type of surface
(often a K3) and properties of its derived category D?(X). Hence, it seems very difficult to make
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a reasonable general conjecture on the shape of the group Aut (Db (X [m])) for a surface X, let
alone prove it.

However, if the canonical bundle wx is ample or anti-ample, there are no non-standard
autoequivalences coming from the surface [BOO01], and we expect the following to hold.

CONJECTURE 7.5. Let X be a smooth projective surface with wx ample or anti-ample. Then for
m = 2,3, the group Aut (Db (X [m})) is generated by standard autoequivalences and the twists

along the functors Hy,,:

Aut (D (X)) = (Aut® (D (X)) Ty, ).

Ho,2
Aut (D (XB)) = (Aut*t (D (XB)) Py T )

The group of standard autoequivalences Aut™ (D*(Y)) = Z x (Aut(Y) x Pic(Y)), for Y a smooth
projective variety, is the group generated by degree shifts [k], pull-backs ¢* along automorphisms
¢ € Aut(Y), and tensor products (_) ® L by line bundles L € Pic(Y).

The reason why we restrict this conjecture to m = 2, 3 is the condition n > max{¢, 1} in Theo-
rem 1.1. It implies that, for fixed m, we have twist autoequivalences Pz € Aut (Db (X [m]))

only for i <r = [(m —1)/2]. For m > 4, we expect there to be further autoequivalences

Pr+1,m77"71a cee me3,3a Tm72,2 € Aut (Dbem (Xm)) = Aut (Db (X[m])) )

yet to be constructed, with similar properties to the ones of the twists along the Hy ,, as described
in Proposition 7.1. Namely, their values on skyscraper sheaves of orbits should be

C Lm—~l
Ppym—i(C(z)) = {C(x)[—z(m —£—1)] forzeV, 7

C(x) for x € XM\ VOt
T 2a(C()) = C(z)[-1] forz e V§ %,
men ) for z € X\ V22,

These missing autoequivalences could play an important role in a description of the behaviour of
the tensor product under the derived McKay correspondence; compare with [KPS18, Section 4.6].

The main evidence for the existence of these additional autoequivalences is that there is, in
fact, an autoequivalence that one can consider to be the desired 7T},,—2 2, namely the composition
Mg 0@, © Mp(p,, /2) o®-1 where D,, ¢ X" denotes the boundary divisor. Indeed, for z €

m

Vi ??, we have @' (C(2)) 2 O)-1(n(ay(—1) and @, (C(z) @ a) = Op-1(n(2))(—2)[1]. This is
shown in the case m = 2 in [Krul5, Proposition 4.2], and the proof for general m is the same.

Furthermore, we have O(D/2)|,-1(z(2)) = Op-1(x(2))(—1). We get

Mo, /2) Pt (C(2)) = Op-1(r(2))(—2) = @7, Mg (C())[-1],
hence Mg @, Mo(p,, /2) ©5t (C(2)) = C(x)[—1], as desired.
Also for smooth curves, there are autoequivalences of Dlém(Cm), constructed in Section 7.4,

that act as ‘characteristic functors’ of the strata Vé’n; see (7.4). Thus, one might ask whether
such autoequivalences exist in Dme (X m) for X a smooth variety of arbitrary dimension. Note,
however, that for dim X > 3, the functors Hy,, are far from being fully faithful or P-functors; com-
pare with Remark 4.9. Hence, these autoequivalences would have to be constructed by different
methods.

713



A. Kruc

ACKNOWLEDGEMENTS

The author thanks Nicolas Addington, Will Donovan, Daniel Huybrechts, Ciaran Meachan, David
Ploog, and Pawel Sosna for helpful comments and discussions. He also thanks the referee for
helpful comments, suggestions, and corrections.

REFERENCES

AA13 N. Addington and P.S. Aspinwall, Categories of massless D-branes and del Pezzo surfaces,
J. High Energy Phys. 2013 (2013), no. 7, 176; doi:10.1007/JHEP07 (2013) 176.

AC12 D. Arinkin and A. Caldararu, When is the self-intersection of a subvariety a fibration?, Adv.
Math. 231 (2012), no. 2, 815-842; doi:10.1016/j.aim.2012.05.014.

Add16  N. Addington, New derived symmetries of some hyperkdhler varieties, Algebr. Geom. 3 (2016),
no. 2, 223-260; doi:10.14231/AG-2016-011.

AL12 R. Anno and T. Logvinenko, On adjunctions for Fourier—Mukai transforms, Adv. Math. 231
(2012), no. 3-4, 2069-2115; doi:10.1016/j.aim.2012.06.007.

AL17 , Spherical DG-functors, J. Eur. Math. Soc. 19 (2017), no. 9, 2577-2656; doi:10.4171/
JEMS/724.

BKRO1 T. Bridgeland, A. King, and M. Reid, The McKay correspondence as an equivalence
of derived categories, J. Amer. Math. Soc. 14 (2001), no. 3, 535-554; doi:10.1090/
S0894-0347-01-00368-X.

BL94 J. Bernstein and V. Lunts, Equivariant sheaves and functors, Lecture Notes in Math., vol. 1578
(Springer-Verlag, Berlin, 1994); doi:10.1007/BFb0073549.

BO01 A. Bondal and D. Orlov, Reconstruction of a variety from the derived category and groups of
autoequivalences, Compos. Math. 125 (2001), no. 3, 327-344; doi:10.1023/A:1002470302976.

CL12 S. Cautis and A. Licata, Heisenberg categorification and Hilbert schemes, Duke Math. J. 161
(2012), no. 13, 2469-2547; doi:10.1215/00127094-1812726.

CLS14  S. Cautis, A. Licata, and J. Sussan, Braid group actions via categorified Heisenberg complezes,
Compos. Math. 150 (2014), no. 1, 105-142; doi:10.1112/S0010437X13007367.

CSo7 A. Canonaco and P. Stellari, Twisted Fourier—Mukai functors, Adv. Math. 212 (2007), no. 2,
484-503; doi:10.1016/j.2im.2006.10.010.

Dan01  G. Danila, Sur la cohomologie d’un fibré tautologique sur le schéma de Hilbert d’une surface,
J. Algebraic Geom. 10 (2001), no. 2, 247-280.

Elal4 A. Elagin, On equivariant triangulated categories, 2014, arXiv:1403.7027.

FH91 W. Fulton and J. Harris, Representation theory. A first course, Grad. Texts in Math., vol. 129
(Springer-Verlag, New York, 1991); doi:10.1007/978-1-4612-0979-9.

FT11 B. L. Feigin and A.I. Tsymbaliuk, Equivariant K -theory of Hilbert schemes via shuffle algebra,
Kyoto J. Math. 51 (2011), no. 4, 831-854; doi:10.1215/21562261-1424875.

Gril4 J. Grivaux, Formality of derived intersections, Doc. Math. 19 (2014), 1003-1016; http://emis.
ams.org/journals/DMJDMV/vol-19/33.html.

Gro96 I. Grojnowski, Instantons and affine algebras. I. The Hilbert scheme and vertex operators, Math.
Res. Lett. 3 (1996), no. 2, 275-291; doi:10.4310/MRL.1996.v3.n2.al2.

HaiO1 M. Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math.
Soc. 14 (2001), no. 4, 941-1006; doi:10.1090/50894-0347-01-00373-3.

Har66 R. Hartshorne, Residues and duality, Lecture Notes in Math., vol. 20 (Springer-Verlag, Berlin —
New York, 1966); doi:10.1007/BFb0080482.

HS16 D. Halpern-Leistner and 1. Shipman, Autoequivalences of derived categories via geometric in-

variant theory, Adv. Math. 303 (2016), 1264-1299; doi:10.1016/j.2aim.2016.06.017.

714


https://doi.org/10.1007/JHEP07(2013)176
https://doi.org/10.1016/j.aim.2012.05.014
https://doi.org/10.14231/AG-2016-011
https://doi.org/10.1016/j.aim.2012.06.007
https://doi.org/10.4171/JEMS/724
https://doi.org/10.4171/JEMS/724
https://doi.org/10.1090/S0894-0347-01-00368-X
https://doi.org/10.1090/S0894-0347-01-00368-X
https://doi.org/10.1007/BFb0073549
https://doi.org/10.1023/A:1002470302976
https://doi.org/10.1215/00127094-1812726
https://doi.org/10.1112/S0010437X13007367
https://doi.org/10.1016/j.aim.2006.10.010
https://arxiv.org/abs/1403.7027
https://doi.org/10.1007/978-1-4612-0979-9
https://doi.org/10.1215/21562261-1424875
http://emis.ams.org/journals/DMJDMV/vol-19/33.html
http://emis.ams.org/journals/DMJDMV/vol-19/33.html
https://doi.org/10.4310/MRL.1996.v3.n2.a12
https://doi.org/10.1090/S0894-0347-01-00373-3
https://doi.org/10.1007/BFb0080482
https://doi.org/10.1016/j.aim.2016.06.017

Huy06

KPS18

Krulb

Krul8

KS15a

KS15b

Kuz06

LHO09

LST13

Mealb

Nak97

Nam02

Orl0o3

Plo07

PS14

PVdB19

Sca09

STO01

SV13

P-FUNCTOR VERSIONS OF THE NAKAJIMA OPERATORS

D. Huybrechts, Fourier—Mukai transforms in algebraic geometry, Oxford Math. Monogr.
(The Clarendon Press, Oxford Univ. Press, Oxford, 2006); doi:10.1093/acprof:oso/
9780199296866 .001.0001.

A. Krug, D. Ploog, and P. Sosna, Derived categories of resolutions of cyclic quotient singularities,
Q. J. Math. 69 (2018), no. 2, 509-548; doi:10.1093/gmath/hax048.

A. Krug, On derived autoequivalences of Hilbert schemes and generalized Kummer varieties, Int.
Math. Res. Not. 2015 (2015), no. 20, 10680-10701; doi:10.1093/imrn/rnv005.

, Symmetric quotient stacks and Heisenberg actions, Math. Z. 288 (2018), no. 1-2, 11-22;
doi:10.1007/s00209-017-1874-3.

A. Krug and P. Sosna, Fquivalences of equivariant derived categories, J. Lond. Math. Soc. 92
(2015), no. 1, 19-40; doi:10.1112/j1ms/jdv014.

, On the derived category of the Hilbert scheme of points on an Enriques surface, Selecta
Math. (N.S.) 21 (2015), no. 4, 1339-1360; doi:10.1007/s00029-015-0178x.

A. G. Kuznetsov, Hyperplane sections and derived categories, Izv. Math. 70 (2006), no. 3, 447
547; doi:10.1070/IM2006v070n03ABEH002318.

J. Lipman and M. Hashimoto, Foundations of Grothendieck duality for diagrams of
schemes, Lecture Notes in Math., vol. 1960 (Springer-Verlag, Berlin, 2009); doi:10.1007/
978-3-540-85420-3.

A.C. Lépez Martin, D. Sanchez Gémez, and C. Tejero Prieto, Relative Fourier—Mukai trans-
forms for Weierstrafifibrations, abelian schemes and Fano fibrations, Math. Proc. Cambridge
Philos. Soc. 155 (2013), no. 1, 129-153; doi:10.1017/S0305004113000029.

C. Meachan, Derived autoequivalences of generalised Kummer varieties, Math. Res. Lett. 22
(2015), no. 4, 1193-1221; doi:10.4310/MRL.2015.v22.n4.a12.

H. Nakajima, Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. of
Math. 145 (1997), no. 2, 379-388; doi:10.2307/2951818.

Y. Namikawa, Counter-example to global Torelli problem for irreducible symplectic manifolds,
Math. Ann. 324 (2002), no. 4, 841-845; doi:10.1007/s00208-002-0344~-2.

D.O. Orlov, Derived categories of coherent sheaves and equivalences between them, Russian
Math. Surveys 58 (2003), no. 3, 511-591; doi:10.1070/RM2003v058n03ABEH000629.

D. Ploog, Equivariant autoequivalences for finite group actions, Adv. Math. 216 (2007), no. 1,
62-74; doi:10.1016/j.aim.2007.05.002.

D. Ploog and P. Sosna, On autoequivalences of some Calabi—Yau and hyperkdhler varieties, Int.
Math. Res. Not. 2014 (2014), no. 22, 6094-6110; doi:10.1093/imrn/rnt157.

A. Polishchuk and M. Van den Bergh, Semiorthogonal decompositions of the categories of equiv-
ariant coherent sheaves for some reflection groups, J. Eur. Math. Soc., published online on 7
May 2019, doi:10.4171/JEMS/890, to appear in print.

L. Scala, Cohomology of the Hilbert scheme of points on a surface with values in represen-
tations of tautological bundles, Duke Math. J. 150 (2009), no. 2, 211-267; doi:10.1215/
00127094-2009-050.

P. Seidel and R. Thomas, Braid group actions on derived categories of coherent sheaves, Duke
Math. J. 108 (2001), no. 1, 37-108; doi:10.1215/S0012-7094-01-10812-0.

O. Schiffmann and E. Vasserot, The elliptic Hall algebra and the K -theory of the Hilbert scheme
of A2, Duke Math. J. 162 (2013), no. 2, 279-366; doi:10.1215/00127094-1961849.

Andreas Krug andkrug@outlook.de
Mathematics Institute, University of Marburg, Hans-Meerwein-Strafle 6, 35032 Marburg, Ger-

many

715


https://doi.org/10.1093/acprof:oso/9780199296866.001.0001
https://doi.org/10.1093/acprof:oso/9780199296866.001.0001
https://doi.org/10.1093/qmath/hax048
https://doi.org/10.1093/imrn/rnv005
https://doi.org/10.1007/s00209-017-1874-3
https://doi.org/10.1112/jlms/jdv014
https://doi.org/10.1007/s00029-015-0178-x
https://doi.org/10.1070/IM2006v070n03ABEH002318
https://doi.org/10.1007/978-3-540-85420-3
https://doi.org/10.1007/978-3-540-85420-3
https://doi.org/10.1017/S0305004113000029
https://doi.org/10.4310/MRL.2015.v22.n4.a12
https://doi.org/10.2307/2951818
https://doi.org/10.1007/s00208-002-0344-2
https://doi.org/10.1070/RM2003v058n03ABEH000629
https://doi.org/10.1016/j.aim.2007.05.002
https://doi.org/10.1093/imrn/rnt157
https://doi.org/10.4171/JEMS/890
https://doi.org/10.1215/00127094-2009-050
https://doi.org/10.1215/00127094-2009-050
https://doi.org/10.1215/S0012-7094-01-10812-0
https://doi.org/10.1215/00127094-1961849
mailto:andkrug@outlook.de

	Introduction
	Main results
	Structure and content of the text

	Preliminaries
	Equivariant Fourier–Mukai transforms
	Invariants of inductions
	Some standard identities for equivariant functors
	P-functors
	Spherical and P-twists
	Braid relations between twists along spherical functors

	The functors H_{l,n}: Definition and first properties
	Notation and conventions
	The Fourier–Mukai kernel
	Adjoint kernels
	Description of the functor

	Techniques and examples
	Derived intersections
	Partial diagonals and the standard representation
	The case l=0
	The approach for general l
	The case l=1
	Orthogonality in the curve case
	Non-orthogonality in the surface case
	The case l=2,n=2

	Proof of the main results
	Computation of the direct summands
	The induced maps
	Computation of the R^i [star] H^j 
	Spectral sequences
	Cech-type exact complex for the sign representation
	The curve case: Induced maps
	The curve case: Full faithfulness
	The curve case: Orthogonality
	The surface case: Induced maps
	The surface case: The cohomology of R [star] H
	The surface case: Splitting and monad structure

	Similarities to the Nakajima operators
	Support of the image under the McKay correspondence
	The functors H_{l,n} as a partial Heisenberg categorification

	Further remarks
	Induced autoequivalences on the Hilbert schemes
	Braid relation on (K3)^[2]
	The case n=1: Induction as a P-functor
	Semi-orthogonal decomposition and induced autoequivalences in the curve case
	Restriction to generalised Kummer varieties
	Some conjectures

	References

