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P-functor versions of the Nakajima operators

Andreas Krug

Abstract

For a smooth quasi-projective surface X, we construct a series of P-functors between
derived categories of Hilbert schemes of points on X using the derived McKay corre-
spondence. They can be considered as analogues of the Nakajima operators. We also
study the induced autoequivalences and, in particular, obtain a universal braid relation
in the groups of derived autoequivalences of Hilbert squares of K3 surfaces. If we re-
place the surface X with a smooth curve, our functors become fully faithful and induce
a semi-orthogonal decomposition of the derived category of the symmetric quotient
stack of the curve.

1. Introduction

A central result in the theory of Hilbert schemes of points on surfaces is the identification of
their cohomology with the Fock space representation of the Heisenberg algebra by means of the
Nakajima operators q`,n : H∗

(
X ×X [`],Q

)
→ H∗

(
X [n+`],Q

)
; see [Nak97] and [Gro96]. They are

induced by the correspondences

X ×X [`] ×X [n+`] ⊃ Z`,n := {(x, [ξ], [ξ′]) | ξ ⊂ ξ′, ξ and ξ′ only differ in x} . (1.1)

Recently, there has been successful effort towards lifting this action from cohomology to other
invariants of the Hilbert schemes, in particular to K-theory and the derived category; see [FT11,
SV13, CL12, Kru18].

Also recently, autoequivalences of the (bounded) derived categories Db
(
X [n]

)
of Hilbert

schemes were intensively studied; see [Plo07, Add16, PS14, Mea15, Kru15, CLS14, KS15b]. In
particular, the notion of Pn-functors was introduced in [Add16]. These are Fourier–Mukai trans-
forms F : Db(M)→ Db(N) between derived categories of varieties (or, more generally, orbifolds)
having a right adjoint R : Db(N)→ Db(M) and the main property that

R ◦ F ∼= id⊕D ⊕D2 ⊕ · · · ⊕Dn

for some autoequivalence D : Db(M) → Db(M), called the P-cotwist of F . Every Pn-functor F
induces an autoequivalence of the target category Db(N), called the P-twist. In [Add16], the main
example of a P-functor is the Fourier–Mukai transform Fn = FMIΞ : Db(X) → Db

(
X [n]

)
along

the ideal sheaf of the universal family Ξ ⊂ X ×X [n] for X a K3 surface and n > 2.
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P-functor versions of the Nakajima operators

An important tool for the investigation of derived categories of Hilbert schemes of points
on surfaces is the derived McKay correspondence of Bridgeland–King–Reid [BKR01] and Hai-
man [Hai01]. It is given by an equivalence of triangulated categories Db

(
X [n]

) ∼= Db
Sn(Xn),

where Db
Sn(Xn) denotes the derived category of Sn-equivariant coherent sheaves on the pro-

duct Xn or, equivalently, of coherent sheaves on the quotient stack [Xn/Sn].

In [Kru15], it was shown that, for every smooth surface X, there is a natural Pn−1-functor
H0,n : Db(X) → Db

Sn(Xn), namely the equivariant push-forward along the embedding of the
small diagonal. Under the derived McKay correspondence, H0,n corresponds to a Pn−1-functor
Db(X) → Db

(
X [n]

)
whose kernel is supported on Z0,n =

{
(x, [ξ′]) | supp(ξ′) = {x}

}
; compare

with (1.1). Thus, one can regard H0,n as a lift of the Nakajima operator q0,n : H∗(X,Q) →
H∗
(
X [n],Q

)
.

1.1 Main results

The question is whether the other Nakajima operators q`,n : H∗
(
X × X [`],Q

)
→ H∗

(
X [n],Q

)
,

for general `, have analogues in the form of Pn−1-functors

H`,n : Db
S`

(
X ×X`

) ∼= Db
(
X ×X [`]

)
→ Db

(
X [n+`]

) ∼= Db
Sn+`

(
Xn+`

)
.

To get an idea of what these functors should look like, consider the Ith partial diagonal

∆I := {(x1, . . . , xn+`) | xi = xj for i, j ∈ I} ⊂ Xn+` for I ⊂ {1, . . . , n+ `} with |I| = n ,

and note that ∆I is isomorphic to X ×X`, the variety which defines the source category of our
desired functor H`,n. In view of the shape of the known P-functors H0,n and the corresponden-
ces Z`,n, it makes sense to expect the functors H`,n : Db

S`

(
X×X`

)
→ Db

Sn+`

(
Xn+`

)
to have the

property that the objects in its image are supported on the union of partial diagonals

∇`,n :=
⋃

I⊂{1,...,`+n}, |I|=n

∆I =
{

(x1, . . . , xn+`) | at least n of the xi coincide
}
⊂ Xn+` .

In this paper, we construct such P-functors H`,n for n > `. The construction for ` > 0, how-
ever, is considerably more complicated than the already known construction of H0,n. In par-
ticular, the (equivariant) Fourier–Mukai kernel of the functor H`,n is, for higher `, not concen-
trated in degree zero anymore, which means that it is a proper complex. The detailed definition
and description of the functors H`,n and their right adjoints R`,n is given in Sections 3.2, 3.3,
and 3.4.

As an interesting by-product, our construction gives fully faithful functors if we replace the
surface X with a curve. Note, however, that in the case of a curve, there is no McKay correspon-
dence, so we only get a statement about the derived categories of the symmetric quotient stacks,
not of the Hilbert schemes of points. See [PVdB19] for related results as part of a more general
conjecture concerning semi-orthogonal decompositions on quotient stacks.

Theorem 1.1. There is a family of functors H`,n : Db
S`

(
X × X`

)
→ Db

Sn+`

(
Xn+`

)
, for every

smooth variety X and every n > max{`, 1}, such that every object in the image of H`,n is
supported on ∇`,n, with the following further properties:

(i) Let X = C be a smooth curve.

(a) We have R`,n ◦H`,n
∼= id, which means that H`,n is fully faithful.

(b) Let `′, n′ be positive integers with n′ + `′ = n+ ` and `′ > `. Then R`′,n′ ◦H`,n = 0.
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In summary, there is a semi-orthogonal decomposition

Db
Sm(Cm) = 〈A0,m,A1,m−1, . . . ,Ar,m−r,B〉 ,

where A`,m−` := H`,m−`
(

Db
S`

(
C × C`

)) ∼= Db
S`

(
C × C`

)
and r = b(m− 1)/2c.

(ii) Let X be a smooth surface. Then H`,n is a Pn−1-functor with P-cotwist S̄−1
X , using the

notation S̄X := ( )⊗ (ωX �OX`)[2]. In particular,

R`,n ◦H`,n
∼= id⊕S̄−1

X ⊕ · · · ⊕ S̄
−(n−1)
X .

We show that in both cases, that of surfaces and that of curves, there are induced autoequiv-
alences of Db

Sn+`

(
Xn+`

)
which can be regarded as ‘characteristic’ or ‘indicator functors’ of the

strata ∇`,n. More precisely, the autoequivalence induced by H`,n acts on skyscraper sheaves of
generic Sn-orbits of ∇n,` as degree shift by a fixed non-zero number (2− n = 1− codim∇n,` in
the curve case and 2− 2n = − codim∇n,` in the surface case) and acts as the identity on objects
of Db

Sn+`

(
Xn+`

)
whose support is contained in the complement of ∇`,n; see Proposition 7.1.

1.2 Structure and content of the text

In Section 2, we collect basic notions and results concerning equivariant Fourier–Mukai trans-
forms, spherical functors, and P-functors.

In Section 3, we introduce the functors H`,n : Db
S`

(
X×X`

)
→ Db

Sn+`

(
Xn+`

)
as the Fourier–

Mukai transforms along certain equivariant complexes H`,n ∈ Db
S`×Sn+`

(
X × X` × Xn+`

)
. In

Proposition 3.2, we describe the relation between the left and the right adjoint of H`,n which
already confirms that one of the defining properties of a P-functor holds for H`,n.

The main part of the proof of Theorem 1.1 consists of the computation of the composition
R`,n ◦H`,n. For this purpose, in Sections 4.1 and 4.2, we collect some results on the compositions
of equivariant pull-backs and push-forward. In more fancy words, Theorem 1.1 is a statement
about the equivariant derived intersection theory of cartesian products, and Sections 4.1 and 4.2
treat the basics of that intersection theory.

The calculus of (equivariant) Fourier–Mukai transforms allows us to go back and forth be-
tween compositions of Fourier–Mukai transforms and the convolution products of their kernels.
Using the composition of functors makes things a bit easier combinatorially, compared to the
convolution product approach. The reason is that the kernels H`,n carry a linearisation by the
group S` × S`+n, while objects in the image of the functor H`,n are only S`+n-linearised. On
the other hand, it is easier to trace the maps induced by the differentials of the complex H`,n
on the level of the convolution products than on the level of composition of functors. This is the
reason why we stay on the level of the kernels and avoid using the functors throughout Section 5,
where Theorem 1.1 is proved. However, before that, we carry out computations for small values
of ` on the level of functors in Sections 4.3–4.8. The purpose of Sections 4.3–4.8 is threefold:
They are supposed to prepare the reader for the combinatorially more involved computations of
Section 5 for general `. They show that the assumption n > max{`, 1} is really necessary for our
functors H`,n to fulfil the properties described in Theorem 1.1 (see Section 4.8). Finally, they
show that the H`,n only give a partial categorification of Nakajima’s and Grojnowski’s Heisenberg
action; see Sections 4.7 and 6.2.

Let us sketch the structure of the proof of Theorem 1.1 as carried out in Section 5. First,
for X smooth of arbitrary dimension, we compute, in Sections 5.1–5.3, the convolution products
Ri`,n ?R

j
`,n, where Ri`,n is the right adjoint kernel of Hi`,n, the degree i term of the complex H`,n.
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There are spectral sequences relating the convolution products Ri`,n ? H
j
`,n to R`,n ? H`,n, the

convolution product which essentially encodes the statement of Theorem 1.1. We carry out the
computation of R`,n?H`,n first, in Sections 5.6 and 5.7, in the curve case and then, in Sections 5.9
and 5.10, in the surface case. This completes the proof of part (i)(a) of Theorem 1.1, and for
part (ii) it is only left to prove that R`,n◦H`,n has the correct monad structure in the surface case,
which is proved in Section 5.11. For the proof of Theorem 1.1(i)(b), we also need to compute,
in the curve case, the convolution product R`′,n′ ?R`,n for n′ + `′ = n + ` and `′ > `. Here, we
only provide the results of the key steps of the computation in Section 5.8. The details of the
computation of R`′,n′ ? R`,n are left to the reader, which is justified by the fact that they are
straightforward generalisations of the computations of the special case (`′, n′) = (`, n), as carried
out in detail in the earlier subsections.

In Section 6, we further study the similarities between our P-functors H`,n and the Nakajima
operators q`,n. Concretely, the support of the kernel H`,n coincides under the McKay correspon-
dence with Z`,n, the correspondence defining q`,n; see Section 6.1. Furthermore, the fact that
the H`,n are P-functors gives a categorical analogue of many, though not all, of the relations
between the generators of the Heisenberg algebra; see Section 6.2.

In Section 7.1, we study the twists induced by the P-functors H`,n in the surface case, making
the idea that they are ‘indicator autoequivalences’ for the strata ∇`,n ⊂ X`+n more precise.
In Section 7.2, we show that, in the case of a K3 surface, the twist along H0,2 satisfies, in
Aut

(
Db
(
X [2]

))
, a braid relation with the twist along the spherical functor that was constructed

in [Add16]. In Section 7.3, we show that the induction functor, which can be considered as
the extension of our series of functors H`,n to the case n = 1, is a P-functor too. Section 7.4
deals with the curve case. We identify a further piece of our semi-orthogonal decomposition
from Theorem 1.1(i) as Db

(
C(m)

)
, the derived category of the symmetric quotient variety, and

construct autoequivalences of Db
Sm(Cm) with properties similar to the P-twists from the surface

case. In Section 7.5, we point out that, for X an abelian surface, our functors H`,n also restrict to
P-functors to the derived categories of generalised Kummer varieties. In the final Section 7.6, we
make a conjecture about certain cases in which we expect the twists along the H`,n to generate
the full group of derived autoequivalences of the Hilbert schemes and give an idea of which kind
of autoequivalences might still wait to be constructed.

Convention. We will work over the complex numbers throughout, though many parts remain
true over more general ground fields.

2. Preliminaries

2.1 Equivariant Fourier–Mukai transforms

For further details on equivariant derived categories and Fourier–Mukai transforms, we refer to
[BKR01, Section 4] and [Plo07]. Let G be a finite group acting on a variety M . Then we denote
by Db

G(M) := Db(CohG(M)) the bounded derived category of the category CohG(M) of coherent
G-equivariant sheaves. Let U ⊂ G be a subgroup. Then there is the forgetful or restriction functor
ResUG : Db

G(M) → Db
U (M). It has the induction functor IndGU : Db

U (M) → Db
G(M) as a left and

right adjoint. For E ∈ Db
U (M), we have IndGU (E) = ⊕[g]∈U\G g

∗E with the G-linearisation given
as a combination of the U -linearisation of E and the permutation of the direct summands. In
the following, we will often simply write Res and Ind for these functors when the groups G and U
should be clear from the context. In the case that G acts trivially on M , there is also the functor
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triv : Db(M) → Db
G(M) which equips every object with the trivial G-linearisation. Its left and

right adjoint is given by the functor of invariants ( )G : Db
G(M)→ Db(M).

Let G′ be a second finite group acting on M ′. Then every object P ∈ Db
G×G′(M×M ′) induces

the equivariant Fourier–Mukai transform

FMP :=
[
prM ′∗

(
pr∗M ( )⊗ P)

]G×1
: Db

G(M)→ Db
G′(M

′) . (2.1)

For example, if M = M ′ and G acts trivially, the functor triv : Db(M)→ Db
G(M) is the Fourier–

Mukai transform along O∆ ∈ Db
1×G(M ×M) and ( )G : Db

G(M)→ Db(M) is the Fourier–Mukai

transform along O∆ ∈ Db
G×1(M ×M).

Let G′′ be a third finite group acting on M ′′, and let Q ∈ Db
G′×G′′(M

′ ×M ′′). Then we have
FMQ ◦FMP = FMQ?P , where Q ? P is the equivariant convolution product

Q ? P =
[
prM×M ′′∗

(
pr∗M ′×M ′′ Q⊗ pr∗M×M ′ P

)]1×G′×1 ∈ Db
G×G′′(M ×M ′′) . (2.2)

Remark 2.1. The functors triv and Res do not really change objects when applied to them but
only consider them canonically as equivariant objects with respect to a different group. Hence,
one can usually omit them from formulae without ambiguity, and we will do this occasionally in
order to keep formulae short. In fact, this is already the case in the definition of the equivariant
Fourier–Mukai transform. Namely, in (2.1), strictly speaking, the notation pr∗M stands, for the
composition

Db
G(M)

triv−−→ Db
G×G′(M)

pr∗M−−→ Db
G×G′(M ×M ′) .

Note, however, that one has to mind all the functors triv and Res when taking the adjoint of
a composition of functors, as their adjoints, the functor of invariants and the induction functor,
act non-trivially on objects. This becomes relevant in Section 3.4.

Remark 2.2. For L ∈ Db
G(M), the tensor product functor ( ) ⊗ L : Db

G(M) → Db
G(M) is given

by IndG×GG∆
δ∗L ∼= ⊕g∈G(1 × g)∗L, where δ = (1 × 1) : M → M ×M is the diagonal embedding.

This can be confirmed quite easily using the principle for the computation of invariants explained
in Section 2.2. In particular, the identity functor id : Db

G(M) → Db
G(M) is the Fourier–Mukai

transform along the kernel IndG×GG∆
O∆
∼= ⊕g∈GOΓg .

2.2 Invariants of inductions

For the computation of the invariants of equivariant objects, we will frequently use the following
principle; compare with [Dan01, Lemma 2.2] and [Sca09, Remark 2.4.2]. Let M be a variety with
an action of a finite group G. Let E = (E, λ) ∈ Db

G(M) be such that E = ⊕i∈IEi in Db(M) for
some finite index set I. Let us assume that there is an action of G on I such that λg(Ei) = g∗Eg(i)
for all i ∈ I. We say that the G-action on I is induced by the G-linearisation of E. We denote
Ei together with the Gi-linearisation (λg|Ei)g∈Gi by Ei ∈ Db

Gi
(M), where Gi = StabG(i). The

induced action of G on I is transitive if and only if E ∼= IndGGi Ei for any i ∈ I; see [BL94,
Section 8.2].

Let G act trivially on M , and assume that G acts transitively on I. Then, for every i ∈ I,
the projection E → Ei induces an isomorphism EG ∼= EGii . The inverse is s 7→ ⊕[g]∈Gi\G λg(s).

Now, let the action of G on I be not transitive, and let i1, . . . , ik be a system of representatives
of the G-orbits. Then E ∼= IndGGi1

Ei1 ⊕ · · · ⊕ IndGGik
Eik and

EG ∼= EGi1i1
⊕ · · · ⊕ EGiki1

. (2.3)
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2.3 Some standard identities for equivariant functors

In this subsection, we collect some isomorphisms of functors between equivariant derived cate-
gories for later use; see, in particular, the proof of Proposition 3.3.

Let G be a finite group acting on a smooth variety M , and let U 6 G be a subgroup. We
have

IndGU E ⊗ F ∼= IndGU
(
E ⊗ ResUG( )

)
. (2.4)

This can be seen as a stacky version of the projection formula, using the identification of Db
G(M)

with the derived category of coherent sheaves on the quotient stack [M/G], but it can also be
deduced quite directly from the definitions of the functors Res and Ind.

Let N be a second smooth variety on which G acts, and let f : M → N be a G-equivariant
proper morphism. Then

ResUG ◦f∗ ∼= f∗ ◦ ResUG , ResUG ◦f∗ ∼= f∗ ◦ ResUG ,
IndUG ◦f∗ ∼= f∗ ◦ IndUG , IndUG ◦f∗ ∼= f∗ ◦ IndUG . (2.5)

The isomorphisms involving the restriction functor are quite obvious. The isomorphisms involving
the induction functor follow from the ones involving the restriction functor by adjunction. If the
G-action on M and N is the trivial one, we also have

triv ◦f∗ ∼= f∗ ◦ triv , triv ◦f∗ ∼= f∗ ◦ triv , (2.6)

( )G ◦ f∗ ∼= f∗ ◦ ( )G , ( )G ◦ f∗ ∼= f∗ ◦ ( )G . (2.7)

Now, let H be another finite group, let H act trivially on M , and let V 6 H×G be a subgroup.
We identify H with the subgroup H × 1 6 H ×G and write πG : H ×G→ G for the projection
to the second factor. Then, for an object E ∈ Db

V (M), its invariants EH∩V carry a canonical
πG(V )-linearisation, which means that we have a functor ( )H∩V : Db

V (M)→ Db
πG(V )(M). There

is an isomorphism

( )H ◦ IndH×GV
∼= IndGπG(V ) ◦( )V ∩H (2.8)

of functors from Db
V (M) to Db

G(M). This follows from the principle described in Section 2.2.
Indeed, for E ∈ Db

V (M), we have IndH×GV (E) ∼= ⊕V \(H×G)σ
∗E with the H-linearisation of

IndH×GV (E) inducing the action h : V σ 7→ V σh−1 on the index set V \ (H × G). The stabiliser
of V under this action is V ∩H, and the fibres of the natural map V \ (H × G) → πG(V ) \ G,
V σ 7→ πG(V )πG(σ) are exactly the H-orbits. Hence, by (2.3), we get(

IndH×GV (E)
)V ∼= ( ⊕

V \(H×G)

σ∗E
)V ∼= ⊕

πG(V )\G

g∗
(
EH∩V

) ∼= IndGπG(V )E
V ∩H .

2.4 P-functors

Let G and H be finite groups acting on varieties M and N . Following [Add16], a Pn-functor
is an (equivariant) Fourier–Mukai transform F : Db

G(M) → Db
H(N) with right and left adjoints

FR, FL : Db
H(N)→ Db

G(M) such that the following hold:

(1) There is an autoequivalence D of Db
G(M), called the P-cotwist of F , such that

FR ◦ F ∼= id⊕D ⊕D2 ⊕ · · · ⊕Dn .
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(2) Let ε : F ◦ FR → id be the counit of the adjunction, and consider the map

D⊕D2⊕· · ·⊕Dn+1 ∼= D◦FR◦F ↪→ FR◦F ◦FR◦F FRεF−−−−→ FR◦F ∼= id⊕D⊕· · ·⊕Dn , (2.9)

where the two isomorphisms and the embedding are given by the isomorphism of condi-
tion (1). The components Di → Dj of (2.9) are isomorphisms for i = j and are zero for
i < j (there is no condition on the components Di → Dj with i > j).

(3) There is an isomorphism FR ∼= Dn ◦FL. If Db
G(M) and Db

H(N) have Serre functors, this is
equivalent to SN ◦ F ◦Dn ∼= F ◦ SM .

A P1-functor is the same as a split spherical functor. A general spherical functor is a Fourier–
Mukai transform S such that C := cone

(
id

η−→ SR ◦ S
)

is an autoequivalence and SR ∼= C ◦ SL.
Here, η is the unit of the adjunction. The cone is well defined as a Fourier–Mukai transform
since the natural transform η is induced by a morphism between the kernels; see [AL12]. This is
the reason why we restrict ourself in the definition of spherical and P-functors to Fourier–Mukai
transforms between derived categories of coherent sheaves. More generally, one can work with
dg-enhanced triangulated categories; see [AL17].

2.5 Spherical and P-twists

For S : Db
G(M) → Db

H(N) a spherical functor, the associated spherical twist is defined as the

cone TS := cone(S ◦ SR ε−→ id) of the counit. It is an autoequivalence of Db
H(N) satisfying

TS ◦ S ∼= S ◦ C[1] , TS(B) = B if SR(B) = 0 ; (2.10)

see [Add16, Section 2]. The construction of the P-twist PF ∈ Aut(Db
H(N)) associated with a

Pn-functor F : Db
G(M) → Db

H(N) is a bit more complicated. As we do not need the concrete
construction, we refer to [Add16, Section 4.3] for it. In analogy to (2.10), the twist PF satisfies

PF ◦ F ∼= F ◦Dn+1[2] , PF (B) = B if FR(B) = 0 . (2.11)

Given additional autoequivalences Ψ ∈ Aut(Db
G(M)) and Φ ∈ Aut(Db

H(N)), we have

TS◦ψ ∼= TS , PF◦Ψ ∼= PF , TΦ◦S ∼= Φ ◦ TS ◦ Φ−1 , PΦ◦F ∼= Φ ◦ PF ◦ Φ−1 ; (2.12)

see [AA13, Proposition 13] and [Kru15, Lemma 2.3]. In the case that F is a P1-functor, that is,
split spherical, the spherical and the P-twist are related by T 2

F
∼= PF .

2.6 Braid relations between twists along spherical functors

We say that two elements a and b of a group satisfy the braid relation if aba = bab. Two twists TE
and TF along spherical objects satisfy the braid relation if Hom∗(E,F ) = C[n] for some n ∈ Z;
see [ST01]. There is the following straightforward generalisation which gives a criterion for twists
along spherical functors to satisfy the braid relation; compare with [AL17, Theorem 1.2].

Proposition 2.3. Let F = FMF , H = FMH : Db(M) → Db(N) be two spherical functors such

that FR ◦H ∼= id and HomDb(M×N)(F ,H) = C. Let G = cone
(
F ψ−→ H

)
for 0 6= ψ ∈ Hom(F ,H),

and set G = FMG . Then G is also a spherical functor, and every pair of TF , TG, TH spans
〈TF , TG, TH〉 and satisfies the braid relation. In particular, TF ◦ TH ◦ TF ∼= TH ◦ TF ◦ TH .

Proof. Composing the triangle F ◦ FR → id → TF with H and using that FR ◦H ∼= id, we get
the triangle F → H → TF ◦H. The map F → H of this triangle is non-zero. Indeed, otherwise,
we would have TF ◦H = H⊕F [1], contradicting the fact that TF ◦H is again spherical. Because
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of Hom(F ,H) = C, it follows that G ∼= TF ◦H. This shows that G is spherical and, by (2.12),
there is the relation

TG ∼= TF ◦ TH ◦ T−1
F . (2.13)

The exact triangle T−1
H → id → H ◦ HL induces the exact triangle T−1

H F → F → H since
HL ◦ F ∼= id. The latter triangle shows that T−1

H F = G[−1] and, by (2.12),

TG ∼= T−1
H ◦ TF ◦ TH . (2.14)

The assertion follows from the equations (2.13) and (2.14).

If M and N are projective, the second assumption of the proposition, namely Hom(F ,H) = C,
follows already from the first assumption, namely FR ◦H ∼= id.

3. The functors H`,n: Definition and first properties

3.1 Notation and conventions

(1) For a complex E, write H i(E) for its ith cohomology, and set H ∗(E) := ⊕i∈Z H i(E)[−i].
(2) The alternating or sign representation an of the symmetric group Sn is the 1-dimensional

representation on which σ ∈ Sn acts by multiplication by sgn(σ). If Sn acts on a variety T , we
set Man := ( )⊗ a : Db

Sn(T ) → Db
Sn(T ). It is the autoequivalence which sends an object (E, λ)

to (E, λ̄), where the linearisation λ̄ is given by λ̄σ = sgn(σ) · λσ.

(3) For u 6 v positive integers, we use the notation [u, v] := {u, u + 1, . . . , v} ⊂ N and [v] :=
[1, v] = {1, . . . , v} ⊂ N.

(4) We set [0] := ∅.
(5) For A,B ⊂ N two finite subsets of the same cardinality |A| = |B|, we let e : A→ B denote

the unique strictly increasing bijection.

3.2 The Fourier–Mukai kernel

Let X be a smooth variety of arbitrary dimension d = dimX. In the following, we will construct
the functors H`,n : Db

S`

(
X ×X`

)
→ Db

Sn+`

(
Xn+`

)
for n, ` ∈ N with n > 2. For i = 1, . . . , `, we

set

Index`,n(i) :=
{

(I, J, µ) | I ⊂ [`], |I| = i, J ⊂ [n+ `], |J | = n+ i, µ : Ī → J̄ bijection
}
,

where Ī := [`] \ I and J̄ := [n + `] \ J denote the complements of I and J , respectively. For
(I, J, µ) ∈ Index`,n(i), we consider the subvariety ΓI,J,µ ⊂ X ×X` ×Xn+` given by

ΓI,J,µ :=
{

(x, x1, . . . , x`, y1, . . . , yn+`) | x = xa = yb ∀ a ∈ I, b ∈ J, xc = yµ(c) ∀ c ∈ Ī
}
.

This subvariety is invariant under the action of the subgroup

SI ×SĪ,µ ×SJ := {(σ, τ) | σ(I) = I, σ(J) = J, (µ ◦ σ)|Ī = (τ ◦ µ)|Ī} ⊂ S` ×Sn+` , (3.1)

and thus OI,J,µ := OΓI,J,µ carries a canonical linearisation by this subgroup. Note that there is
the isomorphism of groups SI×SĪ,µ×SJ

∼= Si×S`−i×Sn+i given by (σ, τ) 7→ (σ|I , σ|Ī , τ|J). Let
aJ denote the 1-dimensional representation of SI×SĪ,µ×SJ on which the factor SJ = {σ = id}
acts by the sign of the permutations and the other factor SI ×SĪ,µ = {τ|J = idJ} acts trivially.
We set H(I, J, µ) := OI,J,µ ⊗ aJ and

Hi`,n := Ind
S`×Sn+`

S[i]×S[i+1,`],e×S[n+i]
H([i], [n+ i], e) =

⊕
Index`,n(i)

H(I, J, µ) .
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For c ∈ Ī, we have ΓI∪{c},J∪{µ(c)},µ|Ī\{c} ⊂ ΓI,J,µ. This allows us to define a morphism di : Hi →
Hi+1 by letting the component H(I, J, µ)→ H(I ∪ {c}, J ∪ {µ(c)}, µ|Ī\{c}) be (−1)#{b∈J |b<µ(c)}

times the map given by restriction of sections and setting all componentsH(I, J, µ)→H(I ′, J ′, µ′)
which are not of this form to be zero.

Lemma 3.1. The morphisms d form a differential: d ◦ d = 0.

Proof. For a local section s ∈ Hi`,n and (I, J, µ) ∈ Index(j), we denote by s(I, J, µ) the component

of s in H(I, J, µ). We have to show that d2(s)(I, J, µ) = 0 for every s ∈ Hi and every (I, J, µ) ∈
Index(i+2). By the definition of d, the only components of s possibly contributing to d2(s)(I, J, µ)
are of the form s

(
I \ {c, d}, J \ {e, f}, µ̂

)
with µ̂({c, d}) = {e, f} and µ̂|Ī = µ. In fact, s

(
I \ {c, d},

J \ {e, f}, µ̂
)

contributes via two different compositions of components of di and di+1, namely

H
(
I \ {c, d}, J \ {e, f}, µ̂

)
→ H

(
I \ {c}, J \ {µ̂(c)}, µ̂|Ī∪c

)
→ H(I, J, µ) ,

H
(
I \ {c, d}, J \ {e, f}, µ̂

)
→ H

(
I \ {d}, J \ {µ̂(d)}, µ̂|Ī∪d

)
→ H(I, J, µ) .

One can check that these two contributions are given by ±s
(
I \ {c, d}, J \ {e, f}, µ̂

)
|ΓI,J,µ

with

opposite signs; hence, they cancel out.

Accordingly, we have defined a complex of (S` ×Sn+`)-equivariant sheaves

H`,n :=
(
0→ H0 → · · · → H` → 0

)
∈ Db

S`×Sn+`

(
X ×X` ×Xn+`

)
,

and we define the functor H`,n to be the equivariant Fourier–Mukai transform along this complex:

H`,n := FMH`,n : Db
S`

(
X ×X`

)
→ Db

Sn+`

(
Xn+`

)
.

3.3 Adjoint kernels

Even though we do not assume that X is projective, since X × X` and Xn+` are smooth and
suppH`,n =

⋃
ΓI,J,µ is finite, hence projective, over X×X` as well as over Xn+`, the functor H`,n

has right and left adjoints R`,n, L`,n : Db
Sn+`

(
Xn+`

)
→ Db

S`

(
X ×X`

)
. They are the equivariant

Fourier–Mukai transforms R`,n = FMR`,n and L`,n = FML`,n with

R`,n = H∨`,n ⊗ (ωX×X` �OXn+`)[(`+ 1)d] , L`,n = H∨`,n ⊗ (OX×X` � ωXn+`)[(n+ `)d] ; (3.2)

see, for example, [Kuz06, Section 2.1]. The left and the right adjoints of H`,n are related as
follows.

Proposition 3.2. (i) If dimX is even, we have R`,n ∼= S̄
−(n−1)
X ◦ L`,n.

(ii) If dimX is odd, we have Ma` ◦R`,n ∼= S̄
−(n−1)
X ◦ L`,n ◦Man+`

.

Proof. For the underlying non-equivariant functors Db
(
X`+n

)
→ Db

(
X × X`

)
, by (3.2), the

assertion amounts to the invariance of H∨`,n under tensor product by ωnX �ωX`�ω−1
Xn+` ; compare

with [Orl03, Proposition 2.1.6]. This invariance follows from the fact that(
ωnX � ωX` � ω−1

Xn+`

)
|ΓI,J,µ

∼= OI,J,µ for all 0 6 i 6 ` and (I, J, µ) ∈ Index`,n(i) .

For the equivariant functors Db
Sn+`

(
Xn+`

)
→ Db

S`

(
X × X`

)
, the difference between the cases

of odd and of even dimension is explained by the difference in the sign of the linearisations of
the equivariant canonical bundle of a product Xm. Indeed, on the fibre ωXm(x), the stabiliser
of x ∈ Xm acts by permuting blocks of length d = dimX in the wedge product. Hence, if X is
even-dimensional, the Sm-equivariant canonical bundle of Xm equals ωXm ∼= ω�mX , where the
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linearisation is the one acting by permuting the factors, while in the odd-dimensional case, the
linearisation is given by ωXm ∼= ω�mX ⊗ am.

This already proves one first piece of Theorem 1.1, namely that for X a smooth surface, the
functor H`,n satisfies condition (3) of a Pn−1-functor with cotwist S̄−1

X := ( )⊗
(
ω−1
X �OX`

)
[−2].

3.4 Description of the functor

For I ⊂ [`] and J ⊂ [n+ `] with |I| = i and |J | = n+ i, we consider the closed embeddings

ιI : X ×X`−i ↪→ X ×X`, (x, x1, . . . , x`−i) 7→ (x, y1, . . . , y`), yi = x for i ∈ I, yi = xe(i) for i /∈ I ,
δJ : X ×X`−i ↪→ Xn+`, (x, x1, . . . , x`−i) 7→ (z1, . . . , zn+`), zj = x for j ∈ J, zj = xe(j) for j /∈ J ,

where e denotes the strictly increasing bijections [`] \ I → [` − i] and [n + `] \ J → [` − i] in
the definitions of ιI and δJ , respectively. The images of these closed embeddings are the partial
diagonals DI ⊂ X ×X` and ∆J ⊂ X ×Xn+` given by

DI = {(x, x1, . . . , x`) | x = xa ∀ a ∈ I} , ∆J = {(y1, . . . , yn+`) | ya = yb ∀ a, b ∈ J} .

We set ι[0] = ι∅ := id : X ×X` → X ×X`.

Proposition 3.3. The functor H i
`,n := FMHi`,n

is isomorphic to the composition

Db
S`

(
X ×X`

) Res−−→ Db
Si×S`−i

(
X ×X`

) ι∗
[i]−→ Db

Si×S`−i
(
X ×X`−i) (3.3)

( )Si−−−→ Db
S`−i

(
X ×X`−i) triv−−→ Db

Sn+i×S`−i
(
X ×X`−i) Man+i−−−−→ Db

Sn+i×S`−i
(
X ×X`−i)

δ[n+i]∗−−−−→ Db
Sn+i×S`−i

(
Xn+i ×X`−i) Ind−−→ Db

Sn+`

(
Xn+`

)
.

Proof. Note that Γ[i],[n+i],e = (ι[i], δ[n+i])
(
X`−i). Hence, by the projection formula,

prXn+`∗(O[i],[n+i],e ⊗ pr∗X`( )) ∼= δ[n+i]∗ ◦ ι∗[i] . (3.4)

Setting S(i) := S[i] ×S[i+1,`],e ×S[n+i] (compare with (3.1)), we get

FMHi`,n
∼=
[
prXn+`∗

(
Ind

S`×Sn+`

S(i) H([i], [n+ i], e)⊗ pr∗X×X`( )
)]S`

(2.4)∼=
[
prXn+`∗

(
Ind

S`×S`+n
S(i)

(
H([i], [n+ i], e)⊗ Res

S(i)
S`×S`+n pr

∗
X×X`( )

))]S`
(2.5)∼=

[
Ind

S`×S`+n
S(i)

(
prXn+`∗

(
H([i], [n+ i], e)⊗ Res

S(i)
Si×S`−i×S`+n pr

∗
X×X` Res

Si×S`−i
S`

( )
))]S`

(3.4)∼=
[
Ind

S`×S`+n
S(i)

(
δ[n+i]∗

(
a[n+i] ⊗ ι[i]∗ Res

Si×S`−i
S`

( )
))]S`

(2.8)∼= Ind
S`+n
S[n+i]×S`−i

(
δ[n+i]∗

(
a[n+i] ⊗ ι[i]∗ Res

Si×S`−i
S`

( )
))Si

(2.7)∼= Ind
S`+n
S[n+i]×S`−i

(
δ[n+i]∗

(
a[n+i] ⊗

[
ι[i]∗ Res

Si×S`−i
S`

( )
]Si)) .

For i = 0, the composition (3.3) reduces to

Db
S`

(
X ×X`

) triv−−→ Db
Sn×S`

(
X ×X`

) Man−−−→ Db
Sn×S`

(
X ×X`

)
δ[n]∗−−−→ Db

Sn×S`
(
Xn ×X`

) Ind−−→ Db
Sn+`

(
Xn+`

)
. (3.5)
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Using slightly shortened notation, the functor H i
`,n is on the level of objects given by

H i
`,n : E 7→

⊕
J⊂[n+`],#J=n+i

δJ∗
(
aJ ⊗ ι∗[i](E)S[i]

)
. (3.6)

The right adjoint Ri`,n : Db
Sn+`

(
Xn+`

)
→ Db

S`

(
X`
)

is given by the composition

Db
S`

(
X ×X`

) Ind←−− Db
Si×S`−i

(
X ×X`

) ι[i]∗←−− Db
Si×S`−i

(
X ×X`

)
(3.7)

triv←−− Db
S`−i

(
X ×X`−i) ( )Sn+i

←−−−−− Db
Sn+i×S`−i

(
X ×X`−i) Man+i←−−−− Db

Sn+i×S`−i
(
X ×X`−i)

δ!
[n+i]←−−− Db

Sn+i×S`−i
(
Xn+i ×X`−i) Res←−− Db

Sn+`

(
Xn+`

)
,

which on the level of objects F ∈ Db
Sn+`

(
Xn+`

)
means that

Ri`,n : F 7→
⊕

I⊂[`],#I=i

ιI∗
(
a[n+i] ⊗ δ!

[n+i]F
)S[n+i] . (3.8)

4. Techniques and examples

4.1 Derived intersections

Given a vector bundle E of rank c on a variety Z, we write ∧∗E := ⊕ci=0 ∧i E[−i] and ∧−∗E :=
⊕ci=0 ∧i E[i] as objects in Db(Z).

Theorem 4.1 ([AC12]). Let ι : Z ↪→M be a regular embedding of codimension c such that the
normal bundle sequence 0→ TZ → TM |Z → Nι → 0 splits. Then there is an isomorphism

ι∗ι∗( ) ' ( )⊗ ∧−∗N∨ι
of endofunctors of Db(Z).

Recall that the right adjoint of ι∗ is given by ι! = Mωι ◦ι∗[− codim ι], where ωι = ∧codim ιNι;
see [Har66, Corollary III 7.3]. We have ∧−∗N∨ι ⊗ ωι[− codim ι] ∼= ∧∗Nι.

Corollary 4.2. Under the assumptions of the previous theorem, there is an isomorphism
ι!ι∗( ) ' ( )⊗ ∧∗Nι.

In particular, the derived self-intersection ι∗ι∗OZ of Z in M is given by ι∗ι∗OZ = ∧−∗N∨ι .
More general results for derived intersections, that is, for ι∗2ι1∗OZ1 when ι1 : Z1 →M , ι2 : Z2 →M
are two different closed embeddings, are proven in [Gri14]. However, we will always be in the
following situation where Theorem 4.1 is sufficient. Assume that there is a diagram

Z2

ι2

!!
r

��
T = Z1 ∩ Z2

u

99

v
%%

W
t //M ,

Z1

s

OO

ι1

== (4.1)

where all the maps are regular closed embeddings, t has a splitting normal bundle sequence, and
the intersection of Z1 and Z2 inside of W is transversal.
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Lemma 4.3. Under the above assumptions, there is the isomorphism of functors ι∗2ι1∗( ) ∼=
u∗
(
v∗( )⊗ ∧−∗N∨t|T

)
. In particular, ι∗2(ι1∗OZ1) ∼= u∗(∧−∗N∨t|T ).

Proof. Indeed, we have

ι∗2ι1∗
∼= r∗t∗t∗s∗

(4.1)∼= r∗
(
s∗( )⊗ ∧−∗N∨t

) ∼= r∗s∗( )⊗ ∧−∗N∨t|Z2

∼= u∗v
∗( )⊗ ∧−∗N∨t|Z2

∼= u∗
(
v∗( )⊗ ∧−∗N∨t|T

)
,

where the prior-to-last isomorphism is the base change theorem [Kuz06, Corollary 2.27].

Corollary 4.4. Under the same assumptions, we have

ι!2ι1∗( ) ∼= u∗
(
v∗( )⊗ ∧−∗N∨t|T

)
⊗ ωι2 [− codim ι2] ∼= u∗(v

∗( )⊗ ∧∗Nt|T ⊗ ωv)[− codim v] .

In particular, ι!2ι1∗OZ1
∼= u∗

(
∧−∗ N∨t|T

)
⊗ ωι2 [− codim ι2] ∼= u∗(∧∗Nt|T ⊗ ωv)[− codim v].

Note that, by Grothendieck duality, ι2∗H
p
(
ι!2ι1∗OZ1

) ∼= ExtpOM (OZ2 ,OZ1).

Remark 4.5. In the above situation, consider in addition a variety W ′ with Z2 ⊂ W ′ ⊂ W
such that w′ : W ′ → W is a regular embedding and W ′ and Z1 intersect transversally. We set
Z ′1 = W ′ ∩ Z1. We also consider Z1 ⊂W ′′ ⊂W such that w′′ : W ′′ →W is a regular embedding
and W ′′ and Z2 intersect transversally in Z ′′2 = W ′′ ∩Z2. So we have the two diagrams of closed
embeddings

Z2
id //

��

Z2

ι2

!!
r

��
T

u
>>

v′ ��

W ′
w′ //W

t //M ,

Z ′1
z′ //

OO

Z1

s

OO

ι1

>>

Z ′′2
z′′ //

��

Z2

ι2

!!
r

��
T

u′′
>>

v   

W ′′
w′′ //W

t //M .

Z1
id //

OO

Z1

s

OO

ι1

==

We set t′ = t ◦ w′ and t′′ = t ◦ w′′. The restriction map ι1∗OZ1 → ι′1∗OZ′1 induces, for every
q = 0, . . . , codim(t), the map

u∗
(
∧qN∨t|T

)
⊗ ωι2 ∼= Ext

codim(ι2)−q
OM (OZ2 ,OZ1)→ Ext

codim(ι2)−q
OM (OZ2 ,OZ′1) ∼= u∗

(
∧q N∨t′|T

)
⊗ ωι2 .

As one can check locally using the Koszul resolutions, this map is given by the qth wedge power
of the canonical map N∨t|W ′ → N∨t′ . Similarly, for q = 0, . . . , codim(t), the induced map

u∗
(
∧qNt′′|T ⊗ ωv

) ∼= Ext
codim(v)+q
OM (OZ′′2 ,OZ1)→ Ext

codim(v)+q
OM (OZ2 ,OZ1) ∼= u∗

(
∧qNt|T ⊗ ωv

)
is given by the qth wedge power of the canonical map Nt′′ → Nt|W ′′ .

Remark 4.6. Let G be a finite group acting on M such that all the subvarieties occurring above
are invariant under this action. Then all the normal bundles carry a canonically induced G-
linearisation. All the results of this subsection continue to hold as isomorphisms in the (derived)
categories of G-equivariant sheaves when considering the normal bundles as G-bundles equipped
with the canonical linearisations; compare with [LH09, Section 28].

4.2 Partial diagonals and the standard representation

Let I be a finite set of cardinality at least 2. The standard representation %I of the symmetric
group SI can be considered either as the subrepresentation %I ⊂ CI of the permutation represen-
tation consisting of all vectors whose components add up to zero, or as the quotient %I = CI/C

689



A. Krug

by the 1-dimensional subspace of invariants. For I ⊂ I ′, the first point of view gives a canonical
SI -equivariant inclusion %I → %I′ , while the second one gives a canonical SI -equivariant surjec-
tion %I′ → %I . For X a smooth variety and δ[n] : X → Xn the embedding of the small diagonal,
there is the Sn-equivariant isomorphism Nδ[n]

∼= TX ⊗%n; see [Kru15, Section 3]. More generally,

for I ⊂ [n], the normal bundle of the partial diagonal ∆I
∼= X × X Ī is, as a SI -bundle, given

by

NδI
∼= (TX ⊗ %I)�OX Ī , N∨δI

∼= (ΩX ⊗ %I)�OX Ī . (4.2)

Furthermore, the normal bundle sequence of δI splits since ∆I is the fixed-point locus of the
SI -action on Xn; see [AC12, Section 1.20].

Remark 4.7. For I ⊂ I ′ ⊂ [n], the embedding ∆I′ → ∆I induces maps NδI′ → NδI |∆I′
and

N∨δI |δI′
→ N∨δI′

. Under the isomorphisms (4.2), they are given by the canonical surjection %I′ → %I
and the canonical embedding %I → %I′ , respectively.

For m > 2 and X a smooth variety of dimension d, we set

Λ∗m(X) :=
(
∧∗(TX ⊗ %m)

)Sm =

(m−1)d⊕
i=0

(
∧i(TX ⊗ %m)

)Sm
[−i] . (4.3)

Lemma 4.8.

Λ∗m(X) =

{
OX [0] for X a curve ,

OX [0]⊕ ω−1
X [−2]⊕ · · · ⊕ ω−(m−1)

X [−2(m− 1)] for X a surface .

Proof. For the curve case, since ∧0(TX ⊗ %m) = OX is equipped with the trivial Sm-action, we
only have to show that ∧i(TX⊗%m) has no invariants for i > 1. For this, it is sufficient to consider
the fibres which are given by ∧i%m. By [FH91, Proposition 2.12], the representations ∧i%m are
irreducible. They are non-trivial for i > 1; hence, their invariants vanish. For the surface case,
see [Sca09, Lemma B.5] and [Kru15, Corollary 3.5].

Remark 4.9. For d = dimX > 3, also vector bundles of higher rank occur as direct summands
of Λ∗m(X). For example, for m = 2, we have

Λ∗2(X) ∼=
⊕

06k6d/2

∧2kTX [−2k] .

This is the reason why the compositions R`,n ◦ H`,n are particularly simple for dimX 6 2 and
Theorem 1.1 only makes statements for dimensions 1 and 2.

Definition 4.10. For X a smooth surface and ` ∈ N, we consider the autoequivalence

S̄X := ( )⊗ (ωX �OX Ī )[−2] : Db
S`

(
X ×X`

)
→ Db

S`

(
X ×X`

)
.

The reason for denoting this by S̄X is that, for X projective and ` = 0, this agrees with the Serre

functor of Db(X). For 0 6 a 6 b, we set S̄
−[a,b]
X := S̄−aX ⊕ S̄

−a−1
X ⊕ · · · ⊕ S̄−bX .

Remark 4.11. For I ⊂ [n] of cardinality m := |I| > 2, consider the functor GI = δI∗ ◦ triv and
GRI ◦GI . The latter is the composition

Db
SĪ

(
X ×X Ī

) triv−−→ Db
SI×SĪ

(
X ×X Ī

) δI∗−−→ Db
SI×SĪ

(
Xn
)

δ!
I−→ Db

SI×SĪ

(
X ×X Ī

) ( )SI−−−−→ Db
SĪ

(
X ×X Ī

)
.
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Let prX : X ×X Ī → X be the projection to the first factor. Corollary 4.2 and Lemma 4.8 give

GRI ◦GI ∼= ( )⊗ pr∗X Λ∗m(X) ∼=

{
id for X a curve ,

S̄
−[0,m−1]
X for X a surface .

(4.4)

4.3 The case ` = 0

The fact that H0,n : Db(X)→ Db
Sn(Xn) is a Pn−1-functor was already proved in [Kru15], but let

us quickly recall one key part of the proof. Note that G[n] = Man ◦H0,n, and (4.4) gives

R0,n ◦H0,n
∼=

{
id for X a curve ,

S̄
−[0,n−1]
X for X a surface .

This proves the case ` = 0 of part (i)(a) and most of part (ii) of Theorem 1.1 (for the only missing
part of the proof, namely that condition (2) of a Pn−1-functor holds for H0,n in the surface case,
see [Kru15, Section 3]).

Let us have a quick first look at the ` > 0 case, which we will treat in more detail throughout
the rest of the article. For E ∈ Db

S`

(
X`
)
, note that δ[n]∗(E) is a direct summand of H0

`,n(E); see

(3.5) and (3.6). Hence, GR[n]G[n](E) ∼= S̄
−[0,n−1]
X (E) occurs as a direct summand of R0

`,nH
0
`,n(E).

However, the other terms of H0
`,n(E) also have to be taken into account, which leads to an

expression of the form

R0
`,nH

0
`,n(E) ∼= S̄

−[0,n−1]
X (E)⊕

(
terms supported on partial diagonals of X ×X`

)
. (4.5)

The ‘error terms’ supported on the partial diagonals ofX×X` prevent the functorH0
`,n from being

a Pn−1-functor, which is the reason why we have to consider the more complicated functors H`,n

instead. Basically, the higher terms of the complex H`,n or, in other words, the functors H i
`,n,

lead to a cancellation of the error terms in (4.5).

4.4 The approach for general `

In order to establish Theorem 1.1, we need to compute the composition R`,n ◦H`,n of the func-
tor H`,n with its right adjoint, which amounts to the computation of its kernel R`,n ?H`,n.

Let us recall the notion of convolutions in triangulated categories; for details, we refer to
[CS07, Section 3.1]. A bounded complex in a triangulated category D is a sequence

An
dn // // An−1

dn−1 // . . .
d2 // A1

d1 // A0

such that di ◦ di+1 = 0 for all i. A left convolution of A• is an object A ∈ D together with
a morphism g : A→ An such that there is a diagram

An
dn //

βn−1

""

. . .
d2 // A1

d1

  

d1 // A0

A

g
>>

Cn−1
[1]

αn−1oo

γn−1

<<

. . .oo C1
[1]

α1oo

γ1

>>

A0 ,
[1]

α0oo

id
>>

where the triangles involving an αi as a horizontal arrow are exact and the triangles involving
a di as a horizontal arrow are commutative. One may think of this as A having a filtration whose
graded pieces are the Ai. There is also a dual notion of right convolution.

If D = Db(A) for some abelian categoryA, every complex A• of objects inA can be considered
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as a complex in D, and a convolution of this complex is A• itself, considered as one object in D;
see [CS07, Example 3.4]. In particular, H is a left convolution of H0

`,n → · · · → H``,n. We set

Ri`,n :=
(
Hi`,n

)∨ ⊗ (ωX×X` �OXn+`)[(`+ 1)d] , d = dimX .

Since exact functors, hence in particular ( )∨⊗(ωX×X`�OXn+`)[(`+1)d], preserve convolutions
[CS07, Remark 3.1], we see that R`,n is a left convolution of R``,n → · · · → R1

`,n → R0
`,n. We get

a commutative diagram

R``,n ?H`,n //

��

R``,n ?H0
`,n

//

��

. . . //

��

R``,n ?H``,n

��
... //

��

... //

��

. . . //

��

...

��
R0
`,n ?H`,n //

��

R0
`,n ?H0

`,n
//

��

. . . //

��

R0
`,n ?H``,n

��
R`,n ?H`,n // R`,n ?H0

`,n
// . . . // R``,n ?H``,n ,

(4.6)

where the Ri`,n ?H`,n and R`,n ?Hj`,n are the left and right convolutions of the rows and columns,

respectively. That means, in particular, that R`,n ?Hj`,n can be written as a multiple cone

cone
((
· · · cone

(
cone

(
R``,n ?H

j
`,n → R

`−1
`,n ?Hj`,n

)
→ R`−2

`,n ?Hj`,n
)
· · ·
)
→ R0

`,n ?H
j
`,n

)
.

The strategy of the proof of Theorem 1.1 is to start with the computation of the Ri`,n ?H
j
`,n, then

use the results to compute R`,n ?Hj`,n, and finally deduce the desired formulae for Ri`,n ?H`,n.

In the following subsections, which are intended to give gentle examples illustrating how
the general proof works, we will do the computation in the case ` = 1 (and some of it for
` = 2) on the level of the functors instead of kernels. That means that we will compute the
compositions Ri`,n ◦ H

j
`,n. We will see that the undesired terms (see (4.5)) are of a form which

give them a good chance to cancel out when passing to the convolution R`,n ◦ H`,n. However,

in the present section, we will not compute the induced maps Ri`,n ◦ H
j
`,n → Ri`,n ◦ H

j+1
`,n and

Ri`,n ◦H
j
`,n → Ri−1

`,n ◦H
j
`,n, which would be necessary to see that the terms really cancel. Later

in Section 5, where the computations are performed for general ` on the level of the kernels, we
will see that the appropriate terms cancel, which leads to a rigorous proof of Theorem 1.1.

4.5 The case ` = 1

We aim to compute R1,n ◦H1,n : Db(X×X)→ Db(X×X) using the descriptions (3.6) and (3.8)

of Hj
1,n and Ri1,n. For E ∈ Db(X ×X), we have

R0
1,nH

0
1,n(E) ∼=

[
a[n] ⊗ δ!

[n]

( ⊕
a∈[n+1]

δ[n+1]\{a}∗(E ⊗ a[n+1]\{a})
)]S[n]

.

For σ ∈ S[n], the S[n]-linearisation of
⊕

a∈[n+1] δ
!
[n]δ[n+1]\{a}∗(E⊗a[n+1]\{a}) maps the summand

δ!
[n]δ[n+1]\{a}∗(E ⊗ a[n+1]\{a}) to δ!

[n]δ[n+1]\{σ(a)}(E ⊗ a[n+1]\{σ(a)}). Thus, the induced action on

the index set [n + 1] is given by a 7→ σ(a). Hence, there are two S[n]-orbits, namely [n] and
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{n+ 1}. We have StabS[n]
(n+ 1) = S[n] and StabS[n]

(n) = S[n−1]. As explained in Section 2.2,
it follows that

R0
1,nH

0
1,n(E) ∼= δ!

[n]δ[n]∗(E)S[n] ⊕ δ!
[n]δ[n−1]∪{n+1}∗(E)S[n−1] . (4.7)

The first direct summand equals E ⊗ pr∗1 Λ∗n(X) by (4.4).

Convention 4.12. For {b} ⊂ [m], a set with one element, we set ∆{b} = Xm. Furthermore, we
set Λ∗1(X) = OX [0]. This convention becomes relevant in this subsection in the case n = 2 and
later in the more general case n = `+ 1.

For the computation of the second summand of (4.7), consider the commutative diagram of
closed embeddings

∆[n]

δ[n]

&&
r

��
∆[n+1]

u

88

v
&&

∆[n−1]

δ[n−1] // Xn+1 .

∆[n−1]∪{n+1}

s

OO

δ[n−1]∪{n+1}

88

It fulfils the properties of diagram (4.1), which means that ∆[n+1] = ∆[n]∩∆[n−1]∪{n+1} and that
this intersection is transversal inside ∆[n−1]. Furthermore, the normal bundle sequence of δ[n−1]

splits; see Section 4.2. This allows us to apply Corollary 4.4 to get

δ!
[n]δ[n−1]∪{n+1}∗(E) ∼= u∗(v

∗( )⊗ ∧∗Nδ[n−1]|∆[n+1]
⊗ ωv)[− codim v] . (4.8)

Under the isomorphisms ∆[n+1]
∼= X and ∆[n]

∼= X×X ∼= ∆[n−1]∪{n+1}, the embeddings u and v

equal the diagonal embedding ι : X ↪→ X×X. Thus, codim v = dimX = d and ωv ∼= ∧dNv
∼= ω−1

X .
Together with (4.2) and (4.3), this implies that after taking S[n−1]-invariants in (4.8), we get

δ!
[n]δ[n−1]∪{n+1}∗(E)S[n−1] ∼= ι∗

(
ι∗(E)⊗ Λ∗n−1(X)⊗ ω−1

X

)
[−d]. In summary, (4.7) gives

R0
1,nH

0
1,n(E) ∼= E ⊗ pr∗1 Λ∗n(X)⊕ ι∗

(
ι∗(E)⊗ Λ∗n−1(X)⊗ ω−1

X

)
[−d] . (4.9)

The computation of the other three functor compositions is easier. Note that we have δ[n+1] =

δ[n] ◦ u and u! ∼= u∗( ) ⊗ ω−1
X [−d], and keep in mind the identification of u with the diagonal

embedding ι : X ↪→ X ×X. Then,

R0
1,nH

1
1,n(E) ∼=

[
a[n] ⊗ δ!

[n]δ[n+1]∗(ι
∗E ⊗ a[n+1])

]S[n]

∼= δ!
[n]δ[n]∗u∗ι

∗(E)S[n]
(4.4)∼= ι∗

(
ι∗(E)⊗ Λ∗n(X)

)
, (4.10)

R1
1,nH

0
1,n(E) ∼= ι∗

[
a[n+1] ⊗ δ!

[n+1]

(n+1⊕
a=1

δ[n+1]\{a}∗(E ⊗ a[n+1]\{a})
)]S[n+1] (2.3)∼= ι∗δ

!
[n+1]δ[n]∗(E)S[n]

∼= ι∗u
!δ!

[n]δ[n]∗(E)S[n]
(4.4)∼= ι∗

(
ι∗(E)⊗ Λ∗n(X)⊗ ω−1

X

)
[−d] , (4.11)

R1
1,nH

1
1,n(E) ∼= ι∗

[
δ!

[n+1]δ[n+1]∗ι
∗(E)

]S[n+1]
(4.4)∼= ι∗

(
ι∗(E)⊗ Λ∗n+1(X)

)
. (4.12)

Now, let X = C be a smooth curve. By Lemma 4.8, we have Λ∗m(C) = OC [0] for all m > 1.
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Plugging this into (4.9)–(4.12), we get

R1
1,n ◦H0

1,n −−−−→ R1
1,n ◦H1

1,ny y
R0

1,n ◦H0
1,n −−−−→ R0

1,n ◦H1
1,n

∼=

ι∗
(
ι∗( )⊗ ω−1

C

)
[−1] −−−−→ ι∗ι

∗y y
id⊕ι∗

(
ι∗( )⊗ ω−1

C

)
[−1] −−−−→ ι∗ι

∗ .

(4.13)

We will see in Section 5.6 that the right-hand vertical map of this diagram as well as the compo-
nent ι∗

(
ι∗( )⊗ω−1

C

)
[−1]→ ι∗

(
ι∗( )⊗ω−1

C

)
[−1] of the left-hand vertical map are isomorphisms.

Thus, by taking cones in the diagram (4.13), we get R1,n ◦H0
1,n
∼= id and R1,n ◦H1

`,n = 0; compare

with (4.6). Considering the triangle R1,n ◦H1,n → R ◦H0
1,n → R1,n ◦H1

1,n shows R1,n ◦H1,n = id.
This amounts to the case ` = 1 of Theorem 1.1(i)(a).

For X a smooth surface, we have ( )⊗ Λ∗m(X) ∼= S
−[0,m−1]
X ; see (4.4). This gives

R1
1,n ◦H0

1,n −−−−→ R1
1,n ◦H1

1,ny y
R0

1,n ◦H0
1,n −−−−→ R0

1,n ◦H1
1,n

∼=

ι∗S
−[1,n]
X ι∗ −−−−→ ι∗S

−[0,n]
X ι∗y y

S̄
−[0,n−1]
X ⊕ ι∗S−[1,n−1]

X ι∗ −−−−→ ι∗S
−[0,n−1]
X ι∗ ,

where S̄−1
X = ( )⊗ pr∗1 ω

−1
X [−2]. Again, we will see later that all components of the maps in the

diagram of the form ι∗S
−k
X ι∗ → ι∗S

−k
X ι∗ are isomorphisms, which by taking cones gives

R1,n ◦H0
1,n
∼= S̄

−[0,n−1]
X ⊕ ι∗S−nX ι∗[1] , R1,n ◦H1

1,n
∼= ι∗S

−n
X ι∗[1] ,

and, finally, R1,n ◦H1,n
∼= S̄

−[0,n−1]
X as claimed in Theorem 1.1(b).

4.6 Orthogonality in the curve case

In this subsection, we compute that R1,n ◦H0,n+1 = 0 for X = C a curve, which is one instance
of Theorem 1.1(i)(b). We have

R1
1,nH0,n+1(E) ∼= ι∗

(
δ!

[n+1]δ[n+1]∗(E)
)Sn+1 ∼= ι∗(E ⊗ Λ∗n+1(X)) , (4.14)

R0
1,nH0,n+1(E) ∼= δ!

[n]δ[n+1]∗(E)Sn ∼= δ!
[n]δ[n]∗u∗(E)Sn ∼= ι∗(E ⊗ Λ∗n(X)) . (4.15)

For X = C a curve, this gives R1
1,n ◦H0,n+1

∼= ι∗ and R0
1,n ◦H0,n+1

∼= ι∗. By the exact triangle

R1
1,n ◦H0,n+1 → R0

1,n ◦H0,n+1 → R1,n ◦H0,n+1 , (4.16)

we get the desired vanishing R1,n ◦H0,n+1 = 0.

4.7 Non-orthogonality in the surface case

ForX a smooth surface, we have R1
1,n◦H0,n+1

∼= ι∗S
−[0,n]
X and R0

1,n◦H0,n+1
∼= ι∗S

−[0,n−1]
X by (4.14)

and (4.15). Again, all the components ι∗S
−k
X → ι∗S

−k
X of the induced map R1

1,n ◦ H0,n+1 →
R0

1,n ◦H0,n+1 are isomorphisms for k = 0, . . . , n− 1. Thus, by triangle (4.16), we get

R1,n ◦H0,n+1
∼= ι∗S

−n
X [1] . (4.17)

This non-orthogonality prevents the functors H`,n from giving a complete categorification of the
Heisenberg action on the cohomology of the Hilbert schemes; compare with Section 6.2.
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4.8 The case ` = 2, n = 2

We make computations concerning the composition R2,2 ◦H2,2 : Db
S2

(
X×X2

)
→ Db

S2

(
X×X2

)
in order to illustrate why the assumption n > ` is necessary for Theorem 1.1. We have

R0
2,2H

0
2,2(E) ∼=

[
a[2] ⊗ δ!

[2]

( ⊕
J⊂[4], |J |=2

δJ∗(E ⊗ aJ)

)]S[2]

.

For J = [2], we get the direct summand δ!
[2]δ[2]∗(E)S[2] ∼= E ⊗ pr∗X Λ∗2(X) of R0

2,2H
0
2,2(E).

For H2,2 to be fully faithful in the curve case and a P-functor in the surface case, we would
need R2,2H2,2(E) to be isomorphic to that direct summand. For J = [3, 4], we consider the
diagram

∆[2] ∩∆[3,4]
u−−−−→ ∆[2]

v

y δ[2]

y
∆[3,4]

δ[3,4]−−−−→ X4 ,

which is a transversal intersection. Under the isomorphism ∆[2]
∼= X × X2, the subvariety

X × X ∼= ∆[2] ∩ ∆[3,4] ⊂ ∆[2] equals X × ∆X . Thus, for an appropriate choice of E, the di-

rect summand [a[2] ⊗ δ!
[2]δ[3,4]∗(E ⊗ a[3,4])]

S[2] of R0
2,2H

0
2,2(E) is supported on the whole X ×∆X .

On the other hand, one can easily see that all direct summands of Ri2,2H
j
2,2(E) for (i, j) 6= (0, 0)

are supported on one of the subvarieties D{1}, D{2}, or D[2] of X ×X2, none of them contain-

ing X ×∆X . It follows that the direct summand [a[2] ⊗ δ!
[2]δ[3,4]∗(E ⊗ a[3,4])]

S[2] of R0
2,2H

0
2,2(E)

survives taking the multiple cones in the diagram induced by (4.6) which prevents R2,2H2,2(E)
from being isomorphic to E ⊗ pr∗X Λ∗2(X).

5. Proof of the main results

Throughout this section, we fix a smooth variety X of dimension d := dimX (in later subsections,
d will be specified to be 1 or 2), and we fix numbers `, n ∈ N with n > max{`, 1}. In order to
keep the formulae reasonably short, we will mostly omit these fixed numbers from the indices.
For example, we write H instead of H`,n, Hi instead of Hi`,n, R instead of R`,n and so on.

In this section, we will prove Theorem 1.1. In order to achieve this, we will first compute the
convolution products Ri ?Hj for i, j ∈ {0, . . . , `}. In the case that X is a curve or a surface, this
will lead to the desired formulae for R ?H.

5.1 Computation of the direct summands

The sheaf Hi is given by a direct sum of the structure sheaves OI,J,µ; see Section 3.2. Hence, for
0 6 i, j 6 `, a first important step in the computation of the equivariant convolution product
Ri ?Hj is the computation of the non-equivariant convolution product

(OI2,J2,µ2)R ?OI1,J1,µ1 = pr13∗
(
pr∗23(OI2,J2,µ2)R ⊗ pr∗12OI1,J1,µ1

)
,

where (OI2,J2,µ2)R := (OI2,J2,µ2)∨ ⊗ (ωX×X` � OXn+`)[(` + 1)d] for (I1, J1, µ1) ∈ Index(j) and
(I2, J2, µ2) ∈ Index(i). We carry out this computation in this subsection.

We set K1 := I1 ∪ µ−1
1 (J2), K2 := I2 ∪ µ−1

2 (J1) ⊂ [`], and k := |K1| = |K2| and consider the
bijection µ := µ−1

2|J1∪J2
◦µ1|K̄1

between K̄1 = [`]\K1 and K̄2 = [`]\K2. Furthermore, we consider
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the subvariety

ΓK1,K2,µ :=
{

(x, x1, . . . , x`, z, z1, . . . , z`) | x = xa = zb = z ∀ a∈K1, b∈K2, xc = zµ(c) ∀ c ∈ K̄1

}
of X ×X` ×X ×X` and set OK1,K2,µ := OΓK1,K2,µ

. There is the commutative diagram

X ×X` × ΓI2,J2,µ2

ι2

++
r
��

T

π13 ∼=

��

u
55

v ))

X ×X` ×∆J1∩J2 ×X ×X` t // X ×X` ×Xn+` ×X ×X`

pr13

��

ΓI1,J1,µ1 ×X ×X`

s

OO

ι1

33

π′13
∼=
��

ΓK1,K2,µ
ṽ //

π1 ∼=
��

DI1 ×X ×X` //

π′1
��

X ×X` ×X ×X` p //

pr1
��

X

DK1

α // DI1
// X ×X` ,

(5.1)

where T :=
(
ΓI1,J1,µ1 ×X×X`

)
∩
(
X×X`×ΓI2,J2,µ2

)
, the maps π13 and π′13 are the restrictions

of the projection pr13, the maps π1 and π′1 are the restrictions of the projection pr1, the map
p is the projection to the third factor, and all the other arrows denote the appropriate closed
embeddings. Note that J1 ∩ J2 6= ∅ because of the assumption n > `. We have

T =

{
(x, x1, . . . , x`, y1, . . . , yn+`, z, z1, . . . , z`)

∣∣∣x = xa = yb = zc = z, xd = yµ1(d) = zµ(d)

∀ a ∈ K1, b ∈ J1 ∪ J2, c ∈ K2, d ∈ K̄1

}
.

We see that a point in T is determined by its (x, x1, . . . , x`)-component. Thus, π13 and π1 are
isomorphisms. Similarly, π′13 is an isomorphism. Let π2 : ΓK1,K2,µ → X×X` be the restriction of
the projection pr2 : X×X`×X×X` → X×X` to the second factor. By the adjunction formula,

π13∗ωv ∼= ωṽ ∼= ωπ′1◦ṽ ⊗ ṽ
∗ω−1

π′1
∼= π∗1ωα ⊗ π∗2ω−1

X×X`
∼= p∗ω

−(k−j)
X ⊗ π∗2ω−1

X×X` ,

where the last isomorphism is due to the fact that on ΓK1,K2,µ the projection to the first factor
X ×X` ×X ×X` → X coincides with the projection p to the third factor. It follows that

π13∗ωv ⊗ π∗2ωX×X`
∼= p∗ω

−(k−j)
X . (5.2)

Note that |J1∪J2| = n+k and |J1∩J2| = n+i+j−k. Using this, one can check that diagram (5.1)
with the two bottom lines removed satisfies the properties of diagram (4.1). Concretely, the square
consisting of u, v, s, and r is a transversal intersection, with codim(t) = (n+ i+ j − k− 1)d and
codim(v) = (k − j + `+ 1)d. By Corollary 4.4, we get

Hom(pr∗23OI2,J2,µ2 , pr
∗
12OI1,J1,µ1) ∼= ι!2ι1∗OΓI1,J1,µ1

×X×X`
∼= OT ⊗ ∧∗Nt ⊗ ωv[−(k − j + `+ 1)d] .

Combining this with (5.2) and, noting that t = idX×X` ×δJ1∪J2 × idX×X` , with (4.2) gives

(OI2,J2,µ2)R ?OI1,J1,µ1
∼= pr13∗Hom(pr∗23OI2,J2,µ2 , pr

∗
12OI1,J1,µ1)⊗ pr∗2 ωX×X` [(`+ 1)d]

∼= OK1,K2,µ ⊗ p∗
(
∧∗(TX ⊗ %J1∩J2)⊗ ω−(k−j)

X

)
[−(k − j)d] (5.3)

∼= OK1,K2,µ ⊗ p∗
(
∧−∗(ΩX ⊗ %J1∩J2)⊗ ω−(n+i−1)

X

)
[−(n+ i− 1)d] . (5.4)
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5.2 The induced maps

Let c ∈ Ī1 with µ1(c) ∈ J2, and set I ′1 = I1 ∪ {c}, J ′1 = J1 ∪ {µ1(c)}, and µ′1 := µ1|Ī1\{c}. The
restriction OI1,J1,µ1 → OI′1,J ′1,µ′1 induces, for q = 0, . . . , (n+ i+ j − k)d, a map

H (n+i−1)d−q((OI2,J2,µ2)R ?OI1,J1,µ1

)
→H (n+i−1)d−q((OI2,J2,µ2)R ?OI′1,J ′1,µ′1

)
,

which under the isomorphism (5.4) corresponds to a map

OK1,K2,µ ⊗ p∗
(
∧q(ΩX ⊗ %J1∩J2)⊗ ω−(n+i−1)

X

)
→ OK1,K2,µ ⊗ p∗

(
∧q(ΩX ⊗ %J ′1∩J2

)⊗ ω−(n+i−1)
X

)
.

By Remarks 4.5 and 4.7, this map is given by the canonical inclusion %J1∩J2 → %J ′1∩J2
=

%(J1∩J2)∪{µ1(c)}. To see this, compare the diagram

X ×X` × ΓI2,J2,µ2

id //

��

X ×X` × ΓI2,J2,µ2

ι2

**
r
��

T

u
88

v′ &&

∆̃J ′1∩J2

w′ // ∆̃J1∩J2

t // X ×X` ×Xn+` ×X ×X` ,

ΓI′1,J ′1,µ′1 ×X ×X
` z′ //

OO

ΓI1,J1,µ1 ×X ×X`

s

OO

ι1

44

where ∆̃J := X ×X` ×∆J ×X ×X`, with the diagram of Remark 4.5.

Similarly, consider c ∈ Ī2 with µ2(c) ∈ J1, and set I ′2 := I2 ∪ {c}, J ′2 := J2 ∪ {µ2(c)}, and
µ′2 := µ2|Ī2\{c}. Then the restriction OI2,J2,µ2 → OI′2,J ′2,µ′2 induces a map

H (k−j)d+q
(
(OI′2,J ′2,µ′2)R ?OI1,J1,µ1

)
→H (k−j)d+q

(
(OI2,J2,µ2)R ?OI1,J1,µ1

)
for q = 0, . . . , (n+ i+ j − k)d, which under the isomorphism (5.3) corresponds to a map

OK1,K2,µ ⊗ p∗
(
∧q(TX ⊗ %J1∩J ′2)⊗ ω−(k−j)

X

)
→ OK1,K2,µ ⊗ p∗

(
∧q(TX ⊗ %J1∩J2)⊗ ω−(k−j)

X

)
.

This map is given by the canonical surjection %J1∩J ′2 = %(J1∩J2)∪{µ2(c)} → %J1∩J2 , again due to
Remarks 4.5 and 4.7. In particular, the induced map

H (k−j)d((OI′2,J ′2,µ′2)R ?OI1,J1,µ1

)
→H (k−j)d((OI2,J2,µ2)R ?OI1,J1,µ1

)
is given by the identity on OK1,K2,µ ⊗ p∗ω

−(k−j)
X .

5.3 Computation of the Ri ? Hj

We make use of the principle explained in Section 2.2 to compute the convolution product

Ri ?Hj = pr13∗
(
pr∗23Ri ⊗ pr∗12Hj

)1×Sn+`×1
. We set

R(I, J, µ) := H(I, J, µ)∨ ⊗ (ωX×X` �OXn+`)[(`+ 1)d] = (OI,J,µ)R ⊗ aJ ,

so that Ri = ⊕Index(i)R(I, J, µ). The (S` ×Sn+` ×S`)-linearisation of

pr13∗
(
pr∗23Ri ⊗ pr∗12Hj

) ∼= ⊕
Index(j)×Index(i)

pr13∗
(
pr∗23R(I2, J2, µ2)⊗ pr∗12H(I1, J1, µ1)

)
induces on the index set Index(j)× Index(i) the action

σ1 × τ × σ2 :
(
I1, J1, µ1; I2, J2, µ2

)
7→
(
σ1(I1), τ(J1), τ ◦ µ1 ◦ σ−1

1 ;σ(I2), τ(J2), τ ◦ µ2 ◦ σ−1
2

)
.
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Let O(i, j) be a set of representatives of the (1×Sn+`× 1)-orbits in Index(j)× Index(i). One can
check that O(i, j) is in bijection with

Index(i, j) :=

{
(I1,K1, I2,K2, µ)

∣∣∣ I1 ⊂ K1 ⊂ [`] ⊃ K2 ⊃ I2, |I1| = j, |I2| = i,
|K1| = |K2|, µ : K̄1 → K̄2 bijection

}
via the assignment (I1, J1, µ1; I2, J2, µ2) 7→ (I1,K1, I2,K2, µ) where, exactly as in Section 5.1,

K1 = I1 ∪ µ−1
1 (J2) , K2 = I2 ∪ µ−1

2 (J1) , µ = µ−1
2|J1∪J2

◦ µ1|K̄1
.

Furthermore, the Sn+`-stabiliser of (I1, J1, µ1; I2, J2, µ2) is SJ1∩J2 . It follows by (2.3) and (5.3)
that the equivariant convolution product Ri ?Hj is given by

Ri ?Hj ∼= pr13∗
(
pr∗23Ri ⊗ pr∗12Hj

)1×Sn+`×1

∼=
⊕
O(i,j)

pr13∗
(
pr∗23R(I2, J2, µ2)⊗ pr∗12H(I1, J1, µ1)

)1×SJ1∩J2
×1

(5.5)

∼=
⊕

Index(i,j)

OK1,K2,µ ⊗ aK1\I1 ⊗ aK2\I2 ⊗ p
∗(Λ∗n+i+j−k(X)⊗ ω−(k−j)

X

)
[−(k − j)d] . (5.6)

We denote the direct summands of (5.6) by

P(I1,K1, I2,K2, µ) :=
⊕

Index(i,j)

OK1,K2,µ⊗aK1\I1⊗aK2\I2⊗p
∗(Λ∗n+i+j−k(X)⊗ω−(k−j)

X

)
[−(k−j)d] .

Note that the (S` ×S`)-linearisation of Ri ?Hj induces on O(i, j) ∼= Index(i, j) the action

σ1 × σ2 : (I1,K1, I2,K2, µ) 7→
(
σ1(I1), σ1(K1), σ2(I2), σ2(K2), σ2 ◦ µ ◦ σ−1

1

)
.

The (S`×S`)-stabiliser of (I1,K1, I2,K2, µ) is SI1 ×SK1\I1 ×SK̄1,µ×SI2 ×SK2\I2 . With this
notation, we indicate the subgroup of S` ×S` given by{

(σ1, σ2) | σ1(I1) = I1, σ1(K1) = K1, σ2(I2) = I2, σ2(K2) = K2, (σ2 ◦ µ)|K̄1
= (µ ◦ σ1)|K̄1

}
.

Furthermore, the orbits of the (S` ×S`)-action on Index(i, j) are given by

Index(i, j)k := {|K1| = |K2| = k} ⊂ Index(i, j) for k = max{i, j}, . . . , ` .

A representative of the orbit Index(i, j)k is ([j], [k], [i], [k], e), where e = id[k+1,`]. We get

Ri ?Hj ∼=
⊕̀

k=max{i,j}

P(i, j)k ,

P(i, j)k := IndS`×S`Sj×Sk−j×S`−k,e×Si×Sk−i P([j], [k], [i], [k], e) . (5.7)

5.4 Spectral sequences

For j = 0, . . . , `, there is the spectral sequence E(j) associated with the complex pr∗23H and the
functor Hom

(
, pr∗12Hj

)
given by

E(j)p,q1 = Extq
(
pr∗23H−p, pr∗12Hj

)
=⇒ E(j)p+q = Extp+q

(
pr∗23H, pr∗12Hj

)
;

see, for example, [Huy06, Remark 2.67]. By Section 5.1, every term of this spectral sequence is
finitely supported over X × X` × X × X`, hence pr13∗-acyclic. Since the functors ( )Sn+` and
( )⊗pr∗2 ωX×X` are exact, we can apply the functor pr13∗( )1×Sn+`×1⊗pr∗2 ωX×X` to every level of
the spectral sequence E(j) to get a spectral sequence with values in CohS`×S`

(
X×X`×X×X`

)
.
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Shifting this spectral sequence by (`+ 1)d in the q-direction, we get the spectral sequence E(j)
with the property

E(j)p,q1 = H q
(
R−p ?Hj

)
=⇒ E(j)p+q = H p+q

(
R ?Hj

)
.

Similarly, we get a spectral sequence

Ep,q1 = H q
(
R ?Hp

)
=⇒ Ep+q = H p+q(R ?H) . (5.8)

5.5 Čech-type exact complex for the sign representation

For k > 1, there is an exact complex of Sk-representations

0→ C→ · · · → IndSkSi×Sk−i ai
ďi−→ IndSkSi+1×Sk−i−1

ai+1 → · · · → ak → 0 ,

which we denote by Č•k . We consider Č•k as a complex in degrees [0, k]. The terms are

Čik = IndSkSi×Sk−i ai
∼=

⊕
I⊂[k], |I|=i

aI .

Under this identification, the differential ďi is determined by its components aI → aJ , which are
given by εI,b = (−1)#{a∈I|a<b} if J = I ∪ {b} and which are zero if I 6⊂ J . That the sequence
is exact can be checked either by hand or by considering it as a special case of a Čech complex.
We also set Ĉ•k := Č•k ⊗ ak. Then Ĉ•k is the exact complex

0→ ak → · · · → IndSkSi×Sk−i ak−i
d̂i−→ IndSkSi+1×Sk−i−1

ak−i−1 → · · · → C→ 0 .

Let M be a variety on which we consider Sk to act trivially. For E ∈ Coh(M), we set Č•k(E) :=
E ⊗C Č•k . This is an exact complex in CohSk(M) given by

E → · · · → IndSkSi×Sk−i(E ⊗ ai)
ďi(E)−−−→ IndSkSi+1×Sk−i−1

(E ⊗ ai+1)→ · · · → E ⊗ ak .

There also is the exact complex Ĉ•k(E) := E ⊗C Ĉ•k ∼= Č•k(E)⊗ ak.

Lemma 5.1. Let E ∈ Coh(M) be simple; that is, Hom(E,E) = C. Then

HomSk

(
Čik(E), Či+1

k (E)
) ∼= C ∼= HomSk

(
Ĉik(E), Ĉi+1

k (E)
)
.

Proof. By the adjunction Ind a Res, we have

HomSk

(
Čik(E), Či+1

k (E)
) ∼= [ ⊕

|I|=i+1

Hom(E ⊗ a[i], E ⊗ aI)

]Si×Sk−i
∼=
[ ⊕
|I|=i+1

Hom(E,E)⊗ a[i]\I ⊗ aI\[i]

]Si×Sk−i
.

For [i] 6⊂ I, we have |I \ [i]| > 2, and hence (Hom(E,E) ⊗ a[i]\I ⊗ aI\[i])
SI\[i] = 0. It follows by

Section 2.2 that

HomSk

(
Čik(E), Či+1

k (E)
) ∼= Hom(E ⊗ a[i], E ⊗ a[i+1])

S[i]×S[i+2,k] ∼= Hom(E,E) ∼= C .

The second assertion follows from the first one since Ĉ•k(E) ∼= Č•k(E)⊗ ak.

Corollary 5.2. Let E ∈ Coh(M) be simple. Then, up to isomorphism, every non-zero Sk-
equivariant morphism Čik(E) → Či+1

k (E) equals ďi(E), and every non-zero Sk-equivariant mor-

phism Ĉik(E)→ Ĉi+1
k (E) equals d̂i(E).
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Convention 5.3. We also define Č•0 := C[0] =: Ĉ•0 to be the one-term complex with C in degree
zero. Obviously, the complexes Č•0 and Ĉ•0 are not exact, in contrast to the case k > 1 described
above.

5.6 The curve case: Induced maps

We will need the following easy fact further on.

Lemma 5.4. Let ι : Z → M be a closed embeddings of an irreducible subvariety. Then we have
HomM (E, ι∗L) = 0 for all L ∈ Pic(Z) and E ∈ Coh(M) with suppE 6⊃ Z.

For the present and the next two subsections, let X = C be a smooth curve. By Lemma 4.8,
we have Λ∗m(C) = OC [0]. Using the notation of Section 5.3, we get isomorphisms

P(i, j)k ∼= IndS`×S`Sj×Sk−j×S`−k,e×Si×Sk−i O[k],[k],e ⊗ a[j+1,k] ⊗ a[i+1,k] ⊗ p∗ω
−(k−j)
C [−(k − j)]

∼= IndS`×S`Sj×Sk−j×S`−k,e×Sk Č
k−i
k

(
O[k],[k],e ⊗ p∗ω

−(k−j)
C

)
⊗ a[j+1,k][−(k − j)] (5.9)

for k = max{i, j}, . . . , `. The second isomorphism is due to the general fact that for subgroups
V ⊂ U ⊂ G of a finite group G, there is an isomorphism of functors IndGV

∼= IndGU ◦ IndUV .

In particular, P(i, j)k is concentrated in degree k − j, so that (5.7) induces an isomorphism
H k−j (Ri ?Hj) ∼= H k−j(P(i, j)k).

Lemma 5.5. Let max{i, j} 6 k 6 `. Under the isomorphism (5.9), the morphism

H k−j (Ri ?Hj) ∼= H k−j(P(i, j)k)→H k−j(P(i− 1, j)k) ∼= H k−j (Ri−1 ?Hj
)

induced by the differentialHi−1→Hi is given by IndS`×S`Sj×Sk−j×S`−k,e×Sk ď
k−i(O[k],[k],e⊗p∗ω

−(k−j)
C

)
.

Here, ďk−i
(
O[k],[k],e ⊗ p∗ω

−(k−j)
C

)
denotes the differential in degree k − i of the complex

Č•
(
O[k],[k],e ⊗ p∗ω

−(k−j)
C

)
.

Proof. Recall that P(i, j)k = ⊕Index(i,j)k P(I1,K1, I2,K2, µ); see Section 5.3. Under the isomor-
phism (5.9), this gives the direct-sum decomposition

Čk−ik

(
O[k],[k],e ⊗ p∗ω

−(k−j)
C

)
⊗ a[j+1,k][−(k − j)] ∼=

⊕
I2⊂[k], |I2|=i

P([j], [k], I2, [k], e) .

By Lemma 5.4, all the components P([j], [k], I2, [k], e)→ P(I ′1,K
′
1, I
′
2,K

′
2, µ) of the map

P([j], [k], I2, [k], e) ↪→ P(i, j)k → P(i− 1, j)k (5.10)

are zero unless K ′1 = K ′2 = [k] and µ = e. They are also zero for I ′1 6= [j] since our morphism
Ri ?Hj → Ri−1 ?Hj is given by the identity on the factor Hj , and P(I1,K1, I2,K2, µ) arises as

pr13∗
(
pr∗23R(I2, J2, µ2) ⊗ pr∗12H(I1, J1, µ1)

)1×SJ1∩J2
×1

; see (5.5) and (5.6). In summary, all the
non-zero components of (5.10) are of the form P([j], [k], I2, [k], e) → P([j], [k], I ′2, [k], e). By the
adjunction Res a Ind, it follows that the map H k−j(P(i, j)k) → H k−j(P(i − 1, j)k) is of the
form IndS`×S`Sj×Sk−j×S`−k,e×Sk(f) for some

f : Čk−ik

(
O[k],[k],e ⊗ p∗ω

−(k−j)
C

)
→ Čk−i+1

k

(
O[k],[k],e ⊗ p∗ω

−(k−j)
C

)
,

and we need to prove that f = ďk−i
(
O[k],[k],e ⊗ p∗ω

−(k−j)
C

)
. For this purpose, by Corollary 5.2, it

is sufficient to show that the component

H k−j(P([j], [k], [i], [k], e)
)
→H k−j(P([j], [k], [i− 1], [k], e)

)
(5.11)
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of H k−j(P(i, j)k)→H k−j(P(i− 1, j)k) is non-zero. By (5.5) and (5.6), we have

P
(
[j], [k], [i], [k], e

) ∼= [R([i], [n+ i], e
)
?H
(
[j], J1, e

)]S[n+i+j−k] ,

where a possible choice of J1 is J1 = [n + i + j − k] ∪ [n + i + 1, n + k]. In degree k − j, the
S[n+i+j−k]-action on R

(
[i], [n+ i], e

)
?H
(
[j], J1, e

)
is trivial because given by the representation

∧0%[n+i+j−k]; see (5.3). Hence,

H k−j(P([j], [k], [i], [k], e)
) ∼= H k−j(R([i], [n+ i], e

)
?H
(
[j], J1, e

))
. (5.12)

Analogously, we get

H k−j(P([j], [k], [i− 1], [k], e)
) ∼= H k−j(R([i− 1], [2, n+ i], e

)
?H
(
[j], J1, e

))
. (5.13)

Under (5.12) and (5.13), the morphism (5.11) corresponds to the morphism

H k−j(R([i], [n+ i], e
)
?H
(
[j], J1, e

))
−→H k−j(R([i− 1], [2, n+ i], e

)
?H
(
[j], J1, e

))
induced by the restriction O[i−1],[2,n+i],e → O[i],[n+i],e. As pointed out at the end of Section 5.2,
this is an isomorphism.

5.7 The curve case: Full faithfulness

Proposition 5.6. For X = C a curve, we have R ?H ∼= IndS`,S`S`,e
O∆

C×C`
.

Proof. Consider the spectral sequences E(j)p,q1 = H q
(
R−p ? Hj

)
=⇒ H p+q

(
R ? Hj

)
; see

Section 5.4. By (5.9) and Lemma 5.5, for k = j, . . . , `, the (k − j)th row of E(j)1 is given by

the complex IndS`×S`Sj×Sk−j×S`−k,e×Sk Č
•
k

(
O[k],[k],e⊗p∗ω

−(k−j)
X

)
⊗a[j+1,k] shifted into degrees [−k, 0].

The induction functor is exact. Thus, all the rows of the spectral sequences are exact with one
exception: the zero row of E(0)1 is given by the single non-zero object E(0)0,0

1 = H 0(P(0, 0)0);
see Convention 5.3. It follows that R ? Hj = 0 for j > 1 and R ? H0 ∼= H 0(P(0, 0)0). Now,
by the spectral sequence (5.8) or, alternatively, by the fact that R ? H is a left convolution of
R ?H0 → R ?H1 → · · · → R ?H`, it follows that R ?H ∼= H 0(P(0, 0)0) ∼= IndS`,S`S`,e

O∆
C×C`

.

Proof of Theorem 1.1(i)(a). The identity functor id : Db
S`

(
C × C`

)
→ Db

S`

(
C × C`

)
equals the

equivariant FM transform with kernel IndS`×S`(S`)∆
∆C×C` ; see Remark 2.2. Note that we have

(S`)∆ = S`,e ⊂ S` ×S`. Thus, the assertion R`,n ◦H`,n
∼= id follows from Proposition 5.6.

5.8 The curve case: Orthogonality

In this section, we will outline the proof of Theorem 1.1(i)(b). Lemmas 5.7 and 5.8 below state
formulae for the convolution products Ri`′,n′ ? H

j
`,n for n + ` = n′ + `′ and the induced maps

between them. The proofs, which are completely analogous to the computations of Sections 5.1–
5.3 and 5.6, are left to the reader. The author decided to explicitly write down the computations
of Ri`′,n′ ? H

j
`,n in the Sections 5.1 and 5.3 only in the special case (`, n) = (`′, n′) in order to

avoid the heavier notation that the general case would have required and because the special
case (`, n) = (`′, n′) is entirely sufficient for parts (i)(a) and (ii) of Theorem 1.1. In particular, the
reader mainly interested in the surface case may safely skip the rest of the current subsection.

Let `, n, `′, n′ ∈ Z be integers such that n > max{1, `}, n′ > max{1, `′}, and n + ` = n′ + `′.
We introduce some notation which, for (`, n) = (`′, n′), specialises to the notation of the previous
subsections. For I1 ⊂ K1 ⊂ [`], I2 ⊂ K2 ⊂ [`′], and µ : K̄1 → K̄2 a bijection, we consider

ΓK1,K2,µ :=
{

(x, x1, . . . , x`, z, z1, . . . , z`′) | x = xa = zb ∀ a ∈ K1, b ∈ K2, xc = zµ(c) ∀ c ∈ K̄1

}
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as a subvariety of X ×X` ×X ×X`′ . We set OK1,K2,µ := OΓK1,K2,µ
and

P(I1,K1, I2,K2, µ) := OK1,K2,µ ⊗ aK1\I1 ⊗ aK2\I2 ⊗ p
∗(Λ∗n′+i+j−k(X)⊗ ω−(k−j)

X

)
[−(k − j)d] ,

where j := |I1| and k := |K1|. Again, p : X ×X` ×X ×X`′ → X denotes the projection to the
third factor. For 0 6 i 6 `′, 0 6 j 6 `, and max{n′ − n+ i, j} 6 k 6 `, we set

P(i, `′, j, `)k := IndS`×S`Sj×Sk−j×S`−k,e×Si×Sk+n−n′−i
P([j], [k], [i], [k + n− n′], e) .

Lemma 5.7. Ri`′,n′ ?H
j
`,n
∼=
⊕`

k=max{n′−n+i,j} P(i, `′, j, `)k.

Proof. This follows from computations analogous to those of Sections 5.1 and 5.3.

Lemma 5.8. Let X = C be a curve and `′ > `. Then, for 0 6 j 6 k 6 `, we have the vanishing
H k−j (Ri`′,n′ ?Hj`,n) = 0 for i > k + n− n′, and the sequence

0→H k−j (Rk+n−n′
`′,n′ ?Hj`,n

)
→ · · · →H k−j (R0

`′,n′ ?H
j
`,n

)
→ 0 ,

whose differentials are induced by the differentials of H`′,n′ , is isomorphic to

IndS`×S`Sj×Sk−j×S`−k,e×Sk+n−n′
Č•k+n−n′

(
O[k],[k+n−n′],e ⊗ p∗ω

−(k−j)
C

)
⊗ a[j+1,k] .

In particular, it is an exact sequence.

Proof. This follows from computations analogous to those of Sections 5.2 and 5.6.

Proposition 5.9. Let X = C be a curve and `′ > `. Then R`′,n′ ?H`,n = 0.

Proof. This follows from Lemma 5.8 together with spectral sequences analogous to those of
Section 5.4.

5.9 The surface case: Induced maps

For the remainder of this section, let X be a smooth surface. Recall that p : X×X`×X×X` → X
denotes the projection to the third factor, and set

S̃X := ( )⊗ p∗ωX [2] ∈ Aut
(

Db
S`×S`

(
X ×X` ×X ×X`

))
and S̃

−[a,b]
X := S̃−aX ⊕S̃

−(a+1)
X ⊕· · ·⊕S̃−bX for a 6 b two integers. By Lemma 4.8, we have p∗Λ∗m(X) =

S̃
−[0,m−1]
X (OX×X`×X×X`). Hence, by the results of Section 5.3, for k = max{i, j}, . . . , `, we get

P(i, j)k ∼= S̃
−[k−j,n+i−1]
X IndS`×S`Sj×Sk−j×S`−k,e×Si×Sk−i O[k],[k],e ⊗ a[j+1,k] ⊗ a[i+1,k]

∼= S̃
−[k−j,n+i−1]
X IndS`×S`Sk×S`−k,e×Sk Ĉ

j
kČ

k−i
k (O[k],[k],e) . (5.14)

Here, the inner term Čk−ik is interpreted by considering Sk as a subgroup of S` × S` by the

embedding into the second factor, while the outer term Ĉjk is interpreted by considering Sk as
a subgroup of S` ×S` by the embedding into the first factor. In particular, we have

H 2r
(
P(i, j)k

) ∼= IndS`×S`Sk×S`−k,e×Sk Ĉ
j
kČ

k−i
k

(
O[k],[k],e ⊗ p∗ω−rX

)
for k − j 6 r 6 n+ i− 1 . (5.15)

Lemma 5.10. Let k, k′ ∈ [max{i, j}, `]. The components H q(P(i, j)k)→H q(P(i−1, j)k′) of the

morphism H q
(
Ri?Hj

)
→H q(Ri−1?Pj) which is induced by the differentialHi−1 → Hi are zero

for k 6= k′. Furthermore, under the isomorphism (5.15), for k− j 6 r 6 n+ i− 2, the component

H 2r(P(i, j)k)→H 2r(P(i− 1, j)k) is given by IndS`×S`Sk×S`−k,e×Sk Ĉ
j
kď
k−i
k

(
O[k],[k],e ⊗ p∗ω−rX

)
.
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Here, dk−ik

(
O[k],[k],e ⊗ p∗ω−rX

)
denotes the differential of the complex C•

(
O[k],[k],e ⊗ p∗ω−rX

)
.

Furthermore, we regard Ĉjk as the functor IndSkSi×Sk−i

(
( )⊗ai), which is applied to the morphism

dk−ik

(
O[k],[k],e ⊗ p∗ω−rX

)
to give a morphism ĈjkC

k−i
k

(
O[k],[k],e ⊗ p∗ω−rX

)
→ ĈjkC

k−i+1
k

(
O[k],[k],e ⊗

p∗ω−rX
)
.

Proof. The components H(I ′2, J
′
2, µ
′
2)→ H(I2, J2, µ2) of the differential Hi−1 → Hi are non-zero

only if I ′2 ⊂ I2; compare with Section 3.2. Thus, following the computations of Section 5.3, the
only components P(i, j)k → P(i−1, j)k′ of Ri ?Hj → Ri−1 ?Hj which are possibly non-zero are
those with k = k′ or k − 1 = k′. But H q(P(i, j)k)→H q(P(i− 1, j)k−1) is zero by Lemma 5.4.

Exactly as in the curve case, we can reduce the proof of the second assertion to the claim that

H 2r
(
P([j], [k], [i], [k], e)

)
→H 2r

(
P([j], [k], [i− 1], [k], e)

)
(5.16)

is non-zero; see Corollary 5.2 and the proof of Lemma 5.5. By (5.5) and (5.6), we have

H 2r
(
P([j], [k], [i], [k], e)

) ∼= H 2r
(
R
(
[i], [n+ i], e

)
?H
(
[j], J1, e

))S[n+i+j−k] ,

where a possible choice of J1 is J1 = [n+ i+ j − k] ∪ [n+ i+ 1, n+ k]. Also,

H 2r
(
P([j], [k], [i− 1], [k], e)

) ∼= H 2r
(
R
(
[i− 1], [2, n+ i], e

)
?H
(
[j], J1, e

))S[2,n+i+j−k]

∼=
[ ⊕
a∈[n+i+j−k]

H 2r
(
R
(
[i− 1], [n+ i] \ {a}, e

)
?H
(
[j], J1, e

))]S[n+i+j−k]

,

where the second isomorphism is due to Section 2.2. As explained in Section 5.2, under the
isomorphism (5.3), the components of the induced map

H 2r
(
R
(
[i], [n+ i], e

)
?H
(
[j], J1, e

))
−→

⊕
a∈[n+i+j−k]

H 2r
(
R
(
[i− 1], [n+ i] \ {a}, e

)
?H
(
[j], J1, e

))
(5.17)

are given by the canonical surjections %[n+i+j−k] → %[n+i+j−k]\{a}. It follows by [Sca09, Lem-
ma B.6(3)] that the map induced by (5.17) on the S[n+i+j−k]-invariants, which is exactly (5.16),
is an isomorphism.

Lemma 5.11. Let k, k′ ∈ [max{i, j+1}, `]. The components H q(P(i, j)k)→H q(P(i, j+1)k′) of
the morphism H q

(
Ri ?Hj

)
→H q

(
Ri ?Hj+1

)
which is induced by the differential Hj → Hj+1

are zero for k′ /∈ {k, k + 1}. For k − j 6 r 6 n + i − 1, the component H 2r(P(i, j)k) →
H 2r(P(i, j + 1)k) is given by IndS`×S`Sk×S`−k,e×Sk d̂

j
k

(
Čk−ik

(
O[k],[k],e ⊗ p∗ω−rX

))
.

Proof. The proof is analogous to that of Lemma 5.10. The first assertion follows from the fact
that the only non-zero components of Hj → Hj+1 are of the form H(I1, J1, µ1) → H(I ′1, J

′
1, µ
′
1)

with I1 ⊂ I ′1. The second assertion can be reduced to the non-vanishing of the component

H 2r
(
P([j], [k], [i], [k], e)

)
→H 2r

(
P([j + 1], [k], [i], [k], e)

)
.

Set J2 := [n+ i+ j + 1− k] ∪ [n+ j + 2, n+ k]. There are isomorphisms

H 2r
(
P([j + 1], [k], [i], [k], e)

) ∼= H 2r
(
R
(
[i], J2, e

)
?H
(
[j + 1], [n+ j + 1], e

))S[n+i+j+1−k] ,

H 2r
(
P([j], [k], [j], [k], e)

)
∼=
[ ⊕
b∈[n+i+j+1−k]

H 2r
(
R
(
[i], J2, e

)
?H
(
[j], [n+ j + 1] \ {b}, e

))]S[n+i+j+1−k]

.
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Again following Section 5.2, under the isomorphism (5.4), the components of the induced map⊕
b∈[n+i+j+1−k]

H 2r
(
R
(
[i], J2, e

)
?H
(
[j], [n+ j + 1] \ {b}, e

))
−→H 2r

(
R
(
[i], J2, e

)
?H
(
[j + 1], [n+ j + 1], e

))
(5.18)

are given by the canonical injections %[n+i+j+1−k]\{b} → %[n+i+j+1−k]. It follows by [Sca09,
Lemma B.6(4)] that (5.18) induces an isomorphism on the S[n+i+j+1−k]-invariants.

In fact, one can compute that the component H 2r(P(i, j)k)→H 2r(P(i, j+1)k+1) is induced
by the restriction O[k],[k],e → O[k+1],[k+1],e. But this will not be relevant for our purposes.

5.10 The surface case: The cohomology of R ? H
Recall that, for 0 6 m < k, there is the stupid truncation σ6mČ•k with

σ6mČ•k =
(
0→ Č0

k → · · · → Čmk → 0
)
, H α

(
σ6mČ•k

)
=

{
coker ďm−1 for α = m,

0 else ,

where, for m = 0, we have coker ď−1 = Č0
k . For max{i, j} 6 k 6 `, we set

Q(i, j, k) := IndS`×S`Sk×S`−k,e×Sk Ĉ
j
k

(
T (i, k)

)
, T (i, k) := H k−i(σ6k−iČ•k(O[k],[k],e ⊗ p∗ω

−(n+i−1)
X

))
.

Lemma 5.12. For 0 6 j 6 ` and 1 6 i 6 `, we have

E(j)
−i,2(n+i−1)
2

∼= ⊕`k=max{i,j}Q(i, j, k) .

For j > 1, these are the only non-vanishing terms on the 2-level of E(j). For j = 0, there are the
additional non-vanishing terms E(0)0,2r

2 = IndS`×S`S`,e
O∆

X×X`
⊗ p∗ω−rX for r = 0, . . . , n− 1.

Proof. The terms E(j)p,q1 = H q
(
R−p ?Hj

)
are described by (5.7) together with (5.14). We see

that the only non-vanishing rows on the 1-level of E(j) have q = 2r, where r = 0, . . . , n+ `− 1.
By Lemma 5.10, for i > 1, row q = 2(n+ i− 1) is the complex

σ6−i
( ⊕̀
k=max{i,j}

IndS`×S`Sk×S`−k,e×Sk Ĉ
j
k

(
Č•k(O[k],[k],e ⊗ p∗ω

−(n+i−1)
X )

)
[k]

)

∼=
⊕̀

k=max{i,j}

σ6k−i
(
IndS`×S`Sk×S`−k,e×Sk Ĉ

j
k

(
Č•k
(
O[k],[k],e ⊗ p∗ω

−(n+i−1)
X

)))
[k] . (5.19)

Since the functor IndS`×S`Sk×S`−k,e×Sk Ĉ
j
k( ) is exact, it follows that the cohomology of row q =

2(n+ i− 1) is concentrated in degree −i and equal to ⊕`k=max{i,j}Q(i, j, k). This proves the first

assertion. For r = 0, . . . , n− 1, row q = 2r of E(j)1 is given by⊕̀
k=j

IndS`×S`Sk×S`−k,e×Sk Ĉ
j
k

(
Č•k
(
O[k],[k],e ⊗ p∗ω−rX

))
[k] .

Thus, it is an exact complex with one exception: in the case j = 0, the one-term complex
IndS`×S`S`,e

Ĉ0
0

(
Č•0
(
O∅,∅,e ⊗ p∗ω−rX

))
[0] ∼= IndS`×S`S`,e

O∆
X×X`

⊗ p∗ω−rX [0] occurs as a direct summand;

compare with Convention 5.3.
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Corollary 5.13. For j = 1, . . . , `, we have

H q
(
R ?Hj

)
=

{
⊕`k=max{i,j}Q(i, j, k) for q = 2(n− 1) + i, i = 1, . . . , ` ,

0 else .

Furthermore,

H q
(
R ?H0

)
=


⊕`k=max{i,j}Q(i, 0, k) for q = 2(n− 1) + i, i = 1, . . . , ` ,

IndS`×S`S`,e
O∆

X×X`
⊗ p∗ω−rX for q = 2r, r = 0, . . . , n− 1 ,

0 else .

Proof. By the positioning of the non-vanishing terms, we see that all the E(j) degenerate at the
2-level. The result follows since E(j)q = H q

(
R ?Hj

)
; see Section 5.4.

Lemma 5.14. Let A be an abelian category and, for α = 1, . . . ,m, let (C•α, dα) be complexes
in A. Let C• be a complex with terms Cj = Cj1 ⊕ · · · ⊕ C

j
m and differentials of the form

dj =


dj1 0 · · · 0

∗ dj2 · · · 0
...

. . .
. . .

...

∗ · · · ∗ djm

 ,

where the stars stand for arbitrary morphisms. Then, if all the C•α are exact, C• is exact too.

Proof. Let B• be the complex with terms Bj = Cj1 ⊕ · · · ⊕ C
j
m−1 and differentials

djB =


dj1 0 · · · 0

∗ dj2 · · · 0
...

. . .
. . .

...

∗ · · · ∗ djm−1

 .

By induction, we can assume that B• is an exact complex. There is the short exact sequence
of complexes 0 → C•m → C• → B•, where the first map is given by the inclusion of the last
direct summand and the second map is the projection to the first m− 1 direct summands. The
exactness of C• follows from the associated long exact cohomology sequence.

For r ∈ Z, we set S̄rX := S̃rX
(
IndS`×S`S`,e

O∆
X×X`

)
= IndS`×S`S`,e

O∆
X×X`

⊗ p∗ωrX [2r]. We have

S̄rX =
(
S̄1
X

)?r
and

FMS̄rX
= S̄rX = ( )⊗

(
ωrX �OX`

)
[2r] : Db

S`

(
X ×X`

)
→ Db

S`

(
X ×X`

)
.

Proposition 5.15. H ∗(R ?H) = S̄−[0,n−1]
X := S̄0

X ⊕ S̄
−1
X ⊕ · · · ⊕ S̄

−(n−1)
X .

Proof. We consider the spectral sequence Ep,q1 = H q(R ?Hp) =⇒ H p+q(R ?H); see (5.8). By
Corollary 5.13, the only non-vanishing rows of E1 are

q = 0, 2, . . . , 2(n− 1), 2(n− 1) + 1, . . . , 2(n− 1) + ` .

Note that the terms of row q = 2(n − 1) + i, for i = 1, . . . , `, equal those of the exact complex⊕`
k=i Ind

S`×S`
Sk×S`−k,e×Sk Ĉ

•
k(T (i, k)). For j > k, we set Q(i, j, k) = 0 and d̂jk = 0. By Lemma 5.11,
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the map dj : Ej,q1 = ⊕`k=iQ(i, j, k)→ Ej+1,q
1 = ⊕`k=iQ(i, j + 1, k) is given by

dj =


dji 0 · · · 0

∗ dji+1 · · · 0

0
. . .

. . .
...

0 0 ∗ dj`

 , djk = IndS`×S`Sk×S`−k,e×Sk d̂
j
k(T (i, k)) .

It follows by Lemma 5.14 that row q = 2(n− 1) + i is exact for all i = 1, . . . , `.

For r = 0, . . . , n − 1, row q = 2r has only one non-vanishing term, namely E0,2r
1 = S̄−rX . In

summary, the only non-zero terms on the 2-level are E0,2r
2 = S̄−rX for r = 0, . . . , n−1, from which

the proposition follows.

5.11 The surface case: Splitting and monad structure

Lemma 5.16. Let A be an abelian category with enough injectives, and consider A•, B•, C• ∈
Db(A) together with morphisms f : A• → C• and g : B• → C• in Db(A). Let there be an m ∈ Z
such that the cohomology of A• and B• is concentrated in degrees smaller than m and such that
H i(f) as well as H i(g) are isomorphisms for all i < m. Then A• ∼= B• in Db(A).

Proof. We may assume Ai = Bi = 0 for all i > m; see [Huy06, Example 2.31]. Choose an injective
complex I• which is quasi-isomorphic to C•. Then f and g are represented by morphisms of
complexes f• : A• → I• and g• : B• → I•; see [Huy06, Lemma 2.39]. These morphisms factor
through the smart truncation τ6m−1I• and, by the hypothesis, these factorisations are quasi-
isomorphisms. Thus, they are isomorphisms in Db(A), which proves the assertion.

Proposition 5.17. R ?H ∼= S̄−[0,n−1]
X .

Proof. This follows by applying the previous lemma to the situation that f : R ?H → R ?H0 is
the map induced by the canonical map H → H0 and g is the composition

S̄−[0,n−1]
X → R0 ?H0 → R ?H0 ,

where the first map is the inclusion of the direct summand P(0, 0)0
∼= S̄−[0,n−1]

X under the
isomorphism (5.7) and the second map is induced by R0 → R.

Proof of Theorem 1.1(ii). By Proposition 5.17, the functor H`,n fulfils condition (1) of a Pn−1-
functor.

Set F`,n := δ[n]∗ ◦Man ◦ triv : Db
S`

(
X ×X`

)
→ Db

Sn×S`
(
Xn ×X`

)
, so that H0

`,n = Ind ◦F`,n;

compare with (3.5). By (4.4), we have FR`,n ◦ F`,n = S̄
−[0,n−1]
X . The unit of adjunction η : id →

Res ◦ Ind gives a map of monads FR`,nηF`,n : FR`,n ◦ F`,n → R0
`,n ◦H0

`,n. On the level of the kernels,

it coincides with the inclusion S̄−[0,n−1]
X → R0 ? H0. Since F`,n = F0,n � idDbS`

(X`), the monad

multiplication µ(F`,n) : FR`,n ◦ F`,n ◦ FR`,n ◦ F`,n → FR`,n ◦ F`,n equals µ(F0,n) � id. By [Kru15],

the functor F0,n is a Pn−1-functor. In particular, the monad structure of F0,n has the right

shape, which means that the components S−1
X ◦ S

−k
X → S

−(k+1)
X of µ(F0,n) are isomorphisms for

k = 0, . . . , n−2. Thus, also the components S̄−1
X ◦ S̄

−k
X → S̄

−(k+1)
X of µ(F`,n) are isomorphisms for

k = 0, . . . , n− 2. Equivalently, on the level of the kernels, the components S̄−1
X ◦ S̄

−k
X → S̄−(k+1)

X

of the monad multiplication

R(∅, [n], e) ?H(∅, [n], e) ?R(∅, [n], e) ?H(∅, [n], e)→ R(∅, [n], e) ?H(∅, [n], e) ,

706



P-functor versions of the Nakajima operators

which we denote again by µ(F`,n), are isomorphisms. Let U :=
(
X × X`

)
\ (∪∅6=I⊂[`]DI), and

let u : U → X × X` be the open embedding. Then FR`,nηF`,n : FR`,n ◦ F`,n → R0
`,n ◦ H0

`,n is an

isomorphism over U ×U , and H`,n ◦ u∗ ∼= H0
`,n ◦ u∗. It follows that the components S̄−1

X ◦ S̄
−k
X →

S̄−(k+1)
X of

µ(H`,n) : R ?H ?R ?H → R ?H

are isomorphisms over U × U . Since the S−kX [2k] are direct sums of line bundles on the graphs
of the S`-action on X × X` and the codimension of the complement of U in X × X` is 2, it

follows that the components S̄−1
X ◦ S̄

−k
X → S̄−(k+1)

X of µ(H`,n) are isomorphisms over the whole

X ×X` ×X ×X`. Together with the fact that, for i < k, the components S̄−1
X ◦ S̄

−i
X → S̄

−(k+1)
X

are zero for degree reasons, this amounts to condition (2) of a Pn−1-functor.

That the H`,n satisfy condition (3) of a Pn−1-functor was already shown in Section 3.3.

6. Similarities to the Nakajima operators

In this section, in order to justify the title of our paper, we will explain some similarities between
the Pn−1-functors H`,n and the Nakajima operators q`,n.

Let us quickly recall Nakajima’s construction [Nak97]. Throughout this section, X will be
a smooth quasi-projective surface. The Nakajima operator q`,n : H∗(X×X [`],Q)→ H∗

(
X [n+`],Q

)
is the linear map induced by the correspondence

X ×X [`] ×X [n+`] ⊃ Z`,n := {(x, [ξ], [ξ′]) | ξ ⊂ ξ′, µ([ξ′]) = µ([ξ]) + n · x} , (6.1)

where µ : X [n] → X(m) = Xm/Sm denotes the Hilbert–Chow morphism and points in the
symmetric product are written as formal sums. For every α ∈ H∗(X,Q), by the Künneth formula,
there is the map

iα : H∗
(
X [`],Q

)
→ H∗

(
X ×X [`],Q

) ∼= H∗(X,Q)⊗ H∗
(
X [`],Q

)
, iα(β) = α⊗ β .

The operators q`,n(α) := q`,n ◦ iα : H∗
(
X [`],Q

)
→ H∗

(
X [n+`],Q

)
are again called Nakajima

operators. Furthermore, q`,−n(α) : H∗
(
X [n+`],Q

)
→ H∗

(
X [`],Q

)
is defined as the adjoint of

q`,n(α) with respect to the intersection pairing. One usually considers all of these operators for
varying values of ` together as operators on H := ⊕`>0 H

∗ (X [`],Q
)

by setting

qn(α) := ⊕` q`,n(α) : ⊕` H∗
(
X [`],Q

)
→ ⊕`H∗

(
X [n+`],Q

)
,

q−n(α) := ⊕` q`,−n(α) : ⊕` H∗
(
X [n+`],Q

)
→ ⊕`H∗

(
X [`],Q

)
.

Then, as shown in [Nak97], the commutator relations between these operators are given by

[qn(α), qn′(β)] = n · δn,−n′〈α, β〉 · idH . (6.2)

This agrees with the relations between the generators of the Heisenberg algebra associated with
H∗(X,Q), which shows that the Nakajima operators induce an action of the Heisenberg algebra
on H, the cohomology of the Hilbert schemes. Taking n = −n′ and considering the degree ` piece
of formula (6.2) for ` < n, we get

q`,−n(α) ◦ q`,n(β) = n · 〈α, β〉 · id : H∗
(
X [`],Q

)
→ H∗

(
X [`],Q

)
. (6.3)
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6.1 Support of the image under the McKay correspondence

For every m ∈ N, by [BKR01] and [Hai01], there is the derived McKay correspondence

Φm = FMOImX : Db
(
X [m]

) ∼=−→ Db
Sm

(
Xm

)
.

It is the Fourier–Mukai transform along the structure sheaf of the isospectral Hilbert scheme

ImX =
(
X [m] ×X(m) Xm

)
red

=
{

([ξ], x1, . . . , xm) |µ([ξ]) = x1 + · · ·+ xm
}
⊂ X [m] ×Xm .

We can translate our P-functors H`,n from the equivariant side to the Hilbert scheme side of the
McKay correspondence by setting

H̃`,n := Φ−1
n+` ◦H`,n ◦ (id�Φ`) : Db

(
X ×X [`]

)
→ Db

(
X [n+`]

)
.

Recall that the Fourier–Mukai kernel of H`,n is supported on

suppH`,n =
⋃

Index`,n(i)

ΓI,J,µ ⊂ X ×X` ×Xn+` ;

compare with Section 3.2. Using [Orl03, Proposition 2.1.6] or, more precisely, its equivariant
analogue [KS15a, Lemma 2.7], one can deduce quite easily that the kernel of H̃`,n is supported
on Z`,n ⊂ X × X [`] × X [`+n], the correspondence defining the Nakajima operator q`,n. Clearly,
it would be desirable to have a more concrete description of the kernel as an object in Db

(
X ×

X [`] × X [n+`]
)
, but for the time being, we are unable to provide one except for the case ` = 0

and n = 2; see [Kru15, Section 4] and Section 7.2.

6.2 The functors H`,n as a partial Heisenberg categorification

In this subsection, let X be a projective surface with trivial canonical bundle ωX ∼= OX , that is,
an abelian or a K3 surface. In this case, we will see that the functors H̃`,n, together with their

right adjoints R̃`,n, fulfil some categorical versions of the Heisenberg relations (6.2).

Let X
q←− X ×X [`] p−→ X [`] be the projections. For E ∈ Db(X), we consider the functor

IE := q∗E ⊗ p∗( ) : Db
(
X [`]

)
→ Db

(
X ×X [`]

)
, IE(F ) = E � F .

Its right adjoint is IRE = p∗(q
∗E∨ ⊗ ( )). We set

H̃`,n(E) := H̃`,n ◦ IE : Db
(
X [`]

)
→ Db

(
X [n+`]

)
,

R̃`,n(E) := IRE ◦ R̃`,n : Db
(
X [`+n]

)
→ Db

(
X [`]

)
.

For E,F ∈ Db(X), by Theorem 1.1(ii), we get

R̃`,n(E) ◦ H̃`,n(F ) ∼= IRE ◦ R̃`,n ◦ H̃`,n ◦ IF ∼= IRE ◦ IF ([0]⊕ [−2]⊕ · · · ⊕ [−2(n− 1)])
∼= ( )⊗C Ext∗(E,F )([0]⊕ [−2]⊕ · · · ⊕ [−2(n− 1)]) .

On the level of the Grothendieck group, this gives

R̃`,n(E) ◦ H̃`,n(F ) = n · χ(E,F ) · id : K
(
X [`]

)
→ K

(
X [`]

)
, (6.4)

which fits nicely with (6.3).

Remark 6.1. Note that the assumption n > ` is necessary for (6.3) to hold, as, for n 6 `, the
composition q`,n(β) ◦ q`,−n(α) contributes non-trivially to the commutator [qn(α), qn(β)]. Hence,
from the standpoint of categorification, we would not necessarily expect the Nakajima opera-
tors q`,n with n 6 ` to lift to P-functors on the level of derived categories.
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Another special case of (6.2) is the relation q1,−n(α) ◦ q0,n+1(β) = 0. However, by (4.17), for

general E,F ∈ Db(X), the composition R̃1,n(E) ◦ H̃0,n+1(F ) does not induce the zero morphism
on the level of the Grothendieck groups. Thus, it seems like the collection of the H`,n does not
give rise to a categorified action of the Heisenberg algebra.

Categorified Heisenberg actions on the Hilbert schemes were constructed in [CL12] and
[Kru18]. However, these categorical actions are constructed by lifting generators of the Heisen-
berg algebra different from the qn(α). Hence, it would still be of interest to somehow adapt the
functors H`,n such that they provide a categorification of the Heisenberg action.

7. Further remarks

7.1 Induced autoequivalences on the Hilbert schemes

Let X be a smooth quasi-projective surface. In this section, we study, for n > max{1, `}, the
P-twists PH`,n ∈ Aut

(
Db

Sn

(
Xn
)) ∼= Aut

(
Db
(
X [n]

))
associated with the P-functors H`,n. Note

that H0,2 and H1,2 are P1-functors, which means that they are spherical. Hence, there are also
the associated spherical twist TH0,2 and TH1,2 , which satisfy T 2

H0,2
∼= PH0,2 and T 2

H1,2
∼= PH0,2 .

All objects in the image of H`,n are supported on

∇`,n :=
⋃

I⊂{1,...,`+n}
|I|=n

∆I =
{

(x1, . . . , xn+`) | at least n of the xi coincide
}
⊂ Xn+` .

This follows from the fact that ∇`,n is the image of suppH`,n =
⋃

ΓI,J,µ under the projection
X×X`×X`+n or, alternatively, from Proposition 3.3. Inside ∇`,n, there is the dense open subset

∇`,n0 :=
{
x ∈ X`+n | π(x) = n · y0 + y1 + · · ·+ y` with pairwise distinct yi ∈ X

}
⊂ ∇`,n ⊂ Xn+` ,

where π : Xn+` → X(n+`) denotes the quotient morphism. For x ∈ Xn+`, we denote the orbit of x
under the Sn+`-action on Xn+` by orb(x) ⊂ X`+n. We set C̄(x) := Oorb(x) ⊗ an+` ∈ Db

Sm

(
Xm

)
.

Proposition 7.1. Let X be a smooth quasi-projective surface. For n > max{`, 1}, we have

PH`,n(C̄(x)) ∼=

{
C̄(x)[−2(n− 1)] for x ∈ ∇`,n0 ,

C̄(x) for x ∈ X`+n \ ∇`,n ,

TH0,2

(
C̄(x)

) ∼= {C̄(x)[−1] for x ∈ ∆ ,

C̄(x) for x ∈ X2 \∆ ,
TH1,2

(
C̄(x)

) ∼= {C̄(x)[−1] for x ∈ ∇1,2 ,

C̄(x) for x ∈ X`+n \ ∇`,n .

Proof. Every x ∈ ∇`,n0 has a point of the form y = (y, . . . , y, y1, . . . , y`) in its Sn+`-orbit. Then,
by Proposition 3.3, we have H`,m−`(C(y, y1, . . . , y`)) ∼= C̄(y) ∼= C̄(x), hence C̄(x) ∈ imH`,n.
Furthermore, by (3.7), we have R`,m−`

(
C̄(x)

)
= 0 for x ∈ Xn+` \ ∇`,n. The assertion for the

P-twist follows by (2.11), and the assertion for the spherical twists follows by (2.10).

7.2 Braid relation on (K3)[2]

As mentioned in the introduction, the first example of a P-functor was given by Addington
[Add16]. For X a K3 surface, it is the Fourier–Mukai transform Fn = FMIΞn : Db(X)→ D

(
X [n]

)
along the ideal sheaf of the universal subscheme Ξn ⊂ X ×X [n]. For n = 2, we can describe the
relation to the Nakajima-type P-functor H0,2. We set F := F2 and H := Φ−1

2 ◦ H0,2, both of
which are P1-functors, hence spherical, from Db(X) to Db(X [2]).
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Proposition 7.2. We have the isomorphism L ◦ F ∼= idDb(X), where L is the left adjoint of H.

Proof. We consider the commutative diagram with cartesian squares

Ξ
p //

q

��

X2

π

��

pr1 // X

E
j

aa

i}}

ν // X

δ

<<

δ̄ ""
X [2] µ // X(2) .

Here, π and q are S2-quotients, δ and δ̄ are the diagonal embeddings, and p and µ are the blow-
ups along the respective diagonals. Furthermore, i and j are the embeddings of the exceptional
divisor of the blow-ups, and ν is the P1-bundle morphism of the exceptional divisor to the
centre X of the blow-ups. We have an exact triangle of Fourier–Mukai transforms F → F ′ → F ′′

with

F ′ = FMO
X×X[2]

∼= OX[2] ⊗ H∗(X, ) , F ′′ = FMOΞ
∼= q∗ ◦ p∗ ◦ pr∗1 .

By [Kru15, Proposition 4.2], we have H ∼= i∗
(
ν∗( )⊗Oν(−1)

)
. Hence,

L ∼= ν!

(
i∗( )⊗Oν(1)

) ∼= ν∗
(
i∗( )⊗Oν(−1)

)
[1] .

As H∗(E,Oν(−1)) = 0, we get L(OX[2]) = 0, hence L ◦ F ′ ∼= 0. Furthermore, we compute

L ◦ F ′′ ∼= ν∗
(
i∗q∗p

∗ pr1∗( )⊗Oν(−1)
)
[1] ∼= ν∗

(
j∗q∗q∗p

∗ pr1∗( )⊗Oν(−1)
)
[1] . (7.1)

As the morphism ωq is a two-to-one cover branched over E, we have an exact triangle of Fourier–
Mukai transforms τ( )∗ ⊗ OΞ(−E) → q∗q∗ → idDb(Ξ), where τ ∈ S2 is the transposition; see

[Add16, Section 2.2(6)]. Combining this with (7.1) gives the exact triangle

ν∗
(
j∗
(
τ∗p∗ pr1∗( )⊗OΞ(−E)

)
⊗Oν(−1)

)
[1]→ L ◦ F ′′ → ν∗

(
j∗p∗ pr1∗( )⊗Oν(−1)

)
[1] . (7.2)

We have j∗ ◦ p∗ ∼= ν∗ ◦ δ∗ and δ∗ ◦ pr∗1 ∼= id∗ ∼= id. Hence, the rightmost term of the triangle
(7.2) is given by ν∗(ν

∗( )Oν(−1))[1], which vanishes by the projection formula as ν∗Oν(−1) = 0.
Similarly, since j∗ ◦ τ∗ ∼= j∗ and j∗OΞ(−E) ∼= Oν(1), the leftmost term of (7.2) is given by
[1] ◦ ν∗ ◦ ν∗ ∼= [1]. In summary, we have L ◦F ′ ∼= 0 and L ◦F ′′ ∼= [1], and the assertion follows by
the exact triangle L ◦ F → L ◦ F ′ → L ◦ F ′′.

The proposition implies that FR◦H ∼= id. Hence, by Proposition 2.3, we get the braid relation
TH ◦ TF ◦ TH ∼= TF ◦ TH ◦ TF in Aut

(
Db
(
X [2]

))
.

7.3 The case n = 1: Induction as a P-functor

In Section 3, we defined the functors H`,n : Db
S`

(
X × X`

)
→ Db

(
Xn+`

)
for n > 2. Regar-

ding (3.5), it is a natural extension to the case n = 1 to set

H0
`,1 := Ind

S`+1

S`
: Db

S`

(
X ×X`

)
→ Db

S`+1

(
X`+1

)
.

While the functors H`,n are Pn−1-functors for n > 2 (in the surface case), the functor H0
`,1 is

a P`-functor (for dimX arbitrary) which can be seen as a special case of the following observation.

Let G be a finite group, and let H 6 G be a subgroup such that there is an element g ∈ G of
order n = [G : H] such that 1, g, . . . , gn−1 forms a system of representatives of the right cosets.
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Let G act on a variety M . Recall that, in this case, the induction functor is given by

Ind := IndGH : Db
H(M)→ Db

G(M) , Ind(A) =
n−1⊕
k=0

gk∗A (7.3)

with the linearisation of Ind(A) given by permutation of the summands.

Lemma 7.3. The induction functor Ind is a Pn−1-functor with P-cotwist g∗.

Proof. The left and right adjoint of Ind is the restriction functor Res. By (7.3), we indeed
have Res ◦ Ind = id⊕g∗ · · · ⊕ g(n−1)∗, which is condition (1) of a Pn−1-functor. Condition (3)
of a Pn−1-functor amounts to the fact that Res ∼= g(n−1)∗ Res. For (B, λ) ∈ Db

G(M), the counit
map ε : Ind ◦Res(B) =

⊕n−1
k=0 g

k∗B → B is given by the components λ−1
gk

: gk∗B → B; compare

with [Ela14, Section 3]. Using this, one can compute that the monad structure has the desired
form.

However, the induced twists are not very interesting.

Lemma 7.4. For n = [G : H] = 2, we have TInd ∼= Ma[1].

Proof. Let (B, λ) ∈ Db
G(M), and consider the G-equivariant morphism ϕ : B ⊗ a → Ind Res(B)

with components id : B → B and −λg : B → g∗B. This gives the exact triangle

B ⊗ a
ϕ−→ Ind Res(B)

ε−→ B .

Since TF is defined by the exact triangle Ind Res(B)
ε−→ B → TF , it follows that TF ∼= Ma[1].

By similar computations, one can show that, for n = [G : H] arbitrary, the associated P-twist
is given by PInd

∼= [2].

7.4 Semi-orthogonal decomposition and induced autoequivalences in the curve case

Let X = C be a smooth curve. By Theorem 1.1(i), there is the semi-orthogonal decomposition

Db
Sm(Cm) = 〈A0,m,A1,m−1, . . . ,Ar,m−r,B〉 , A`,m−` = H`,m−`

(
Db

S`

(
C × C`

))
, r =

⌊
m− 1

2

⌋
.

We can identify one part of the category B with the bounded derived category Db
(
C(m)

)
of

the symmetric product as follows. Since C is a smooth curve, the symmetric product C(m) is
smooth. Hence, the pull-back along π : Cm → C(m) preserves boundedness of complexes, which
means that we have a well-defined functor π∗◦triv : Db

(
C(m)

)
→ Db

Sm(Cm). Since (π∗OCm)Sm =
OC(m) , it follows by the projection formula that ( )Smπ∗π

∗ triv ∼= id, which means that π∗ triv
is fully faithful. For I ⊂ [m] with |I| > 2, we have ( )SI ◦MaI ◦δ∗I ◦ Res ◦π∗ ◦ triv = 0. Hence,
L`,m−`π

∗ triv = 0 for all ` > 2, which shows that π∗ triv(Db
(
C(m)

)
) ⊂ B. A similar but, for m > 4,

finer, semi-orthogonal decomposition of Db
Sm(Cm) is constructed in [PVdB19] by very different

methods.

It turns out that, also in the curve case, the functors H`,n, for n > max{`, 1} induce autoe-
quivalences of Db

Sn+`

(
Cn+`

)
, similar to the P-twists from the surface case. To see this, let An+` ⊂

Sn+` be the alternating group. The functor Res := Res
An+`

Sn+`
: Db

Sn+`

(
Xn+`

)
→ Db

An+`

(
Xn+`

)
is

spherical with cotwist Ma and twist τ∗[1], where τ is any element of Sn+` \ An+`. This follows
by Lemmas 7.3 and 7.4 together with the fact that a functor is spherical if and only if its right
adjoint is spherical with the roles of the twist and cotwists exchanged; see [AL17, Theorem 1.1].
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The composition Res ◦H`,n with the fully faithful functor H`,n is again spherical. This follows
by [HS16, Theorem 4.14], whose assumptions are fulfilled due to Proposition 3.2(ii). We have
τ∗ ◦ Res ◦H`,n

∼= Res ◦H`,n. Thus, the spherical twist T̃`,n := TRes ◦H`,n ∈ Aut
(

Db
An+`

(
Xn+`

))
is τ -invariant, which means that τ∗ ◦ T̃`,n ∼= T̃`,n ◦ τ∗, by (2.12). Hence, T̃`,n descends to an
autoequivalence T`,n ∈ Aut

(
Db

Sn+`

(
Xn+`

))
; see [Plo07, Theorem 6] or [KS15a, Theorem 1.1].

One can check that the behaviour of the autoequivalences T`,n is similar to that of the PH`,n
as described in Proposition 7.1. Namely,

T`,n(C̄(x)) =

{
C̄(x)[−(n− 2)] for x ∈ ∇`,n0 ,

C̄(x) for x ∈ C`+n \ ∇`,n .
(7.4)

7.5 Restriction to generalised Kummer varieties

In this subsection, let X = A be an abelian variety. For `, n ∈ N, we consider the morphisms

Σn+` : A
n+` → A , (a1, . . . , an+`) 7→

n+∑̀
1=1

ai ,

Σn,` : A×A` → A , (b, a1, . . . , a`) 7→ n · b+
∑̀
i=1

ai .

Let F :=
(
A×A`

)
×AAn+` be the fibre product with respect to these two summation morphisms.

Note that, for every i ∈ [0, `] and every (I, J, µ) ∈ Index`,n(i), we have ΓI,J,µ ⊂ F . It follows
that H`,n : Db

S`

(
A × A`

)
→ Db

Sn+`

(
An+`

)
is a relative Fourier–Mukai transform over A. This

means that its kernel is of the form H`,n ∼= ι∗Ĥ`,n for an object Ĥ`,n ∈ Db
S`×S`+n(F ), where

ι : F ↪→ A×A`×An+` is the embedding of the fibre product. Now, let
(
A×A`

)
0

:= Σ−1
n,`(0) and

An+`
0 := Σ−1

n+`(0), and consider the closed embedding i :
(
A×A`

)
0
×A An+`

0 ↪→ F . We set

H`,n = i∗Ĥ`,n , H`,n := FMH`,n : Db
S`

((
A×A`

)
0

)
→ Db

S`+n

(
An+`

0

)
.

Using the calculus of relative Fourier–Mukai transforms and their restrictions (see, for example,
[LST13, Section 1]), it is not hard to deduce from Theorem 1.1 that, for n > max{`, 1}, the
functor H`,n is fully faithful if A is an elliptic curve and a Pn−1-functor if A is an abelian
surface.

If A is an abelian surface, there is a variant of the Bridgeland–King–Reid–Haiman equivalence
as an equivalence Db(Km−1A) ∼= Db

Sm(Am0 ), where Km−1A ⊂ A[m] is the generalised Kummer
variety; see [Nam02] or [Mea15]. Hence, we also get induced P-functors and autoequivalences on
the derived categories of the generalised Kummer varieties.

As shown in [Mea15], the Fourier–Mukai transform Fm : Db(A)→ Db(Km−1) along the ideal
sheaf of the universal family is again a Pm−2 functor for m > 3. In analogy to Section 7.2, one
can show that the spherical twists TF 3

, TH1,2
∈ Aut

(
Db(K2A)

)
satisfy the braid relation.

7.6 Some conjectures

The twist autoequivalences induced by the functors H̃`,n on the derived category Db
(
X [m]

)
of

the Hilbert scheme of points exist for every smooth quasi-projective surface X. In contrast, all of
the other autoequivalences on Hilbert schemes of points on surfaces constructed in the literature
[Plo07, Add16, PS14, Mea15, Kru15, CLS14, KS15b] depend crucially on the type of surface
(often a K3) and properties of its derived category Db(X). Hence, it seems very difficult to make
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a reasonable general conjecture on the shape of the group Aut
(

Db
(
X [m]

))
for a surface X, let

alone prove it.

However, if the canonical bundle ωX is ample or anti-ample, there are no non-standard
autoequivalences coming from the surface [BO01], and we expect the following to hold.

Conjecture 7.5. Let X be a smooth projective surface with ωX ample or anti-ample. Then for
m = 2, 3, the group Aut

(
Db
(
X [m]

))
is generated by standard autoequivalences and the twists

along the functors H̃`,n:

Aut
(

Db
(
X [2]

))
=
〈
Autst

(
Db
(
X [2]

))
, T

H̃0,2

〉
,

Aut
(

Db
(
X [3]

))
=
〈
Autst

(
Db
(
X [3]

))
, P

H̃0,3
, T

H̃1,2

〉
.

The group of standard autoequivalences Autst
(

Db(Y )
) ∼= Z×

(
Aut(Y )nPic(Y )

)
, for Y a smooth

projective variety, is the group generated by degree shifts [k], pull-backs ϕ∗ along automorphisms
ϕ ∈ Aut(Y ), and tensor products ( )⊗ L by line bundles L ∈ Pic(Y ).

The reason why we restrict this conjecture to m = 2, 3 is the condition n > max{`, 1} in Theo-
rem 1.1. It implies that, for fixed m, we have twist autoequivalences P

H̃i,m−i
∈ Aut

(
Db
(
X [m]

))
only for i 6 r = b(m− 1)/2c. For m > 4, we expect there to be further autoequivalences

Pr+1,m−r−1, . . . , Pm−3,3, Tm−2,2 ∈ Aut
(

Db
Sm

(
Xm

)) ∼= Aut
(

Db
(
X [m]

))
,

yet to be constructed, with similar properties to the ones of the twists along the H`,n as described
in Proposition 7.1. Namely, their values on skyscraper sheaves of orbits should be

P`,m−`
(
C̄(x)

) ∼= {C̄(x)[−2(m− `− 1)] for x ∈ ∇`,m−`0 ,

C̄(x) for x ∈ Xm \ ∇`,m−` ,

Tm−2,2

(
C̄(x)

) ∼= {C̄(x)[−1] for x ∈ ∇m−2,2
0 ,

C̄(x) for x ∈ Xm \ ∇m−2,2 .

These missing autoequivalences could play an important role in a description of the behaviour of
the tensor product under the derived McKay correspondence; compare with [KPS18, Section 4.6].

The main evidence for the existence of these additional autoequivalences is that there is, in
fact, an autoequivalence that one can consider to be the desired Tm−2,2, namely the composition
Ma ◦Φm ◦ MO(Dm/2) ◦Φ−1

m , where Dm ⊂ X [m] denotes the boundary divisor. Indeed, for x ∈
∇m−2,2

0 , we have Φ−1
m

(
C̄(x)

) ∼= Oµ−1(π(x))(−1) and Φ−1
m (C̄(x) ⊗ a) ∼= Oµ−1(π(x))(−2)[1]. This is

shown in the case m = 2 in [Kru15, Proposition 4.2], and the proof for general m is the same.
Furthermore, we have O(D/2)|µ−1(π(x))

∼= Oµ−1(π(x))(−1). We get

MO(Dm/2) Φ−1
m

(
C̄(x)

) ∼= Oµ−1(π(x))(−2) ∼= Φ−1
m Ma

(
C̄(x)

)
[−1] ,

hence Ma ΦmMO(Dm/2) Φ−1
m (C̄(x)) ∼= C̄(x)[−1], as desired.

Also for smooth curves, there are autoequivalences of Db
Sm(Cm), constructed in Section 7.4,

that act as ‘characteristic functors’ of the strata ∇`,n0 ; see (7.4). Thus, one might ask whether
such autoequivalences exist in Db

Sm

(
Xm

)
for X a smooth variety of arbitrary dimension. Note,

however, that for dimX > 3, the functors H`,n are far from being fully faithful or P-functors; com-
pare with Remark 4.9. Hence, these autoequivalences would have to be constructed by different
methods.
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