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Triviality properties of principal bundles

on singular curves

Prakash Belkale and Najmuddin Fakhruddin

Abstract

We show that principal bundles for a semisimple group on an arbitrary affine curve
over an algebraically closed field are trivial provided that the order of the π1 of the
group is invertible in the ground field or the curve has semi-normal singularities. Sev-
eral consequences and extensions of this result (and method) are given. As an ap-
plication, we realize conformal blocks bundles on moduli stacks of stable curves as
push-forwards of line bundles on (relative) moduli stacks of principal bundles on the
universal curve.

1. Introduction

It is a consequence of a theorem of Harder [Har67, Satz 3.3] that generically trivial principal
G-bundles on a smooth affine curve C over an arbitrary field k are trivial if G is a semisimple
and simply connected algebraic group. When k is algebraically closed and G reductive, generic
triviality, conjectured by Serre, was proved by Steinberg [Ste65] and Borel–Springer [BS68].

It follows that principal bundles for simply connected semisimple groups over smooth affine
curves over algebraically closed fields are trivial. This fact (and a generalization to families of
bundles [DS95]) plays an important role in the geometric realization of conformal blocks for
smooth curves as global sections of line bundles on moduli stacks of principal bundles on the
curves (see the overview [Sor96] and the references therein).

An earlier result of Serre [Ser58, Théorème 1] (see also [Ati57, Theorem 2]) implies that this
triviality property is true if G “ SLprq and C is a possibly singular affine curve over an arbitrary
field k. In [BG18], it was shown by a versal deformation argument that if X is a reduced projective
curve with at worst nodal singularities over C, with p1, . . . , pn in the smooth locus of X such
that Op

ř

piq is ample, there exists a dense open substack of the moduli of G-bundles on X such
that any E in this open substack restricts to a trivial bundle on Xztp1, . . . , pnu.

The results of this paper show that the triviality properties of principal bundles on arbitrary
singular curves (in particular, degenerating families of smooth curves) are very similar to those on
smooth curves. They allow us to realize conformal blocks on moduli stacks of stable curves Mg,n

as push-forwards of line bundles on (relative) moduli stacks of principal bundles on the universal
curve (Theorem 1.7).
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Principal bundles on singular curves

Alternate compactifications of Mg,n have been considered recently (cf. the Hassett–Keel
program [FS13]); triviality statements for G-bundles over arbitrary affine curves could potentially
be useful in a geometric theory of conformal blocks over such spaces.

Theorem 1.1. Let C be an arbitrary (possibly non-reduced, reducible or disconnected) affine
curve over an algebraically closed field k. If G is a semisimple algebraic group over k such
that |π1pGq| is invertible in k, then any principal G-bundle E on C is trivial; that is, there is
a section s : C Ñ E.

The main idea is, assuming C to be reduced, to produce a section over the normalization
of C (using [Har67]) which on the inverse image of a (suitable) infinitesimal neighborhood Cm
of the singular locus of C agrees with the pull-back of a section of E over Cm. Such sections are
shown to descend to C.

The conditions for triviality in Theorem 1.1 are necessary and sufficient for arbitrary singu-
larities, but for semi-normal curves a stronger result holds; see Section 3.3.

Theorem 1.2. Let C be an arbitrary separated curve over an algebraically closed field k and E
a principal G-bundle on C for a connected reductive group G over k.

(a) Let Z be a finite subset of C. Then, there exists a Zariski-open subset U of C containing Z
such that E is trivial on U .

(b) The structure group of E can be reduced to B, where B is a Borel subgroup of G.

Note that in the case of generically reduced C, Theorem 1.2 follows easily from Theorem 1.1
if the order of π1 of the semisimple quotient of G is invertible in k, but there are no conditions
on the characteristic of k or on C in Theorem 1.2.

A result of Bia lynicki-Birula [Bia70, Theorem 1] implies that if C is irreducible, then any E
as in Theorem 1.2 is Zariski-locally trivial. However, Zariski-local triviality does not seem to
imply the existence of B-structures (that is, that the structure group of E can be reduced to B)
if the curve has more than one singular point.

We also prove versions of Theorems 1.1 and 1.2 which allow for families of non-constant curves
(Theorems 1.3, 1.4 and 1.5 below). Using Theorem 1.2(b) as input, these follow, very closely,
arguments of Drinfeld and Simpson [DS95] for similar results for families of smooth curves.

Let S be an arbitrary scheme over SpecpZq, and let f : X Ñ S be a proper, flat and finitely
presented curve over S. Let G be a split1 reductive group scheme over SpecpZq (base changed
to S) and B a Borel subgroup of G.

Theorem 1.3. Let E be a principal G-bundle on X with G connected and reductive. Then,
after a surjective étale base change S1 Ñ S, the structure group of E can be reduced to B (and
hence E becomes Zariski-locally trivial).

Let D Ă X be a relatively ample effective Cartier divisor which is flat over S, and let
U “ XzD.

Theorem 1.4. Let E be a principal G-bundle on X with G semisimple and simply connected.
Then, after a surjective étale base change S1 Ñ S, the bundle E is trivial on US1 .

1As is well known, any reductive group scheme becomes split after a surjective étale base change, and so the
splitness assumption is not required in Theorems 1.3, 1.4 and 1.5.
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For G “ SLpnq, Zariski localization is sufficient in Theorem 1.4 in many cases; see Remark 3.4.

If G is not simply connected, we need further hypotheses, having to do with the existence of
relative Picard schemes, reductions to Pic0 and the nature of the Pic0 of fibers, while generalizing
arguments in [DS95].

Theorem 1.5. Let f : X Ñ S be a proper, flat and finitely presented curve, with f cohomolog-
ically flat in dimension zero (see [BLR90, Section 9.4, p. 259]), D Ă X a relatively ample and
flat (over S) effective Cartier divisor and E a principal G-bundle on X. Assume that

(A) étale locally on S, the divisor D Ă X is, set theoretically, a union of (possibly not disjoint)
sections of f ;

(B) the morphism f is smooth in a neighborhood of D;

(C) the group G is semisimple, with |π1pGq| invertible in OS .

Then, after a surjective étale base change S1 Ñ S, the bundle E is trivial on US1 , where U “ XzD.

Note that the cohomological flatness condition on f holds if it has reduced geometric fibers.
We discuss a variant of this theorem in Section 3.3.

The methods used in Theorem 1.1 can be used in the study of questions related to the
Grothendieck–Serre conjecture.

Theorem 1.6. Let X be a reduced surface over an algebraically closed field whose normalization
is smooth. Let G be a connected reductive group and E a principal G-bundle on X which is
generically trivial. Then E is locally trivial in the Zariski topology.

Note that there exist examples of principal bundles over normal surfaces which are generically
trivial but not locally trivial; see Section 4.1. Over non-algebraically closed fields, there exist such
bundles even over (singular) curves [AG60].

In Section 5, we prove the irreducibility of the moduli stack of G-bundles on a singular pro-
jective curve when G is semisimple and simply connected (Proposition 5.1), an extension of the
uniformization theorem for G-bundles [BL94, BL95, LS97, DS95] for singular curves (Proposi-
tion 5.2) and the integrality of the space of maps from a reduced affine curve to G when the base
field is C and the group G is semisimple and simply connected (Proposition 5.3). The proof of
Proposition 5.3 uses Theorem 1.4 and follows closely a proof of a similar result by Laszlo and
Sorger [LS97]. A new group-theoretic input here is work on subgroups of split simply connected
semisimple groups generated by elementary matrices [IM65, Ste73] over semilocal rings.

Recall that associated to a simple Lie algebra g over k “ C and dominant integral weights
λ1, . . . , λn at a level ` (see Section 6.1), the theory of conformal blocks produces vector bundles
of conformal blocks Vg,λ,` on the moduli stacks of stable n-pointed curves Mg,n. Work in the
1990s due to several authors [BL94, Fal94, KNR94] led to a realization of the duals of fibers
of Vg,λ,` over Mg,n as global sections of line bundles over suitable moduli spaces and stacks. Using
Theorem 1.4 and the work of Beauville, Laszlo and Sorger (see the overviews [Sor96, Sor00]),
we extend the stack-theoretic realization of conformal blocks to all of Mg,n: Let G be a simple,
simply connected, complex algebraic group with Lie algebra g. In Section 6, we consider a relative
smooth Artin stack of parabolic bundles

π : ParbunG,g,n ÑMg,n ,

construct a line bundle L on ParbunG,g,n, and obtain the following result.
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Theorem 1.7. There is a canonical isomorphism π˚L
„
Ñ V˚g,λ,`.

Such isomorphisms are produced for any family of stable n-pointed curves. A proof of the
above statement for a fixed singular stable pointed curve also appears in [BG18] (which uses
a different method).

For classical groups (and even levels in the case of Spin groups), the line bundle L can be
constructed explicitly in terms of the determinant of cohomology (see Theorem 6.9). Finally,
Picard groups of moduli stacks of parabolic bundles on (arbitarily) singular projective curves are
computed in Section 7.

2. Proof of Theorems 1.1 and 1.2

We will first prove Theorem 1.1 under the assumption that C is reduced and then prove the
case of arbitrary C; until further notice, we assume that C is reduced. Let π : rC Ñ C be its
normalization, let G be a semisimple algebraic group and E a principal G-bundle on C. We
assume that |π1pGq| is invertible in k.

Let R Ă C be a finite reduced subscheme such that π is an isomorphism over CzR. Let Cm
be the mth infinitesimal neighborhood of R in C, for m ě 0. Let rCm “ π´1pCmq.

Lemma 2.1. There exists an m ě 0 with the following property: f P H0p rC,O
rC
q is in the image

of H0pC,OCq if and only if the restriction of f in H0p rCm,O
rCm
q is in the image of H0pC,OCq

(equivalently, H0pCm,OCmq).

Proof. The quotient M “ H0p rC,O
rC
q{H0pC,OCq is a finite A-module supported on R for A “

H0pC,OCq and is hence annihilated by a power Im of the ideal I of R in C; hence, M
„
Ñ

M bA{Im. Tensor the exact sequence

0 Ñ H0pC,OCq Ñ H0
`

rC,O
rC

˘

ÑM Ñ 0

by A{Im to get the right-exact sequence

H0pC,OCmq Ñ H0
`

rC,O
rCm

˘

ÑM bA{Im Ñ 0 ,

which implies the desired assertion.

Fix m as in Lemma 2.1. Suppose that E is a principal G-bundle on C. Let rE be the pull-back
G-bundle on rC.

Lemma 2.2. Any section sm of rE over rCm extends to a section of rE over rC.

Proof. Since rE is trivial as a G-bundle by [Har67] (see Remark 2.4), we only need to show that
any γm : rCm Ñ G extends to a map γ : rC Ñ G, which is Lemma 2.5 below.

Lemma 2.3. Suppose that a section s of rE on rC when restricted to rCm is the pull-back of a
section of E on Cm. Then s is the pull-back of a section of E on C.

Proof. Composing by the natural map rE Ñ E, we have a map s1 : rC Ñ E which when restricted
to rCm is a composition rCm Ñ Cm

αm
Ñ E. We need to show that s1 is itself a composition

rC Ñ C
α
Ñ E. This assertion is local on E (we may find an affine open subset of E which contains

the image of rCm). Arguing coordinate-by-coordinate using Lemma 2.1, we see that s1 descends
to a map C Ñ E, since the restrictions to rCm come from functions on Cm (and any relation
between coordinate functions which holds on rC holds on C as well since functions on C embed
into functions on rC).
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Proof of Theorem 1.1 in the case C reduced. There is a section of E over the reduced scheme R
(defined above) since R consists of finitely many points and k is algebraically closed. Since E Ñ C
is smooth and Cm Ą R is a nilpotent extension of R, there exists a section Cm Ñ E over Cm
extending this section. Let sm be the induced section of rE over rCm. We extend sm to a section
s of rE over rC using Lemma 2.2. By Lemma 2.3, this section descends to C. Therefore, E has a
section over C and is hence trivial.

Remark 2.4. Harder [Har67] assumes that G is simply connected and therefore any principal
G-bundle on a smooth affine curve (over an algebraically closed field) is trivial if G is semisimple
and simply connected. If G is not simply connected but still semisimple, let rG be the simply
connected cover of G. If |π1pGq| is invertible in k, then τ : rGÑ G is étale with finite kernel, and
the map H1

etpC,
rGq Ñ H1

etpC,Gq is surjective (since H2
etpC, kerpτqq “ 0). Therefore, any principal

G-bundle on C comes from a principal rG-bundle and hence is trivial on C (this reasoning is
contained in [Har67, Satz 3.3]).

Lemma 2.5. Suppose that |π1pGq| is invertible in k. Any morphism γm : rCm Ñ G extends to
a morphism γ : rC Ñ G.

Proof. Let rG be the simply connected form of G. Since |π1pGq| is invertible in k, the morphism
rG Ñ G is étale. Thus, since k is algebraically closed, by Lemma 2.6 (applied to rG and to the
residue fields of all points in rCm, to get a morphism of k-schemes p rCmqred Ñ V ; further liftings
of p rCmq Ñ V are constructed out of smoothness of V Ñ G) and the infinitesimal lifting property
for smooth morphisms, there exists a morphism τ : Ank Ñ G such that γm lifts to a morphism

γ1m : rCm Ñ Ank .

By Lemma 2.7 below, we can extend γ1m to a map γ1 : rC Ñ Ank . The desired γ is then τ ˝γ1.

Lemma 2.6. Let k be an arbitrary field and G a simply connected, semisimple and split group
over k. There exist a morphism η : Ank Ñ G and an open subset V Ă Ank such that η|V is smooth
and for any extension K of k, the map V pKq Ñ GpKq induced by η is surjective.

Proof. Choose a collection of one-parameter unipotent subgroups Ui
„
Ñ Ga Ď rG, for i “ 1, . . . , s,

whose tangent spaces at the origin span2 the Lie algebra of rG. Consider the multiplication map

η : U :“ U1 ˆk U2 ˆk ¨ ¨ ¨ ˆk Us Ñ rGÑ G .

By construction, η is surjective on tangent spaces at the identity e of U .

Since G is simply connected, it is well known (see, for example, [Ste68]) that there exist U 1, a
product of one-parameter unipotent groups as above, and η1 : U 1 Ñ G such that the induced map
U 1pKq Ñ GpKq is surjective for all K{k. Then UˆU 1

„
Ñ Ank for some n and the map UˆU 1 Ñ G

given by η ¨ η1 has the desired properties: if η1pxq “ y for x P U 1pKq, then ηpeqη1pxq “ y and η ¨ η1

is smooth at pe, xq.

Lemma 2.7. Let T Ď X be a closed subscheme of an affine scheme X over an arbitrary field k
and f : T Ñ Ank a morphism. Then f extends to a morphism X Ñ Ank .

Proof. Write T as the spectrum of A{I with I an ideal of A “ H0pX,OXq. The function f
corresponds to an n-tuple pf1, . . . , fnq of elements of A{I, which can be lifted to an n-tuple of
elements in A.

2Simple coroots are in the span: this follows from the (easy) case of SLp2q.

238



Principal bundles on singular curves

Remark 2.8. If k is a finite field or the function field of a curve over an algebraically closed field,
then any principal G-bundle on a curve over k is generically trivial if G is simply connected,
semisimple and split [Har75, dJHS11]. Since Lemma 2.6 holds over an arbitrary field and principal
G-bundles over Specpkq, for k as above, are also trivial, the above proof of Theorem 1.1 also shows
that principal G-bundles on affine curves over such fields are trivial if G is simply connected,
semisimple and split. (This also holds for most groups G as above if k has characteristic zero and
is of cohomological dimension one (for example, a C1-field): the function field of any curve over
k is perfect of cohomological dimension two, and a conjecture of Serre, known for all classical
groups as well as some exceptional groups (see [BP95]), implies that any principal G-bundle
(with G as above) on a curve over k is generically trivial.)

Proof of Theorem 1.1, general case. If C is not reduced, let Cred Ď C be the reduced subscheme.
Let E1 be the pull-back principal G-bundle on Cred. By the case of Theorem 1.1 for reduced
curves proved above, E1 is trivial, and hence we obtain a section Cred Ñ E1. Composing with
the natural map E1 Ñ E, we obtain a map Cred Ñ E which when composed with E Ñ C gives
the natural inclusion Cred Ď C.

Since E Ñ C is smooth, C is affine and Cred Ď C is given by a nilpotent ideal, by the
infinitesimal criterion for smoothness, we can lift Cred Ñ E (over Cred Ñ C) to a map C Ñ E
such that the composite C Ñ E Ñ C is the identity map, that is, s is a section, and hence E is
trivial.

2.1 Proof of Theorem 1.2

Since B-bundles are trivial in suitable Zariski neighborhoods of any given finite subset, state-
ment (a) follows from statement (b). Note that it suffices to prove statement (a) when C is
reduced (trivializations on Ured extend to U when U is affine).

2.1.1 For statement (b), we start with the case where C is affine. We need to produce a
section of E{B over C. Since E{B is smooth over C, we may assume that C is reduced and
are allowed to shrink C to suitable affine neighborhoods of R (since E{B is projective over C).
Since rE has a B-structure, it is semilocally trivial. Now, replace rC by an affine neighborhood
containing π´1pRq (and C by its image under π) over which rE is trivial. Therefore, we may
assume that rE{B is the trivial bundle over rC with fibers G{B.

We now replace E by E{B and G by G{B throughout in the proof of Theorem 1.1. Here, we
note that there is a B-structure on E restricted to any Cm, since E{B is smooth over C. We then
need to prove (the analog of Lemma 2.5) that any function f̄ : rCm Ñ G{B extends to a function
rC Ñ G{B. This is easy because G{B is covered by affine spaces (that is, of the form Amk ): we
can use the group G to move the image of f̄ into an affine space and then apply Lemma 2.7.

2.1.2 Clearly, the case of affine C implies statement (b) for all reduced C (actually, all
generically reduced C), because we can find an open affine subset of our curve which contains
all singularities and a B-reduction of E on this open set, and then extend using the valuative
criterion for properness.

2.1.3 For the general case of statement (b) (that is, C possibly not generically reduced),
since we know that E is generically trivial, we may extend E to a compactification of C. Therefore,
assume that C is projective. By the case of reduced curves already considered above, we know
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that E has a B-reduction on Z “ Cred. We now use methods from [DS95].

Definition 2.9. Let ᾱ : B Ñ Gm be the morphism associated to a positive root α of G. If EB
is a principal B-bundle on C, let Eα be the line bundle on C induced by ᾱ.

Using Lemma 2.11, choose a B-reduction of E on Z such that for every positive root α, the
line bundle Eα has sufficiently large degrees (to be made clear below) on irreducible components
of Z. We consider the problem of lifting this B-reduction through nilpotent thickenings with
square zero:

– Let Z “ Cred Ă C1 Ă C2 Ă C be nilpotent thickenings such that the ideal I of C1 in C2

has square zero.

– Also assume that we have lifted our B-reduction on E over Z to a B-reduction σ1 : C1 Ñ

E{B over C1.

Let i1 : C1 Ñ C be the inclusion and Θ the relative tangent bundle of E{B over C. The ob-
struction for lifting the reduction σ1 further to C2 lies in H1pC1, σ

˚
1 Θ b Iq. Since we can filter

σ˚1 Θ by line bundles i˚1Eα, we are reduced to showing that H1pC1, i
˚
1Eα b Iq “ 0 for all positive

roots α. This is true because of the following (applied to X “ C1), and therefore we can extend
the B-reduction all the way to C, as desired.

Lemma 2.10. Let F be a coherent sheaf on a projective curve X over an algebraically closed
field. There is a positive integer N “ NpFq such that if Z “ Xred, Z “ YZi with irreducible
components Zi and L is a line bundle on X, then

degZipL |Ziq ą N , i “ 1, . . . , s , ùñ H1pX,Lb Fq “ 0 .

Proof. Let J be the ideal of Z in X. We may filter F by sheaves J sF{J s`1F and may hence
assume that F is a coherent sheaf on Z. Therefore, we reduce to the case where X is reduced,
which is standard.

Lemma 2.11. Let E be a principal G-bundle on a reduced projective curve Y over an algebraically
closed field. Assume that E has a B-reduction. Then, E has a B-reduction such that for every
positive root α, the degree of the corresponding Eα on each irreducible component of Y is at
least N .

Proof. Each step in the proof of [DS95, Proposition 3] generalizes:

(i) By Theorem 1.2(a) in the case C reduced, we can find an open affine U Ă Y that contain
all singular points of C such that E is trivial on U . We may now replace E by any other E1

which agrees with E on U (in other words, is trivial on U) provided that we change N to a
suitable N 1 (there is a bijection between B-reductions of E and E1 with bounded differences
of degrees of Eα and E1α).

(ii) We can therefore assume that E is trivial.

(iii) Choose a finite morphism Y Ñ P1.

(iv) We are now reduced to the case Y “ P1, which is the same as in [DS95].

In fact, we have shown the following result.

Proposition 2.12. Let C be a projective curve over k and E a principal G-bundle. Then E has
a B-reduction σ : C Ñ E{B such that H1pC, σ˚Θq “ 0, where Θ is the relative tangent bundle
of E{B over C.
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Proof. By Lemma 2.10, it would suffice if Eα had sufficiently large degrees on irreducible com-
ponents of Cred. This follows from Lemma 2.11 and the construction above which extends a B-
reduction on Cred with sufficiently large degrees on irreducible components to one on C.

3. Proofs of Theorems 1.3, 1.4 and 1.5

In these proofs, we follow [DS95]: using Theorem 1.2(b) as basic input, the arguments of [DS95]
carry over with obvious modifications.

3.1 Proof of Theorem 1.3

Let F be the moduli functor of unobstructed B-reductions of E: for a scheme T over S, the space
F pT q is the space of B-reductions of E ˆS T over X ˆS T such that for all t P T ,

H1pXt, σ
˚Θq “ 0 , (3.1)

where Θ is the relative tangent bundle of E{B over X and σ : Xt Ñ X.

It follows from the theory of Hilbert schemes and deformation theory that F is representable
by a scheme φ : M Ñ S with φ smooth. To prove Theorem 1.3, it suffices to show that any s P S
is in φpMq. This is because, by the smoothness of φ, for any s P φpMq, we can find an étale
neighborhood S1 Ñ S of s such that there is a section S1 ÑM (over S).

To see that s P φpMq, we may base change to the algebraic closure k of kpsq. By Theo-
rem 1.2(b) and Proposition 2.12, there is a B-reduction on Xsˆkpsq k with the desired vanishing
property (3.1).

3.2 Proof of Theorems 1.4 and 1.5

We will prove Theorem 1.5 by following the proof of [DS95, Theorem 3]. The proof of Theorem
1.4 is similar, except that we do not need the “reduction to simply connected G” part. In the
following proof, S is always assumed to be affine, and hence U is also affine.

By Theorem 1.3, we find a B-reduction of E after passing to an étale cover. Since U is affine,
the structure group of a B-bundle can be reduced to a maximal torus H: in fact, if E is a B-
bundle on X and EH the corresponding H-bundle, then E and the B-bundle induced from H
via H Ñ B are isomorphic over U . Therefore, we can assume that our principal bundle E on X
comes from an H-bundle. The final step is then to show that any H-bundle on X becomes trivial
on U after extension of the structure group to G (and étale base change).

3.2.1 Reduction to the case of simply connected G. The arguments in [DS95, Section 6, sec-
ond paragraph] for passage from G to its simply connected cover rG can be broken up into two
parts. The first is reduction to Pic0. For this, we note that cohomological flatness in dimension 0
implies, by a theorem of Artin, that PicX{S exists as an algebraic space over S [Art69, Theo-
rem 7.3], [BLR90, Section 8.3, Theorem 1]. Since any algebraic space has an étale covering by
a scheme, this does not create any extra difficulty. The main idea in the reduction is then to
modify an H-bundle on X, keeping it unchanged over U , so that for every τ P A “ HompH,Gmq,
the induced line bundle is in Pic0 of each fiber. Assumptions (A) and (B) in Theorem 1.5 al-
low us to make such a modification. This is because they imply that given any line bundle L
on X, we may, after an étale base change, find a Cartier divisor D1 on X with support con-
tained in the support of D such that LpD1q has degree 0 on each irreducible component of each
fiber.
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The second part concerns the natural homomorphism T : Hom
`

rA,Pic0
˘

Ñ Hom
`

A,Pic0
˘

,

where rA “ Hom
`

rH,Gm

˘

(here, rH is the maximal torus of rG over H). Since A is a subgroup of
rA of index |π1pGq|, the homomorphism T is a morphism of group schemes over S which, if the
arithmetic genus of the fibers is positive, is étale if and only if |π1pGq| is invertible in OS .

Now, given a G-bundle E on X, using Theorem 1.4, we may assume that it comes from
a B-bundle F . On U , the bundle E is isomorphic to the bundle induced from F via the maps
B Ñ H Ñ G, so we may assume that E is induced from an H-bundle E1, and we obtain a section
of Hom

`

A,Pic0
˘

over S. Form the fiber product S1 of S and Hom
`

rA,Pic0
˘

over Hom
`

A,Pic0
˘

.
Clearly, S1 Ñ S is étale and surjective, and the pull-back of E1 to X ˆS S

1 can be lifted to a
rH-bundle locally with respect to the Zariski topology of S1. We may therefore assume that E is
induced from a rG-bundle and comes from a rH-bundle.

Remark 3.1. If |π1pGq| is not invertible in OS , then T is flat if (and only if) the Pic0 of the
geometric fibers are semi-abelian.

3.2.2 The case of simply connected G. Now, assume that G is simply connected and that E
comes from an H-bundle. Since G is simply connected, HompGm, Hq is freely generated by simple
coroots. Therefore, we are reduced to checking that if H-bundles E1 and E2 differ by the image
of some Gm-bundle via a coroot α̌ : Gm Ñ H, then the G-bundles corresponding to E1 and E2

are isomorphic on US after Zariski localization in S.

The following simple lemma is used without proof in [DS95, Section 6]; we give one here for
the reader’s convenience.

Lemma 3.2. Let L Ď G be the subgroup generated by H and rpSLp2qq, where r : SLp2q Ñ G
corresponds to α (so α̌ factors through r as in [Con14, Theorem 1.2.7, Definition 1.2.8]). Then
L “ SLp2q ˆ T or L “ GLp2q ˆ T 1, where T and T 1 are subtori of H. Furthermore, r̃, which is r
viewed as a map SLp2q Ñ L, is given by r̃pgq “ g ˆ e in both cases.

Proof. We first note that r is an isomorphism onto its image since G is simply connected; we
use this to identify rpSLp2qq with SLp2q.

Let Z be the identity component of the (reduced) center of L, so Z is a codimension one
subtorus of H. The inclusions induce a surjective morphism

π : SLp2q ˆ Z Ñ L .

Let K be the (scheme-theoretic) intersection of Z and SLp2q. The (scheme-theoretic) kernel of
π is then equal to the image of K embedded diagonally in SLp2q ˆ Z.

Thus, if K is trivial, then π is an isomorphism, so we get the first possibility (take T “ Z).
Otherwise, we have K – µ2 since it is contained in the (scheme-theoretic) center of SLp2q and
is non-trivial. Write Z as a product A ˆ T 1, where A – Gm contains K; that this is always
possible is easily seen using character groups. The subgroup M of L generated by A and SLp2q
is isomorphic to GLp2q since A and SLp2q commute and intersect along K – µ2. Finally, the
scheme-theoretic intersection of M and T 1 is trivial, so the map M ˆ T 1 Ñ L (induced by the
inclusions) is an isomorphism.

We now apply Lemma 3.2. Since H Ď L, the H-bundles E1 and E2 both come from L-bundles.
Let D (respectively, D1) denote the maximal torus of SLp2q (respectively, GLp2q). Using the form
of r̃ in the lemma, we may assume that E1 and E2 come from DˆT -bundles (respectively, D1ˆT 1-
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bundles), differing by a Gm-bundle via Gm Ñ D (respectively, Gm Ñ D1) corresponding to the
(standard) coroot of SLp2q.

We may clearly ignore the T - and T 1-factors and need to show that the corresponding SLp2q
and GLp2q components, respectively, of E1 and E2 are isomorphic on US after Zariski localization
in S. The Čech cocycles representing E1 and E2 in the GLp2q case have ratios in SLp2q and
therefore have isomorphic determinant line bundles when considered as rank two vector bundles.

Therefore, in the case of a simply connected G, Theorem 1.5 follows from the following
assertion: Let f : X Ñ S be a proper, flat and finitely presented curve over S and D Ă X
a relatively ample effective Cartier divisor which is flat over S. Suppose that E1 and E2 are
principal G-bundles on X with the same determinant, where (case 1) G “ SLp2q or (case 2)
G “ GLp2q.

Proposition 3.3. The bundles E1 and E2 are isomorphic as G-bundles on U after a surjective
étale base change of S. Furthermore, if S is the spectrum of a separably closed field, E1 and E2

are in the same connected component of the moduli stack of G-bundles on X.

Proof. We will show that in an étale neighborhood of each s P S, we have, for sufficiently large n,
exact sequences (i “ 1, 2)

0 Ñ O Ñ EipnDq Ñ Qi Ñ 0 . (3.2)

Because of our assumptions, Q1 and Q2 are isomorphic and are trivial on U in case (1). Since
OpDq is relatively ample, the exact sequence (3.2) splits over U , with Qi “ detEi. The desired
conclusions follow: for the deformation, we use the Ext-space Ext1pQi,Oq.

We may assume that the residue field of S at s is infinite (in fact, separably closed). We
produce such exact sequences by finding nowhere-vanishing global sections αi P H

0pXs, EipnDqq,
where H1pXs, EipnDqq “ 0. We choose n sufficiently large so that H1pXs, EipnDqq “ 0 and
the EipnDq are globally generated on Xs for i “ 1, 2. Then the usual Serre argument works: The
subset of H0pXs, EipnDqq formed by sections that vanish at a point q has codimension rkE “ 2.
Taking the union over all q P Xs, the set of “bad sections” lies on a codimension one subvariety
of the vector space H0pXs, EipnDqq.

Remark 3.4. As we explain below, Zariski localization is sufficient in Theorem 1.4 for G “ SLpnq
and in Proposition 3.3 in each of the following two cases: (a) the residue fields of S are infinite,
and (b) X Ñ S is smooth in a neighborhood of D.

In case (a), the modification of Proposition 3.3 follows by the same method, and for Theo-
rem 1.4, the method of [Ati57, Theorem 2] and [BL94, Lemma 3.5] applies without changes. Here,
we use the fact that the complement of any hypersurface in Amk has k-rational points when k is
infinite, so that dimension-counting arguments apply.

In case (b), fix a point s P S. To get the modification of Theorem 1.4, we find everywhere-
linearly independent sections α1 and α2 of E on Xs ´ Ds by [Ser58, Théorème 1]. Here, E is
a vector bundle on X with trivialized determinant. A linear combination α1 ` fα2 (for f a
function on Us) can be found with sufficiently high orders of poles at all points of Ds, and we
obtain a subbundle O Ď EspnDsq with n sufficiently large. This can be deformed to a Zariski
neighborhood of s.

In Proposition 3.3, write (again using [Ser58, Théorème 1]) Ei restricted to Us “ Xs ´Ds as

Oαpiq1 ‘Li, where the Li are line bundles on Us and the α
piq
1 are nowhere-vanishing sections. Let

α
piq
2 be a section of Li on Xs ´Ds, for i “ 1, 2. Sections of pEiqs of the form α

piq
1 ` f piqα

piq
2 can

be found with sufficiently high orders of poles at all points of Ds, and these result in subbundles
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O Ď pEiqspnDsq on Xs for n sufficiently large; these can be deformed to a Zariski neighborhood
of s.

3.3 Refinements of Theorems 1.1 and 1.5

In Theorem 1.5, we can replace condition (C) by (C1): the Pic0 of the geometric fibers are semi-
abelian, and draw the weaker conclusion that after a faithfully flat base change S1 Ñ S with
S1 locally of finite presentation over S, the bundle E is trivial on US1 , where U “ XzD (see
Remark 3.1). This generalizes the flat base change part of [DS95, Theorem 3] and also shows
that Theorem 1.1 holds for semi-normal curves without any condition on |π1pGq|.

Note that the Pic0 of a projective curve being semi-abelian is equivalent to the curve having
geometrically semi-normal singularities [BLR90, Chapter 9.2]; in particular, as is well known,
this condition holds for semistable curves.

Now, let C be a (generically reduced) affine curve over an algebraically closed field k of
characteristic p ą 0 with a compactification C (which is smooth at the boundary) and such that
Pic0pCq is not semi-abelian. We will show that if G is a semisimple group such that p divides
|π1pGq|, then there exist non-trivial G-bundles on C.

Let rG be the simply connected cover of G, and let rH be the inverse image in rG of a maximal
torus H of G. Then K “ kerp rH Ñ Hq “ kerp rG Ñ Gq is a finite multiplicative group scheme
of order divisible by p. The tori H and rH are of the same dimension, say r, so H1pC,Hq and
H1pC, rHq are both isomorphic to PicpCqr. Since we have assumed that p divides |π1pGq| and
Pic0pCq is not semi-abelian, so contains Ga as a subgroup, the map

H1
`

C, rH
˘

Ñ H1
`

C,H
˘

is not surjective and in fact has an infinitely generated cokernel (since this holds for the multi-
plication by p map on Pic0pCq). Since C is smooth at the boundary points, the surjective map
PicpCq Ñ PicpCq has a finitely generated kernel. It follows that the image of the second map in
the exact sequence

H1
`

C, rH
˘

Ñ H1pC,Hq Ñ H2
flpC,Kq

is not finitely generated. If EH is any H-bundle on C which does not lift to an rH-bundle, it
follows that the induced G-bundle E has a non-zero class in H2

flpC,Kq; in particular, it is not
trivial.

4. Proof of Theorem 1.6

We will in fact prove the following (stronger) statement.

Theorem 4.1. Let X be an algebraic variety (of arbitrary dimension) over an algebraically closed
field and E a principal G-bundle on X, where G is a connected reductive group. Let π : rX Ñ X
be the normalization. Let R Ă X be a reduced subscheme such that π is an isomorphism over
U “ XzR. Assume that

(a) rX is smooth,

(b) E is generically trivial,

(c) E restricted to R is Zariski-locally trivial (for example, if dimR ď 1 (by Theorem 1.2)).

Then, E is Zariski-locally trivial.
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By work on the Grothendieck–Serre conjecture [PSV15], one knows that since rE, the pull-back
of E to rX, is generically trivial (by assumption (b)), it is locally trivial in the Zariski topology.
In fact, given a finite subset Z Ă rX, there exists a Zariski-open subset V Ă rX containing Z over
which rE is trivial. Let x P X and Z “ π´1pxq, a finite set. We need to produce an open subset
of X containing x over which E has a B-structure, where B is a Borel subgroup of G. Clearly,
we may assume x P R.

Let V Ă rX be an open set containing Z over which rE is trivial. Replacing X by an open
subset containing x in X ´ πp rXzV q, we can assume that rE is trivial on rX and that X is affine.

Let Xm be the mth infinitesimal neighborhood of R and rXm “ π´1Xm. We can now follow
the same method of proof as for Theorem 1.1:

– Any section of rE{B on rXm extends to any affine Zariski neighborhood of Z in rX.

– There exists a section of E{B on any infinitesimal neighborhood Xm. This is because, by
assumption, there is a section of E{B over R (after Zariski localization) that be extended
to infinitesimal neighborhoods of R. This section can be pulled up to rXm.

– For m sufficiently large, a section s of rE{B over rX descends to a section of E{B over X if
the restriction of s to rXm is a pull-back of a section of E{B over Xm (the same proof as for
Lemma 2.5).

4.1 An example

We give examples of normal surfaces X over any algebraically closed field k on which there exist
PGLpmq-bundles which are generically trivial but not Zariski-locally trivial.

We begin with some preliminary remarks. First, to prove the existence of PGLpmq-bundles
as above (with m not specified), it suffices to construct elements of the Brauer group BrpXq
which are generically trivial but not locally trivial. (That such examples should not be difficult
to construct has been suggested by Grothendieck [Gro68, End of Remarques 1.11 c)], but we do
not know a reference where this has been made explicit.) Furthermore, by a theorem of Gabber
[Gab81], [Hoo82, Corollary 9], for any normal quasi-projective surface3 X, the Brauer group is
equal to the torsion in H2

etpX,Gmq, so if the characteristic p of k does not divide n, the Kummer
sequence shows that it suffices to find elements of H2

etpX,µnq which are generically trivial but
not locally trivial. We give an example where such elements exist for any such n ą 1.

Let E Ă P2
k be an elliptic curve, and let p1, p2, . . . , p10 be distinct points on E. Let X 1 be the

blow-up of P2
k at these points, and let E1 be the strict transform of E. We have pE1q2 “ ´1, and if

there exist an ample line bundle L on X 1 and a positive integer a such that L|E1 – Op´aE1q|E1 ,
then it is well known (and easy to see) that there exists a morphism π : X 1 Ñ X, where X
is a normal projective surface, which contracts E1 and is an isomorphism onto its image when
restricted to X 1zE1. To ensure this, it suffices, for example, to have positive integers a1 and b1

such that OX 1pa
1Hq|E1 “ OE1pbpp1 ` p2 ` ¨ ¨ ¨ ` p10qq in PicpEq, where H is the pull-back of the

class of a line in P2.

We now use the Leray spectral sequence for the map π and cohomology with µn coefficients.
By proper base change, R1π˚µn is a skyscraper sheaf with stalk pZ{nq2 supported on the singular
point p “ πpE1q of X. Since X 1 is simply connected, H1

etpX,µnq “ 0, so the differential d2 of the
spectral sequence gives an embedding of H0pX,R1π˚µnq into H2

etpX,µnq; denote this subgroup

3In fact, Gabber has proved this for any quasi-projective variety (unpublished; see [dJo05]) and Schröer has proved
this for any geometrically normal (separated) surface.
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by A. It is clear that A maps to 0 in H2pXztpu, µnq as well as in H2
etpX

1, µnq. However, we shall
show that for all but finitely many n, it injects into H2

etpU, µnq, where U is any Zariski-open
neighborhood of p.

Let α be any element of A. If α dies in U , the Gysin sequence shows that α must be the
cohomology class of a divisor D supported in XzU . Let U 1 “ π´1pUq; we may view D as a
divisor on X 1 since XzU is identified naturally with X 1zU 1. Since X 1 is a smooth projective
rational surface, H2pX 1,Z{nq “ PicpX 1q{nPicpX 1q, so it follows that D must be divisible by n in
PicpX 1q. The map π˚ : PicpXq Ñ PicpX 1q is an injection, and the cokernel is a finitely generated
abelian group. If n is coprime to the order of the torsion part of the cokernel, then D must be
divisible by n in PicpXq, so α must be 0.

By choosing the pi suitably, one can arrange that the cokernel is torsion free. For example,
if k is not Fp, one can choose p1, p2, . . . , p9 arbitrarily such that H|E , p1, . . . , p9 are independent
in PicpEq and then choose p10 to satisfy the equation 10H|E “ 3pp1 ` p2 ` ¨ ¨ ¨ ` p10q in PicpEq.
In general, one has PicpXq “ KerpPicpX 1q Ñ PicpE1qq; with the above choice, one then sees
that PicpXq is of rank one and the cokernel is torsion free.

Remark 4.2. Given an α as above of order n, we do not know what is the smallest integer m
such that α comes from a PGLpmq torsor on X.

5. Applications

Proposition 5.1. Let C be a projective curve over an algebraically closed field k and G
a semisimple simply connected group. The moduli stack BunGpCq of principal G-bundles on C
is connected.

Note. The moduli stack BunGpCq is well known to be smooth; see, for example, [Wan11].r1snote

Proof. The proof of [DS95, Proposition 5] generalizes easily (using Theorem 1.2) with one small
change in detail.

Let B be a Borel subgroup of G and H Ă B a maximal torus. Let BunG, BunH and BunB de-
note the corresponding stacks of bundles on C. The pointed set π0pBunBq surjects onto π0pBunGq
(by Theorem 1.2), and π0pBunHq is in bijection with π0pBunBq (as in [DS95]). Therefore, it suf-
fices to connect the image of an H-bundle in BunG to the trivial G-bundle. To do this, we need
to show (since coroots generate cocharacters) that if we twist an H-bundle by a cocharacter,
the image of the H-bundle (in BunG) stays in the same connected component. This follows from
Proposition 3.3 (see Section 3.2.2).

Assume for the rest of this section that C is a reduced projective curve over k “ C. Let
p1, . . . , pn be smooth points of C such that C “ C ´ tp1, . . . , pnu is affine. Choose local uni-
formizing parameters at the points pi.

Consider the k-groups LCG, LG and L`G which assign to a k-algebra R the groups GpΓpC,Oq
bRq, GpRppzqqq and GpRrrzssq, respectively. Then LG is an ind-scheme,4 and L`G is an affine
scheme. There is an embedding LCG Ñ pLGq

n, and the scheme LCG inherits an ind-scheme structure
from pLGq

n.

4An ind-scheme in this paper is a k-space (that is, a set-valued functor on the category of commutative k-algebras)
of the form lim

ÝÑ
Yn, indexed by the natural numbers, such that each Yn is a scheme over k and all the maps

Yn Ñ Yn`1 are closed embeddings.
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Let QG “ LG{L
`
G be the affine Grassmannian. As a corollary of Theorem 1.5, we obtain the

following generalization of the uniformization theorem [BL94, BL95, LS97, DS95] for singular
curves.

Proposition 5.2. Suppose that G is semisimple (possibly not simply connected). There is an
isomorphism of stacks LCGzpQGq

n „
Ñ BunGpCq.

The morphism is constructed using [BL95] (note that p1, . . . , pn are smooth points of C).
That it is an isomorphism follows from Theorem 1.4.

The following is a generalization of a result of Laszlo and Sorger [LS97, Proposition 5.1].

Proposition 5.3. Assume that G is simple and simply connected. The k-group LCG is integral
as an ind-scheme, that is, can be written as a limit of an increasing sequence of integral schemes.

Proof. Following the proof of [LS97] (and Theorem 1.4), we see that pQGq
n Ñ BunGpCq is locally

(in the étale topology) a fiber bundle with fiber LCG. This shows that LCG is reduced. Connected
ind-groups are irreducible by a theorem of Shafarevich [Sha82]; therefore, it suffices (exactly as
in [LS97]) to show that LCG is connected.

We follow the proof in [LS97] of the connectedness of LCG when C is smooth (attributed there
to Drinfeld). Let C 1 “ C´tpu, where p is a smooth point. Then, using Theorem 1.4, we see that

LC
1

G {L
C
G
„
Ñ QG ,

exactly as in [LS97], and one obtains that the (sets of) connected components of LCG and LC
1

G are
in bijection. Therefore, removing any finite number of smooth points of C does not change the
number of connected components of LCG.

Let g P LCGpkq. Let Z be the set of singularities of C and KZ the semilocal ring at Z. These are
rational functions on C which are regular at points of Z. Now, g gives rise to a point in GpKT q. It
is known by the works [IM65, Ste73] (see also the recent article [SSV12]) that GpKZq is generated
by U`pKZq and U´pKZq, where δ˘ : Amk

„
Ñ U˘ are the unipotent radicals of a Borel B` and an

opposite B´. Therefore, we have maps

ui : C
2 Ñ Amk , i “ 1, . . . , s ,

such that g “ δ˘u1 ¨ ¨ ¨ δ˘us and C2 “ C ´ tq1, . . . , qmu, where the qi are smooth points of C.
Since the sets of connected components of LCG and LC

2

G are in bijection, we just need to connect g
and 1 in LC

2

G . For this, it suffices to consider the map A1
k Ñ LC

2

G given by

pt, xq ÞÑ δ˘ptu1pxqq ¨ ¨ ¨ δ˘ptuspxqq .

6. Conformal blocks and generalized theta functions

Let Mg,n be the moduli stack parameterizing stable n-pointed curves pC; ~pq “ pC, p1, . . . , pnq of
genus g. In this section, k “ C.

6.1 Conformal blocks

Let G be a simple, connected, simply connected complex algebraic group with Lie algebra g, let
B be a Borel subgroup of G and H Ă B a maximal torus. For an integer (called the level) ` ě 0,
let P`pgq denote the set of dominant integral weights λ with pλ, θq ď `, where θ is the highest
root and p , q is the Killing form, normalized so that pθ, θq “ 2. Let ĝ be the Kac–Moody central
extension of g (see, for example, [Sor96]). For a dominant integral weight λ in P`pgq, let Hλ,`
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denote the corresponding irreducible representation of ĝ. Note that Vλ Ď Hλ,`, where Vλ is the
corresponding irreducible representation of g.

Consider an n-tuple ~λ “ pλ1, . . . , λnq of elements in P`pgq. Corresponding to this data, there
are vector bundles of conformal blocks V “ V

g,~λ,`
on the moduli stacks Mg,n of stable n-pointed

curves of arbitrary genus g [TUY89, Fak12] (we will suppress the genus g in the notation of
conformal block bundles). The fiber of V over pC, p1, . . . , pnq P Mg,n is a finite-dimensional
quotient (after choosing local coordinates at pi) of the form

bni“1Hλi,`{gb ΓpC ´ tp1, . . . , pnq,Oqbni“1Hλi,` ,

where gbΓpC ´ tp1, . . . , pnq,Oq acts on bni“1Hλi,` via an embedding into ‘ni“1ĝ (see [TUY89]).

6.2 Moduli stacks of parabolic bundles

Definition 6.1. Consider an n-pointed reduced projective curve pC; ~pq “ pC, p1, . . . , pnq, where
p1, . . . , pn are distinct smooth points of C. Let ParbunGpC; ~pq “ ParbunGpC, p1, . . . , pnq denote
the moduli stack parameterizing tuples pE, τ1, . . . , τnq, where E is a principal G-bundle on C
and τi P Epi{B for i “ 1, . . . , n.

Performing this construction in families of stable n-pointed curves, we obtain stacks
ParbunG,g,n (in the faithfully flat and of finite presentation (fppf) topology) with morphisms

π : ParbunG,g,n ÑMg,n

such that π´1pC; ~pq “ ParbunGpC; ~pq. Since ParbunG,g,n Ñ ParbunG,g,0 “ BunG,g is a repre-
sentable morphism with smooth fibers and BunG,g is an Artin stack that is smooth over Mg,n

(see, for example, [Wan11]), it follows that ParbunG,g,n is also an Artin stack that is smooth
over Mg,n.

Our aim in this section is to construct a line bundle L “ L
g,~λ,`

on ParbunG,g,n and to construct
an isomorphism

π˚L
„
Ñ V˚g,λ,` . (6.1)

In fact, we will construct such line bundles and isomorphisms (compatibly with pull-backs) for
arbitrary families of stable n-pointed curves.

Over Mg,1 and for λ1 “ 0, such line bundles and isomorphisms were given by Laszlo [Las98,
Section 5], building upon the case of a single curve considered by many authors. Sorger’s con-
struction [Sor99] of the line bundle via the theory of conformal blocks plays an important role
in Laszlo’s construction. Our approach to (6.1) generalizes Laszlo’s work [Las98].

Remark 6.2. The functor π˚ is constructed using [LM00, Section (12.5)] and [Ols07].

6.3 Construction of the line bundle

Fix a family of stable n-pointed curves C Ñ S, with the pointed sections denoted by σi : S Ñ C.
Localizing in the étale topology on S, we will make a further choice of disjoint sections τ1, . . . , τm
disjoint from σ1, . . . , σn such that

– the curve C 1 “ C ´Ymi“1τipSq ´ Y
n
j“1σj is affine over S,

– the pointed curves in the family have no automorphisms.

We will construct a line bundle L on ParbunS “ pParbunG,g,nqS , the stack of parabolic
bundles over C Ñ S, and show that the line bundle is independent (with canonical isomorphisms)
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of the choice of the extra sections τ1, . . . , τm, allowing us (by descent) to define a line bundle
without assuming the existence of such sections τ1, . . . , τm. Set σn`a “ τa for a “ 1, . . . ,m.

First, assume that S is the spectrum of a ring R. For an R-algebra A, let CA “ CˆR SpecpAq
and C 1A “ C 1 ˆR SpecpAq. We have an R-group LGC1 (see [BL94, Dri06]) which assigns to every
R-algebra A the group

LGC1pAq “ GpΓpC 1A,Oqq “ MorkpC
1
A, Gq .

We also have ind-schemes I Ď LG over S whose A-points are defined as follows. Let σA1 , . . . ,

σAn`m be sections of CA Ñ SpecpAq obtained by base change. Let pCA be the completion of CA Ñ

SpecpAq along the union of these sections and pC 1A the complement of the union of the induced

sections of pCA Ñ SpecpAq.

– Let LGpAq “ GpΓp pC 1A,Oqq.
– The Iwahori group IpAq is defined to be subgroup of elements of GpΓp pCA,Oqq which map

to points of BpAqn`m under the natural map GpΓp pCA,Oqq Ñ GpAqn.

If local coordinates zi are chosen along σi, we may identify LGpAq and IpAq with
śn`m
i“1 GpAppziqqq and

śn`m
i“1 IpAq, respectively, where IpAq is the inverse image of BpAq un-

der the morphism GpArrzssq Ñ G.

Proposition 6.3. The R-group LGC1 is (relatively) ind-affine and formally smooth with connected
integral geometric fibers over S “ SpecpRq.

Proof. We first claim that the coordinate ring of C 1 is a direct limit of (Zariski-)locally free
R-modules

lim
ÝÑ

Mi , i “ 1, 2, . . . ,

with Mi a local direct summand of Mi`1.

It suffices to prove this claim in the universal case where we have a flat family of pointed
curves over an integral variety (since the family consists of rigid pointed curves). In this case, the
coordinate ring of C 1 can be filtered by order of pole along the total boundary divisor (which is
ample), and then standard cohomology and base change arguments give the desired direct limit
(we could instead have used a theorem of Lazard that flat modules over any ring are filtered
limits of finitely generated free modules [Laz64]).

The argument for the case of a field (which embeds G into a general linear group) generalizes
to give the ind-affine property: The matrix coefficients of the R-points of LGC1 in the embedding
in a general linear group are filtered by the filtration of the coordinate ring. The equations
defining G in the general linear group now give the desired ind-affine structure.

For formal smoothness, we need to show that LGC1pA{Iq Ñ LGC1pAq is surjective whenever A
is an R-algebra with a nilpotent ideal I. Pick φ : C 1A{I Ñ G in LGC1pA{Iq. Now, C 1A{I Ñ C 1A is

a morphism SpecpB1q Ñ SpecpBq with B1 “ B{J with J Ă B nilpotent. Since G is a smooth
scheme over the base field, the desired surjection follows.

The assertion on integrality of geometric fibers follows from Proposition 5.3.

6.4 Central extensions

Using results of Faltings ([BL94, Lemma 8.3], also [LS97]), we see that LG has a projective
representation (this construction is coordinate independent) on

H “ Rbk
`

b
n`m
i“1 Hλi,`

˘
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lifting a natural representation of affine Kac–Moody algebras in the following sense. Suppose
that A is an R-algebra, hence a k-algebra, and γ P LGpAq. Then locally (in the Zariski topology)
on SpecpAq, there is an automorphism uγ of HA “ H bR A, unique up to units Rˆ, such that
for all α in the A-valued points of the corresponding Kac–Moody Lie algebra (which, if local
coordinates are chosen, is Ac‘‘igbAppziqq), the following diagram commutes:

HA
α //

uγ

��

HA

uγ

��

HA
Adpγq¨α

// HA .

(6.2)

This gives rise to a representation

LG Ñ PGLpHq
whose derivative coincides with the natural action of the Lie algebra of LG on H (up to scalars).

Let xLG be the corresponding central extension of LG:

1 Ñ Gm Ñ xLG Ñ LG Ñ 1 . (6.3)

The extension (6.3) splits over I Ď LG because the projective ambiguity disappears over I
(the action over the tensor product of highest weight vectors can be normalized; see [Sor00,
Lemma 7.3.5]). We require I to act on the tensor product of highest weight vectors via the map

to BpAqn`m using the product of characters λi : B Ñ Gm. Therefore, I is a subgroup of xLG.

Let IG “ Gpkppzqqq{I be the Iwahori Grassmannian. It is known ([Mat88], also [KNR94]
and [PR08, Proposition 10.1]) that the Picard group of IG is a direct sum Z‘PicpG{Bq, where
the first factor is generated by line bundles from the affine Grassmannian and the second factor
comes from characters of B. The Z-component of an element of the Picard group will be referred
to as the level of the line bundle.

Remark 6.4. The Lie algebra of xLG is (canonically) isomorphic to the direct sum of affine Lie
algebras ĝ modulo the sum of central elements (considered in families, in a coordinate-free way);
see [Las98, Proposition 4.6].

We remark that xLG is itself independent of the choice of the λi (at the same level). The main

point is that the Iwahori Grassmannian xLG{pI “ LG{I “ In`mG ˆk S is independent of the choice

of the λi. To see this, note that xLG is a Mumford group (with given isomorphisms) for all line
bundles (trivialized over the identity coset) on LG{I “ In`mG bk S with all components at the
given level ` (following [LS97, Section 8.3]), lifting the natural action of LG on LG{I.

The following generalizes a result of Sorger [Sor99].

Lemma 6.5. The extension (6.3) splits over LGC1 Ď LG.

Proof. Let V “ V
g,~λ,`

be the sheaf of conformal blocks at level ` on S associated to the data

pλ1, . . . , λn, 0
mq. Recall that V is a quotient of H. By Remark 6.4, changing λi at a fixed level `

does not change xLG; therefore, we may assume V ‰ 0 (since this is true if λ1 “ ¨ ¨ ¨ “ λn “ 0).

Let

1 Ñ Gm Ñ GLpVq Ñ PGLpVq Ñ 1

be the corresponding central extension.
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The projective representation of LGC1 on H passes to a projective representation on V,

VbR A “ HA{LiepLGC1qpAq bA HA , (6.4)

which can be seen using

LiepLGC1qpAq “ gbk ΓpC 1A,Oq (6.5)

and diagram (6.2) with γ P LGC1pAq and α P gb ΓpC 1A,Oq “ LiepLGC1qpAq.

The derivative of the projective representation of LGC1 on V is zero. This is because the
map LG Ñ PGLpHq has derivative which is, up to scalars, given by the natural action of the
affine Kac–Moody algebra on H. The induced morphism LGC1 Ñ PGLpVq is therefore trivial
(Proposition 6.12). This allows us to fix the projective ambiguity in the action of LGC1 on H, so
that the corresponding action on V is actually trivial.

6.5 Line bundles

Set pI “ I ˆGm. The character pI “ I ˆGm Ñ Gm given by the inverse on Gm and the inverse
of product of characters λi (and 0m) on I produces a line bundle on the quotient stack

rQ “ xLG{pI “ LG{I .

It is easy to see that rQ is a fiber bundle over an pn`mq-fold product of the affine Grassmannian
QG ˆk S (with fibers pG{Bqn`m). In particular, it is a formally smooth ind-scheme over S.

Generalizing Proposition 5.2, we have the following.

Proposition 6.6. The stack quotient LGC1z
rQ is the pull-back of the stack ParbunG,g,n`m to S.

The proof again uses [BL95] and Theorem 1.4. In particular, we obtain a line bundle L on
the pull-back of ParbunG,g,n`m to S.

We can also identify rQ with an pn ` mq-fold product of the Iwahori Grassmannian, and
the line bundle L pulls back to the line bundle corresponding to λi at level ` on this Iwahori
Grassmannian. This leads to (by work of Kumar [Kum87] and Mathieu [Mat88])

H0p rQ,Lq “ H˚ .

In particular, using Propositions 5.3, 6.6 and 6.11 (and equations (6.4), and (6.5)), we get

H0ppParbunG,g,n`mqS ,Lq “ V˚ . (6.6)

Remark 6.7. The line bundles obtained above on rQ are trivialized along the identity coset. Sim-
ilarly, the line bundle on ParbunG,g,n`m is trivialized along the trivial section of ParbunG,g,n`m
over S. Such rigidifications fix the line bundle up to canonical isomorphisms.

Adding one more section τ (after further affine étale localization S1 of S) leads to a line bundle
L1 on ParbunG,g,n`m`1. It it is easy to see (using the propagation of vacua isomorphisms) that

the pull-back of L1 to LGC1z
rQ (pulled up to S1) is canonically identified with L.

6.6 Proof of Theorem 1.7

We now use a descent technique from [Fak12] (see the discussion following Proposition 2.1
in [Fak12]) to show the independence of L from the choice of sections τ1, . . . , τm. Suppose that
we are given two sets of the τ , say τ1, . . . , τm and τ 11, . . . , τ

1
m1 . Add a further large collection of

sections σ1, . . . , σs to each of these sets, disjoint from the earlier sections (after étale localization
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in S). We have isomorphisms of the L coming from τ1, . . . , τm with that coming from τ1, . . . , τm,
σ1, . . . , σs, which is in turn canonically isomorphic to the line bundle coming from σ1, . . . , σs, and
similarly for τ 11, . . . , τ

1
m1 . This gives the patching data (the cocycle condition is easy to check).

Therefore, there exists (by descent) a line bundle L on the stack ParbunG,g,n. It is now easy
to see that the desired isomorphism (6.1) holds. This completes the proof of Theorem 1.7.

It also follows that the line bundle L can be defined for arbitrary bases S. To prove the
isomorphism (6.1) over a base, we may localize and assume S to be affine and apply (6.6)
when S is of finite type over k (the finite-type requirement comes from Proposition 6.11).

Remark 6.8. We may show that (6.6) holds for arbitrary affine S (not necessarily of finite type
over k) as follows. The implication (a)ñ(b) in Proposition 6.11 works for arbitrary affine S, and
hence there is an injective map (6.6) for arbitrary S. For the surjection, we can assume, since
the sheaves of covacua V˚ are locally free of finite rank (and commute with base change), that
there is an R-basis of the sheaf of vacua coming from a family over a finitely generated base.
Therefore, any particular element of V˚ is the pull-back from an affine scheme S1 of finite type
over k via a map S Ñ S1. We can now apply the isomorphism (6.6) for S1 and the pull-back map
pParbunG,g,n`mqS Ñ pParbunG,g,n`mqS1 to conclude that (6.6) is surjective for all schemes S
over k.

6.7 Explicit description of the line bundles L on ParbunG,g,n

Let V be an irreducible representation of G with Dynkin index dV (see [KNR94]). Consider the
line bundle L1 on ParbunG,g,n`m, which over a marked curve pC, ~pq and point pE, τ1, . . . , τnq P
ParbunGpC; ~pq equals the tensor product of

– the line
`

detpH˚pC,E ˆG V qq b detpH˚pC, V b Oqq´1
˘`

(here, for a coherent sheaf W on
C, the term detpH˚pC,W qq is the line

top
ľ

H0pC,W q˚ b

top
ľ

H1pC,W q
¯

. (6.7)

– the lines (for i “ 1, . . . , n) obtained as fibers of Epi ˆB C´λi Ñ Epi{B over the given
elements τi.

It is easy to see (using Remark 6.7 and Lemma 7.2) that L1 equals the line bundle L on
ParbunG,g,n`m associated to the data ~λ but at level `dV . Therefore, as a special case, Theorem
1.7 gives the following.

Theorem 6.9. We have π˚L1 “ V˚
g,~λ,`dV

.

Similarly to Theorem 1.7, the version for arbitrary families of n-pointed curves also holds.

When G is a special linear or symplectic group and V is the standard representation, we have
dV “ 1. The standard (vector) representation for Spin groups has dV “ 2, and therefore odd
levels are not covered by Theorem 6.9 (but they are covered by Theorem 1.7).

The theory of Pfaffian line bundles [LS97] for spin groups and fixed smooth curves to cover
odd levels seems to run into difficulties for singular curves for degree reasons: the degree of the
dualizing sheaf of a reducible curve may be odd on irreducible components.

6.8 Generalities on ind-group actions

Let S “ SpecR, and suppose that Γ is an ind-group over S acting on an ind-scheme Q over S. Let
L be a Γ-linearized line bundle on Q. In this setting, LiepΓqpRq “ kerpΓpRrεs{ε2q Ñ ΓpRqq acts on
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H0pQ,Lq (note that since R1 “ Rrεs{pε2q is a free R-algebra, H0pQR1 ,LR1q “ H0pQ,Lq bR R1).
We will make the following assumptions in this section:

– Assume that Γ and Q are inductive limits of schemes of finite type over S and that S is a
scheme of finite type over k “ C.

– Assume that Γ is ind-affine and formally smooth over S with integral geometric fibers,

Definition 6.10. A section s P H0pQ,Lq is Γ-invariant if ΓpAq acts trivially on the pull-
back section sA of H0pQA,LAq for all R-algebras A. This definition can be reformulated as the
vanishing of a suitable section of the pull-back of L on ΓˆS Q [BL94, Lemma 7.2].

By [BL94, Proposition 7.2], the space of such sections is in bijection with H0pΓzQ,L0q,
where L0 is the line bundle on the stack ΓzQ obtained via descent from L. Note that in this
generality, ΓzQ may not be algebraic.

The following is a generalization of [BL94, Proposition 7.4].

Proposition 6.11. Let s P H0pQ,Lq. The following are equivalent:

(a) The section s is Γ-invariant.

(b) For every R-algebra A, the pull-back section sA of H0pQA,LAq is invariant under the Lie
algebra LiepΓqpAq (which is the kernel of ΓpArεs{pε2qq Ñ ΓpAq).

Proof. The proof in [BL94] carries over easily to give that statement (a) implies statement (b).
For the reverse direction, we adapt the arguments of [BL94] as follows.

Let m : ΓˆS QÑ Q be the group action and pr2 : ΓˆS QÑ Q the projection. We also have
a given isomorphism φ : m˚LÑ pr˚2 L. Let σ “ φpm˚sq ´ pr˚2 s. Assume statement (b); to prove
statement (a), we need to show σ “ 0.

Suppose σ ‰ 0. Write Γ and Q as ind-schemes over S:

Γ “ lim
Ñ

ΓpNq , Q “ lim
Ñ

QpMq .

Here, M and N vary over the natural numbers, and ΓpNq and QpMq are schemes of finite type
over S.

Assume that σ is non-zero on ΓpN0q ˆS QpM0q. Base changing to T “ QpM0q, we have an

ind-scheme ΓT “ limÑ ΓpNq ˆS T “ limÑ Γ
pNq
T . The restriction of σ to ΓT is clearly non-zero.

Let x P Γ
pN0q

T be a closed point of ΓT such that σ is non-zero in the stalk at x in Γ
pN0q

T . Let
y P T be the image. For every positive integer u, we can form the base change diagram

ΓT ˆT Tu //

��

ΓT

��

Tu “ SpecOT,y{m
u
y

// T .

(6.8)

Let u ě 0 be the smallest integer such that the image of σ is non-zero in ΓT ˆT Tu`1 (since

σ restricted to some Γ
pNq
T is non-zero, such a u exists).

Now, there is a map

H0ppΓT qy,OpΓT qyq bk Ly bk m
u
T,y{m

u`1
T,y Ñ H0pΓT ˆT Tu`1,Lq .

We claim that this map is injective and σ is in the image. The local situation is the following:
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(i) Set Tu`1 “ SpecpAq, where pA,mq is a local ring and mu`1 “ 0 and k “ A{m (and A is
a k-algebra).

(ii) Write ΓA as an inductive limit of SpecpBjq, and set B “ lim
ÐÝ

Bj , where the Bj are A-algebras.

(iii) The rings Bj{mjBj are of finite type over k.

(iv) There is a section of ΓA Ñ SpecpAq passing through any closed point of the central fiber
(using the formal smoothness of Γ).

(v) Pick a k-basis a1, . . . , ar of mu.

(vi) Suppose f P lim
ÐÝj

muBj Ď lim
ÐÝ

Bj .

Our aim is then to show that

– we can write f uniquely as f “
řr
i“1 aigi, where gi P lim

ÐÝ
Bj{mBj .

We can find such lifts gi at the level of each Bj , non-uniquely. The ambiguity is the module
of relations

Mj “
 

ph1, . . . , hrq P pBj{mBjq
‘r

ˇ

ˇ

ÿ

aihi “ 0 P muBj
(

.

Therefore, there are exact sequences

0 ÑMj Ñ pBj{mBjq
‘r Ñ muBj Ñ 0 .

It now suffices to show (using Mittag–Leffler properties; see, for example, [Har77, Proposi-
tion II.9.1]) that for any j, there is an n ą j such that Mn ÑMj is the zero map. This will also
lead to an isomorphism (recall that mu`1 “ 0)

mu bk lim
ÐÝ

Bi{mBi
„
Ñ lim
ÐÝ
i

muBi Ď lim
ÐÝ

Bi . (6.9)

First, we show that there is an ` ą j such that any nilpotent element in B`{mB` goes to zero
in Bj{mBj . This is because the closed fiber of ΓA is the limit of an inductive system Yc of reduced
varieties. Therefore, there exists an ` ą j such that we have a factoring SpecpBj{mBjq Ñ Yc Ñ
SpecpB`{mB`q. Any nilpotent element in B`{mB` must vanish on Yc, so goes to zero in Bj{mBj .

Fix such an `, and let Z` “ SpecpB`{mB`q. The scheme Z` ˆk SpecpAq has a map to Γ (over
SpecpAqq lifting the map of Z` to the closed fiber of ΓA (using formal smoothness). Pick an n
such that Z` ˆk SpecpAq Ñ Γ factors through SpecpBnq. This n “works”: Given an equation
ř

aihi “ 0 P muBn with hi P Bn{mBn, we can restrict to the sections of SpecpBnq Ñ SpecpAq
coming from the map Z` ˆk SpecpAq Ñ SpecpBnq. Since a1, . . . , ar are k-linearly independent,
the hi vanish at all points in the image of Z`

5 (that is, give a nilpotent function on Z`), and
hence map to 0 P Bj{mBj , as desired.

Therefore, we get a non-zero

σ̄ P H0ppΓT qy,OpΓT qyq bk V , V “ Ly bk mu
T,y{m

u`1
T,y .

(We define m0
T,y to be the local ring of T at y.)

Now, σ̄ is a section of the trivial vector bundle on pΓT qy with fibers V , and it suffices to show
that σ̄ is constant (that is, given by an element of V ): the constant has to be zero since σ is zero
when pulled back via the identity section QÑ ΓˆS Q.

Let A “ OT,y{m
u`1
T,y . Assume that σ̄ is not zero on the integral ind-scheme pΓT qy. Write

V “ kr for some r. Then, there is a tangent vector X : Specpkrεs{pε2qq Ñ pΓT qy which does

5Write hi as the sum of a constant and a function which vanishes at a given point of the closed fiber to facilitate
the pull back to SpecpAq via sections.
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not kill one of the r components of σ̄. Since ΓT is formally smooth over T , we can extend X to
a tangent XA : SpecpArεs{ε2q Ñ ΓT over T . Now, XA gives rise to a map YA : SpecpAq Ñ ΓT
obtained as a composition

SpecpAq Ñ Spec
`

Arεs{ε2
˘ XA
ÝÑ ΓT .

Set X 1A to be the composition

Spec
`

Arεs{ε2
˘

Ñ SpecpAq
YA
ÝÑ ΓT .

We have a tautologous A-point p of QA. Let q denote the point p translated by YA. Consider
the two elements in LpbA Arεs{pε2q obtained by pulling back σ under XA and X 1A, respectively.
By our assumption, the difference ε∆ of these elements is non-zero. We therefore get a non-zero
element ∆ P Lp.

Set α “ XA ˝pX
1
Aq
´1 P LiepΓqpAq; we obtain ασA P H

0pQA,LAq. It is easy to see that ∆ P Lp
agrees with the value of ασA at q (an element of Lq) under the isomorphism of A-modules
Lq

„
Ñ Lq given by X 1A.

Since by assumption (b), we have ασA “ 0 and ∆ ‰ 0, we reach a contradiction.

Proposition 6.12. Suppose that Γ Ñ S “ SpecpRq has integral fibers, where S is a scheme
of finite type over k “ C. Let φ : Γ Ñ AutpV q, where V is a finite-dimensional vector bundle
over S, be a map of R-groups. Assume that for every R-algebra A, the group LiepΓqpAq “
kerpΓpArεs{ε2q Ñ ΓpAqq maps to 0 P EndpV q bR A under φ. Then φ is the trivial morphism.

Proof. We may assume, by passing to an affine cover of S, that V is trivial. Now, assume that φ
is not trivial, and let y P S and u ě 0 be such that the image of φ is not the identity in ΓˆSSu`1,
where Su`1 “ SpecOS,y{m

u`1
y , with u the smallest possible. Base changing the picture to Su,

we get a matrix of functions pfa,bq on Γ. Therefore, pfa,bq differs from the identity matrix by
a matrix G “ pgabq with ga,b P m

uBj for every j, where we have expressed ΓSu`1 as lim
ÐÝ

Bj .

The matrix G can be lifted to a matrix with coefficients in lim
ÐÝ

mu bk Bj{mBj (as before,
see (6.9)), and our aim is to show that elements of lim

ÐÝ
Bj{mBj coming from matrix coefficients

(after choosing a basis of mu) have derivatives zero. The rest of the proof is similar to that of
Proposition 6.11, using the group action to move sections of Γ to the identity section.

7. Picard groups

Fix an n-pointed curve pC; ~pq with arbitrary singularities. Let m be the number of irreducible
components of C. Choose smooth points q1, . . . , qm P C distinct from p1, . . . , pn and local uni-
formizing parameters at the points p1, . . . , pn.

We have a morphism of stacks Qm
G ˆ pG{Bq

n Ñ ParbunGpC; ~pq, which by Proposition 5.2
induces an isomorphism

LC´tq1,...,qmupGqzQ
m
G ˆ pG{Bq

n Ñ ParbunGpC; ~pq .

Recall that PicQG “ Z.

Proposition 7.1. The natural pull-back morphism

PicpParbunGpC; ~pqq Ñ PicpQm
G ˆ pG{Bq

nq “ Zm ‘‘ni“1 PicpG{Bq (7.1)

is an isomorphism.
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Proof. By Proposition 5.2, PicpParbunGpC; ~pqq coincides with the group of LC´tq1,...,qmupGq-
linearized bundles on Qm

G ˆ pG{Bq
n. By Proposition 5.3 and [LS97, Corollary 5.1], there can be

at most one such linearization of a line bundle on Qm
G ˆ pG{Bq

n. This shows that the morphism
(7.1) is injective.

To show the surjectivity, we use the line bundles of the form E ÞÑ Epi ˆB C, where B acts
on C via a character χ to produce line bundles of the form p0m, 0, . . . , χi, . . . , 0q with χ in the
ith place. This takes care of all the G{B contributions. For the remaining contributions, we use
diagrams induced by restricting bundles to irreducible components. If qj is on the irreducible
component Cj , consider

Qm
G ˆ pG{Bq

n //

��

QG

��

ParbunGpC; ~pq // BunGp rCjq ,

(7.2)

where the horizontal map on top is the projection to the jth factor of Qm
G and rCj the normal-

ization of Cj . Here, we use the fact that the uniformization map QG Ñ BunGp rCjq corresponding

to p rCj , qjq is an isomorphism on Picard groups by [Las98, Sor99].

Let G Ñ SLpV q be an irreducible representation of G. Associated to V , there is a notion of
a Dynkin index dV (cf. [KNR94]). It has the following property: if p is smooth point (with local
coordinates) on a smooth projective curve C, the associated morphism QG Ñ BunGpCq pulls
back the determinant of the cohomology line bundle detpH˚pC,EˆP V qq (see (6.7)) on BunGpCq
to dV times the positive generator Op1q of the Picard group of QG (see [LS97]).

Lemma 7.2. Suppose that y1, . . . , ym are distinct smooth points on a possibly singular projective
curve C. The corresponding map (after choosing local coordinates at the points pi) Qm

G Ñ

BunGpCq pulls back the determinant of cohomology bundle detpH˚pC,E ˆP V qq to bm
i“1OpdV q.

Proof. Since the Picard group of QG is Z, it follows that any line bundle on Qm
G is of the form

bm
i“1Opaiq. It therefore suffices to assume m “ 1. Let π : rC Ñ C be the normalization of C;

we have maps QG Ñ BunGpCq Ñ BunGp rCq. The statement then comes down to verifying the
canonical equality detpH˚p rC, π˚E ˆP V qq “ detpH˚pC,E ˆP V qq for any principal bundle E
on C. (Note that QG Ñ BunGp rCq produces G-bundles on rC which are trivial on connected
components of rC other than the one mapped to by y1, so we may assume that rC is connected.)

We show that if W is a vector bundle with trivial determinant on C, then detpH˚pC, π˚π
˚W qq

“ detpH˚pC,W qq. Let M “ π˚O{O. We are reduced to showing that detpHs˚pC,M bW qq is
trivial. But M is torsion on C and can be filtered in such a way that the graded quotients are
(directs sums) of the form i˚k, where i is the inclusion of a closed point in C. The case M “ i˚k
is immediate since W has trivial determinant.
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