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Abstract

We study the behavior of test ideals and F -singularities in families. In particular, we
obtain generic (and non-generic) restriction theorems for test ideals and non-F -pure
ideals which imply, for example, openness of most of the F -singularity classes when
the relative canonical sheaf is Q-Cartier. Additionally, we study the global behavior of
certain canonical linear systems (induced by the Frobenius morphism) associated to
adjoint line bundles, in families. As a consequence, we obtain some positivity results
for pushforwards of some adjoint line bundles and for certain subsheaves of these.

1. Introduction

In [Kun69], Kunz proved that a scheme over a field of characteristic p > 0 is regular if and
only if the Frobenius (endo)morphism is flat, which initiated the study of singularities using the
Frobenius morphism. Classes of singularities defined via the Frobenius morphism are usually
referred to as F -singularities. Since Kunz’s work, the study of F -singularities has become an
active research area; see [HR76, GW77, Fed83, MR85, RR85, Sri91, Smi97, Har98, MS97, HY03,
Tak04]. However, the methods of F -singularities have been widely applied to global geometry
over a field of positive characteristic only recently [Sch14, Mus13, Hac15, MS14, Zha14, CHMS14,
Pat14, HX15, Tan15], at least outside of special classes of varieties [MR85, BK05]. A large field
within global geometry is moduli theory, which requires understanding how varieties behave in
flat families. In this direction, there have not been any positive results on the behavior of test
ideals in families. We fill this gap.

Previously, F -rational, Cohen–Macaulay, F -injective, and (Gorenstein) F -pure singularities
have been studied in such a context [Has01, SZ09, Has10]. Additionally, [MY09, Example 4.7]
showed that the test ideal τ does not satisfy the generic restriction theorem, at least as stated
for multiplier ideals [Laz04b, Theorem 9.5.35]. We develop tools tackling this issue, obtaining
generic (and non-generic) restriction theorems for test ideals; see Theorem A below.

In a flat family f : X −→ V , the absolute Frobenius morphism on X does not restrict to
the Frobenius morphism on each fiber. Thus, we systematically study the relative Frobenius
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F -singularities in families

morphism1 X ′ −→ X ×V V ′, where X ′ −→ X and V ′ −→ V are the Frobenius morphisms of
X and V , respectively. Its fibers over V are morphisms between thickenings of the fibers of f .
However, its fibers over V ′ are exactly the Frobenius morphisms of fibers of f (at least over
points with perfect residue field).

We begin by stating our main result in the local setting. We denote by Xn and V n the domains
of n-iterated Frobenius morphisms of X and V , respectively. Let τ and σ denote the test ideal2

[HH94] and non-sharply-F -pure ideal [FST11, BB11], respectively. These ideals play key roles in
the theory of F -singularities, the test ideal τ being the unique smallest non-zero ideal fixed by
p−e-linear maps and σ being the unique largest. We define relative versions of these two ideals
by using the relative instead of absolute Frobenius morphism. The iterated relative Frobenius
morphism targets different spaces X ×V V n, and so we actually define a sequence of ideals, one
on each of these spaces. We explain the setup.

Suppose that f : X −→ V is a finite-type, flat, equidimensional, reduced, and S2 and G1
morphism of Noetherian F -finite schemes with V integral. Additionally, suppose that ∆ is a
Q-divisor on X satisfying suitable conditions such that it can be restricted to fibers and such
that KX/V + ∆ is Q-Cartier with index not divisible by p > 0, so that (pe − 1)(KX/V + ∆) is
Cartier (see Remark 2.11 for a precise statement). Then, for each integer n > 0 divisible by e, we
define ideals σn(X/V,∆) and τn(X/V,∆) ⊆ OX×V V n called the relative non-F -pure and relative
test ideals, respectively.

Our main local theorem is that these ideals restrict to absolute non-F -pure and absolute test
ideals on all of the geometric fibers and can be used to prove generic restriction theorems for
the usual absolute test ideals on X ×V V n, at least if V is regular.

Theorem A (Theorem 3.10, Corollaries 3.22, 4.8, and 4.14). With notation as above, there
exists an N > 0 such that for every perfect point3 s ∈ V and every n > N ,

σne(X/V,∆) · OXsne = σ(Xs,∆|Xs)

and

τne(X/V,∆) · OXsne = τ(Xs,∆|Xs) ,
where Xsne is the fiber of X×V V ne −→ V ne over sne ∈ V ne, which is isomorphic to Xs since k(s)
is perfect. Additionally, both σn and τne map surjectively onto their arbitrary base changes.

Furthermore, if V is regular and N is sufficiently large, then for all perfect points s ∈ V , the
absolute non-F -pure ideal restricts to all of the fibers for n > N :

σ
(
X ×V V ne,∆×V V ne

)
· OXsne = σ(Xs,∆|Xs) ,

and at least for an open dense set of the base U ⊆ V , the same holds for the absolute test ideal:

τ
(
X ×V V ne,∆×V V ne

)
· OXsne = τ(Xs,∆|Xs)

for all perfect points s ∈ U .

Additionally, we show that over a dense open subset U of V with W = f−1(U), the relative
test ideal τne(X/V,∆)|W coincides with the absolute test ideal τ(X ×V V ne,∆ ×V V ne)|W and
likewise σne(X/V,∆)|W = σ(X ×V V ne,∆×V V ne)|W , in Theorems 4.12 and 3.13, respectively.

1This is also called the Radu–André morphism, especially in commutative algebra.
2Technically, we are working with what has recently become known as the big test ideal [Hoc07].
3By definition, a perfect point s ∈ V is a morphism SpecK −→ V from a perfect field K; see Definition 2.2.
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The key method that allows us to prove this result (at least stated for σn) is that if m > n,
then im

(
σne(X/V,∆)⊗OX×V ne OX×Vme −→ OX×Vme

)
⊇ σme(X/V,∆) and there is a dense open

subset of the base V over which equality holds for all sufficiently large n; this is Proposition 3.3.
This stabilization result should be viewed as a relative version of [HS77, Proposition 1.11], [Lyu97,
Proposition 4.4], and [Gab04, Remark 13.6].

Remark 1.1. If one replaces the divisor ∆ with the language of principal Cartier algebras, then
the previous result still holds without the technical assumptions about divisors from Remark 2.11.

Remark 1.2. There are a number of subtle issues in the statement above that we are suppressing.
In particular, τn(X/V,∆) depends on the choice of some ideal I contained within the test ideal
of every fiber and is shown to exist in Proposition 4.7.

A particularly important related question is that of deformation of sharply F -pure singu-
larities in flat families with Q-Cartier relative canonical divisors. This would be important for
a positive-characteristic construction of the moduli of stable varieties, also known as the KSBA
compactification. In characteristic zero, this is the moduli space given by the log-minimal model
program. It classifies log-canonical models, hence birational equivalence classes of varieties of
general type, and furthermore it contains some nodal varieties for the compactification. There is
a conjectural framework for constructing this moduli space [Kol90]. One of the main ingredients
in this framework is to prove that log-canonical singularity deforms in flat families with Q-Cartier
relative log-canonical divisor. An important step in this direction in positive characteristic is the
corresponding statement for sharply F -pure singularities. It is also an important ingredient in an
upcoming paper of the first author where he is planning to address the question of the existence
of an algebraic space structure on the space of sharply F -pure stable varieties. In this paper, we
handle the deformation of F -pure and F -regular singularities. Indeed, openness of F -pure and
F -regular singularities is a direct consequence of Theorem A above.

Theorem B (Deformation of F -pure and F -regular singularities: Corollaries 3.29 and 4.19). Let
f : X −→ V and ∆ be as in Theorem A, and, additionally, assume that f is proper. If s ∈ V is
a perfect point and (Xs,∆|Xs) is sharply F -pure (respectively, strongly F -regular4), then there
exists an open set U ⊆ V such that for all u ∈ U , the pair (Xu,∆|Xu) is also sharply F -pure
(respectively, strongly F -regular).

We also build relative test submodules and non-F -injective submodules of ωX×V V ne/V ne and
prove restriction theorems like Theorem A for them (Corollaries 5.4 and 5.8). As a consequence,
in Theorem 5.13 we re-prove a result of M. Hashimoto [Has01], namely deformation for Cohen–
Macaulay F -injectivity and F -rationality.

Furthermore, we apply our setup to global questions. One of the reasons for the recent global
applications of the F -singularity theorem is the lifting theorem shown by the second author in
[Sch14, Proposition 5.3]. This theorem can be used to replace some of the lifting arguments that
use Kodaira vanishing in characteristic zero. One of the fundamental ideas in [Sch14] is to try to
lift only a big enough set of sections of adjoint bundles instead of all the sections. This canonical
set of sections for a pair (X,∆) with (1−pe)(KX +∆) Cartier and for a line bundle M is defined
as [Sch14, Definition 4.1]

S0
(
X,σ(X,∆)⊗M

)
:=

⋂
m>0

im
(
H0
(
X,Fme∗ OX((1− pme)(KX + ∆))⊗M

)
−→ H0

(
X,M

))
.

4In which case, you can even remove the “index not divisible by p” assumption from KX/V +∆; see Corollary 4.20.
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First, we investigate questions about how this canonical space of sections behaves in families,
namely semicontinuity, stabilization of the intersection, etc.

Theorem C. Let f : X −→ V and ∆ be as in Theorem A, with f projective and V regular.
Further, suppose that M is a line bundle on X such that M−KX/V −∆ is f -ample (where by M
we actually mean the Cartier divisor corresponding to M). Then the following statements hold:

(a) [Corollary 6.19, Examples 6.22, 6.23, and 6.25], cf. [Har98, Example 5.5], [Tan15, Theo-
rem 8.3]. The function

s 7→ dimk(s) S
0(Xs, σ(Xs,∆s)⊗Ms) (1.1)

is not semicontinuous (here s ∈ V is a perfect point) in either direction; however, there is
a dense open subset U ∈ V such that the function (1.1) is constant on U .

(b) [Theorem 6.18]. There exists an n > 0 such that for all integers m > n and perfect points
s ∈ V ,

im
(
H0
(
Xs, F

me
∗ OXs((1− pme)(KXs + ∆s))⊗Ms

)
−→ H0(Xs,Ms)

)
= S0(Xs, σ(Xs,∆s)⊗Ms) .

(c) [Proposition 6.20]. If there is a perfect point s0 ∈ V such that

H0(Xs0 ,Ms0) = S0(Xs0 , σ(Xs0 ,∆s0)⊗Ms0) ,

then there is an open neighborhood U of s0 such that f∗M |U is locally free and compatible
with base change and

H0(Xs,Ms) = S0(Xs, σ(Xs,∆s)⊗Ms)

for every perfect point s ∈ U . In particular, the function (1.1) is constant for s ∈ U .

We would like to also mention the following natural question left open by Theorem C.

Question. Can one remove the f -ampleness assumption from the statements of Theorem C?

By Theorem C, it makes sense to talk about the general value of dimk(s)S
0(Xs, σ(Xs,∆s)⊗

Ms) in the following theorem.

Theorem D. With assumptions as in Theorem C, so that V is projective over a perfect field
and (pe−1)(KX +∆) is Cartier, for every n� 0, there is a subsheaf S0

∆,nef∗(M) of (FneV )∗(f∗M)
for which the following statements hold:

(a) [Corollary 6.19]. The rank of S0
∆,nef∗(M) is the general value of dimk(s) S

0(Xs, σ(Xs,∆s)
⊗Ms).

(b) [Proposition 6.26]. If M −KX/V − ∆ is ample, then S0
∆,nef∗(M) is globally generated for

every n� 0.

(c) [Theorem 6.31]. If M −KX/V −∆ is nef, then S0
∆,nef∗(M) is weakly positive for n� 0.

(d) [Corollary 6.14]. If M = Ql ⊗ P , where Q is f -ample, then for all l � 0 and every nef
line bundle P , we have that S0

∆,nef∗(M) is contained in (fV ne)∗(σne(X/V,∆) ⊗MV ne) as
subsheaves of (fV ne)∗MV ne , and, furthermore, these two subsheaves are generically equal.

In fact, points (a) and (d) are true without the projectivity assumption on V .
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Further, note that if V in Theorem D is a curve, if M − KX/V − ∆ is f -ample and nef,
and if there is an s ∈ V such that H0(Xs,Ms) = S0(Xs, σ(Xs,∆s)), then points (a) and (c)
of Theorem D together with point (c) of Theorem C imply that f∗OX(M) is a nef vector bun-
dle. This strengthens [Pat14, Proposition 3.6]; it removes the cohomology vanishing assumption
made there. Of course, our statements are considerably stronger. For example, with the same
assumptions except replacing H0(Xs,Ms) = S0(Xs, σ(Xs,∆s)) with rk f∗(σ(X,∆)⊗M), which
equals the general value of S0(Xs, σ(Xs,∆s)), we obtain that f∗(σ(X,∆) ⊗M) is nef. In fact,
the following even stronger statement can be made.

Theorem E (Corollary 6.39). With assumptions as in Theorem C, so that V is projective over
a perfect field, assume that M −KX/V −∆ is nef and f -ample and that rkS0f∗(σ(X,∆)⊗M)
equals the general value of H0(Xs, σ(Xs,∆s)⊗Ms). Then S0f∗(σ(X,∆)⊗M) is weakly positive.
In particular, if V is a smooth curve, then it is a nef vector bundle.

Further, we show how S0
∆,nef∗(M) relates to the other similar notion S0f∗(σ(X,∆) ⊗M)

introduced in [HX15, Definition 2.14]. In particular, we obtain that S0f∗(σ(X,∆)⊗M) does not,
in general, restrict to S0(Xs, σ(Xs,∆s)⊗Ms) for general s ∈ S. Intuitively, though S0f∗(σ(X,∆)
⊗M) is a pushforward, it captures the global geometry of (X,∆) rather than the geometry of
the fibers. In positive characteristic, these two can differ considerably, essentially because the
function field of V is not perfect. Of course, the relative and absolute S0f∗ are related. We study
these similarities and differences in Section 6.6.

Organization. In Section 2, we set up the notation that we will follow throughout the paper,
explain the interplay between p−e-linear maps and Q-Cartier divisors, and discuss the behavior of
such maps and divisors under base changes. In Sections 3, 4, and 5, we introduce the relative non-
F -pure ideals, the relative test ideals, and the relative test submodules, respectively. Applications
to F -singularities in families are discussed in these three sections. Section 6 is devoted to the
behavior of S0 (introduced in [Sch14, Definition 4.1]) under base changes. Some semi-positivity
results are also proved in this section. Finally, in the appendix, we collect some statements for
which we could not find proper references in the generality needed in our paper.

2. Notation and setup

Throughout this paper, all schemes are Noetherian and all maps of schemes are separated. We
fix the following notation, which is in effect for the entire paper. In particular, for simplicity we
do not state it in every statement even though it is assumed.

Notation 2.1. Suppose that f : X −→ V is a flat, equidimensional, and geometrically reduced
map5 of finite type from a scheme X to an excellent integral scheme V of equal characteristic
p > 0 with a dualizing complex. We write F e = F eV : V = V e −→ V for the absolute e-iterated
Frobenius morphism on V , form the base change fV e : XV e = X ×V V e −→ V e, and define
F eXe/V e : Xe −→ XV e to be the e-iterated relative Frobenius morphism. Furthermore, we often
assume that V is F -finite, in which case we automatically assume that the Frobenius morphism
FV : V −→ V satisfies the identity6 (FV )!ω

q
V 'qis ω

q
V . If we say that V is a variety, it is always of

finite type over a perfect field k.

5By geometrically reduced, we mean that XT = X ×V T is reduced for all T −→ V with T integral.
6For some discussion of this identity, which always holds for varieties or schemes of essentially finite type over
a local ring with a dualizing complex, see [BSTZ10, Section 2].
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Because we will be considering numerous different sheaves on the same topological space
X = Xe = X ×V V e = etc. but with respect to different schemes, we will adopt the following
somewhat non-standard notation. We use this because writing numerous operations

(
F eXe/V e

)
∗

and
(
F eXe/V e

)−1
that do not affect the underlying space is confusing. We would need notation for

projections of the form Xe ×V e V e+d −→ V e+d, Xe in as well as more general relative Frobenius
morphisms F e

(Xe)
V e+d

/V e+d
: (Xe)V e+d := Xe ×V e V e+d −→ XV e+d , and maps Xe×V e+d+c −→

Xe×V e+d . By using simply modules, this becomes more transparent.

(1) We will use R to denote OX .

(2) We will use A to denote f−1OV .

(3) We will use A1/pe to denote f−1(F eV )∗OV . We note that this is not an abuse of notation
since V is integral.

(4) We will use R1/pe to denote (F eX)∗R. This is a slight abuse of notation if X is not reduced.

(5) We will use RA1/pe to denote R⊗A A1/pe .

(6) We will use (RA1/pe )1/pd to denote R1/pd ⊗
A1/pd A

1/pe+d . This may be a slight abuse of
notation if XV e is not reduced.

(7) Given an R-module M , we will use M1/pe to denote F e∗M . This will generally not cause
any confusion because, typically, M will be locally free or even a line bundle.

(8) We use ωR to denote ωX and ωA to denote f−1ωV .

(9) Etc.

Some of the main results of the paper concern restriction to fibers. These statements pertain
only to a special set of fibers of f , the fibers over perfect points (see the definition below). For
example, if V is a curve over an algebraically closed field, then we often restrict to fibers over
all closed points and over the perfect closure of the generic point of V , but not over the generic
point itself.

Definition 2.2 (Perfect points). A perfect point of V , for s ∈ V , is a morphism s = Spec k(s) −→
V from the spectrum of a perfect field k(s) to V . It can also be viewed as a choice of a point
v ∈ V and a field extension k(s) = K ⊇ k(v) such that K is perfect. Finally, a neighborhood of
a perfect point s ∈ V is simply a neighborhood of the image v of s.

The fact that f : X −→ V is of finite type implies that the relative Frobenius morphism is a
finite map. In some cases, this will allow us to avoid assuming that V is F -finite.

Lemma 2.3. With notation as above, since f : X −→ V is of finite type, the relative Frobenius
map f : Xe −→ XV e is a finite map.

Proof. We work locally on V and X. It is sufficient to show that R1/pe is a finite RA1/pe -module.
Write S = A[x1, . . . , xn] and R = S/I. We first observe that SA1/pe −→ S1/pe is a finite map.
However, the xi11 · · ·xinn for 0 6 ij < pe clearly form a generating set for S1/pe over SA1/pe .

Now, tensor the map SA1/pe −→ S1/pe with ⊗S(S/I) = ⊗SR. We obtain

RA1/pe = R⊗A A1/pe = (S/I)⊗S SA1/pe −→ (S/I)⊗S S1/pe =
(
S/I [pe]

)1/pe −→ (S/I)1/pe ,

where the final map is the canonical surjection of rings. The map is finite since each part is.

We also recall the result of Radu and André.
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Theorem 2.4 ([Rad92, And93]). Suppose that f : X −→ V is a flat map of Noetherian schemes.
Then f has geometrically regular fibers if and only if the relative Frobenius RA1/pe

∼= A1/pe⊗AR
−→ R1/pe is flat.

We immediately obtain the following corollary, which will also be useful.

Corollary 2.5. Suppose that f : X −→ V is as in Notation 2.1 and additionally has ge-
ometrically regular fibers. Then for any RA1/pe -module M , the natural evaluation-at-1 map
H omR

A1/pe

(
R1/pe ,M

)
−→M surjects.

Proof. The module R1/pe is a locally free RA1/pe -module, and the result follows.

Now, we state the object which we will study for the majority of the paper.

Definition 2.6 (φ). From here on, we fix a line bundle L on X ∼= Xe and we also fix a (possibly
zero) RA1/pe -linear map φ : L1/pe −→ RA1/pe .

Remark 2.7 (Reflexive sheaves for G1 and S2 morphisms). Suppose that f : X −→ V is G1 and
S2. Note that there exists an open set ι : U ↪→ X such that X \ U has codimension at least 2
along each fiber and that f |U is a Gorenstein morphism.

Finally, suppose that M is any rank 1 reflexive R-module which is locally free on a set U as
above. Then M1/pe is not only reflexive as an R1/pe-module, we claim that it is also reflexive as
an RA1/pe -module. Since we already have i∗M |U = M by Proposition A.7 because M is reflexive,
it is sufficient to replace X by U . Thus, ωX/V and M are both locally free as R-modules and
ωXV e is locally free as an RA1/pe -module. We work locally so as to trivialize all these modules.
Then

M1/pe ∼= ω
1/pe

X/V =
(
F eXe/V e

)
∗ωX/V

∼= H omOXV e

((
F eXe/V e

)
∗OX , ωXe

V /V
e

)
∼= H omR

A1/pe

(
R1/pe , RA1/pe

)
,

which is clearly reflexive (the second isomorphism follows from Grothendieck duality for the finite
relative Frobenius map).

Conversely, if M is any R-module which is locally free on a set U and reflexive as an RA1/pe -
module, then it is also reflexive as an R1/pe-module. To see this, note that M |U is reflexive as an
R-module, and because M is reflexive as an RA1/pe -module, it satisfies i∗M |U = M .

Definition 2.8 (φ versus divisors). Observe the following identifications:

H omR
A1/pe

(
L1/pe , RA1/pe

)
∼=

(
H omR

A1/pe

(
L1/pe ⊗R

A1/pe

(
ωR

A1/pe /A
1/pe

)
, ωR

A1/pe /A
1/pe

))∗∗︸ ︷︷ ︸
(This clearly holds on U , note that both sheaves are reflexive and use Corollary A.8.)

=
(

H omOXV e

((
F eXe/V e

)
∗
(
L⊗

((
F eXe/V e

)∗
ωXV e/V e

))
, ωXV e/V e

))∗∗︸ ︷︷ ︸
(This just rewrites the previous line using different notation.)

∼=
((
F eXe/V e

)
∗H omOXe

(
L⊗

((
F eXe/V e

)∗
ωXV e/V e

)
, ωXe/V e

))∗∗︸ ︷︷ ︸
(Grothendieck duality for a finite map)
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∼=
(
F eXe/V e

)
∗

(
L−1 ⊗ ωXe/V e ⊗ (F eXe/V e)

∗ω−1
XV e/V e

)∗∗
.︸ ︷︷ ︸

(By Remark 2.7 and Corollary A.8, we may take the reflexive hull as (F e
Xe/V e )∗OXe -modules.)

(2.1)

Now, observe that ωX/V is compatible with base change up to reflexification. In particular, if our
base change is the Frobenius morphism F eV : V e −→ V , then writing πV e : XV e = X ×V V e −→ X
as the projection, we have ωXV e/V e

∼= (π∗V eωX/V )∗∗ since both sheaves are reflexive and they
certainly agree outside the non-relatively Cohen–Macaulay locus (which is of relative codimension
at least 2) by Corollary A.8. In particular,((

F eXe/V e
)∗
ωXV e/V e

)∗∗ ∼= ((F eXe/V e
)∗
π∗V eωX/V )

)∗∗
=
((
F eX
)∗
ωX/V

)
)∗∗ =

(
ωp

e

X/V

)∗∗
.

Plugging this into (2.1), we obtain

H omR
A1/pe

(
L1/pe , RA1/pe

) ∼= (F eXe/V e
)
∗
(
L−1 ⊗ ω1−pe

Xe/V e

)∗∗
. (2.2)

If, additionally, X is absolutely (instead of relatively) G1 and S2 (for example, if V is regular),
then any choice of non-degenerate7 φ induces a non-zero, effective Weil divisorial sheaf Dφ such

that OX(Dφ) ∼=
(
L−1 ⊗ ω1−pe

Xe/V e

)∗∗
by [Har94]. We would like to generalize this to the case that

X −→ V is relatively G1 and S2.

Definition 2.9. We say that φ is relatively divisorial if φ locally generates H omR
A1/pe

(
L1/pe ,

RA1/pe

)
as an R1/pe-module

(a) at the generic points of each fiber and

(b) at the generic point of every codimension 1 singular point of every geometric fiber.

In this case, by removing a set of relative codimension 2 so that f is relatively Gorenstein,
we see that φ · R1/pe ⊆ H omR

A1/pe

(
L1/pe , RA1/pe

)
is a rank 1 free submodule of an invertible

R1/pe-module. To be able to associate a divisor to this submodule in a sensible way, we should
show that it is the trivial (full) submodule at every singular codimension 1 point. Indeed, let ξ
be a singular codimension 1 point. Then one of the following cases holds:

◦ f(ξ) is a codimension 1 point. In this case, ξ is a general point of the fibers over f(ξ), hence
assumption (a) guarantees that φ generates a full submodule at ξ.

◦ f(ξ) is the general point of V . In this case, ξ is a codimension 1 point of the fiber over
f(ξ), and it is not in the smooth locus of f . Therefore, assumption (b) shows that again φ
generates a full submodule at ξ.

Therefore, the submodule φ ·R1/pe determines a Cartier divisor and also an honest Weil divisor
on the original X. We denote this divisor by Dφ as well.

Definition 2.10 (φ as a divisor). If φ is relatively divisorial, we set ∆φ to be the Q-divisor
(1/(pe − 1))Dφ. This makes sense because Dφ is trivial along the codimension 1 components of
the singular locus of X and so we avoid the pathological issues which occur for Q-divisors on
non-normal spaces.

We now explain how to recover φ from a Q-divisor.

Remark 2.11 (Obtaining φ from divisors). We work under the conventions of Definition 2.10.
Untangling Definition 2.8 yields a method to obtain φ from a divisor ∆ > 0 (which then coincides
with ∆φ) under the following assumptions:

7Here, non-degenerate means non-zero on any irreducible component.
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(a) We have ∆ = (1/m)D for some Weil divisor D, where p 6 | m.

(b) The Weil divisor D on X is Cartier in relative codimension 1.

(c) The support of D does not contain any generic point or any singular codimension 1 point
of any geometric fiber.

(d) We have (pe − 1)/m ∈ Z and
(
ω1−pe
X/V ⊗ OX((1− pe)∆)

)∗∗
= L is a line bundle.

In such a case, the integral divisor (pe−1)∆ (which is well defined since Supp ∆ does not contain
the codimension 1 components of the non-regular locus of X, cf. [KAAC92, pp. 171–173] or
[MS12, Section 2.2]) induces an inclusion(

F eXe/V e
)
∗L ↪→

(
F eXe/V e

)
∗
((
ω1−pe
X/V

)∗∗)
.

This composed with the natural Grothendieck trace map(
F eXe/V e

)
∗
((
ω1−pe
X/V

)∗∗) −→ OXV e

yields a map φ. It is easy to see that conditions (a)–(d) above guarantee that φ is relatively
divisorial. Furthermore, we also have ∆ = ∆φ.

For future reference we make the following definition.

Definition 2.12. In the situation of Notation 2.1, (X,∆) is a pair if f is G1 and S2 and ∆
satisfies the assumptions of Remark 2.11.

2.1 Composing maps

Given φ as in Definition 2.8, we can compose φ : L1/pe −→ RA1/pe with itself (after twisting),
similarly to [BS13, Section 4] or [Sch09], and thus obtain new maps

φ2 ∈ HomR
A1/p2e

((
L(pe+1)

)1/p2e

, R
A1/p2e

)
and, more generally,

φn ∈ HomR
A1/pne

((
L
pne−1
pe−1

)1/pne

, RA1/pne

)
.

We explain this construction.

Begin by tensoring φ by L over R, and then taking 1/peth roots; we obtain(
L1+pe

)1/p2e

=
(
L1/pe ⊗R L

)1/pe −→ ((
R⊗A A1/pe

)
⊗R L

)1/pe

= L1/pe ⊗A1/pe A1/p2e
. (2.3)

On the other hand, we can also tensor φ by A1/p2e
over A1/pe to obtain

L1/pe ⊗A1/pe A1/p2e −→ R
A1/p2e . (2.4)

By composing (2.3) and (2.4), we obtain the desired map φ2. We now define φn inductively as
follows. Given

φn−1 :

(
L
p(n−1)e−1

pe−1

)1/p(n−1)e

−→ R
A1/p(n−1)e ,
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tensor with L over R and then take peth roots, which yields(
L
pne−1
pe−1

)1/pne

=

((
L
p(n−1)e−1

pe−1
+p(n−1)e

)1/p(n−1)e
)1/pe

=

(
L⊗R

(
L
p(n−1)e−1

pe−1

)1/p(n−1)e
)1/pe

−→
(
L⊗R RA1/p(n−1)e

)1/pe
= L1/pe ⊗A1/pe A1/pne .

We then apply φ to the first term in the final tensor product to obtain(
L
pne−1
pe−1

)1/pne

−→ L1/pe ⊗A1/pe A1/pne φ⊗···−−−→
(
R⊗A A1/pe

)
⊗A1/pe A1/pne ∼= RA1/pne ,

which we take as the official definition of φn. On the other hand, for every 0 < m < n, one can
look at the following composition of φm and φn−m:

γ :
(
L
pne−1
pe−1

)1/pne ∼=
(
L
pme−1
pe−1 ⊗R L

pne−pme
pe−1

)1/pne ∼=
((

L
pme−1
pe−1

)1/pme

⊗R L
p(n−m)e−1

pe−1

)1/p(n−m)e

(
φm⊗idL···

)
−−−−−−−−→

1/p(n−m)e ((
R⊗A A

1
pme

)
⊗R L

p(n−m)e−1
pe−1

)1/p(n−m)e

∼=
(
L
p(n−m)e−1

pe−1

)1/p(n−m)e

⊗
A1/p(n−m)e A1/pne

φn−m⊗A···A···−−−−−−−−−→
(
R⊗A A1/p(n−m)e

)
⊗
A1/p(n−m)e A1/pne ∼= R⊗A A1/pne . (2.5)

In particular, taking m = 1 gives an a priori different map which we could also define as φn. We
now explain why this map is actually equal to the official φn.

Lemma 2.13. With notation as above, γ = φn.

Proof. The statement is local, and so we may suppose L = R. With the (obscuring) powers of L
removed, φn is described as the following composition:

R1/pne φ1/p(n−1)e

−−−−−−→ R1/p(n−1)e ⊗
A1/p(n−1)e A1/pne

φ1/p(n−2)e⊗···−−−−−−−−−→
(
R1/p(n−2)e ⊗

A1/p(n−2)e A1/p(n−1)e)⊗
A1/p(n−1)e A1/pne

φ1/p(n−3)e⊗···−−−−−−−−−→ · · · · · · · · ·
...

φ1/pe⊗···−−−−−→ R1/pe ⊗A1/pe · · · ⊗
A1/p(n−1)e A1/pne

φ⊗···−−−→ R⊗A · · · ⊗A1/p(n−1)e A1/pne .

The first m entries in the composition make up (φm ⊗ · · · )1/p(n−m)e
in (2.5), and the last n−m

entries clearly yield φn−m ⊗
A1/p(n−m)e A1/pn , as desired. The result is then obvious.

Lemma 2.14. With notation as in Definition 2.8, assume additionally that φ is relatively diviso-
rial; then φn is relatively divisorial and ∆φ = ∆φn for every integer n > 1.

Proof. For showing any of the two statements, we may remove the non–relatively Gorenstein
locus. That is, by possibly further restricting R, we may assume that R is relatively Gorenstein
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over V and that L is trivial (since our map f : X −→ V is geometrically G1 and S2). Hence, by
Remark 2.7,

Hom
R⊗AA1/pie

(
R1/pie , R⊗A A1/pie

) ∼= R1/pie for all i .

From [Kun86, Appendix F], [Sch09, Lemma 3.9], or composition of Grothendieck trace, we have(
HomR1/pe⊗

A1/peA
1/pne

(
R1/pne , R1/pe ⊗A1/pe A1/pne

)
⊗R1/pe⊗

A1/peA
1/pne HomR

A1/pne

(
R1/pe ⊗A1/pe A1/pne , RA1/pne

))
∼= HomR

A1/pne

(
R1/pne , RA1/pne

)
(2.6)

via the homomorphism induced by composition. Let θe be the R1/pe-module generator of

HomR⊗AA1/pe

(
R1/pe , R⊗A A1/pe

)
for each e, and let θne be defined as ϕn, with ϕ replaced by θ. Then by using (2.6) iteratively,
θne = θne up to multiplication by a unit.

Further, let r ∈ R be such that ϕ( ) = θe
(
r1/pe ·

)
. Then it is easy to verify that

ϕn( ) = θie

((
r
pne−1
pe−1

)1/pne

·
)
. (2.7)

Then we see that if φ is generating at a point P ∈ X, or equivalently r is a unit at P , then so
is φn. This shows that φn is relatively divisorial. Furthermore, (2.7) shows that ∆φi = ∆φ.

2.2 Base change of φ

Suppose that we are given a morphism of schemes g : T −→ V such that T is also excellent and
integral and has a dualizing complex. For example, we could set T to be a closed point of V
and let g be the inclusion. Alternately, we could let g be a regular alteration over some closed
subscheme of V . We list the following maps:

p1 : X ×V T −→ X (the projection) ,

(p1)1/pi : Xi ×V i T i −→ Xi (the projection for any i) ,
qi : X ×V T i −→ X ×V V i (base change) ,

p1 = q0 : X ×V T −→ X .

(2.8)

These are pictured below:

Xi ×V i T i

F i
(XT )i/Ti

��

p
1/pi

1 // Xi

F i
Xi/V i

��
X ×V T i qi

// X ×V V i .

Notice that given φ : L1/pe −→ RA1/pe = OXV e , we can form (qe)
∗φ, which we denote by

φT : L
1/pe

T
∼= q∗eL

1/pe −→ q∗eOXV e = OXTe .

We explain the isomorphism L
1/pe

T
∼= q∗eL

1/pe briefly. Working locally, let V = SpecA, T =
SpecB, and X = SpecR. Then the map φT is identified with the map

L1/pe ⊗R
A1/pe

RB1/pe
∼= L1/pe ⊗A1/pe B1/pe −→

((
R⊗A A1/pe

)
⊗A1/pe B1/pe

) ∼= R⊗A B1/pe .

The isomorphism in the definition of φT is now immediate.
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The next lemma shows that base change of φ commutes with the self-composition defined in
Section 2.1.

Lemma 2.15. Suppose that g : T −→ V is as above. Then (φn)T = (φT )n.

Proof. It is sufficient to prove this in the affine case, assuming that our isomorphism is sufficiently
canonical (which will be clear). We notice that (φT )2 is the composition

((
Lp

e+1
)1/pe ⊗A1/pe B1/pe

)1/pe (φT⊗RB1/pe
LT

)1/pe

−−−−−−−−−−−−−→ L1/pe ⊗A1/pe B1/pe ⊗B1/pe B1/p2e

φT⊗B1/peB
1/p2e

−−−−−−−−−−−→
((
R⊗A A1/pe

)
⊗A1/pe B1/pe

)
⊗B1/pe B1/p2e

.

Now, unraveling the definitions, we obtain

(φT )2 =
((
φT ⊗R

B1/pe
LT
)1/pe) ◦ (φT ⊗B1/pe B1/p2e)

=
(((

φ⊗A1/pe B1/pe
)
⊗R

B1/pe

(
L⊗A1/pe B1/pe

))1/pe) ◦ (φ⊗A1/pe B1/pe ⊗B1/pe B1/p2e)
=
((
φ⊗R

A1/pe
L⊗A1/pe B1/pe

)1/pe) ◦ (φ⊗A1/pe B1/p2e)
=
((
φ⊗R

A1/pe
L
)1/pe ⊗

A1/p2e B
1/p2e) ◦ ((φ⊗A1/pe A1/p2e)⊗

A1/p2e B
1/p2e)

=
((
φ⊗R

A1/pe
L
)1/pe ◦ (φ⊗A1/pe A1/p2e))⊗

A1/p2e B
1/p2e

=
(
φ2
)
T
,

as desired. The general nth self-composition is similar.

Our next goal is to describe how divisors, corresponding to maps ϕ, fare under base change.
We thank Brian Conrad for pointing us in the right direction [Con00, Theorem 3.61].

Lemma 2.16. Suppose that f : X −→ V is a finite-type, Cohen–Macaulay morphism over an
excellent scheme V of characteristic p > 0 and that g : T −→ V is as above. Then the Grothendieck
trace map (

FXe/V e
)
∗ωXe/V e

∼= H omOXV e

((
FXe/V e

)
∗OXe , ωXV e/V e

)
−→ ωXV e/V e

is compatible with base change.

Proof. We clearly have a commutative diagram:

q∗e H omOXV e

((
FXe/V e

)
∗OXe , ωXV e/V e

)
α
��

// q∗eωXV e/V e

β

��
H omOXTe

((
F(XT )e/T e

)
∗O(XT )e , ωXTe/T e

)
// ωωXTe/Te

,

and by [Con00, Theorem 3.6.1], the map β is an isomorphism. It is sufficient to verify that α
is an isomorphism as well. We work locally on some affine chart on X and hence assume that
XV ⊆ ANV =: PV embeds as a closed subscheme since f is of finite type. The map α can then be
identified with

Q∗e E xtjOPV e

((
FXe/V e

)
∗OXe , ωPV e/V e

)
−→ E xtjOPTe

((
F(XT )e/T e

)
∗O(XT )e , ωPTe/T e

)
,

where Qe : PT e −→ PV e is the induced map and j = N−dim(X/V ) (we leave off the pushforward
for the inclusion i : XV −→ PV above). This in turn can be identified with

Q∗e E xtjO(PV )e

(
OXe , ω(PV )e/V e

)
−→ E xtjO(PT )e

(
O(XT )e , ω(PT )e/T e

)
.
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This last map is exactly the bottom row of [Con00, Diagram (3.6.1) in Theorem 3.6.1], which is
an isomorphism, and hence the proof is complete.

Lemma 2.16 above allows us to show that if the divisor Dφ or ∆φ is trivial, then it stays
trivial after base change.

Lemma 2.17 (Divisors which are zero stay zero). Suppose that f : X −→ V is a G1 and S2
morphism and that φ : L1/pe −→ RA1/pe is as above. Additionally, suppose that g : T −→ V is any
base change. Finally, suppose that the natural map

φ ·R1/pe −→H omR
A1/pe

(
L1/pe , RA1/pe

) ∼= (F eXe/V e
)
∗
(
L−1 ⊗ ω1−pe

Xe/V e

)∗∗
is an isomorphism of R1/pe-modules (here, we define φ ·R1/pe to be the R1/pe-submodule of the
set H omR

A1/pe

(
L1/pe , RA1/pe

)
generated by φ). Then

φT · (RT )1/pe −→H omR
T1/pe

(
L

1/pe

T , RT 1/pe

) ∼= (F e(XT )e/T e
)
∗
(
L−1
T ⊗ ω

1−pe
(XT )e/T e

)∗∗
is also an isomorphism.

In particular, if φ is relatively divisorial (see Definition 2.9), then the following holds: if Dφ

is zero, then so is DφT .

Proof. The statement about divisors is trivial since it is easy to see that a divisor being zero
corresponds to the map above being an isomorphism. Thus, we merely need to prove the assertion.
However, since f and all the sheaves involved are relatively S2, it suffices to prove the statement off
a set of relative codimension 2 by Corollary A.8. Therefore, by removing a set of codimension 2, we
can assume that f is a Gorenstein morphism. Thus, working locally if needed, φ can be identified
(up to multiplication by a unit in R1/pe) with the Grothendieck trace

(
F eXe/V e

)
∗ωXe/V e −→

ωXV e/V e . Hence, by Lemma 2.16, so can φT . The proof is complete.

We now move on to a discussion of base change with respect to divisors. First, we observe
that by Lemma 2.17, if φ is relatively divisorial, then so is φT for every base change g : T −→ V .

Definition 2.18. Suppose that for some relatively divisorial φ, we have ∆φ as above and that
g : T −→ V is a base change. Then, we write ∆φ8XT (respectively, Dφ8XT ) to denote the divi-
sor ∆φT (respectively, DφT ).

Lemma 2.19 (Pulling back ∆φ). Suppose that f : X −→ V is G1 and S2 and that φ is rela-

tively divisorial. Then for any g : T −→ V , we have ∆φ8XT =
(
p

1/pe

1

)∗
∆φ (recall the morphism

p
1/pe

1 : Xe ×V i T i −→ Xi from (2.8)).

Here, even though ∆φ is not necessarily Q-Cartier,
(
p

1/pe

1

)∗
∆φ can be defined after removing

a set of relative codimension 2 outside of which it is Q-Cartier (since Dφ is Cartier on such a set).

Proof. The statement is local on X and can be checked after removing a relative codimension 2
set, and so we may assume that Dφ is a Cartier divisor. Thus, we assume that L is trivial
on the affine scheme X = SpecR and that f is a Gorenstein morphism. Then, shrinking the
neighborhood further if necessary, the map φ : R1/pe −→ RA1/pe can be identified with s1/pe · Tr,
where Tr:

(
F eXe/V e

)
∗ ωXe/V e −→ ωXV e/V e is the Grothendieck trace. The divisor Dφ is then

easily seen to be the divisor divX(s). On the other hand, it is clear by Lemma 2.16 that φT is

then the trace on XT multiplied by s as well. In particular, it equals
(
p

1/pe

1

)∗
Dφ, as desired.
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Corollary 2.20. Suppose that g : z −→ V is the inclusion of a point. Suppose that φ is relatively
divisorial and corresponds to ∆φ. Then ∆φ|Xz = ∆φz .

Proof. The divisor ∆φz is determined in codimension 1, where ∆φ|Xz and ∆φz agree.

2.3 Passing to V∞ and other perfect points

First, suppose that V is the spectrum of a perfect field A. Then, the map L1/pe −→ RA1/pe is also
a map L1/pe −→ R since RA1/pe

∼= R. In such a case, we often also typically write the map as ψ
to help distinguish how we are thinking about it. We note that maps such as ψ : L1/pe −→ R can
be composed with themselves as in [BS13, Section 4.1] and, furthermore, this composition ψn

coincides with φn. For the rest of the subsection, we discuss base change to perfect points. We
first consider the perfection of the generic point of V .

Set V∞ to denote the not-necessarily-Noetherian scheme Spec O
1/p∞

V , and set η∞ to be the
generic point of V∞ with perfect fraction field k(V∞) (note that this is a perfect point). We
obtain a map fk(V∞) : Xk(V∞) = X ×V Spec k(V∞) −→ Spec k(V∞); now, Xk(V∞) is a scheme of
finite type over a perfect field.

As in Section 2.2, the map φ then induces a map

φ∞ : L1/pe ⊗k(V e) k(V∞) −→ Rk(V∞) := R⊗A k
(
A1/p∞

)
,

which can be identified with

ψ∞ :
(
Lk(V∞)

)1/pe −→ Rk(V∞)

since
((
F eXe/V e

)
∗OXe

)
⊗V e k(V∞) ∼= F e∗OXk(V∞)

.

More generally, if s ∈ V is any perfect point, we can induce

φs : L1/pe

s := L1/pe ⊗A1/pe k(s)1/pe −→ R⊗A k(s)1/pe .

Since k(s) = k(s)1/pe is perfect, we can identify this with a p−e-linear map

ψs : L1/pe

s −→ Rs .

As above, we see that the composition of ψs in the sense of [BS13, Section 4.1] coincides with
the composition φ as in Section 2.1. Finally, we study this process with respect to divisors.

Lemma 2.21. With notation as above, ∆φ|Xs = ∆ψs , where ∆φ is as in Definition 2.10 and ∆ψs

is as in [BS13, Section 4].

Proof. By Lemma 2.19, we simply must show that ∆φs coincides with ∆ψs . Working locally and
removing a set of relative codimension 2, we may assume that Φ ∈ HomR

s1/p
e

(
(Rs)

1/pe , Rs1/pe
)

generates the group Hom as an (Rs)
1/pe-module and that φ( ) = Φ

(
z1/pe ·

)
. Thus, ∆φ =

(1/(pe − 1)) divX(z).

We then identify Rs1/pe with Rs and hence φ with ψ. Likewise, we can identify Φ with Ψ,
which now generates HomRs

(
(Rs)

1/pe , Rs
)

as an (Rs)
1/pe-module. Hence ψ( ) = Ψ

(
z1/pe ·

)
and so ∆ψ = (1/(pe − 1)) divX(z), as desired.

3. Relative non-F -pure ideals

With notation as above, by the Hartshorne–Speiser–Lyubeznik–Gabber theorem [Gab04, Lem-
ma 13.1], cf. [HS77, Lyu97, Bli13], we know that the chain

Rk(V∞) ⊇ ψ∞
((
Lk(V∞)

)1/pe) ⊇ ψ2
∞
((
Lp

e+1
k(V∞)

)1/p2e)
⊇ · · · ⊇ ψn∞

((
L
pne−1
pe−1

k(V∞)

)1/pne)
⊇ · · ·

277



Z. Patakfalvi, K. Schwede and W. Zhang

eventually stabilizes. Say that it stabilizes at n > n0. For the rest of this section, we fix this
integer n0 and make the following definition.

Definition 3.1. With notation as above, we define the integer n0 to be the uniform integer for
σ over the generic point of V ; in general, it will be denoted by nσ(φ),k(V ). We notice that for any
point η ∈ V , we can base change Spec k(η) −→ V and form a corresponding integer nσ(φη),k(η).

On the other hand, without the passing to k(V∞), we have the images

a1 := φ1
(
L1/pe

)
⊆ RA1/pe ,

a2 := φ2
((
L(pe+1)

)1/p2e)
⊆ R

A1/p2e ,

...

an := φn
((
L
pne−1
pe−1

)1/pne) ⊆ RA1/pne ,

...

These are ideals of different rings. However, we do have the following relation for any i > j:

im
(
aj ⊗A1/pj A

1/pi −→ R
A1/pi

)
⊇ ai .

This is straightforward, so we leave it to the reader to check (note that the image of (2.4) contains
the image of φ2). Additionally, observe that if A were regular, A1/pe would be flat over A by
[Kun69], and so we could identify the tensor product aj ⊗A1/pj A

1/pi with its image in R
A1/pi .

Therefore, for any integer n > i, we set

ai,n = im
(
ai ⊗A1/pi A

1/pn −→ RA1/pn

)
and consider the chain of ideals

RA1/pne ⊇ a1,n ⊇ a2,n ⊇ · · · ⊇ an−1,n ⊇ an,n .

Definition 3.2 (nth relative non-F -pure ideal). For every integer n > n0 = nσ(φ),k(V ), we define
the nth limiting relative non-F -pure ideal to be an,n = an. It is denoted by σn(X/V, φ).

We now obtain a relative version of the Hartshorne–Speiser–Lyubeznik–Gabber theorem.

Proposition 3.3. Fix the notation as above. Then there exists a non-empty open subset U ⊆ V
of the base scheme V satisfying the following for every integer m > n > n0:

σm(X/V, φ)|f−1(U) = im
(
σn(X/V, φ)⊗A1/pne A1/pme −→ RA1/pme

)∣∣
f−1(U)

. (3.1)

Proof. For any m > n, we consider the containment an,m ⊇ am,m. Fix k(V ) to be the residue
field of the generic point η ∈ V , and consider the induced containment

an,m ⊗A k(V ) = an,m ⊗A1/pm k(V )1/pm ⊇ am,m ⊗A1/pm k(V )1/pm = am,m ⊗A k(V ) ,

since inverting an element is the same as inverting its pth power. We notice two identifications

an,m ⊗A1/pm k(V )1/p∞ = an,m ⊗A1/pm k(V∞) = ψn∞

((
L
pne−1
pe−1

k(V∞)

)1/pne
)
,

am,m ⊗A1/pm k(V )1/p∞ = am,m ⊗A1/pm k(V∞) = ψm∞

((
L
pme−1
pe−1

k(V∞)

)1/pme
)
.
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Thus,

an,m ⊗A k(V )1/p∞ = am,m ⊗A k(V )1/p∞

since m > n > n0. It immediately follows that

an,m ⊗A1/pm k(V )1/pm = am,m ⊗A1/pm k(V )1/pm

since k(V )1/pm ⊆ k(V )1/p∞ is a faithfully flat extension. But now by generic freeness [Eis95,
Theorem 14.4], for a fixed m, (3.1) follows for some open set Un,m (in the case that V is affine,
which we can certainly reduce to, we can invert a single element of A to form Un,m).

We now vary m. Choose a U = Un,n+1 that works for m = n+ 1 and consider the diagram(
L
p(n+2)e−1

pe−1

)1/p(n+2)e

φn+2

))

(φn+1)1/pe⊗···

tt

(
L
p(n+1)e−1

pe−1

)1/p(n+1)e

⊗
A1/p(n+1)e A1/p(n+2)e

φn+1

((

(φn)1/pe⊗···

vv

(
L
pne−1
pe−1

)1/pne

⊗A1/pne A1/p(n+2)e

φn

&&

...

L1/pe ⊗A1/pe A1/p(n+2)e

φ⊗···
��

R
A1/p(n+2)e ,

where the maps labeled (φn)1/pe ⊗ · · · and (φn+1)1/pe ⊗ · · · are induced as in (2.3). We know
that over U , the maps φn+1 and φn have the same image. Therefore, so do (φn)1/pe ⊗ · · · and
(φn+1)1/pe⊗· · · , again over U (since tensor is right exact). But then, composing with (φ⊗· · · ) one
more time, we know that φn+1 = (φ⊗· · · )◦((φn)1/pe⊗· · · ) and φn+2 = (φ⊗· · · )◦((φn+1)1/pe⊗· · · )
also have the same image over U . Thus, they also share the image with φn over U . Hence, if
an,n+1|U = an+1,n+1|U , then an,n+2|U = an+2,n+2|U . We iterate this to obtain that an,m|U =
am,m|U , which is exactly the statement of the proposition.

We give three examples of these σn and Un. In the first example, we show that it is possible
that the images σn(X/V, φ) never stabilize in the sense of Proposition 3.3 on all of V but only
over an open set. We do the same in the second example, but with respect to a more interesting
choice of X and φ. Finally, we give an example where stabilization occurs at n = 2 (instead of
at n = 1).

Example 3.4. Fix k to be an algebraically closed field of characteristic p > 2, set A = k[t], and
set R = k[x, t] with the obvious map X −→ V . Let φ : R1/p = k

[
x1/p, t1/p

]
−→ RA1/p = k

[
x, t1/p

]
be the composition of the local generator β ∈ HomR

A1/p

(
R1/p, RA1/p

)
with pre-multiplication by
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t1/p (note that since φ is k
[
t1/p
]
-linear, this is also post-multiplication by t1/p, and it corresponds

to the divisor ∆φ = (1/(p− 1)){t = 0}). It easily follows that the image of φ is 〈t1/p〉 ⊆ k
[
x, t1/p

]
.

By tensoring with ⊗k[t1/p]k
[
t1/p

2]
, we obtain a1,2 = 〈t1/p〉 = t1/p · k

[
x, t1/p

2]
. More generally, we

see that a1,b = t1/p · k
[
x, t1/p

n]
. Now, we compute a2,2 as the image of

k
[
x1/p2

, t1/p
2] φ1/p

−−−→ k
[
x1/p, t1/p

2] φ⊗···−−−→ k
[
x, t1/p

2]
.

The image of φ1/p is t1/p
2

and since the map φ⊗· · · is k[t1/p
2
]-linear, we see that the composition

has image 〈t1/p · t1/p2〉 = 〈t(1+p)/p2〉 = a2,2. In general, we see that

an = an,n =
〈
t(1+p+···+pn−1)/pn

〉
.

In particular, while we may take Ui = A1 \{0} = SpecA\ 〈t〉, we see that an = σn(X/V, φ) never
stabilizes over all of V .

Example 3.5. Let f be the morphism X := Spec
(
k[x, y, t]/(y2 + x3 + t)

)
−→ V := Spec(k[t]).

Consider the standard trace map φ : (FX1/V 1)∗ωX1/V 1 −→ OXV 1 , for which ∆φ = 0. This map
can be identified with the descent of the following map to the quotient

k[x, y, t]
·(y2+x3+t)p−1

// k[x, y, t]
Tr // k[x, y, t] ,

where Tr is a k-linear map such that

Tr(xiyjtl) =

{
x
i+1−p
p y

j+1−p
p tl if p|i+ 1 and p|j + 1 ,

0 otherwise .

Then φn is given by

k[x, y, t]
·(y2+x3+t)p

n−1

// k[x, y, t]
Trn // k[x, y, t] ,

where Trn is a k-linear map such that

Trn
(
xiyjtl

)
=

{
x
i+1−pn
pn y

j+1−pn
pn tl if pn|i+ 1 and pn|j + 1 ,

0 otherwise .
(3.2)

Assume that p is a prime such that p ≡ 1(mod 6), so that 2, 3|pn − 1 for all n > 0. Let us now
try to compute the following number:

d := min
{
c | tc ∈ imφn

}
.

To have tc ∈ imφn, it is necessary to have a polynomial in the ideal generated by (y2+x3+t)p
n−1,

of which one of the non-zero monomials is xp
n−1yp

n−1tc. Therefore, (y2 + x3 + t)p
n−1 itself has

to have a non-zero monomial which divides xp
n−1yp

n−1tc. That is, there have to be integers
0 6 a 6 (pn − 1)/2 and 0 6 b 6 (pn − 1)/3, such that c = pn − 1− a− b. So, we see that

d > pn − 1− pn − 1

2
− pn − 1

3
=
pn − 1

6
.

On the other hand, we claim that Trn(y2 + x3 + t)p
n−1 = t(p

n−1)/6, which will show that d =
(pn − 1)/6 and also that σn(X/V, φ) does not stabilize. First, note that x(pn−1)/2y(pn−1)/3t(p

n−1)/6

is the only monomial in the expansion of (y2+x3+t)p
n−1 with non-zero image via Trn. Indeed, the

expansion can contain only monomials of the form y2ax3btp
n−1−a−b, where a, b > 0 are integers.

Hence, higher powers (2pn− 1, 3pn− 1, etc.) of x and y that do not go to zero by Trn cannot be
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obtained. Hence, as we stated, x(pn−1)/2y(pn−1)/3t(p
n−1)/6 is the only interesting monomial that

can show up in the expansion. Last, we have to verify that this monomial has non-zero coefficient
in the expansion. That is,

(pn − 1)!(
1
2(pn − 1)

)
!
(

1
3(pn − 1)

)
!
(

1
6(pn − 1)

)
!
6= 0 .

Equivalently, we have to show that the power of p in the prime factorization of the numerator is
the same as in the denominator. For an arbitrary number m, this number for m! is

∞∑
i=1

⌊
m

pi

⌋
.

Now, assume that m = (pn − 1)/r, where r|p− 1. Then the number of times p divides m! is

∞∑
i=1

⌊
m

pi

⌋
=

n−1∑
i=1

⌊
pn − 1

rpi

⌋
=

n−1∑
i=1

n−1∑
j=0

pj
p− 1

rpi

 =
n−1∑
i=1

n−1∑
j=0

pj−i
p− 1

r


=

n−1∑
i=1

n−1∑
j=i

pj−i
p− 1

r
=

n−1∑
i=1

pn−i − 1

p− 1

p− 1

r
=

n−1∑
i=1

pn−i − 1

r
=

n−1∑
i=1

pi − 1

r

=

n−1∑
i=0

pi − 1

r
=
pn − 1

r
.

Therefore, p divides pn − 1 times both (pn − 1)! and
(

1
2(pn − 1)

)
!
(

1
3(pn − 1)

)
!
(

1
6(pn − 1)

)
!, as

claimed earlier. Summarizing, t(p
n−1)/6 is the smallest power of t that is in σn(X/V, φ). Hence,

there is no stabilization over all of V .

Based on this example, one might ask the following.

Question 3.6. Is there a relation between the asymptotics of the σn over the non-stable locus
and the singularities of those fibers (for example, the F -pure threshold)?

We now give an example that stabilizes at the second step (over the entire base).

Example 3.7 (cf. [MY09, Example 4.7]). Fix k to be an algebraically closed field of char-
acteristic p > 2, set A = k[t], and set R = k[x, t] with the obvious map X −→ V . Let
φ : R1/p = k

[
x1/p, t1/p

]
−→ RA1/p = k

[
x, t1/p

]
be the composition of the local generator β ∈

HomR
A1/p

(
R1/p, RA1/p

)
with pre-multiplication by

(
xp

2
+ t
)1/p

= f1/p (which corresponds to

∆φ = (1/(p− 1))
{
xp

2
= t
}

restricting to (p2/(p− 1))
{
x = λ1/p2}

on the fiber over t = λ). Note

that in RA1/p or R1/p, the map f1/p can be written as xp + t1/p. In particular, f1/p is already an
element of RA1/p . Therefore, since φ is RA1/p-linear and β is clearly surjective, the image of φ is
just

〈
f1/p

〉
= σ1(X/V, φ) =

〈
xp + t1/p

〉
.

On the other hand, we now compose φ with itself as described above. In this case, φ2 : R1/p2 −→
R
A1/p2 is induced by taking the generator β2 : R1/p2 −→ R

A1/p2 and pre-multiplying by f (p+1)/p2
.

Now, f (p+1)/p2
=
(
x1 + t1/p

2)p+1
. This again is already an element of R

A1/p2 , and so by the same
argument as above, we see that

σ2(X/V, φ) =
〈
x+ t1/p

2〉p+1
= σ1(X/V, φ) ·

〈
x+ t1/p

2〉
=
〈
f (1+p)/p2〉

.
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Next, we form φ3. In this case, it is obtained by taking a generator R1/p3 −→ R
A1/p3 and

pre-multiplying by f (1+p+p2)/p3
. However, this time f (1+p+p2)/p3

is not contained in R
A1/p3 , and

so we cannot argue as above. However, f still has a p2rd root in R
A1/p3 , and so

φ3
(〈
f

1+p+p2)

p3

〉)
= φ3

(
fp(1+p)

〈
f1/p3〉)

= f
1+p

p2 φ3
(〈
f1/p3〉)

.

So we must only compute φ3
(〈
f1/p3〉)

. Now, we may take φ3 : k
[
x1/p3

, t1/p
3] −→ k

[
x, t1/p

3]
as the

map which sends x(p3−1)/p3
to 1 and other monomials in x to 0 (those monomials form a basis

for R1/p3
over R

A1/p3 ). It is thus obvious that φ3
(〈
f1/p3〉)

= k
[
x, t1/p

3]
= R

A1/p3 . In particular,

σ3(X/V, φ) =
〈
f

1+p

p2

〉
= σ2(X/V, φ)⊗

A1/p2 A
1/p3

.

We now obtain a surprising base change statement.

Proposition 3.8. Suppose that T −→ V is a map from an excellent integral scheme with
a dualizing complex; then, using the notation of Section 2.2,

im
(
(qne)

∗σn(X/V, φ)→ OXTne

)
= σn(X/V, φ) · OXTne = σn(XT /T, φT ) .

Furthermore, if U satisfies condition (3.1) from Proposition 3.3, then W = g−1(U) ⊆ T satisfies
the same condition for σn(XT /T, φT ).

Proof. Indeed, images of maps are compatible with arbitrary base change by the right exactness
of tensor. Thus, the first statement follows immediately. The second statement follows from the
first since if the two images an,n and an−1,n are equal, they are also equal after base change.

Theorem 3.9 (Base change for σn). There exists an integer N > 0 such that for all points s ∈ V ,
we have N > nσ(φs),k(s). In other words, we have both that σn(X/V, φ) · OXsne = σn(Xs/s, φs)
(which always holds) and also that for all m > n > N ,

σn(X/V, φ)⊗V n k(s)1/pm = σm(Xs/s, φs) .

Proof. Of course, the statement already holds on U with respect to some integer N0. Set V ′1 :=
V \ U to be the complement with reduced scheme structure, and let

i1 : V1 = (V ′1)reg ↪→ V ′1

be the regular locus. We notice that V1 has dimension strictly less than dimV . We consider the
base change XV1 −→ V1. Each fiber of XV1 −→ V1 is isomorphic to a fiber of X −→ V . Choose an
open set U1 ⊆ V1 for which the statement holds for some integer N1.

Now, fix V ′2 = V ′1 \ U1 and i2 : V2 = (V ′2)reg ↪→ V ′2 to be the regular locus and repeat. This
process terminates by Noetherian induction.

Setting N = max{N0, N1, N2, . . . } completes the proof.

Now, suppose that s ∈ V is a perfect point; see Definition 2.2. It follows that Xs/s is a variety

over a perfect field and so since se ∼= s, we have Xse
∼= Xs. Thus, we can identify φs : L

1/pe

s −→ Rse

with a p−e-linear map ψs as in Section 2.3. Thus, under these identifications,
⋂
n>0 σn(Xs/s, φ) =

σ(Xs, ψs). However, if we have the stabilization σn(Xs/s, φ) ∼= σn(Xs/s, φ)⊗k(s)1/pne k(s)1/pme ∼=
σm(Xs/s, φ) for every m > n, the equality σn(Xs/s, φ) = σ(Xs, ψ) holds. Combining this with
our previous work, we obtain the following corollary.
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Corollary 3.10. With notation as above, there exists an integer N > 0 such that

σn(X/V, φ) · OXsne = σ(Xs, ψs)

for all perfect points s ∈ V and n > N .

3.1 Iterated non-F -pure ideals versus the absolute non-F -pure ideal

We now compare the iterated non-F -pure ideal with the absolute non-F -pure ideal. First however,
we make the following assumption.

Convention 3.11. In this subsection, Section 3.1, we always assume that our base V is an
F -pure, quasi-Gorenstein (that is, ωV is a line bundle), F -finite, integral scheme.

Let Ψe
V : F e∗OV ((1− pe)KV ) −→ OV be a map generating H omV (F e∗OV ((1− pe)KV ),OV ) as

an F e∗OV -module. By taking pneth roots, applying f−1, and then writing the A-module M :=
f−1(OV ((1− pe)KV )), we obtain(

Φe
A

)1/pne
: M1/p(n+1)e

= f−1F
(n+1)e
∗

(
OV ((1− pe)KV )

)
−→ f−1Fne∗ OV = A1/pne .

We tensor with L1/pe over A1/pe and so obtain

Φ′ : L1/pe ⊗A1/pe M1/p(n+1)e −→ L1/pe ⊗A1/pe A1/pne . (3.3)

Set N = L ⊗A M1/pne . We observe that N is a line bundle on XV ne . In fact, if q1 : XV ne =
X ×V V ne −→ X is the first projection and q2 : XV ne −→ V ne is the second projection, then

N = q∗1L⊗OXV ne
q∗2OV ne

(
(1− pe)KV ne

)
and so it follows for any integer l > 0 that

N l ∼= q∗1L
l ⊗OXV ne

q∗2OV ne
(
l(1− pe)KV ne

)
= Ll ⊗A

(
M l
)1/pne

. (3.4)

Finally, we compose (3.3) with φ′ := φ⊗A1/pe A1/pne to construct

γ : N1/pe = L1/pe ⊗A1/pe M1/p(n+1)e Φ′−→ L1/pe ⊗A1/pe A1/pne

φ′−→ RA1/pe ⊗A1/pe A1/pne = R⊗A A1/pne = RA1/pne . (3.5)

This is a map from an invertible sheaf on Xe
V (n+1)e = (XV ne)

e to the structure sheaf on XV ne . In
particular, it is a map such as one studied in [BS13, Section 4].

Let us point out an alternate way to construct γ. Indeed, take

φ′′ := φ⊗A1/pe M1/p(n+1)e
: L1/pe ⊗A1/pe M1/p(n+1)e −→ RA1/pe ⊗A1/pe M1/p(n+1)e

∼= R⊗AM1/p(n+1)e
.

We can then compose this with RA1/pe ⊗A1/pe (Φe
A)1/pne = (Φe

A)′ to obtain

N1/pe = L1/pe ⊗A1/pe M1/p(n+1)e φ′′−→ RA1/pe ⊗A1/pe M1/p(n+1)e

(ΦeA)′

−−−→ RA1/pe ⊗A1/pe A1/pne = RA1/pne .

This composition is easily seen to coincide with γ.

We can then compose γ with itself m times as in [BS13, Section 4] or [Sch09]. We recall this
construction for the benefit of the reader. To construct γ2, we tensor the map

γ : N1/pe −→ R⊗A A1/pne = RA1/pne
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with the line bundle N over RA1/pne , take peth roots, and then compose it with γ to obtain

γ2 :
(
N1+pe

)1/p2e

−→ N1/pe γ−→ R⊗A A1/pne .

Recursively, we can construct

γm :
(
N

pme−1
pe−1

)1/pme

=
(
L
pme−1
pe−1

)1/pme

⊗A1/pme

(
M

pme−1
pe−1

)1/p(n+m)e

−→ RA1/pne .

We are now in a position to relate the absolute σ(XV 1/pne , γ) with the relative σn(X/V, φ).

First, we observe that for each m 6 n, the map Φm
A induces maps

µm :
(
N

pme−1
pe−1

)1/pme

=
(
L
pme−1
pe−1

)1/pme

⊗A1/pme

(
M

pme−1
pe−1

)1/p(n+m)e

···⊗(ΦmA )1/pne

−−−−−−−−−→
(
L
pme−1
pe−1

)1/pme

⊗A1/pme A1/pne .

Furthermore, these maps are surjective since Φm
A is.

Lemma 3.12. Assuming Convention 3.11, we have the factorization of γn and γn−1 indicated by
the diagram below:(

N
pne−1
pe−1

)1/pne (
N

p(n−1)e−1
pe−1

)1/p(n−1)e

(
L

pne−1
pe−1

)1/pne

⊗A1/pne

(
M

pne−1
pe−1

)1/p(n+n)e (
L

p(n−1)e−1
pe−1

)1/p(n−1)e

⊗
A1/p(n−1)e

(
M

p(n−1)e−1
pe−1

)1/p(n+n−1)e

(
L

pne−1
pe−1

)1/pne (
L

p(n−1)e−1
pe−1

)1/p(n−1)e

⊗
A1/p(n−1)e A1/pne

RA1/pne

γ′

µn

γn

µn−1

γn−1

ϕn ϕn−1⊗···

where the arrow γ′ is induced by γ and φn−1⊗· · · is simply φn−1⊗
A1/p(n−1)e A1/pne . Furthermore,

since µn−1 is surjective, we have

im
(
γn−1

)
= an−1,n = im

(
φn−1 ⊗

A1/p(n−1)e A1/pne
)
.

Likewise, since µn is surjective, we have

im
(
γn
)

= an,n = an = im
(
φn
)
.

Proof. The two equalities are immediate from the surjectivity of µn−1 and µn and the commu-

tativity of our diagram. The surjectivity of µn−1 and µn is clear since M1/p(n+1)e −→ A1/pne is
surjective and tensor is right exact. It remains to prove the commutativity of our diagram. It
suffices to prove the commutativity of the square

(
L

pme−1
pe−1

)1/pme

⊗A1/pme

(
M

pme−1
pe−1

)1/p(n+m)e γ′ //

µm

��

(
L

p(m−1)e−1
pe−1

)1/p(m−1)e

⊗
A1/p(m−1)e

(
M

p(m−1)e−1
pe−1

)1/p(n+m−1)e

µm−1

��(
L

pme−1
pe−1

)1/pme

⊗A1/pme A1/pne //
(
L

p(m−1)e−1
pe−1

)1/p(m−1)e

⊗
A1/p(m−1)e A1/pne

;

we will prove it by induction on m. It is clear that if the above square is commutative for m,
then, by tensoring it with L ⊗R (−) ⊗A1/pne M1/p(n+1)e

and taking peth roots, we will have the
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commutativity for m + 1. Hence, it remains to prove the commutativity when m = 2. To this
end, we will denote the map M1/p(n+1)e −→ A1/pne by α. Then α induces a map

α′ = (id⊗α)1/pe :
(
M

p2e−1
pe−1

)1/p(n+2)e

=
(
M1/pne ⊗A1/pne M1/p(n+1)e

)1/pe

−→M1/pne ⊗A1/pne A1/pne = M1/p(n+1)e
.

It is clear that α ◦ α′ = α2. Likewise, the map ϕ : L1/pe −→ R⊗A A1/pe induces

ϕ′ = (id⊗ϕ)1/pe :
(
L
p2e−1
pe−1

)1/p2e

=
(
L1/pe ⊗R1/pe L1/p2e)1/pe −→ L1/pe ⊗A1/pe A1/p2e

.

We will analyze the four maps involved in the square. The left vertical map

µ2 :
(
L
p2e−1
pe−1

)1/p2e

⊗
A1/p2e

(
M

p2e−1
pe−1

)1/p(n+2)e

−→
(
L
p2e−1
pe−1

)1/p2e

is given by id⊗(α ◦ α′); similarly, the right vertical map µ1 is id⊗α. The top horizontal map is
given by(

L
p2e−1
pe−1

)1/p2e

⊗
A1/p2e

(
M

p2e−1
pe−1

)1/p(n+2)e
ϕ′⊗α′−−−−→ L1/pe ⊗A1/pe A1/p2e ⊗

A1/p2e M
1/p(n+1)e

∼−→ L1/pe ⊗A1/pe M1/p(n+1)e
.

The bottom horizontal map is given by(
L
p2e−1
pe−1

)1/p2e

⊗
A1/p2e A

1/pne ϕ′⊗id−−−→ L1/pe ⊗A1/pe A1/p2e ⊗
A1/p2e A

1/pne

∼−→ L1/pe ⊗A1/pe A1/pne .

Now, given an arbitrary x ⊗ z ∈
(
L
p2e−1
pe−1

)1/p2e

⊗
A1/p2e

(
M

p2e−1
pe−1

)1/p(n+2)e

, write ϕ′(x) =∑
i xi ⊗ yi with xi ∈ L1/pe and yi ∈ A1/p2e

. Then, on one hand, if we follow the top horizontal
map and then the right vertical map, we have

x⊗ z 7→
(∑

i

xi ⊗ yi
)
⊗ α′(z) 7→

∑
i

xi ⊗ yiα′(z) 7→
∑
i

xiα(yiα
′(z)) =

∑
i

xi ⊗ yiα(α′(z)) ,

where the last equality holds since α is A1/pne-linear and hence A1/p2e
-linear.

On the other hand, if we follow the other path (that is, the left vertical map first and then
the bottom horizontal map), we have

x⊗ z 7→ x⊗ α′(z) 7→ x⊗ α(α′(z)) 7→
(∑

i

xi ⊗ yi
)
⊗ α(α′(z)) 7→

∑
i

xi ⊗ yiα(α′(z)) .

This proves that the square is indeed commutative when m = 2 and concludes the proof of our
lemma.

Theorem 3.13. With notation as in Convention 3.11 and below it, choose n > n0 = nσ(φ),k(V ).
Then, there exists a dense open set U ⊆ V ∼= V e with W = f−1(U) ⊆ X such that

σ
(
XV 1/pne , γ

)∣∣
W

= σn
(
X/V, φ

)∣∣
W
.

Furthermore, shrinking U further if necessary, we can require for all perfect points u ∈ U that

σ
(
XV 1/pne , γ

)
· OXu = σn

(
Xu/u, φu

)
= σ

(
Xu, ψu

)
,

where ψu is φu viewed as an absolute p−e-linear map.
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Proof. The second statement is immediate from the first by Proposition 3.8, so we need only
prove the first statement. By the diagram in Lemma 3.12 and applying Proposition 3.3, we see
that

im
(
γn
)∣∣
W

= an,n
∣∣
W

= an−1,n

∣∣
W

= im
(
γn−1

)∣∣
W

for all n > n0. Hence, im(γn)|W = σ(XV 1/pne , γ)|W , and the result follows.

Convention 3.14. Assuming everything in Convention 3.11, we additionally assume that φ is
relatively divisorial.

Before we proceed, we prove a lemma about interpreting maps as divisors in the relative
versus absolute setting.

Lemma 3.15. With notation as in Convention 3.14, let ∆φ be the divisor corresponding to φ as
in Definition 2.8. Then ∆γ , the divisor on XV ne corresponding to γ as in [BS13, Section 4], is
equal to h∗∆, where h : XV ne = X ×V V ne −→ X is the projection.

Proof. Working off a set of relative codimension 2, and then working locally on X and V , we
can assume that L and M are trivial, and further assume that φ( ) = Φ

(
z1/pe ·

)
, where Φ

generates H omR
A1/pe

(
R1/pe , RA1/pe

)
as an R1/pe-module. Then ∆φ is the divisor corresponding

to (1/(pe − 1)) divX(z). On the other hand, since the map Γ corresponding to Φ is a composition

of generating maps, Γ generates H omR
A1/pne

(
R

1/pe

A1/p(n+1)e , RA1/pne

)
; see for example [Kun86,

Appendix F], and so corresponds to the zero divisor. Furthermore, we see that γ( ) = Γ
(
z̄1/pe ·

)
where z̄ is the element corresponding to z ⊗ 1 ∈ RA1/pne . Hence, ∆γ = (1/(pe − 1)) divXV ne (z̄)
and the claim follows.

We now need a lemma which says roughly that in an F -pure, F -finite ring A with maximal
ideal m, at least locally, one can always choose an α : A1/pe −→ A such that the closed point V (m)
is an F -pure center of ∆α. To this end, we introduce the following sets:

Me,A :=
{
φ ∈ HomA

(
A1/pe , A

)
|φ
(
m1/pe

)
⊆ m

}
Ne,A :=

{
φ ∈ HomA

(
A1/pe , A

)
|φ
(
A1/pe

)
⊆ m

}
.

It is straightforward to check that both Me,A and Ne,A are A1/pe-submodules of HomA

(
A1/pe , A

)
and that Ne,A ⊆Me,A. We now observe the following result.

Lemma 3.16. For any F -finite, reduced, G1 and S2 ring A with maximal ideal m, the formation
of Me,A and Ne,A commutes with localization and completion; that is, if W is a multiplicative
system and ˆ denotes completion along m, then

W−1Me,A
∼=
(
W−1M

)
e,W−1A

and W−1Ne,A
∼=
(
W−1N

)
e,W−1A

and

Me,A ⊗A Â ∼= Me,Â and Ne,A ⊗A Â ∼= Ne,Â .

The following proof was suggested to us by Manuel Blickle and Kevin Tucker. We believe
that there are more general proofs that work without the G1 and S2 hypothesis (but this proof
is short).

Proof. We have a natural injective map HomA

(
m1/pe ,m

)
↪→HomA

(
m1/pe, A

)
, but HomA

(
m1/pe, A

)
∼= HomA

(
A1/pe , A

)
since both modules are S2 (since a reflexive module is S2 in a G1 and S2

ring [Har94]). Thus, we have HomA

(
m1/pe ,m

)
↪→ HomA

(
A1/pe , A

)
, the image of which is Me,A.
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Therefore, Me,A clearly commutes with localization and completion since the formation of both
Hom sets commutes with localization and completion. Similarly, the formation of Ne,A commutes
with localization and completion.

Lemma 3.17. Suppose that A is an F -pure, F -finite, G1 and S2 ring with maximal ideal m. Then
there exists an A-linear map αA : A1/pe −→ A such that αA is surjective and αA

(
m1/pe

)
⊆ m.

Proof. We first assume that A is a local ring. In this case, it suffices to show that Ne,A 6= Me,A.
By Lemma 3.16, we may assume that A is complete since Â is faithfully flat over A. By the Cohen
structure theorem, there is a ring of formal power series S = kJx1, . . . , xnK over a coefficient field k
of A with surjection S−→→A. Write A = S/I. Recall that HomS

(
S1/pe , S

)
is generated (as an

S1/pe-module) by g : S1/pe −→ S, which sends (x1 · · ·xn)(pe−1)/pe to 1 and other basis monomials
(including 1) to zero. By Fedder’s lemma [Fed83, Lemma 1.6], each element of HomA

(
A1/pe , A

)
has the form f

(
u1/pe

)
with u ∈

(
I [pe] : I

)
. Since A is F -pure,

(
I [pe] : I

)
6⊂ n[pe], where

n = (x1, . . . , xn). Let u be an element of
(
I [pe] : I

)
\n[pe]. Then u must have a monomial term

cxa1
1 · · ·xann with c ∈ k and ai < pe for each i. Choose such a monomial appearing in u with the

least degree and still denote it by cxa1
1 · · ·xann . Then it is clear that

(
xp

e−1−a1
1 · · ·xp

e−1−an
n

)
u −

c(x1 · · ·xn)p
e−1 ∈ n[pe]. Now, define α : A1/pe −→ A by α( ) = g

((
xp

e−1−a1
1 · · ·xp

e−1−an
n u

)1/pe )
.

Then α is in Me,A\Ne,A. This completes the local case by Lemma 3.16.

For the non-local case, we have the map Me,A −→ A which is evaluation at 1. Since the
formation of Me,A commutes with localization, this map is surjective if and only if it is surjective
locally. The above work proves the result after localizing at m. However, clearly (Me,A)n =(

HomA

(
A1/pe , A

))
n

for prime ideals not equal to m. The result follows.

For the moment, we work sufficiently locally so that X = SpecR and V = SpecA are affine
and that L and M are isomorphic to R and A, respectively. Continue to assume that A is F -
pure and quasi-Gorenstein, and fix a point s ∈ SpecA. Shrinking V if necessary, choose a map

αs ∈ HomA

(
A1/pe , A

)
which is surjective and which satisfies α

(
m

1/pe

s

)
⊆ ms (whose existence is

guaranteed by Lemma 3.17). We write αs( ) = Φe
A

(
z1/pe ·

)
for some z ∈ A. Note we have an

induced map αs : (A/ms)
1/pe −→ A/ms.

We thus induce the following map: β :
(
RA1/pne

)1/pe −→ RA1/pne , defined by the rule β( ) =

γ
(
z1/p(n+1)e ·

)
. Certainly, using the notation of (3.5),

β
(
m1/p(n+1)e

s ·R1/pe

A1/p(n+1)e

)
= γ

(
z1/p(n+1)e

m1/p(n+1)e

s ·R1/pe

A1/p(n+1)e

)
=
(
φ′ ◦

(
(Φe

A)1/pne ⊗A1/pne R1/pe
))(

z1/p(n+1)e
m1/p(n+1)e

s ·R1/pe

A1/p(n+1)e

)
=
(
φ′ ◦

(
(αs)

1/pne ⊗A1/pne R1/pe
))(

m1/p(n+1)e

s ·R1/pe

A1/p(n+1)e

)
⊆ φ′

(
m1/pne

s ·R1/pe

A1/pne

)
⊆ m1/pne

s RA1/pne .

And, hence, we induce a map

β : R
1/pe

(A/ms)1/p(n+1)e −→ R(A/ms)1/pne .

Lemma 3.18. With notation as above, ∆β = ∆γ |Xsne , where the divisors are induced as in [BS13,
Section 4].
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Proof. Since φ is relatively divisorial, by working in relative codimension 1, it suffices to show the
result in the case that ∆γ (and so ∆φ) is trivial (since locally, φ or ψ is a generator pre-multiplied
by the element which determines ∆φ or ∆ψ). But now consider the composition constructing β,

R
1/pe

A1/p(n+1)e

·z1/p(n+1)e

−−−−−−−→ R
1/pe

A1/p(n+1)e

Φ′−→ R
1/pe

A1/pne

φ′−→ RA1/pne .

The composition of the first two maps sends m1/p(n+1)e · R1/pe

A1/p(n+1)e to m1/pne · R1/pe

A1/pne , and

modding out by these ideals induces a generating map for

Hom
R

1/pe

(A/m)1/p
ne

(
R

1/pe

(A/m)1/p(n+1)e , R
1/pe

(A/m)1/pne

)
via the fact that αs is surjective and so the induced map (A/m)1/p(n+1)e −→ (A/m)1/pne is a gen-
erating map as well. On the other hand, if φ is a generating map, so is φ′ ⊗A1/pne (A/m)1/pne by
Lemma 2.17. Since the composition of two generating maps is a generating map, we are done.

We now explain how the absolute σ behaves when restricting to fibers. First, we need two
lemmas.

Lemma 3.19. With notation as above and v ∈ V a closed point,

σ
(
XV ne ,∆γ

)
· OXvne = σ

(
XV ne , γ

)
· OXvne ⊇ σ

(
Xvne , β

)
= σ

(
Xvne ,∆β

)
= σ

(
Xvne ,∆γ |Xvne

)
.

Proof. Obviously, σ(XV ne , γ) ⊇ σ(XV ne , β). On the other hand, it easily follows that σ(XV ne , β)
restricts to σ(Xvne , β) by F -adjunction; see for instance [FST11].

The next lemma is a generalization of the fact that for an ideal in a regular ring, I ⊆
(
I [1/p]

)[p]
using the [1/p] notation from [BMS08].

Lemma 3.20. Let B be an F -finite regular ring such that B1/p is a free B-module and that
HomB

(
B1/p, B

) ∼= B1/p (for example, this happens if B is local). Further, suppose that Q

is a B1/pa-submodule of B1/pa ⊗B P for some B-module P , so Q ⊆ B1/pa ⊗B P . Then Q ⊆
B1/pa ⊗B

(
(θ ⊗ idP )(Q)

)
, where θ ∈ HomB

(
B1/pa , B

)
is the generator.

Proof. The strategy is similar to [BMS08, Proposition 2.5]. By [Kun69, Theorem 2.1], any element
of Q can be written as a finite sum

∑
λi⊗mi, where {λi} is a basis for B1/pa over B and mi ∈ P .

Now, since θ is a local generating map of HomB(B1/pa , B), the projection maps onto the λi are
multiples of θ. In other words, for each λi, there exists a ui ∈ B1/pa such that both θ(uiλi) = 1 ∈ R
and θ(uiλj) = 0 ∈ R for j 6= i.

We observe that each mj is then in (θ⊗ idP )(Q) since θ(uj
∑
λi ⊗mi) = mj . It then follows

that
∑
λi ⊗mi ∈ B1/pa ⊗B

(
(θ ⊗ idP )(Q)

)
.

Lemma 3.21. Suppose that A = k is an F -finite field and K ⊇ k is a field extension of k such
that K is perfect. Choose a flat map X = SpecR −→ V = SpecA = Spec k of finite type
with X −→ V possessing geometrically reduced, G1 and S2 fibers. Additionally, suppose that
γ : R1/pe −→ R is any R-linear map which is a local generator of HomR

(
R1/pe , R

)
at the generic

points of the codimension 1 components of the non-smooth locus of X. Then, setting ∆γ as in
[BS13, Section 4],

σ(X,∆γ)⊗k K ⊇ σ(XK , (∆γ)×k K) .
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Proof. First, choose n > 0 such that σ(X,∆γ) = γn(R1/pne). Since Homk(k
1/pne , k) is a free

k1/pne-module of rank 1, by [Kun86, Appendix F] we can factor γn as

R1/pne

γn

::
β // Rk1/pne

θ // Rk

with θ a local generator of H omRk

(
Rk1/pne , Rk

)
and such that ∆β coincides with ∆γ . To see this

last point, note that if γ is a local generator of HomR

(
R1/pe, R

)
, then so is γn for HomR

(
R1/pne, R

)
and hence β is also a local generator of HomR

A1/pne

(
R1/pne , RA1/pne

)
. More generally then, if γn

is a local generator pre-multiplied by some g1/pne ∈ R1/pne (working in codimension 1), then β
is also a generator times g1/pne (possibly times a unit depending on our choice of θ). This proves
that ∆β = ∆γ , as asserted.

We now observe that γn
(
R1/pne

)
⊗k k1/pne = θ

(
β
(
R1/pne

)
⊗k k1/pne

)
⊇ β

(
R1/pne

)
by Lem-

ma 3.20 (here B = k and P = β
(
R1/pne

)
). After embedding k1/pne ⊆ K, we tensor β by K to

obtain a map

βK : R1/pne ⊗k1/pne K −→ Rk1/pne ⊗k1/pne K .

We immediately see that ∆βK = (∆γ) ×k K (again by an argument about local generators).
Then, by Lemma 3.20,

σ(X, γ)⊗k K ∼= γn
(
R1/pne

)
⊗k k1/pne ⊗k1/pne K ⊇ β

(
R1/pne

)
⊗k1/pne K ⊇ σ(X,βK) .

This completes the proof.

Theorem 3.22. With notation as in Convention 3.14, there exists an N > 0 such that for all
n > N , we have σ

(
XV 1/pne ,∆γ

)
· OXsne = σ

(
Xsne , (∆γ)|Xsne

)
for all perfect points s ∈ V .

Proof. The statement is local, so we may assume that X and V are affine and that L and M are
trivial just as above in Lemma 3.18. We know that

σ
(
XV 1/pne , γn

)
⊆ im

(
γn
)

= σn(X/V, φ)

by Lemma 3.12. On the other hand, by Theorem 3.9, we have σn(X/V, φ) · OXs = σ(Xs, φs).
Therefore, it is sufficient to show that σ

(
XV 1/pne , γ

)
· OXsne ⊇ σ

(
Xsne , ψsne

)
.

For this we may assume that V is the spectrum of an F -finite, F -pure local ring and that
SpecK = s 7→ V has image the closed point Spec k = v ∈ V . We first see that σ

(
XV ne ,∆γ

)
·

OXvne ⊇ σ
(
Xvne ,∆β

)
= σ

(
Xvne ,∆γ |Xvne

)
by Lemma 3.19 (and using its notation). On the other

hand, by Lemma 3.21,

σ
(
Xvne ,∆γ |Xvne

)
· OXsne = σ

(
Xvne ,∆β

)
· OXsne ⊇ σ

(
Xsne ,∆β ×vne s

ne
)

= σ
(
Xsne ,∆γ |Xsne

)
.

This completes the proof.

Using the same method as for Lemma 3.19, we also obtain the following result, which may
also be of independent interest.

Proposition 3.23. Assume that f : X −→ V is a flat, finite-type, reduced, G1 and S2 morphism
and that V is regular. Additionally, assume that γ : R1/pe −→ R is an R-linear map which is
a local generator at the generic points of the codimension 1 components of the non-smooth locus
of f for each fiber of f . Then, for any a > 0, we have

σ
(
X,∆γ

)
⊗A A1/pa ⊇ σ

(
XV a ,∆γ ×V V a

)
.
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Proof. The statement is local over the base and so we may assume that KV ∼ 0 and that A1/pe

is a free A-module since V is regular [Kun69]. Note, then, that KX/V
∼= KX . Choose ne > a > 0

such that σ(X,∆γ) = γn(R1/pne). Since HomA(A1/pa , A) is a free A1/pne-module of rank 1, by
[Kun86, Appendix F] we can factor γn as

R1/pne

γn

::
β // RA1/pa

θ // R ,

where θ is a local generator of H omR

(
RA1/pa , R

)
. Note that β ∈ HomR

A1/pa

(
R1/pne , RA1/pa

)
;

the latter is identified with

H omR
A1/pa

(
R1/pne ⊗R

A1/pa

(
A1/pa ⊗A ωR/A

)
, (A1/pa ⊗A ωR/A)

)
∼= H omR

A1/pa

((
OX

(
pneKX/V

))1/pne
, ωR

A1/pa /A
1/pa

)
∼= H omR

A1/pa

((
OX

(
pneKX

))1/pne
, ωR

A1/pa

)
∼= H omR1/pne

((
OX

(
pneKX

))1/pne
, ωR1/pne

)
∼=
(
OX

((
1− pne

)
KX

))1/pne
.

Note that since the base is regular, all these sheaves are automatically reflexive and so there is
no need to double dualize as we did before in Definition 2.8. By dividing by (pne − 1), we see
that β coincides with a divisor ∆β such that (1− pne)(KX + ∆β) ∼ 0. Furthermore, it is easy to
see that ∆β coincides with ∆γ just as in Lemma 3.19 since θ is a local generator.

By composing β with a local generating (and surjective) map

R1/pne ⊗A1/pne A1/pne+a ···⊗(ΦaA)1/pne

−−−−−−−−→ R1/pne ,

we then obtain a map

γ′ : (RA1/pa )1/pne ∼= R1/pne ⊗A1/pne A1/pne+a −→ RA1/pa

satisfying the condition ∆γ′ = ∆γ ×V V a. We also notice that γ′ has the same image as β.

Now, we observe that γn
(
R1/pne

)
⊗A A1/pa = θ

(
β
(
R1/pne

))
⊗A A1/pa ⊇ β

(
R1/pne

)
by Lem-

ma 3.20, setting B = A and P = β
(
R1/pne

)
. The remainder of the proof is easy since

σ(X,∆γ)⊗A A1/pa = γn
(
R1/pne

)
⊗A A1/pa

⊇ β
(
R1/pne

)
= γ′

((
RA1/pa

)1/pne)
⊇ σ

(
XV a ,∆γ′

)
= σ

(
XV a ,∆γ ×V V a

)
.

3.2 Application to sharply F -pure singularities and HSL numbers in families

We observe that Theorem 3.10 has an immediate application. Recall that if γ : L1/pe −→ R is an
R-linear map, then the HSL number is the first integer n such that im(γn) = im(γn+1) = σ(R, γ);
cf. [Sha07].

Corollary 3.24 (Uniform behavior of HSL numbers). Given a flat family f : X −→ V over an
excellent integral scheme V with a dualizing complex of characteristic p > 0 and φ : L1/pe −→
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OXV e as before, there exists an integer N > 0 that gives an upper bound on the HSL number of(
Xs, φs : L

1/pe

s −→ OXs

)
for every perfect point s ∈ V .

Proof. The statement immediately follows from Theorem 3.9 since, clearly, σm(Xs/s, φs) agrees
with σ(Xs, γs = φs) for m� n.

Now, we study the deformation of sharp F -purity, a question which has been studied before
in [SZ09, Has10]. We believe that the hypothesis that f is proper is necessary in Theorem 3.28.

Definition 3.25. Recall that a pair
(
X,ψ : L1/pe −→ OX = R

)
is called sharply F -pure if

σ(X,ψ) = OX . Given
(
X/S, φ : L1/pe −→ RA1/pe

)
, we define (X/S, φ) to be relatively sharply

F -pure if σn(X/S, φ) = RA1/pne for some n > 0; cf. [Has10].

Lemma 3.26. If σn(X/S, φ) = RA1/pne for some n > 0, then the same holds for all n > 0.

Proof. Suppose σn(X/S, φ) = RA1/pne for some n > 0. Choose m < n to start. Then we know
am,n ⊇ an,n = σn(X/S, φ) and so am,n = RA1/pne . But am,n = im

(
am ⊗A1/pm A1/pn −→ RA1/pn

)
,

which is just the extension of σm(X/S, φ) ⊆ RA1/pme to RA1/pne . Additionally, RA1/pme ⊆ RA1/pne

is an integral extension and hence we must have σm(X/S, φ) = RA1/pme as well.

We finish the proof by showing σ2n(X/S, φ) = R
A1/p2ne . This follows quickly since σ2n(X/S, φ)

factors as a composition of two surjective maps (as tensor is right exact) as in (2.3) and (2.3).

Remark 3.27. If S is a point, then (X/S, φ) being relatively sharply F -pure is equivalent to
(X/S, φ) being geometrically sharply F -pure (in other words, that (Xt, γt) is sharply F -pure for
every geometric point t −→ S, where γt is induced from φt as in Section 3.1). To see this, certainly
observe that if (X/S, φ) is relatively sharply F -pure, then so is any base change (Xt/t, φt). But
then, (Xt, γ) is sharply F -pure by Theorem 3.13. Conversely, if (Xt, γt) is sharply F -pure, then
certainly (Xt/t, φt) is relatively sharply F -pure by Lemma 3.12. But then so is (X/S, φ) near
that t by Nakayama’s lemma.

Theorem 3.28 (Openness of sharp F -purity). With notation as before, assume that f : X −→ V
is proper. Assume that s ∈ V is a point and that (Xs/s, φs) is relatively sharply F -pure (in other
words, geometrically F -pure). Then there exists a dense open set U ⊆ V containing s such that
(Xu/u, φu) is relatively sharply F -pure for all u ∈ U (in particular, (Xu, φu) is sharply F -pure
for all perfect points u ∈ U).

Proof. Choose n � 0 such that σn(Xs/s, φs) = R
O

1/pne
s

since (Xs/s, φs) is sharply F -pure.

By Theorem 3.9, we know that σn(X/V, φ) = RA1/pne in a neighborhood W ⊆ X of Xs. Let
Z = X \W ⊆ X be the complement of that neighborhood. Since f is proper, f(Z) is closed
and also does not contain s. Set U = V \ f(Z). Then σn(XU/U, φU ) = R

O
1/pne

U

. It follows from

Theorem 3.9 that all the fibers (Xu/u, φu) are relatively sharply F -pure for perfect u ∈ U , as
desired.

We now state the above theorem in the context of divisors.

Corollary 3.29 (Openness of sharp F -purity for divisor pairs). Suppose that f : X −→ V is
a proper, G1 and S2 morphism as before and now also suppose that ∆ is a Q-divisor satisfying
conditions (a)–(d) from Remark 2.11. Additionally, suppose that s ∈ V is a perfect point and
that (Xs,∆|Xs) is sharply F -pure (or, more generally, if s is not perfect, that (Xse ,∆|Xse ) is
sharply F -pure for some or all e > 0). Then, there exists an open set U ⊆ V containing s such
that for all u ∈ U , the pair (Xu,∆|Xu) is sharply F -pure (respectively, the pair (Xue ,∆|Xue ) is
sharply F -pure for, respectively, some or all e > 0 and all u ∈ U).
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Proof. Associate to ∆ a relatively divisorial φ : L1/pe −→ RA1/pe as in Remark 2.11. The result
then follows immediately from Theorem 3.28 and Corollary 2.20.

4. Relative test ideals

In this section, we define a notion of a relative test ideal. We construct it using the following
method. We first find some ideal I which when restricted to every geometric fiber is contained
in the test ideal of that fiber. We then sum up the images of the I1/pne under φn (the same
method is used to construct the test ideal in the absolute case). This sounds simple enough,
but it actually leads to a somewhat disappointing construction. The problem is that the ideal
we pick is in no sense canonical and that we do not see a way to make it both canonical and
stable under base change. In the case that φ corresponds to a trivial divisor, we can make our
choices canonical by setting I to be the Jacobian ideal (this is done later when we discuss relative
F -rationality in Section 5), but for more general φ we do not know of an analogous choice.

We fix the notation of the previous sections (in particular, we fix φ : L1/pe −→ RA1/pe ). We
begin by choosing an arbitrary ideal I ⊆ OX . After base change to k(V∞) as before, setting
I∞ = I ·R∞, we can form the following sum:

τ
(
Rk(V∞), ψ∞I∞

)
:=

∞∑
i=0

ψi∞

((
I∞ · L

pie−1
pe−1

k(V∞)

)1/pie)
.

If it happens that I∞ is contained in the test ideal of (Rk(V∞), φ∞) and non-zero on any
component of X∞, then we see that the absolute test ideal τ(Rk(V∞), ψ∞(I∞)) is equal to
τ(Rk(V∞), ψ∞), for example by [ST12, Section 7].

We can also describe this as follows, as first essentially observed in [Kat08]. Fix ideals

b∞0 := I∞ = ψ0
∞(I∞) ,

b∞1 := b0 + ψ∞
((
b∞0 · Lk(V∞)

)1/pe)
= I∞ + ψ∞

((
I∞ · Lk(V∞)

)1/pe)
,

b∞2 := b∞1 + ψ∞
((
b∞1 · Lk(V∞)

)1/pe)
= b∞1 + ψ∞

((
I∞ + ψ∞

((
I∞ · Lk(V∞)

)1/pe) · Lk(V∞)

)1/pe)
=

2∑
i=0

ψi∞

((
I∞ · L

pie−1
pe−1

k(V∞)

)1/pie)
,

...

b∞n := b∞n−1 + ψ∞
((
b∞n−1 · Lk(V∞)

)1/pe)
=

n∑
i=0

ψi∞

((
I∞ · L

pie−1
pe−1

k(V∞)

)1/pie)
. (4.1)

We notice that this ascending chain stabilizes, say at t. Also note that the first time b∞t = b∞t+1,
we then have b∞t = b∞t+1 = b∞t+2 = · · · . We fix this integer t.

Definition 4.1. With notation as above, we define the integer t to be the uniform integer for
τ and I over the generic point of V , and, in general, it will be denoted by nτ(φI),k(V ). We notice
that for any point η ∈ V , by base change we can replace V by Spec k(η) and form a corresponding
integer nτ(φηIη),k(η).
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On the other hand, without the passing to k(V∞), we have the images

b1 := im
(
I ⊗A A1/pe −→ RA1/pe

)
+ φ((I · L)1/pe) ⊆ RA1/pe ,

b2 :=
2∑
i=0

im
(
φi
((
I · L

pie−1
pe−1

)1/pie)
⊗
A1/pie A

1/p2e −→ R
A1/p2e

)
⊆ R

A1/p2e ,

...

bn :=
n∑
i=0

im
(
φi
((
I · L

pie−1
pe−1

)1/pie)
⊗
A1/pie A

1/pne −→ RA1/pne

)
⊆ RA1/pne ,

...

Notice that im
(
b1 ⊗A1/pe A1/p2e −→ R

A1/p2e

)
⊆ b2 and, more generally, that im

(
bi ⊗A1/pie

A1/pje −→ RA1/pne

)
⊆ bj for j > i. Also observe that this is the opposite containment compared

to what we had in Section 3.

By the same argument as in Section 3, we know that there exists an open set U ⊆ V with
W = f−1(U) such that

im
(
bt ⊗A1/pte A

1/p(t+1)e −→ R
A1/p(t+1)e

)∣∣
W

= bt+1|W . (4.2)

As before in Proposition 3.3, we claim that the following holds.

Lemma 4.2. With notation as above, im
(
bn ⊗A1/pne A1/p(n+1)e −→ R

A1/p(n+1)e

)
|W = bn+1|W for

all n > t.

Proof. Replacing V by U and X by W , we may assume

bt+1 = im
(
bt ⊗A1/pte A

1/p(t+1)e −→ R
A1/p(t+1)e

)
.

By induction on n, it suffices to show that if bn+1 = im
(
bn ⊗A1/pne A1/p(n+1)e −→ R

A1/p(n+1)e

)
,

then bn+2 = im
(
bn+1 ⊗A1/p(n+1)e A1/p(n+2)e −→ R

A1/p(n+2)e

)
. Note that bn+1 = im

(
bn ⊗A1/pne

A1/p(n+1)e −→ R
A1/p(n+1)e

)
if and only if

im
(
φn+1

((
I · L

p(n+1)e−1
pe−1

)1/p(n+1)e)
−→ R

A1/p(n+1)e

)
⊆

n∑
i=0

im
(
φi
((
I · L

pie−1
pe−1 )1/pie

)
⊗
A1/pie A

1/p(n+1)e −→ R
A1/p(n+1)e

)
.

Tensoring with L over R, taking peth roots, and applying φ yields

im
(
φn+2

((
I · L

p(n+2)e−1
pe−1

)1/p(n+2)e)
−→ R

A1/p(n+2)e

)
⊆

n+1∑
i=1

im
(
φi
((
I · L

pie−1
pe−1

)1/pie)
⊗
A1/pie A

1/p(n+2)e −→ R
A1/p(n+2)e

)
.

Hence,

bn+2 = im
(
bn+1 ⊗A1/p(n+1)e A1/p(n+2)e −→ R

A1/p(n+2)e

)
.

This finishes the proof.

As before, we define relative test ideals as follows.

293



Z. Patakfalvi, K. Schwede and W. Zhang

Definition 4.3. The nth limiting relative test ideal with respect to I (of the pair (X/V, φ)) is
defined to be bn ⊆ RA1/pne and is denoted by τn(X/V, φI).

Before proceeding to various properties of relative test ideals, we give one example of relative
test ideals.

Example 4.4 (Example 3.7, revisited). Fix k to be an algebraically closed field of characteristic
p > 2, set A = k[t], and set R = k[x, t] with the obvious map X = Spec(R) −→ V = Spec(A).
Let φ : R1/p = k

[
x1/p, t1/p

]
−→ RA1/p = k

[
x, t1/p

]
be the composition of the local generator

β ∈ HomR
A1/p

(
R1/p, RA1/p

)
with pre-multiplication by (xp

2
+ t)1/p = f1/p. Set I = 〈xp + t〉.

Then

b1 = im
(
I ⊗A A1/p −→ RA1/p

)
+ φ

(
I1/p

)
=
〈
xp + t

〉
+
〈(
xp + t1/p

)(
x+ t1/p

)〉
=
〈
xp + t,

(
xp + t1/p

)(
x+ t1/p

)〉
.

To calculate b2, it suffices to calculate

im
(
φ2
(
I1/p2))

= im
(
β2
((
xp

2
+ t
) 1+p

p2 I1/p2))
.

Since
(
xp

2
+ t
)(1+p)/p2

∈ R
A1/p2 , we can see that im

(
φ2
(
I1/p2)) ⊆ 〈(xp2

+ t
)(1+p)/p2〉

. On the
other hand, it is straightforward to check that

β2
((
xp

2
+ t
) 1+p

p2 x
p2−p−1

p2
(
xp + t

)1/p2
)

=
(
xp

2
+ t
) 1+p

p2 =
(
x+ t1/p

2)(
xp + t1/p

)
.

Therefore,

b2 =
〈
xp + t,

(
xp + t1/p

)(
x+ t1/p

)
,
(
x+ t1/p

2)(
xp + t1/p

)〉
.

For each i > 2, to calculate bi+1, it suffices to calculate im
(
βi+1

((
xp

2
+ t
) 1+p+···+pi

pi+1 I1/pi+1))
. It

is straightforward to check that it is contained in
〈(
xp + t1/p

)(
x+ t1/p

2)〉
and hence is contained

in b2. Therefore, bi+1 = b2 as well. So we have

bn =

{〈
xp + t,

(
xp + t1/p

)(
x+ t1/p

)〉
when n = 1 ,

b2 =
〈
xp + t,

(
xp + t1/p

)(
x+ t1/p

)
,
(
x+ t1/p

2)(
xp + t1/p

)〉
when n > 2 .

We now prove a base change statement for relative test ideals. Compare with Proposition 3.8.
As before, we fix qi : X ×V T i −→ X ×V V i to be the natural map.

Theorem 4.5 (Relative test ideals and base change). Fix g : T −→ V to be any morphism with T
excellent, integral, and admitting a dualizing complex. Then

im
(
(qne)

∗τn
(
X/V, φI

)
↪→ OXTne

)
:= τn

(
X/V, φI

)
· OXTne = τn

(
XT /T, φT IT

)
.

Furthermore, if U = Un satisfies the condition of Lemma 4.2, then W = g−1(U) ⊆ T satisfies
the same condition for τn(XT /T, φT IT ).

Proof. We write B = OT and work locally. By construction and right exactness of tensor,

τn
(
X/V, φ

)
· OXTne = bn ⊗A1/pne B1/pne

=

n∑
i=0

(
φi
((
I · L

pie−1
pe−1

)1/pie)
⊗
A1/pie B

1/pne
)
⊆ RB1/pne .
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But, by Lemma 2.15,

n∑
i=0

(
φi
((
I · L

pie−1
pe−1

)1/pie)
⊗
A1/pie B

1/pne
)

=
n∑
i=0

(
φiT

((
IT · L

pie−1
pe−1

T

)1/pie)
⊗
B1/pie B

1/pne
)

= τn
(
XT /T, φT IT

)
,

which completes the proof.

Theorem 4.6 (Restriction of τn to fibers). With notation as above, there exists an integer
N > 0 such that for all points s ∈ V , we have N > nτ(φsI),k(s). In other words, we have both
that τn(X/V, φ) · OXsne = τn(Xs/s, φs) (which always holds) and that for all m > n > N ,

τn
(
X/V, φI

)
⊗V n k(s)1/pm = τm

(
Xs/s, φsIs

)
.

Proof. The idea is the same as for Theorem 3.9 and we only sketch it here. We stratify V as
follows. The result holds on a dense open subset of U0 ⊆ V . Let V ′1 be the complement, and
let V1 denote the regular locus of V ′1 . Base change to V1, and then repeat. This procedure stops
after finitely many iterations by Noetherian induction, and we choose an N that works for them
all.

We now construct I ⊆ R whose restriction is contained in the test ideal of every geometric
fiber.

Proposition 4.7 (Existence of relative test elements). With notation as above, suppose addi-
tionally that f : X −→ V is relatively G1 and S2. Then, there exists an ideal I ⊂ OX such that for
every point s ∈ V and every perfect extension K ⊇ k(s), we have IK ⊆ τ(XK , ψK), where again
ψK is simply φK interpreted as in [BS13]. Additionally, we can assume I = OX at all points of
X such that both X/V is smooth and φ locally generates H omOX

(
L1/pe , RA1/pe

)
. Furthermore,

if V is strongly F -regular and quasi-Gorenstein, then I can additionally be chosen such that IV e

is within the absolute test ideal of (XV e , γ) (where γ is as in Section 3.1).

We caution the reader that it is possible that ψs (and thus ψK) could be the zero map, and
hence IK the zero ideal.

Proof. First, let Z1 ⊆ X denote the locus where φR1/pe ⊆H omR
A1/pe

(
L1/pe , RA1/pe

)
is not an

isomorphism. Additionally, let Z2 denote the locus whereX is not smooth over V . Set Z = Z1∪Z2.
Set W = X \ Z (and note that we can also view this as a subset of XV e for any e) and notice
that on W , we know that φ can be identified with the trace map up to multiplication by a unit.

Since f |W is smooth, we observe that φ (which is identified with the trace map) is surjective
when restricted to W by Corollary 2.5. Now, choose an exponent m > 0 such that

ImZ ·RA1/pe ⊆ a1,1 = σ1(X/S, φ) .

Now, choose an integer l > 0 such that ImlZ is locally generated by cubes of elements of ImZ (this
only depends on the number of local generators of IZ). Then the formation of ImlZ is obviously
compatible with base change (in that the extension of ImlZ to the base change will also satisfy
the same containment condition.). Thus, set I = ImlZ . The first result follows immediately from
[Hoc07, Theorem on p. 90] or [Sch11, proof of Proposition 3.21].

For the second result, we notice that γ locally generates H omR
A1/pe

(
N1/pe , RA1/pe

)
and

that ImZ is also in the image of γ. Therefore, Iml works by the above references.

295



Z. Patakfalvi, K. Schwede and W. Zhang

Therefore we obtain the following result.

Corollary 4.8. Using the notation of Theorem 4.6, assume further that I satisfies the condition
of Proposition 4.7. If s is a perfect point, then for all n > N as in Theorem 3.9,

τn(X/V, φI)⊗V n k(s)1/pm = τ(Xs, ψs) ,

where ψs is φs interpreted as a p−e-linear map.

Proof. Simply observe that, in general, the ascending chain τj(Xs/s, φsIs) ⊆ τj+1(Xs/s, φsIs) ⊆
· · · stabilizes to τ(Xs, ψs). Furthermore, by Theorem 4.6, this ascending chain stabilizes.

Corollary 4.9. Using the notation of Theorem 4.6, assume further that I satisfies the condition
of Proposition 4.7. If the perfect closure of the generic fiber of f : X −→ V is strongly F -regular,
that is, τ

(
Rk(V∞), ψ∞I∞

)
= Rk(V∞), then there exists an open subset U ⊆ V such that (Xs, ψs)

is also strongly F -regular for each perfect point s ∈ U .

Proof. It follows immediately from the proof of Proposition 3.3 and Corollary 4.8.

4.1 Relative test ideals versus absolute test ideals

We make the following assumption.

Convention 4.10. For the rest of Section 4.1, we assume that V is regular and F -finite.

It is natural to try to relate the relative test ideal τn(X/V, φI) to the absolute test ideal
τ(XV ne , γ

n) as in Section 3.1. Indeed, if we construct I as we did in the proof of Proposition 4.7,
then it follows easily that I ·RA1/pne ⊆ τ(XV ne , γ

n). Thus, fix such an I.

We now recall the following diagram from Lemma 3.12:(
L

pne−1
pe−1

)1/pne

⊗A1/pne
(
M

pne−1
pe−1

)1/p(n+n)e (
L

p(n−1)e−1
pe−1

)1/p(n−1)e

⊗
A1/p(n−1)e

(
M

p(n−1)e−1
pe−1

)1/p(n+n−1)e

(
L

pne−1
pe−1

)1/pne (
L

p(n−1)e−1
pe−1

)1/p(n−1)e

⊗
A1/p(n−1)e A1/pne

RA1/pne

γ′

µn

γn

µn−1

γn−1

ϕn ϕn−1⊗···

We let I
1/pje

A1/pke
denote the extension of I1/pje to R

1/pje

A1/pke
. Then notice that µj sends I

1/pje

A1/p(j+n)e

(times the domain of µj) back onto I1/pje since each µj is surjective.

We then observe that the following holds.

Lemma 4.11. With notation as above and assuming Convention 4.10, we have τn(X/V, φI) ⊆
τ(XV ne , γ).

Proof. We know that τn(X/V, φI) is the sum

n∑
j=0

(
φj ⊗

A1/pje A
1/pne

)(
I1/pje ·

(
L
pje−1
pe−1

)1/pje

⊗
A1/pje A

1/pne
)
. (4.3)

On the other hand, τ(X, γ) is the sum

∞∑
j=0

γj
(
I

1/pje

A1/p(j+n)e ·
(
L
pje−1
pe−1

)1/pje

⊗
A1/pje

(
M

pje−1
pe−1

)1/p(j+n)e)
. (4.4)
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By our above observations about the surjectivity of the µj above, the sum of the 0th through
jth terms of (4.4) is equal to the sum (4.3). The result follows.

Additionally, at least over an open subset of the base, the relative test ideal and absolute test
ideal actually agree; cf. Theorem 3.13.

Theorem 4.12. With notation as above and assuming Convention 4.10, choose n > t =
nτ(φI),k(V ). Then there exists a dense open set U ⊆ V ∼= V e with W = f−1(U) ⊆ X such that
τ(XV 1/pne , γ)|W = τn(X/V, φI)|W . Furthermore, shrinking U further if necessary and possibly
increasing n, we can require for all perfect points u ∈ U that

τ(XV 1/pne , γ) · OXu = τn(Xu/u, φuIu) = τ(Xu, ψu) ,

where again ψu is φu viewed as a p−e-linear map.

Proof. First, we observe that by taking U as in (4.2), we can assume bn−1,n = bn,n. But by
the diagram above, we see that the (n− 1)st partial sum defining τ(XV 1/pne , γ) in (4.4) is equal
to bn−1,n. Likewise, the nth partial sum is equal to bn,n. However, once two adjacent partial
sums defining τ(XV 1/pne , γ) coincide, the sum stabilizes for further powers by the computation
we made when defining the b∞n in (4.1). The second statement follows from the first and from
Theorem 4.5; cf. the argument of Corollary 4.8.

When dealing with relatively non-F -pure ideals σ, we actually obtained the above restriction
theorem without shrinking X to U in Corollary 3.22. The difference is that for σ, we have the easy
containment σ(XV 1/pne , γn) ⊆ σn(X/V, φ) by Lemma 3.12. For τ , however, the easy containment
is reversed. This leads us to the following question.

Question 4.13. Is it true that τ
(
XV 1/pne , γ

)
·OXsne = τ(Xs, ψs) for all perfect points s ∈ V , at

least when n� 0?

Rephrasing Theorem 4.12 for divisors, we obtain the following statement.

Corollary 4.14. Suppose that f : X −→ V is a flat finite map to an excellent regular scheme V .
Additionally, suppose that f is relatively G1 and S2 and I is chosen as in Proposition 4.7+.
Choose ∆ satisfying conditions (a)–(d) of Remark 2.11. Then, there exists an open dense set
U ⊆ V such that

τ
(
XV 1/pne ,∆

)
· OX

u1/pne
= τ

(
Xu,∆|Xu

)
for all perfect points u ∈ U .

Proof. Using Lemmas 2.21 and 3.15, we see that ∆ corresponds to some φ : L1/pe −→ RA1/pe .
Thus, we simply apply Corollary 2.20 and Theorem 4.12.

4.2 Applications to strong F -regularity and divisor pairs

Definition 4.15. Recall that a pair
(
X,ψ : L1/pe −→ OX = R

)
is called strongly F -regular if

τ(X,ψ) = OX . Given
(
X/S, φ : L1/pe −→ RA1/pe

)
and some I ⊆ R satisfying the condition of

Proposition 4.7, we say that (X/S, φI) is relatively strongly F -regular if we have τn(X/S, φI) =
RA1/pne for some n > 0 (equivalently, all n� 0 since the τn ascend); cf. [Has10].

Remark 4.16. Suppose that S is a point and I is chosen as in Proposition 4.7; then (X/S, φI) is
relatively strongly F -regular if and only if it is geometrically strongly F -regular (that is, (Xt, γt)
is strongly F -regular for every point t −→ S). The argument is the same as in Remark 3.27.
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The same ideas imply that the strongly F -regular locus of a proper map is open.

Corollary 4.17 (Openness of the strongly F -regular locus). With notation as before, assume
additionally that f : X −→ V is proper and that I satisfies the condition of Proposition 4.7.
Assume that s ∈ V is a point and that (Xs/s, φsIs) is relatively strongly F -regular (for example,
if s is a perfect point, this just means that it is strongly F -regular and independent of I). Then,
there exists a dense open set U ⊆ V containing s such that (Xu/u, φuIu) is relatively strongly
F -regular for all u ∈ U (in particular, (Xu, φu) is strongly F -regular for all perfect points u ∈ U).

Proof. Choose n � 0 such that τn(Xs/s, φsIs) = R
O

1/pne
s

, since (Xs/s, φsIs) is strongly F -

regular. By Theorem 4.6, we know that τn(X/V, φI) = RA1/pne in a neighborhood W ⊆ X of Xs.
Let Z = X \W ⊆ X be the complement of that neighborhood. Since f is proper, f(Z) is closed,
and also does not contain s. Set U = V \f(Z). Then τn(XU/U, φUI|U ) = R

O
1/pne

U

. It follows from

Theorem 4.6 that all the fibers (Xu/u, φuIu) are relatively strongly F -regular, as desired.

At least for proper maps, we also obtain that the definition of relative strongly F -regularity
(Definition 4.15) is independent of the choice of I.

Lemma 4.18. Suppose that f : X −→ V is proper and that (X/V, φI) is relatively strongly F -
regular for some I satisfying the condition of Proposition 4.7. Then for all J ⊆ R such that Js
is non-zero on every component of every fiber Xs, we have that τn(X/S, φJ) = RA1/pne for some
n > 0 (equivalently, all n� 0).

In particular, in Definition 4.15, it would be equivalent to require τn(X/S, φJ) = RA1/pne for
all such J and some n.

Proof. Choose a closed point s ∈ V and a perfect extension K ⊇ k(s). Then τm(XK/K, φKIK) =
RK1/pne for some m > 0 by Theorem 4.6. But, since K is a perfect field extension, this implies
that τm(XK , ψKIK) = RK1/pme as well. On the other hand, since (XK , ψK) is strongly F -regular,
we see that τn(XK/K, φKJK) = RK1/pne for some n > 0. Hence, since k(s) ⊆ K is faithfully flat,
we see that τn(Xs/s, φsJs) = Rk(s)1/pne . But then, since τn(X/V, φJ) restricts to τn(Xs/s, φsJs),
we observe that τn(X/V, φJ) = RA1/pne at least in a neighborhood of s, using that f is proper
and the same argument we made in Corollary 4.17. But we can find such an n for every s ∈ V ,
and so the lemma holds by the quasi-compactness of V .

We now state our result in the divisorial case.

Corollary 4.19. With notation as above, suppose that f : X −→ V is a proper map and that
∆ is a Q-divisor satisfying conditions (a)–(d)8 of Remark 2.11. Additionally, suppose that for
some perfect point s ∈ V , the fiber (Xs,∆|Xs) is strongly F -regular. Then there exists a dense
open set U ⊆ V containing s such that (Xu,∆|Xu) is strongly F -regular for all perfect u ∈ U .

Proof. Using Remark 2.11, we construct a relatively divisorial φ : L1/pe −→ RA1/pe corresponding
to ∆. Now, choose I satisfying the condition of Proposition 4.7. It follows that (Xs, ψs) is strongly
F -regular and hence that (Xs/s, φsIs) is relatively strongly F -regular since s is a perfect point.
Then Corollaries 4.17 and 2.20 complete the proof.

By a perturbation trick we can also handle the case that the index of KX + ∆ is divisible by
p > 0, at least over curves.

8For example, these conditions hold if V is regular, f : X −→ V is geometrically normal, KX + ∆ is Q-Cartier with
index not divisible by p, and ∆ does not contain any fiber of f in its support.
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Corollary 4.20. With notation as above, suppose that f : X −→ V is a projective map to
a regular 1-dimensional base and that ∆ is a Q-divisor satisfying the following four conditions:

(a’) We have ∆′ = 1
mD for some Weil divisor D.

(b) The divisor D is a Weil divisor on X which is Cartier in codimension 1 and Cartier at every
codimension 1 point of every fiber.

(c) The divisor D is trivial along the codimension 1 components of the non-smooth locus of
X −→ V and the codimension 1 components of the non-smooth locus of every fiber.

(d’) We have l/m ∈ Z, and
(
ωlX/V ⊗ OX(l∆′)

)∗∗
is a line bundle.

Additionally, suppose that for some perfect point s ∈ V , the fiber (Xs,∆|Xs) is strongly F -
regular. Then there exists a dense open set U ⊆ V containing s such that (Xu,∆|Xu) is strongly
F -regular for all perfect u ∈ U .

Proof. We may certainly suppose that V is affine. Since the fiber Xs is normal, and hence
geometrically normal, we may also assume that the nearby fibers satisfy the same condition
(using that f is proper). Thus, we may assume that all the fibers are geometrically normal and
in fact that the map f : X −→ V is geometrically integral. Without loss of generality, by base
change we can assume that V is normal and hence X is normal itself. Thus, we may assume
that X is normal.

Now, since the base is 1-dimensional, we claim that we can assume that KX/V does not
contain any fiber. The only fiber we must worry about is Xs (as the others can be handled by
shrinking V ). We argue as follows: First, note that KX/V can be viewed as an honest Weil divisor
since we already assumed that X is normal. On the other hand, each fiber is a Cartier divisor.
Hence, if KX/V is non-trivial along the generic point of Xs, by twisting by the pullback of s, we
can assume that KX/V does not contain Xs.

Write l∆′ = cpe0∆′, where p does not divide c. Let E be an effective Cartier divisor on X not
containing any fiber such that KX/V + E is effective. We also observe that KX/V + E satisfies
conditions (b) and (c) above. Let Γ = (1/(pe − 1))(E +KX/V + ∆′) for some e � e0. Then
consider ∆ := ∆′ + Γ. Note that

c(pe − 1)(KX/V + ∆) = c(pe − 1)(KX/V + ∆′ + Γ)

= c(pe − 1)(KX/V + ∆′) + c(E +KX/V + ∆′)

= cpe(KX/V + ∆′) + cE ,

which is certainly Cartier. Hence KX/V + ∆ satisfies conditions (a)–(d) from Remark 2.11. On
the other hand, since e � 0, we know that (Xs,∆|Xs) = (Xs,∆

′|Xs + Γ|Xs) is still strongly
F -regular, and so by Corollary 4.19, there exists an open set U such that (Xu,∆|Xu) is strongly
F -regular for all u ∈ U . But ∆ > ∆′ and so the result follows for ∆′ as well.

Remark 4.21. In the case of a normal X and in the non-relative case, we know that τ(X; ∆) =
τ(ωX ,KX + ∆). Furthermore, we then know that

Tre
(
F e∗ τ(ωX ,KX + ∆)

)
= τ

(
ωX ,

1

pe
(KX + ∆)

)
= τ

(
X,

1

pe
(KX + ∆)−KX

)
.

Reversing this process gives us a nice means to compute τ(X,∆) when the index of KX + ∆
is divisible by p. It would be natural to try to prove a relative version of this, which may yield
a suitable definition of relative test ideals for KX + ∆ of any index. We will not attempt this
here.
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5. Relative test submodules, F -rationality, and F -injectivity

Our goal in this (somewhat shorter) section is to explore relative test submodules and non-F -
injective modules. Throughout this section, we assume that f : X −→ V is a Cohen–Macaulay
morphism. This provides us with base change for relative canonical sheaves ωX/V [Con00].

We first define relative non-F -injective modules σn(X/V, ωX/V ) and relative test submodules
τn(X/V, ωX/V ). Recall the trace map, Lemma 2.16:

ΦX/V,n : ω
1/pn

X/V = ωXn/V n −→ ωXV n/V n
∼= ωX/V ⊗A A1/pne .

Here, the final isomorphism follows from [Con00, Theorem 3.6.1] since f is a Cohen–Macaulay
morphism. We will form σ and τ relative to these maps, instead of relative to the map φ discussed
previously. One key point to remember is that by Lemma 2.16, the map ΦX/V,n is compatible
with arbitrary base change (since in this section, f is a Cohen–Macaulay morphism). We also
observe that the composition of trace maps

ωXm/Vm
Φ

1/pm−n
X/V,m−n−−−−−−→ ωXn

Vm/V
m

ΦX/V,n⊗A1/pnA
1/pm

−−−−−−−−−−−−−→ ωX/V ⊗A A1/pm ∼= ωXVm/Vm (5.1)

can be identified with ΦX/V,m.

5.1 The definition and basic properties of σn(X/V, ωX/V )

For each integer n > 0, define cn := im(ΦX/V,n) ⊆ ωXV n/V n
∼= ωX/V ⊗A A1/pn . Furthermore, for

each m > n, using the factorization in (5.1) it is easy to see that

cm ⊆ im
(
cn ⊗A1/pn A1/pm −→ ωR

A1/pm

)
, (5.2)

just as we observed in Section 3.

Definition 5.1. With notation as above, we define the nth relative non-F -injective submodule,
denoted by σn(X/V, ωX/V ), to be cn ⊆ ωXV n/V n .

As before, we will prove a stabilization statement for cn and cm, in particular that the con-
tainment (5.2) is an equality for all m > n � 0. By base changing with k(V∞), the perfection
of the residue field of the generic point of V , we can again find an integer n0 > 0 and an open
set U ⊆ V such that

cn0+1|f−1U = im
(
cn0 ⊗A1/pn0 A1/pn0+1 −→ ωR

A1/pn0+1

)∣∣
f−1U

.

Again, observe that for U inside the regular locus of V , we can identify the image above with(
cn0⊗A1/pn0 A1/pn0+1)|U by the flatness of A1/pm over A1/pn . We then obtain the following result.

Proposition 5.2. Fix the notation as above. For every integer n > n0, there exists a non-
empty open subset Un ⊆ V of the base scheme V satisfying the following condition. If one sets
Xn = f−1(Un), then for every m > n,

σm
(
X/V, ωX/V

)∣∣
Xn

= im
(
σn
(
X/V, ωR/A

)
· OXn ⊗A1/pn A1/pm −→ ωR

A1/pm

)
. (5.3)

Furthermore, we may assume that Un0 ⊆ Un0+1 ⊆ · · · ⊆ Un ⊆ Un+1 ⊆ · · · form an ascending
chain of open sets.

Proof. The proof is identical to that of Proposition 3.3 and so we omit it.

We now point out that relative non-F -injective modules behave well with respect to base
change. Recall that if g : T −→ V is a map, then qn : XTn −→ XV n is the induced map.
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Proposition 5.3 (Base change for σn(X/V, ωX/V )). Suppose that g : T −→ V is a map from an
excellent scheme with a dualizing complex; then using the notation of Section 2.2,

im
(
(qn)∗σn

(
X/V, ωX/V

)
→ ωXTn/Tn

)
= σn

(
XT /T, ωXT /T

)
.

Furthermore, if U = Un satisfies condition (5.3) from Proposition 5.2, then W = g−1(U) ⊆ T
satisfies the same condition for σn(XT /T, ωXT /T ).

Proof. The first statement is an immediate consequence of base change relative to canonical
sheaves and the trace map (Lemma 2.16). For the second, if ΦX/V,n⊗A1/pn A1/pn+1

and ΦX/V,n+1

have the same image in ωXV n/V n , then it is easy to see that the base changed maps also have
the same images.

Recall that for any F -finite scheme Y with canonical module ωY , the image σ(ωY ) is equal

to im(F e∗ωY
Tre−−→ ωY ) for any e� 0.

Corollary 5.4 (Restriction theorem for σn(X/V, ωX/V )). With notation as above, there exists
an integer N > 0 such that for every perfect point s ∈ V ,

σ(ωXs) = im
(
σn
(
X/V, ωX/V

)
⊗A1/pne k(s)1/pne −→ ωXs/s

)
for all n > N .

Proof. Taking g : s −→ V in Proposition 5.3, we obtain that the image in the statement of the
proposition equals σn(Xs/s, ωXs/s). Furthermore, since k(s) is perfect, we have containments
· · · ⊇ σn(Xs/s, ωXs/s) ⊇ σn+1(Xs/s, ωXs/s) ⊇ · · · with a descending intersection that coincides
with σ(ωXs). Furthermore, by Proposition 5.3, over a dense open set U ⊆ V and some N >
0, we have σn(Xs/s, ωXs/s) = σn+1(Xs/s, ωXs/s) and hence σn(Xs/s, ωXs/s) = σ(ωXs) by the
construction of σ(ωXs) for all n > N0. Let V1 = V \ U , base change with V1, and obtain the
result over a dense open subset U1 of V1 (for some N1). By Noetherian induction, this process
terminates.

5.2 The definition and basic properties of τn(X/V, ωX/V )

The goal of this section is to develop the basics of a relative theory of test submodules. We fix
the notation of the previous sections and additionally assume that X is geometrically normal
over V , which we now also assume is regular. We let J = JX/V ⊆ R be the Jacobian ideal sheaf
of X over V . We observe that the formation of JX/V commutes with base change in the following
sense: for any T −→ V , we have JX/V · OXT = JXT /T . To see this, just note that JX/V can be
defined as a Fitting ideal of ΩX/V ([HS06, Discussion 4.4.7]) and that the formation of ΩX/V

([Eis95, Proposition 16.4]) and Fitting ideals ([HS06, Discussion 4.4.7]) commutes with arbitrary
base change. Note that J is non-zero at any generic point of X since X is geometrically reduced.
Furthermore, on every perfect fiber, the Jacobian ideal is contained in the (big) test ideal [Hoc07,
Theorem on p. 213].

We have the images

d1 := im
(
J · ωR

A1/p/A
1/p −→ ωR

A1/p/A
1/p

)
+ ΦX/V,1

(
(J · ωR)1/p

)
⊆ ωR

A1/p
,

d2 :=

2∑
i=0

im
((

ΦX/V,i(J · ωR/A)1/pi
)
⊗
A1/pi A

1/p2 −→ ωR
A1/p2

)
⊆ ωR

A1/p2
,

...
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dn :=
n∑
i=0

im
((

ΦX/V,i(J · ωR/A)1/pi
)
⊗
A1/pi A

1/pn −→ ωR
A1/pn

)
⊆ ωR

A1/pn
,

...

Notice that d1,2 := im
(
d1 ⊗A1/p A1/p2 −→ ωR

A1/p2

)
⊆ d2 and more generally for j > i that

di,j := im
(
di ⊗A1/pi A

1/pj −→ ωR
A1/pn

)
⊆ dj .

By the same argument as in Section 3, we know that there exists an open set U ⊆ V with
W = f−1(U) such that im

(
dt ⊗A1/pte A

1/p(t+1)e −→ ωR
A1/pt+1

)∣∣
W

= dt+1|W .

Lemma 5.5. With notation as above, im
(
dn ⊗A1/pne A1/p(n+1)e −→ ωR

A1/p(n+1)e

)∣∣
W

= dn+1|W for

all n > t.

Proof. The proof is the same as the proof of Lemma 4.2 and so we omit it.

Definition 5.6 (Relative test submodules). With notation as above (in particular, ωX/V is still
compatible with base change), we define the nth iterated relative test submodule to be dn and
denote it by τn(X/V, ωX/V ).

We now discuss base change for relative test ideals.

Proposition 5.7 (Base change for τn(X/V, ωX/V )). Suppose that g : T −→ V is a map from
a excellent scheme with a dualizing complex; then using the notation of Section 2.2,

im
(
(qn)∗τn

(
X/V, ωX/V

)
→ ωXTn/Tn

)
= τn

(
XT /T, ωX/T

)
.

Furthermore, if U = Un satisfies condition from Lemma 5.5, then Y = g−1(U) ⊆ T satisfies the
same condition for τn(XT /T, ωXT /T ).

Proof. It is just as before since ωX/V and J are compatible with arbitrary base change.

Corollary 5.8 (Restriction theorem for τn(X/V, ωX/V )). With notation as above, there exists
an integer N > 0 such that for every perfect point s ∈ V , we have

im
(
τn
(
X/V, ωX/V

)
⊗A1/pne k(s)1/pne −→ ωXs/s

)
= τ(ωXs) .

for all n > N .

Proof. Taking g : s −→ V in Proposition 5.7, we obtain that the image is equal to
τn(Xs/s, ωXs/s). Furthermore, since k(s) is perfect, we can make identifications so as to have
containments · · · ⊆ τn(Xs/s, ωXs/s) ⊆ τn+1(Xs/s, ωXs/s) ⊆ · · · with an ascending union that
coincides with τ(ωXs). Furthermore, by Proposition 5.3, over a dense open set U ⊆ V and some
N > 0, we have τn(Xs/s, ωXs/s) = τn+1(Xs/s, ωXs/s) for all n > N0 and hence τn(Xs/s, ωXs/s) =
τ(ωXs) by the computation of (4.1). Let V1 = V \U , base change with V1, and obtain the result
over a dense open subset U1 of V1 (for some N1). By Noetherian induction, this process must
terminate.

Remark 5.9 (Relative versus absolute τ(ω)). It would be natural to relate the relative σ(ω) and
τ(ω) to the absolute σ(ω) and τ(ω). While the authors believe that this is possible along the
lines of Section 3.1 or Section 4.1, we will not work out the details here.
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5.3 Applications to families of F -injective and F -rational singularities

In this section, we obtain new proofs of results of Hashimoto [Has01], deformation of F -injectivity,
and F -rationality in proper flat families. Note that Hashimoto proved the local version of these
results (and in the F -rationality case, over a variety). However, the local results generalize to
the non-local case via straightforward computations. We begin with a definition essentially first
made by Hashimoto.

Definition 5.10 (cf. [Has01, Has10]). We say that X/V (which is still assumed to be relatively
Cohen–Macaulay) is relatively F -injective if for some n > 0, we have σn(X/V, ωX/V ) = ωXV n/V n .
Likewise, X/V is relatively F -rational if for some n > 0, we have τn(X/V, ωX/V ) = ωXV n/V n .

Remark 5.11. If V is the spectrum of a perfect field k, it is easy to see that f : X −→ V is relatively
F -injective (respectively. relatively F -rational) if and only if X is F -injective (respectively, F -
rational) in the usual sense [ST12, Section 8] via an identification k ∼= k1/p. Note that we are
implicitly assuming that X is Cohen–Macaulay in this case.

Lemma 5.12 (cf. [Has01, Proposition 5.5]). With notation as above, if σn(X/V, ωX/V ) = ωXV n/V n
for some n > 0, then σm(X/V, ωX/V ) = ωXVm/Vm for all m > 0 divisible by n. Furthermore,
if V is regular, then the result holds for all m > n. Additionally, if τn(X/V, ωX/V ) = ωXV n/V n
for some n > 0, then τm(X/V, ωX/V ) = ωXVm/Vm for all m� 0.

Proof. We begin with σ. We notice that

σ2n

(
X/V, ωX/V

)
= im

(
im
(
ωXn/V n −→ ωXn

V /V
n

)
⊗A1/pn A1/p2n −→ ωXV 2n/V 2n

)
and our hypothesis σn(X/V, ωX/V ) = ωXV n/V n implies that the inner map is surjective. But then,
the outer map is surjective too by right exactness of the tensor product and so σ2n(X/V, ωX/V ) =
ωXV 2n/V 2n . The general case repeats this process and so follows similarly.

Now we assume that V is regular for the second statement about σn. We fix an n > 0 such
that σn(X/V, ωX/V ) = ωXV n/V n . Then for all m 6 n, we have

σm
(
X/V, ωX/V

)
⊗A1/pm A1/pn ⊇ σn

(
X/V, ωX/V

)
= ωXV n/V n

∼= ωXVm/Vm ⊗A1/pm A1/pn

and so σm(X/V, ωX/V )⊗A1/pm A1/pn = ωXVm/Vm ⊗A1/pm A1/pn . On the other hand, if we know

σm(X/V, ωX/V ) ( ωXVm/Vm , then the previous equality is impossible since A1/pn is faithfully
flat over A [Kun69] (since V is regular).

Handling τ is easy. Again use that ωX/V is compatible with base change, since

ωXm
V /V

m = im
(
ωX/V ⊗A1/pn A1/pm −→ ωXm

V /V
m

)
= im

(
τn
(
X/V, ωX/V

)
⊗A1/pn A1/pm −→ ωXm

V /V
m

)
= dn,m ⊆ dm = τn(X/V, ωX/V ) ⊆ ωXm

V /V
m .

Theorem 5.13 (Deformation of F -rationality and F -injectivity; cf. [Has01, Theorem 5.8, Re-
mark 6.7]). Suppose that f : X −→ V is a proper, flat, finite-type, equidimensional, reduced
Cohen–Macaulay morphism to an excellent integral scheme V with a dualizing complex. Sup-
pose that for some point s ∈ V , the fiber Xs/s is relatively F -injective (respectively, F -rational).
Then there exists an open neighborhood U ⊆ V containing s such that Xu −→ u is relatively
F -injective (respectively, F -rational) for all u ∈ U .

Proof. We first show that σn(ωX/V ) = ωXV ne/V ne at each point of the fiber Xs. Indeed, let z ∈ X
be a point on Xs, and let I denote the ideal sheaf of Xs. We observe that for some n, the natural
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map σn(ωX/V )/(I · σn(ωX/V )) −→ ωX/V /(I ·ωX/V ) = ωXs/Vs is surjective. This is preserved after
localizing at z, and so since I ⊆ mz, we see that the generators of the stalk (σn(ωX/V ))z generate
(ωX/V )z by Nakayama’s lemma. Hence (σn(ωX/V ))z = (ωX/V )z. Since this holds at every point
z ∈ Xs ⊆ X, it holds in a neighborhood of Xs.

As before, let Z denote the locus where σn(ωX/V ) 6= ωXV ne/V ne . This is closed and since f is
proper, its image f(Z) is closed too. But f(Z) is then a closed set not containing s. The result
follows for F -injectivity. The proof for F -rationality is the same.

6. Global applications

The purpose of this section is to develop a global theory of the previous sections for a projective
family f : X −→ V . In the last few years, there has been a new push to use the Frobenius morphism
and the trace map to replace the Kodaira vanishing theorem. In this section, we extend some of
these ideas to families. We study how the canonical linear subsystems S0(Xs, σ(Xs,∆s)⊗Ms) ⊆
H0(Xs,Ms), introduced in [Sch14], behave as we vary s ∈ V . Furthermore, as mentioned in the
introduction, we also obtain some global generation and semi-positivity statements.

6.1 Basic definitions

We use the following setup throughout Section 6.

Notation 6.1. In the situation of Notation 2.1, also assume that f : X −→ V is projective and
that V is regular (which implies that F eV : V e −→ V is flat). Furthermore, fix a line bundle M
on X. Sometimes we also assume the following (in which case we write Notation 6.1*):

(∗): There is an integer N > 0 such that for every integer m > N ,

σm(X/V, φ) = σN (X/V, φ)⊗
A1/pNe A

1/pme .

In this situation, we denote σN (X/V, φ) by σN . We notice that this condition (∗) always holds
over a dense open set of the base by Proposition 3.3.

Remark 6.2. Note that since X (respectively, V ) is topologically isomorphic to Xne
Vme (respec-

tively, V me) for every m > n, the push-forward f∗ can be identified with g∗, where g is any of
the induced morphisms Xne

Vme −→ V me. Hence, we use only f∗ for all purposes, even when g∗ for
one of the above maps g : Xne

Vme −→ V me would be more natural. The downside of this notation
is that it does not show if a sheaf has an A1/pme-structure and consequently its pushforward by
f an OVme-structure. We decided to still use it because it greatly simplifies the notation.

Summarizing: When reading the following arguments, it is important to trace through the
space Xne

Vme on which the adequate sheaves live. Then f∗ of these sheaves will live on V me.

Notation 6.3. When dealing with sheaves G on V ne, we will frequently pull them back to V me

for m > n. When doing this, instead of writing OVme ⊗OV ne G or O
1/pme

V ⊗
O

1/pne

V

G, we will write

simply V me ×V ne G or GVme . We trust that this abuse of notation will cause no confusion, as it
helps compactify the notation substantially.

Our approach to understanding how the canonical linear systems of [Sch14] behave in families
is to define a relative version of them and then show certain base-change properties. These objects
will be relative versions of σ for global sections, and they play the same role for σn that T 0 and S0

play for τ and σ in [BST15] and [Sch14], respectively.
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Definition 6.4. In the situation of Notation 6.1, define

S0
ϕnf∗(M) := im

(
f∗

((
L
pne−1
pe−1

)1/pne

⊗RM
) f∗

(
ϕn⊗RidM

)
−−−−−−−−−→ f∗

(
A1/pne ⊗AM

))
.

Note that S0
ϕnf∗(M) is a sheaf on V ne; it is a subsheaf of (f∗(M))V ne by flat base change. In

case (X,∆) is a pair, we define S0
∆,nef∗(M) := S0

ϕn∆
f∗(M) (assuming that (pne − 1)(KX + ∆) is

Cartier and φ is the corresponding map). If ∆ = 0, then we write S0
nef∗(M) for S0

∆,nef∗(M).

Since the image of ϕn ⊗R idM in the above definition is σn(X/V, φ) ⊗R M , the following
proposition is immediate.

Proposition 6.5. In the situation of Notation 6.1, we have S0
ϕnf∗(M) ⊆ f∗(σn(X/V, φ)⊗RM).

Our first goal is to show that the images in Definition 6.4 descend (up to appropriate base
change by the Frobenius morphism). Compare with the containments ai,n ⊇ ai+1,n ⊇ · · · ⊇ an,n
of Section 3.

Proposition 6.6. For all integers m > n > 0,

V me ×V ne S0
ϕnf∗(M) ⊇ S0

ϕmf∗(M) (6.1)

as subsheaves of V me ×V f∗(M).

Remark 6.7. To be precise, the left- and right-hand sides of (6.1) are subsheaves of

V me ×V ne f∗
(
A1/pne ⊗AM

)
and f∗

(
A1/pme ⊗AM

)
,

respectively. However, both V me ×V ne f∗
(
A1/pne ⊗A M

)
and f∗

(
A1/pme ⊗A M

)
are canonically

isomorphic to V me ×V f∗(M) via flat base change (since V is regular).

Proof of Proposition 6.6. The following commutative diagram shows that f∗
(
ϕm⊗R idM

)
factors

through V me ×V ne f∗
(
ϕn ⊗R idM

)
:

V me ×V ne f∗
((

L
pne−1
pe−1

)1/pne

⊗RM
)

∼= flat base change [Har77,
Proposition III.9.3] of f∗
by Vme −→ V ne

Vme×V nef∗
(
ϕn⊗RidM

)
// V me ×V ne f∗

(
A1/pne ⊗AM

)

∼= flat base
change

f∗

(
A1/pme ⊗A1/pne

(
L
pne−1
pe−1

)1/pne

⊗RM
)

∼=

f∗
(
A1/pme⊗

A1/pne

(
ϕn⊗RidM

))
// f∗
(
A1/pme ⊗AM

)

=

f∗

((
R
A1/p(m−n)e ⊗R L

pne−1
pe−1

)1/pne

⊗RM
)

// f∗
(
A1/pme ⊗AM

)

f∗

(((
L
p(m−n)e−1

pe−1

)1/p(m−n)e

⊗R L
pne−1
pe−1

)1/pne

⊗RM
)

f∗

((
φm−n⊗Rid

L

pne−1
pe−1

)1/pne

⊗RidM

)OO

∼=

projection formula

f∗

((
L
pme−1
pe−1

)1/pme

⊗RM
)

f∗
(
ϕm⊗RidM

)
OO
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Hence, the statement of the proposition holds by the following computation:

S0
φmf∗(M) = im

(
f∗
(
ϕm ⊗R idM

))
⊆ im

(
V me ×V ne f∗

(
ϕn ⊗R idM

))
= V me ×V ne im

(
f∗
(
ϕn ⊗R idM

))︸ ︷︷ ︸
V ne −→ Vme is flat

= V me ×V ne S0
φnf∗(M) .

6.2 Auxiliary definition and stabilization

We would now like to obtain a global result similar to Proposition 3.3. In particular, we would
like the containments of Proposition 6.6 to be equalities over a dense open subset of the base V .
There is a complicating factor, however: while we can still find an open set U of V such that(

V (n+1)e ×V ne S0
ϕnf∗(M)

)∣∣
U

=
(
S0
ϕn+1f∗(M)

)∣∣
U
,

we do not see how to use this to show that we have the n+1 to n+2 equality without additional
assumptions. The issue is that in the proof of Proposition 3.3, twisting by line bundles is exact.
For S0

φn , however, we also push forward. Therefore, in order to obtain our stabilization over
a dense open set of the base, we need additional positivity assumptions on M and L.

Furthermore, we need an auxiliary version of S0
φ which involves the σN := σN (X/V, φ) from

Notation 6.1*. To do this, first observe that since f is flat, the tensor product L
pme−1
pe−1 ⊗R σN

is naturally identified with a subsheaf of L
pme−1
pe−1 ⊗R RA1/pNe

∼= L
pme−1
pe−1 ⊗A A1/pNe . In order to

motivate this auxiliary definition, we make the following observation.

Lemma 6.8. In the situation of Notation 6.1*, the image of the natural map

αN+m :
(
L
pme−1
pe−1 ⊗R σN

)1/pme

↪→
(
L
pme−1
pe−1 ⊗R RA1/pNe

)1/pme φm⊗
A1/pmeA

1/p(N+m)e

−−−−−−−−−−−−−−−→ R
A1/p(N+m)e

is equal to σN ⊗A1/pNe A
1/p(N+m)e ∼= σm+N (X/V, φ).

Proof. The first term is the image of the pmeth root of L
pme−1
pe−1 ⊗R φN . Therefore, the image of

the composition also equals σm+N (X/V, φ), by our construction of φj in Section 2.1.

This stabilization suggests that it is reasonable to make the following definition.

Definition 6.9. In the situation of Notation 6.1*,

S0
ϕn,σN

f∗(M) := im

(
f∗

((
L
pme−1
pe−1 ⊗RσN

)1/pme

⊗RM
)

f∗(αN+m⊗RM)−−−−−−−−−−→ f∗

(
A1/p(n+N)e⊗AM

))
,

where αN+m is as in Lemma 6.8.

Consider the following proposition relating the various S0f∗-objects described so far.

Proposition 6.10. In the situation of Notation 6.1*, for every integer m > 0,

V (N+m)e ×Vme S0
ϕmf∗(M) ⊇ S0

ϕm,σN
f∗(M) ⊇ S0

ϕm+N f∗(M) .

(Here, all sheaves are regarded as subsheaves of V (N+m)e ×V f∗(M) via flat base change.)

Proof. This follows directly from the definitions. The first containment is trivial, and the second
follows from a factorization similar to the one from Proposition 6.6.
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Proposition 6.11. In the situation of Notation 6.1*,

(a) for all integers m > n > 0,

V (N+m)e ×V (N+n)e S0
ϕn,σN

f∗(M) ⊇ S0
ϕm,σN

f∗(M) ,

as subsheaves of V (N+m)e ×V f∗(M);

(b) if, furthermore, L ⊗Mpe−1 is f -ample, then there is an integer n > 0 such that for every
integer m > n, the above inclusion is an equality;

(c) if, furthermore, M = Ql ⊗ P , where Q is f -ample, then there is an integer l0 > 0 such
that for every integer l > l0, m > n > 0, and nef line bundle P , the above inclusion is an
equality.

Proof. Define the coherent sheaf Bφ on XV (N+1)e as the kernel of the top horizontal map in the
following commutative diagram:

Bφ
� � //

(
L⊗R σN

)1/pe φ⊗ // // A1/p(N+1)e ⊗
A1/pNe σN

(
L⊗

(
L
pNe−1
pe−1

)1/pNe
)1/pe

(
idL⊗RφN

)1/pe

OOOO

∼=

(
L
p(N+1)e−1

pe−1

)1/p(N+1)e

.

φN+1

OOOO

(6.2)

Note that here, we used that the image of φN+1 is A1/p(N+1)e⊗
A1/pNe σN by the assumptions made

in Notation 6.1*. Also, the horizontal arrow is surjective by either Lemma 6.8 or from the diagram

(which is how we proved Lemma 6.8). Then one can apply f∗

((
L
pme−1
pe−1 ⊗R

)1/pme

⊗RM
)

to the

top row of (6.2), which is shown in the following commutative diagram. We have also included
important isomorphisms to the different terms of the exact sequence

f∗

((
L
pme−1
pe−1 ⊗R Bφ

)1/pme

⊗RM
)

� _

��

f∗

((
L
pme−1
pe−1 ⊗R (L⊗ σN )1/pe

)1/pme

⊗RM
)

∼=

ν
��

f∗

((
L
p(m+1)e−1

pe−1 ⊗R σN
)1/p(m+1)e

⊗RM
)

����

f∗

((
L
pme−1
pe−1 ⊗R

(
σN ⊗A1/pNe A

1/p(N+1)e
))1/pme

⊗RM
)

kk

∼=

ss

��

R1f∗

((
L
pme−1
pe−1 ⊗R Bφ

)1/pme

⊗RM
)

f∗

(((
L
pme−1
pe−1 ⊗R σN

)1/pme

⊗
A1/p(N+m)e A1/p(N+m+1)e

)
⊗RM

)

∼=

by flat base change

V (N+m+1)e ×V (N+m)e f∗

((
L
pme−1
pe−1 ⊗R σN

)1/pme

⊗RM
)

����
V (N+m+1)e ×V (N+m)e S0

φm,σN
f∗(M) S0

φm+1,σN
f∗(M) .oo
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Both V (N+m+1)e ×V (N+m)e S0
φm,σN

f∗(M) and S0
φm+1,σN

f∗(M) can be regarded as subsheaves of

V (N+m+1)e ×V f∗(M) via flat base change. Furthermore, the bottom horizontal arrow becomes
a map of subsheaves, that is, an injection, this way. This shows point (a).

To prove point (b), we are supposed to prove that whenever L⊗Mpe−1 is f -ample, this arrow
is also surjective for m� 0. This would follow if the third vertical arrow (from above), labeled ν,
is surjective. Therefore, it is sufficient to show that for m� 0,

0 = R1f∗

((
L
pme−1
pe−1 ⊗R Bφ

)1/pme

⊗RM
)

= R1f∗

((
L
pme−1
pe−1 ⊗R Bφ ⊗RMpme

)1/pme
)

= R1f∗

(((
L⊗Mpe−1

) pme−1
pe−1 ⊗R Bφ ⊗RM

)1/pme
)
.

Note that since applying ( )1/pme does not change the sheaf of abelian groups structure, this is
equivalent to showing

0 = R1f∗

((
L⊗Mpe−1

) pme−1
pe−1 ⊗R Bφ ⊗RM

)
= R1f∗

((
L⊗Mpe−1 ⊗A A1/pN+1) pme−1

pe−1 ⊗R
A1/p(N+1)e

(
Bφ ⊗RM

))
.

Furthermore, L ⊗ Mpe−1 ⊗A A1/pN+1
is a relatively ample line bundle by the assumption of

point (b) and Bφ ⊗RM is a coherent sheaf on XV (N+1)e . Therefore, the relative Serre vanishing
theorem concludes our proof.

Point (c) follows immediately from the above argument. Indeed, if M = Ql ⊗ P , then by the
relative Fujita vanishing theorem [Kee03, Theorem 1.5], there is an integer l0 > 0 such that the
above vanishing holds for every m > 0, l > l0, and nef line bundle P .

Corollary 6.12. In the situation of Notation 6.1*, if L ⊗Mpe−1 is f -ample, then there is an
integer n > 0 such that for every integer m > n,

V me ×V ne S0
ϕnf∗(M) = S0

ϕmf∗(M)
(

= S0
ϕm−N ,σN

f∗(M)
)

as subsheaves of V me ×V f∗(M). Furthermore, in the situation of point (c) of Proposition 6.11,
where M = Ql ⊗ P = (ample)l⊗(nef) with l� 0, we can pick n = N .

Proof. By Proposition 6.10,

V (m+2N)e×V (m+N)e S0
ϕm,σN

f∗(M) ⊇ V (m+2N)e×V (m+N)e S0
ϕm+N f∗(M) ⊇ S0

ϕm+N ,σN
f∗(M) . (6.3)

Furthermore, by Proposition 6.11(b), we know that the statement holds when S0
ϕmf∗(M) is

replaced by S0
ϕm,σN

f∗(M). Hence, the inclusion of the right end of (6.3) in the left end is an
equality for m � 0. However, then all inclusions in (6.3) are equalities. In particular, from
the first equality of (6.3), using that V (m+2N)e −→ V (m+N)e is faithfully flat, we obtain that
S0
ϕm,σN

f∗(M) = Sϕm+N f∗(M) for m � 0. Using Proposition 6.11(b) once more concludes our
proof of the main statement. The final statement is similar.

We can now obtain our promised analog of Proposition 3.3.

Theorem 6.13. In the situation of Notation 6.1, if L ⊗Mpe−1 is ample, there exist an integer
n0 and a dense open set U ⊆ V such that for all m > n > n0, we have(

V me ×V ne S0
ϕnf∗(M)

)∣∣
U

=
(
S0
ϕmf∗(M)

)∣∣
U
.
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Proof. By shrinking V and applying Proposition 3.3, we can reduce to the case of Notation 6.1*.
The result follows directly from Corollary 6.12.

Corollary 6.14. In the situation of Notation 6.1, there is a natural inclusion

S0
φnf∗(M) ⊆ f∗

(
σn(X/V, φ)⊗RM

)
as subsheaves of V ne ×V f∗(M).

Further, in the situation of Notation 6.1*, if M = Ql ⊗ P , where Q is f -ample, then there is
an integer l0 > 0 such that for every integer l > l0, n > N , and f -nef line bundle P , the above
inclusion is an equality.

Proof. Consider the surjection

ξ :
(
L
pne−1
pe−1

)1/pne φn // // σn(X/V, φ) .

Then S0
φnf∗(M) = im f∗(ξ ⊗R idM ), which is a subsheaf of f∗(σn(X/V, φ)⊗RM).

We prove the addendum by induction on n. If n = N ,

S0
φN f∗(M) = S0

φ0,σN
f∗(M)︸ ︷︷ ︸

by Corollary 6.12

= f∗(σN ⊗RM)︸ ︷︷ ︸
by Definition 6.9

.

Let us then assume n > N . By flat base change and the assumption of Notation 6.1*,

f∗
(
σn(X/V )⊗RM

)
= f∗

(
σN (X/V )⊗RM

)
×V Ne V ne .

Hence, using the induction hypothesis, it is enough to see that for every n > N ,

S0
φnf∗(M) = S0

φn−1f∗(M) .

However, this follows from point (c) of Proposition 6.11 and Corollary 6.12.

6.3 Base change

We now prove base change for S0
φnf∗.

Notation 6.15. In the situation of Notation 6.1, choose

◦ a regular, integral, excellent scheme T with a dualizing complex,

◦ a morphism T −→ V .

We indicate base change via this morphism by T in subscript. Define the following sheaves on XT :

(a) B := (fT )−1OT ,

(b) Q := OXT .

Denote by (p1)1/pi the natural projection morphism Xi ×V i T i −→ Xi.

Proposition 6.16. In the situation of Notation 6.15, if L⊗Mpe−1 is f -ample, then for n� 0,
the natural base change morphism

f∗
(
A1/pne ⊗AM

)
×V ne Tne −→ (fT )∗

(
B1/pne ⊗B MT

)
induces a surjective morphism on subsheaves

S0
φnf∗(M)×V ne Tne � S0

φnT
(fT )∗(MT ) . (6.4)

Furthermore, the following hold:
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(a) The lower bound on the n for which the above statement holds depends only on f and M .
In particular, it is independent of T .

(b) If M = Ql ⊗ P for some f -ample line bundle Q, nef line bundle P , and integer l > 0, then
there is a uniform lower bound on n independent of l and P .

(c) Even if L⊗Mpe−1 is not assumed to be f -ample, (6.4) is an isomorphism if T −→ V is flat.

(d) There is a dense open set U ⊆ V such that if the image of T −→ V is contained in U , then
(6.4) is an isomorphism.

Proof of Proposition 6.16. First, note that(
(p1)1/pne

)∗((
L
pne−1
pe−1 ⊗RMpne

)1/pne
)
∼=
(

(p1)1/pne
)∗((

L
pne−1
pe−1

)1/pne

⊗RM
)

∼=
(
L
pne−1
pe−1

T

)1/pne

⊗QMT .

Hence, there is a natural base-change morphism below in (6.5). We will show that it is an
isomorphism for n� 0. Furthermore, this n can be chosen independently of T .(

f∗

((
L
pne−1
pe−1

)1/pne

⊗RM
))
×V ne Tne −→ (fT )∗

((
L
pne−1
pe−1

T

)1/pne

⊗QMT

)
. (6.5)

Indeed, by cohomology and base change [Sta17, Lemma 25.20.1], it is enough to show that for
every integer i > 0,

Rif∗

((
L
pne−1
pe−1

)1/pne

⊗RM
)

= 0 .

Since V ne −→ V is affine, this is equivalent to showing that for i > 0,

0 = Ri(fV ne)∗

((
L
pne−1
pe−1

)1/pne

⊗RM
)

= Ri(fV ne)∗

((
L
pne−1
pe−1 ⊗RMpne

)1/pne
)
,

which is further equivalent to showing that for i > 0,

0 = Rif∗

(
L
pne−1
pe−1 ⊗RMpne

)
. (6.6)

However, the last vanishing holds for n � 0 by the relative Serre vanishing theorem, inde-
pendently of T . Hence, the base-change homomorphism of (6.5) is indeed an isomorphism for
n� 0, which can be chosen independently of T . In particular, for n� 0, there is a commutative
base-change diagram as follows, which implies the statement of the proposition together with
addendum (a):

f∗

((
L
pne−1
pe−1

)1/pne

⊗RM
)
×V ne Tne //

∼=

f∗
(
A1/pne ⊗AM

)
×V ne Tne

��
(fT )∗

((
L
pne−1
pe−1

T

)1/pne

⊗QMT

)
// (fT )∗

(
B1/pne ⊗B MT

)
.

(6.7)

For addendum (c), note that if T −→ V is flat, then both vertical morphisms in (6.7) are isomor-
phisms even if L⊗Mpe−1 is not assumed to be f -ample. Furthermore, images via flat pullbacks
are pullbacks of images, which concludes the proof of addendum (c).

For addendum (b), note that if M = Ql ⊗ P for an f -ample line bundle Q and a nef line
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bundle P , then (6.6) holds for every l > 0 uniformly, by the relative Fujita vanishing theorem
[Kee03].

For addendum (d), note that by [Har77, Theorem 12.8 and Corollary 12.9], there is a dense
open set U ⊆ V (that is, the open set where h0(Xs,Ms) is constant) such that if T maps into U ,
then the right vertical arrow in (6.7) is an isomorphism. In particular, the homomorphism (6.4)
is then injective, because it is a homomorphism between subsheaves of the two sheaves involved
in the above vertical map. Therefore, by the already proven surjectivity, (6.4) is an isomorphism.
This concludes addendum (d).

Remark 6.17. In particular, if in Notation 6.15, T = s is a perfect point of V (that is, T =
Spec(K) for some perfect field K), then S0

φnT
(fT )∗(MT ) can be interpreted as follows. Since

the natural map K −→ (K)1/pi is an isomorphism, the natural projection XT i −→ XT is an
isomorphism. Furthermore, (fT )∗(MT i) can be identified with (fT )∗(MT ) = H0(XT ,MT ) via
K −→ K1/pi . Thus, S0

φnT
(fT )∗(MT ) is identified with

S0
s,m := im

(
H0
(
Xs,

(
L
pme−1
pe−1
s

)1/pme

⊗Ms

)
−→ H0(Xs,Ms)

)
(6.8)

In particular, for m� 0, the sheaf (6.8) can be identified with S0(Xs, σ(Xs, φs)⊗Ms).

6.4 Uniform stabilization

Theorem 6.18. In the situation of Notation 6.1, if L⊗Mpe−1 is f -ample, then there is an integer
n > 0 such that for all integers m > n and perfect points s ∈ V ,

im
(
S0
φmf∗(M)⊗OVme k(s)1/pme −→ H0(Xs,Ms)

)
= S0

s,m = S0
(
Xs, σ(Xs, ψs)⊗Ms

)
.

(Note that ψs is defined in Section 2.3 and S0
s,m in Remark 6.17.)

Proof. We show the statement by induction on the dimension of V . There is nothing to prove
if dimV = 0. Hence, we may proceed to the induction step and assume that dimV > 0. By
Proposition 6.16, there is an n > 0 such that for every perfect point s ∈ V and every m > n, we
have

im
(
S0
φmf∗(M)⊗OVme k(s)1/pme −→ H0(Xs,Ms)

)
= S0

s,m .

According to Lemma 2.15, by possibly increasing n, we may find a non-empty, dense open set U
such that for all m > n,

σm(X/V, φ)
∣∣
U

= σn(X/V, φ)×V ne V me
∣∣
U
.

Therefore, applying Corollary 6.12 yields (also by possibly increasing n) that for all m > n,

V me ×V ne S0
ϕnf∗(M)

∣∣
U

= S0
ϕmf∗(M)

∣∣
U
.

It then follows that for every perfect point s ∈ U ,

im
(
S0
φmf∗(M)⊗OVme k(s)1/pme −→ H0(Xs,M)

)
is the same for all m > n. Therefore, S0

s,m is stabilized for all perfect s ∈ U for values of m > n.
Hence, it is equal to S0(Xs, σ(Xs, ψs)⊗Ms). This shows the statement of the proposition for all
perfect s ∈ U . We fix the n0 = n used above for future use.

On the other hand, consider the reduced scheme V1 = V \ U . Write V1 =
∐
V1,i as a disjoint

union of regular, locally closed, integral subschemes. Each V1,i has smaller dimension than V . In
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particular, there exists an ni such that the statement holds for fi : XVi −→ Vi. Letting n be the
maximum of n0 and the ni, we obtain our result since every perfect point of X factors through
a point of U or of one of the Vi.

Corollary 6.19. In the situation of Notation 6.1, if L⊗Mpe−1 is f -ample, then there is a dense
open set U ⊆ V such that for every perfect point s ∈ U ,

S0
φmf∗(M)⊗OVme k(s)1/pme = S0

(
Xs, σ(Xs, ψs)⊗Ms

)
.

In particular, dimk(s) S
0(Xs, σ(Xs, ψs)⊗Ms) is constant on an open set, and the rank of S0

φmf∗(m)
equals this dimension.

Proof. The main statement follows immediately from Theorem 6.18 and point (d) of Pro-
position 6.16. The corollary follows from basic properties of coherent sheaves [Har77, Exerci-
se II.5.8].

If there is a point s0 ∈ V such that in Xs0 we have H0 = S0, then we can say more than the
above corollary: it turns out that it can be assumed that s0 ∈ U , and further that U has other
useful properties. This is proved in the following theorem.

Theorem 6.20. In the situation of Notation 6.1, if L⊗Mpe−1 is f -ample and there is a perfect
point s0 ∈ V such that H0(Xs0 ,Ms0) = S0(Xs0 , σ(Xs0 , ψs0) ⊗ Ms0), then there is an open
neighborhood U of s0, such that

(a) f∗M |U is locally free and compatible with base change and

(b) H0(Xv,Mv) = S0(Xv, σ(Xv, ψv)⊗Mv) for every perfect point v ∈ U .

In particular, dimS0(Xv, σ(Xv, ψv)⊗Mv) is constant for v ∈ U .

Proof. By Theorem 6.18, there is an n such that for every v ∈ V and integer m > n, the natural
base-change homomorphism induces a surjection as follows:

S0
φmf∗(M)⊗OVme k(v)1/pme // //

��

S0(Xv, σ(Xv, ψv)⊗Mv)� _

��
f∗
(
M ⊗A A1/pme

)
⊗OVme k(v)1/pme // H0(Xv,Mv) .

(6.9)

Furthermore, the right vertical arrow is surjective for v = s0. It follows that the bottom horizontal
arrow then also is. Using [Har77, Corollary III.12.11] concludes the proof of point (a).

To prove point (b), let us again consider (6.9) for v = s0. Now, we know that the bottom
horizontal arrow is an isomorphism. However, the left vertical arrow is then also surjective. By
Nakayama’s lemma, there is an equality (S0

φnf∗(M))v = (f∗(M))v of stalks, which means that
by possibly restricting U , for every v ∈ U , the left vertical arrow of (6.9) is surjective. However,
then, since the bottom horizontal arrow is an isomorphism for every v ∈ U , point (b) follows.

The surjection in Proposition 6.16 is not an isomorphism in general, by the following two
examples. In the first example, the global geometry of the smooth fibers causes the anomaly,
while in the second, the degeneration of F -pure singularities to non-F -pure singularities is the
main culprit. However, we first show a lemma.

Lemma 6.21. Let Y be a smooth curve over k and G an effective divisor on Y . Define B1
Y as

the cokernel of OX −→ F∗OX . Then

S0
(
Y, σ(X, 0)⊗ ωY (G)

)
= H0(Y, ωY (G))⇔ H0

(
Y,B1

Y (−pnG)
)

= 0 ∀n > 0 .
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Proof. Consider the exact sequence

0 // OY
// F∗OY

// B1
Y

// 0 .

Twist this sequence by −G, apply cohomology, and use that since G is effective,

(a) either G > 0 and hence H0(Y, (F∗OY )(−G)) ∼= H0(OY (−F ∗G)) = 0,

(b) or G = 0 and then H0(Y,OY ) −→ H0(Y, F∗OY ) is an isomorphism.

In either case, we have another exact sequence

0 // H0
(
Y,B1

Y (−G)
)

// H1(Y,OY (−G)) // H1
(
Y, F∗OY (−F ∗G)

)
,

where the last map is the Serre dual to H0(Y, (F∗ωY )(G)) −→ H0(Y, ωY (G)). Furthermore, ob-
serve that the map H0(Y, (Fn+1

∗ ωY )(G)) −→ H0(Y, (Fn∗ ωY )(G)) is harmlessly identified with the
map H0(Y, (F∗ωY )(pnG)) −→ H0(Y, (ωY (pnG))). Therefore, combining the previous statements,
we see that H0(Y, (Fn+1

∗ ωY )(G)) −→ H0(Y, (Fn∗ ωY )(G)) surjects if and only if H0(Y,B1
Y (−pnG))

= 0.

Example 6.22. We choose two smooth projective curves C and D of genus 3 over an algebraically
closed field k of prime characteristic with two ample line bundles NC and ND (of degree 1)
such that S0(C,ωC ⊗ NC) 6= H0(C,ωC ⊗ NC) but S0(D,ωD ⊗ ND) = H0(D,ωD ⊗ ND). Since
the relative Picard scheme over the moduli stack of smooth curves of genus g is smooth and
irreducible, there is a (possibly reducible) curve connecting (C,NC) and (D,ND) in the above
moduli space. However, by possibly replacing (C,NC) and (D,ND), we may then also find an
irreducible curve connecting them. Therefore, by passing to the normalization of this curve, we
may assume that there are a family f : X −→ V , a line bundle N on X, and two points c, d ∈ C
such that if we set (C,NC) := (Xc, N |Xc) and (C,NC) := (Xc, N |Xc), then

(a) V is a smooth curve;

(b) X is a family of smooth curves of genus 3;

(c) degX/V N = 1;

(d) S0(C,ωC ⊗NC) 6= H0(C,ωC ⊗NC); and

(e) S0(D,ωD ⊗ND) = H0(D,ωD ⊗ND).

Furthermore, fix e = 1 and L := ω1−p
X/V , and let φ : ω

1/p
X/V −→ OXV 1 be the map with Dφ = 0 (see

Definition 2.8 for the definition of Dφ). Note that by Lemma 2.21, we have Dφs = 0 as well. Set
M := ωX/V ⊗N .

By assumption (c), for every v ∈ V and i > 0, we have H i(Xv, Nv) = 0. Therefore, f∗N is a
vector bundle of rank 3, and its formation is compatible with arbitrary base change. In particular,
by Proposition 6.20 and assumption (e), the subsheaf Snφf∗(ωX/V ⊗ M) ⊆ f∗(ωX/V ⊗ M) is
generically isomorphic to f∗(ωX/V ⊗M). Furthermore, since it is a subsheaf of f∗(ωX/V ⊗M), it
is torsion free, and since V is a curve, it is locally free of rank 3. Therefore, we have

dimk S
n
φf∗(ωX/V ⊗M)⊗ k(c) = 3 .

However,

dimk S
0(C,ωC ⊗MC) < dimkH

0(C,ωC ⊗MC) = 3 .

This shows that the base-change morphism

S0
φnf∗(ωX/V ⊗M)⊗ k(c) −→ S0(C,ωC ⊗MC)
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cannot be isomorphism.

We are left with giving the polarized curves (C,MC) and (D,MD). For that, consider the
situation of Lemma 6.21. By [Tan72, Lemma 12], we have H0(Y,B1(−pnG)) = 0 if pnG > n(Y ),
where n(Y ) is a numerical invariant of the curve, which is at most 1 for genus 3 curves [Tan72,
Lemma 10]. Hence H0(Y,B1(−pnG)) = 0 if degG > 1 and n > 1. In particular, in our special
case (that is, if Y is of genus 3 and degG > 1), Lemma 6.21 states that

S0
(
Y, σ(Y, 0)⊗ ωY (G)

)
= H0(Y, ωY (G))⇔ H0

(
Y,B1

Y (−G)
)

= 0 .

Finding a curve whereH0(Y,B1
Y (−G)) = 0 is quite easy, because, again, using [Tan72, Lemma 12]

yields that if n(Y ) = 1, then there is a degree 1 divisor G for which H0(Y,B1
Y (−G)) 6= 0, and

then by passing to a linearly equivalent divisor, we may also assume that G is effective. Further,
[Tan72, Example 1] gives a curve ( x3y+ y3z+ z3x = 0) for which n(Y ) = 1. Therefore, we have
found C and NC .

To find D and ND, assume further that k = F3. Then by [Mil72, Kob75], a general genus 3
curve curve is ordinary or, equivalently, S0(Y, σ(Y, 0) ⊗ ωY ) = H0(Y, ωY ). Therefore, we have
H0(Y,B1

Y ) = 0 for such a Y . Now, take an arbitrary effective degree 1 divisor G. Then B1
Y (−G)

embeds into B1
Y and hence H0(Y,B1

Y (−G)) = 0 as well. In particular, we can choose D to be
a generic curve and ND to be an arbitrary degree 1 line bundle on D.

Example 6.23. In the following example, for an f -ample line bundle Q, the surjection

S0
ϕnf∗

(
Ql
)
⊗OV ne

(
k(s)1/pne

)
� S0

(
Xs, σ(Xs, φs)⊗Qls

)
(6.10)

is not an isomorphism for any integer n > n0 and l > 0. Therefore, the isomorphism in Proposi-
tion 6.16 cannot be obtained by stronger positivity assumptions.

Let C be the projective cone over a supersingular elliptic curve, and let D be a non-singular
cubic surface. Then these can be put into a family f : X −→ V as above. More precisely, we may
find a family f : X −→ V and a point c ∈ V , such that we have C := Xc, and hence the following
hold:

(a) V is a smooth curve;

(b) X is a flat family of normal surfaces;

(c) Xc is not sharply F -pure at one point P ∈ Xc; and

(d) Xs is sharply F -pure for every s ∈ V \ {c}.

Let L := ω1−p
X/V and φ := φ0 as in the previous example. Then by Theorem 3.10 and Nakayama’s

lemma, σn(X/V, φ)|V \{c} ∼= Of−1(V \{c}) for every n � 0. Now, choose an arbitrary sufficiently

f -ample line bundle M . By Corollary 6.14, for every n � 0, we have S0
φnf∗(M

l)|V \{c} ∼=
(f∗(M))V ne\{c} for every integer l > 0. In particular, we have rkS0

φnf∗(M
l) = rk f∗(M

l) for
every n� 0 and l > 0 (where n does not depend on l). Consequently,

dimS0
φnf∗

(
M l
)
⊗ k(c) > rk f∗

(
M l
)

= dimkH
0
(
Xc,M

l
c

)
.︸ ︷︷ ︸

M is relatively ample enough

(6.11)

On the other hand for all n� 0 (independently of l),

S0
φnf∗

(
M l
)
⊗ k(c)� S0

φnc
(fc)∗

(
M l
c

)︸ ︷︷ ︸
by point (b) of Proposition 6.16

= H0
(
Xc, σ(Xc, 0)⊗M l

c

)
.︸ ︷︷ ︸

since Mc is ample enough [Pat14] and Lemma 2.21

(6.12)
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However, by the relative ampleness assumption, Mc is globally generated; hence

dimkH
0
(
Xc, σ(Xc, 0)⊗M l

c

)
< dimkH

0
(
Xc,M

l
c

)
(because σ(Xc, 0) ( OXc). Therefore, (6.11) and (6.12) imply that, indeed, the surjection (6.10)
is not an isomorphism for any l > 0 and any n� 0 (bounded independently of l).

Remark 6.24. The fundamental reason for the above example is that σn(X/V, φ) is not flat in
general.

The above two examples show that dimk(S
0(Xv, σ(Xv, φv)⊗Mv) is not upper semicontinuous.

One might then guess that it is lower semicontinuous. The next example shows that this is also
not the case (this can also be deduced from [Har98, Example 5.5] and [Tan15, Theorem 8.3] as
pointed out to us by Tanaka). So, dimk S

0(Xv, σ(Xv, φv) ⊗Mv) is not semicontinuous in either
direction.

Example 6.25. Take a flat family f : X −→ V of ordinary elliptic curves and a line bundle M on
X of relative degree 0, such that MXv0

∼= OXv0
for a special v0 ∈ V and MXv 6∼= OXv for generic

v ∈ V . Then, by the ordinarity of the fibers, for all v ∈ V ,

H0(Xv,Mv) = S0
(
Xv, σ(Xv, 0)⊗Mv

)
.

However, the dimension dimH0(Xv,Mv) is 1 for the special fiber and 0 for the generic one. So,

dimS0(Xv, σ(Xv, 0)⊗Mv)

is not lower semicontinuous in this example. One can also easily modify this example by taking
an M with higher relative degree to obtain higher values of dimension for the generic fiber.

6.5 Global generation and semi-positivity

Now, suppose that V is a projective variety over a perfect field k. In this section, we explore
global generation results if L⊗Mpe−1 is ample (instead of just relatively ample). In particular,
S0
φnf∗(M) is globally generated for all large n. This should not be surprising since S0

φnf∗(M)
lives on V ne, where ampleness is amplified.

Proposition 6.26. In the situation of Notation 6.1, if V is projective over a perfect field k and
L⊗Mpe−1 is ample, then S0

φnf∗(M) is globally generated for every n� 0.

Proof. Choose a globally generated ample divisor H on V , and let d := dimV . Since S0
φnf∗(M)

is defined as the image of

f∗

((
L
pne−1
pe−1

)1/pne

⊗RM
)
,

it is enough to show that this sheaf is globally generated as an OV ne-module. By Mumford’s
criterion [Laz04a, Theorem 1.8.5], it is enough to show that for every i > 0 and for the divisor Hne

on V ne identified with H via the isomorphism V ne ∼= V ,

H i

(
V ne,OV ne(−iHne)⊗OV ne f∗

((
L
pne−1
pe−1

)1/pne

⊗RM
))

= 0 . (6.13)

By the relative Serre vanishing theorem for i > 0,

Rif∗

((
L
pne−1
pe−1

)1/pne

⊗RM
)

= 0 .
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In particular, then to prove (6.13), it is enough to show

H i
(
X,L

pne−1
pe−1 ⊗Mpne(−if∗H)

)
= 0.

However, this is equivalent to showing

H i
(
X,
(
L⊗M (pe−1)

) pne−1
pe−1 ⊗M(−if∗H)

)
= 0 ,

which holds by the Serre vanishing theorem for n� 0 and i > 0.

We recall the following definition.

Definition 6.27 ([Vie95, Definition 2.11]). Let F be a sheaf on a normal, quasi-projective (over
a perfect field k) variety V and U ⊆ V a dense open set. Let Ulf be the open locus of V where
F ′ := F/(torsion) is locally free. Then F is weakly positive over U if for a fixed (or, equivalently,
every [Vie95, Lemma 2.14(a)]) ample line bundle H for every a > 0, there is a b > 0 such that
S〈ab〉(F ) ⊗H b is globally generated over U ∩ Ulf (here S〈ab〉(F ) denotes the abth symmetric
reflexive power of F ). We say that F is weakly positive if it is weakly positive over some dense
open set.

Lemma 6.28. If g : Y −→ Z is a finite morphism of normal varieties, quasi-projective over k,
U ⊆ Z a dense open set, and F a sheaf on Z, then F is weakly positive over U if and only
if g∗F is weakly positive over g−1(U).

Proof. The “only if” direction is shown in [Vie95, Lemma 2.15.1]. For the other direction, ac-
cording to Definition 6.27, by throwing out a codimension 2 subset, we may assume that F is
locally free and Y is flat over Z. In particular, g∗F is then also locally free. Choose a very ample
divisor H on Z such that

(a) H om(g∗OY ,H ) is globally generated and

(b) g∗OY ⊗H is globally generated.

Then, fix an a > 0. By the weak positivity of g∗F , there is a b > 0 such that there is a homo-
morphism α : O⊕NY −→ S〈ab〉(g∗F ) ⊗ g∗H b surjective over g∗U . Then, consider for every choice
of s ∈ Hom(g∗OY ,H ) and s′ ∈ H0(H b−1) the following composition:

(g∗OY )⊕N
γ:=g∗α //

βs ++

g∗(S
〈ab〉(g∗F )⊗ g∗H b) ∼= S〈ab〉(F )⊗H b ⊗ g∗OY

δs,s′ :=id
S〈ab〉(F)⊗H b ⊗s⊗s′

��
S〈ab〉(F )⊗H 2b .

Choose a point P ∈ U and an element f of the fiber S〈ab〉(F ) ⊗ k(P ) over P . Then, by as-
sumption (b), for any preimage Q of P , there is a section t′ ∈ O⊕NY such that α(t′)Q =
g∗f × “generator”. The section t′ descends to a section t := g∗(t

′) ∈ (g∗OY )⊕N such that
γ(t)P = f×“generator”×h for some h ∈ (g∗OY )P . However, then by assumption (a) and the very
ampleness of H for a suitable choice of s and s′, we have that δs,s′(γ(t)))P = f×“generator” is not
zero at P . Therefore, for every point P in U and every element f in the fiber of S〈ab〉(F )⊗H 2b at
that point, we find a section of S〈ab〉(F )⊗H 2b whose image in the fiber is f up to multiplication
by unit. This finishes our proof.

Corollary 6.29. In the situation of Notation 6.1, let V be projective over a prefect field k,
L⊗Mpe−1 ample, and let n > 0 be an integer such that there is an open set U ⊆ V for which

S0
φnf∗(M)×Une Ume = S0

φmf∗(M)|Ume
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for every integer m > n. Then S0
φnf∗(M) is weakly positive. Note that an integer as above always

exists by Corollary 6.12 and Proposition 5.2.

Proof. By the assumption, there is an embedding

S0
φmf∗(M) ↪→ S0

φnf∗(M)×V ne V me

which is generically an isomorphism. Since the left sheaf is globally generated and hence weakly
positive, so is the right one. However, then by Lemma 6.28, so is S0

φnf∗(M).

Lemma 6.30. If F is a coherent sheaf on a normal variety V over a perfect field k, then F is
weakly positive if and only if for every ample line bundle H and every integer p - r > 0, there is
a finite morphism τ : T −→ V such that τ∗H ∼= (H ′)r for some line bundle H ′ and τ∗F ⊗H ′

is weakly positive.

Proof. The proof is identical to the “(b)⇒ (a)” part of [Vie95, Lemma 2.15.1].

Theorem 6.31. In the situation of Notation 6.1, if V is projective and L ⊗Mpe−1 is nef and
f -ample, then S0

φnf∗(M) is weakly positive for n� 0.

Proof. Choose an integer n > 0 as in Corollary 6.29. Fix an ample line bundle H on V , an
integer p - r > 0, and a finite morphism τ : T −→ V , such that τ∗H ∼= (H ′)r for some line
bundle H ′. Such a morphism exits by [Vie95, Lemma 2.1]. By Lemma 6.30, we are supposed to
prove that

(
τ1/pne

)∗
Snφf∗(M)⊗OV ne (H ′)1/pne is weakly positive. By disregarding codimension 2

closed sets, we may assume that T is regular as well. Then by point (c) of Proposition 6.16, we
see that n also satisfies the assumptions of Corollary 6.29, but for f and M replaced by fT and
MT ⊗ f∗TH ′

T , respectively. In particular, since MT ⊗ f∗TH ′
T is ample,

S0
φnT

(fT )∗(MT ⊗ f∗TH ′
T ) ∼= H ′

T ⊗ S0
φnT

(fT )∗(MT )

is weakly positive over Tne.

6.6 Relation to global canonical systems

Another subsheaf S0f∗(σ(X,∆) ⊗M) of f∗(M) has been introduced in [HX15, Definition 2.14]
with a definition similar to that of S0

φnf∗(M). In this section, we show some of the similarities

and differences between the two sheaves. The advantage of S0f∗(σ(X,∆) ⊗M) over S0
φnf∗(M)

is that it lives on one V , there is no involvement of V ne at all. On the other hand, we show that
contrary to S0

φnf∗(M), it does not restrict even generically to S0(Xs, σ(Xs,∆s)⊗Ms).

Throughout the section, we use the divisorial language since the presentation seems to be
more straightforward this way; hence ∆ satisfies the conditions of Remark 2.11. Recall that we
defined the notion of pair in our setting in Definition 2.12. Whenever we say pair, we mean
everything assumed there. In particular, this includes all the assumptions on f : X −→ V from
Notation 2.1: flatness, equidimensionality, etc.

First, we recall the definition of S0f∗(M).

Definition 6.32 ([HX15, Definition 2.14]). Let ∆ be an effective Q-divisor such that (X,∆) is
a pair and assume that f : X −→ V is projective. Let e be the least9 positive integer such that
(pe − 1)(KX + ∆) is Cartier. Then given a line bundle M on X, we define

S0f∗(σ(X,∆)⊗M) :=
⋂
n>0

im
(
f∗(F

ne
∗ OX((1− pne)(KX + ∆))⊗M) −→ f∗(M)

)
.

9The intersection in the definition is easily seen to be descending; hence if one chooses another e, the same object
results.
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We say that S0f∗(σ(X,∆)⊗M) stabilizes if the above intersection stabilizes. Note that in that
case, S0f∗(σ(X,∆)⊗M) is a coherent sheaf.

Recall that S0f∗(σ(X,∆) ⊗M) stabilizes if M − KX − ∆ is relatively ample; see [HX15,
Proposition 2.15] for a proof.

Proposition 6.33. Let ∆ be an effective Q-divisor such that (X,∆) is a pair and assume that
f : X −→ V is projective. Let M be a line bundle on X such that S0f∗(σ(X,∆)⊗M) stabilizes.
Further assume that V is regular. Then, for every n� 0,

S0
∆,nef∗(M) ⊆

(
S0f∗(σ(X,∆)⊗M)

)
V ne

as subsheaves of (f∗(M))V ne , where S0
∆,nef∗(M) is defined in Definition 6.4.

Proof. The statement is local over the base; hence, we can assume that V is affine, KV ∼ 0, and
that H omOV (F i∗OV ,OV ) ∼= F i∗OV is a free OV -module for all i > 0. Note, then, that we can also
identify KX/V with KX . We introduce the notation

L := OX

((
1− pne

)
(KX + ∆)

)
.

We have the evaluation-at-1 map Fne∗ OV
∼= H omOV (Fne∗ OV ,OV ) −→ OV , which we identify with

the trace of V based on our previous assumption ωV ∼= OV . This map pulls back to X to provide
us with a map which we also denote by TrneFV : OXV ne

∼= OX⊗f∗Fne∗ OV −→ OX⊗OX f
∗OV

∼= OX .
Then there is a diagram as follows, which is commutative up to multiplication by a unit; cf. [Sch09,
Lemma 3.9]:

Fne∗ L �
� // Fne∗ OX((1− pne)KX)

TrFX // OX

Fne∗ OX((1− pne)(KX/V + ∆)) �
� // Fne∗ OX((1− pne)KX/V )

TrFne
X/V

// OX ⊗OX f
∗Fne∗ OV .

TrneFV

OO

Applying the functor f∗( ⊗OX M) to this diagram, we obtain the following:

f∗((F
ne
∗ L)⊗OX M) // f∗(M)

f∗((F
ne
∗ OX((1− pne)(KX/V + ∆)))⊗OX M) // f∗(M ⊗OX f

∗Fne∗ OV ) .

κ

OO

Note that for every n � 0, the image of the top horizontal row is S0f∗(σ(X,∆) ⊗M) and for
every n > 0, the image of the bottom horizontal row is S0

∆,nf∗(M). Hence for every n� 0,

S0f∗(σ(X,∆)⊗M) = im
(
S0

∆,nf∗(M) −→ f∗(M)
)
,

where the map is induced by TrFV .

Since we want containment for subsheaves of (f∗(M))V ne , we localize at a point of V . By
setting B := Γ(V,OV ), P := f∗(M), and Q := FneV,∗(S

0
∆,nf∗(M)), we are in the following situation:

if Q is a B1/pne-submodule of B1/pne⊗BP for some B-module P , we would like to show that Q ⊆
θ(Q)⊗B B1/pne , where θ ∈ HomB(B1/pne , B) is the generator. This is simply Lemma 3.20.

Example 6.34. We provide an example where the two sheaves of Proposition 6.33 have different
ranks for every n � 0. Fix an algebraically closed field k of characteristic p > 0. Let X :=
P1 × A1, U = A1 × A1 = Spec k[y, x] ⊆ X, and V := A1 := Spec k[x]. Define the divisor
∆ := (1/(p− 1))V (yp − x), which is a priori a divisor in U , but it happens to have a support
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which is a closed subvariety of X as well. Note that V (yp − x) is a subvariety of X isomorphic
to A1. In particular, (X,∆) is sharply F -pure. Now, choose a line bundle N on X which is
relatively ample over V , and let M := N l for some l� 0. Then by [HX15, Lemma 2.19], we have
S0f∗(σ(X,∆)⊗M) = f∗(M). Therefore,(

S0f∗(σ(X,∆)⊗M)
)
V ne

= (f∗(M))V ne . (6.14)

On the other hand, by Proposition 6.5, we have S0
∆,nf∗(M) ⊆ f∗(σn(X/V,∆) ⊗M). By The-

orem 3.10 and Lemma 2.21, for every n � 0 and s ∈ V , we have σn(X/V,∆)|Xs = σ(Xs,∆).
However, ∆|Xs is one point with multiplicity p/(p− 1) and hence not sharply F -pure. In partic-
ular, σ(Xs,∆) 6= OXs for every s ∈ S. Hence, for every n� 0, we have σn(X/V,∆)|Xs ( OXs . It
follows by the relative ampleness of M that f∗(σn(X/V,∆)⊗M) has smaller rank than f∗(M).
Then S0

∆,nf∗(M) has also smaller rank than (S0f∗(σ(X,∆)⊗M))V ne by (6.14).

Example 6.34 has an important corollary, which follows immediately from point (d) of Propo-
sition 6.16 and Theorem 6.18.

Corollary 6.35. In general, S0f∗(σ(X,∆)⊗M)⊗k(s) is not isomorphic to S0(Xs, σ(Xs,∆s)⊗
Ms). In fact, there are examples when the former has strictly bigger dimension than the latter
for every closed point s ∈ V .

Compare the following proposition with Proposition 3.23.

Proposition 6.36. Let ∆ be an effective Q-divisor such that (X,∆) is a pair, and assume that
f : X −→ V is projective. Let M be a line bundle on X, and assume that V is regular. Then for
every n > m > 0,

S0fV ne,∗
(
σ(XV ne ,∆V ne)⊗MV ne

)
⊆
(
S0fVme,∗(σ(XVme ,∆Vme)⊗MVme)

)
V ne

as subsheaves of (f∗(M))V ne . Furthermore, if these two sheaves stabilize, then

κ
(
F

(n−m)e
V,∗ S0fV ne,∗

(
σ(XV ne ,∆V ne)⊗ f∗OV

((
1− p(n−m)e

)
KV ne

))
⊗MV ne)

)
= S0fVme,∗

(
σ(XVme ,∆Vme)⊗MVme

)
,

where κ is induced by Tr
(n−m)e
V .

Proof. Note that by replacing f : X −→ V by fVme : XVme −→ V me, we may assume that m = 0,
and then by replacing e by (n−m)e that n = 1. As in the previous proof, let us assume that V
is affine, KV ∼ 0, and that H omOV (F e∗OV ,OV ) ∼= F e∗OV is a free OV -module. Consider the
following commutative diagram:

(XV e)
e

F eXV e ++

ν:=(F eV )Xe // Xe

F eX

++XV e
η:=(F eV )X

//

fV e ��

X

f
��

V e
F eV

// V .

We fix the notation

L ′
∆ := OXV e

((
1− pe

)
(KXV e + η∗∆)

)
, L∆ := OX

((
1− pe

)
(KX + ∆)

)
.

Then we have(
1− pe

)
KXV e =

(
1− pe

)(
η∗KX/V + f∗V eKV e

)
,
(
1− pe

)
KX =

(
1− pe

)(
KX/V + f∗KV

)
.
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Therefore,

◦ applying pullback of TrF eV yields a homomorphism ν∗L ′
∆ −→ L∆, which then induces a ho-

momorphism η∗F
e
XV e ,∗L

′
∆
∼= F eX,∗ν∗L

′
∆ −→ F eX,∗L∆;

◦ applying TrF eXV e
yields a homomorphism F eXV e ,∗L

′
∆ −→ OXV e ;

◦ applying TrF eX yields a homomorphism F eX,∗L∆ −→ OX ;

◦ by the assumption KV ∼ 0, the trace map TrF eV corresponds to a homomorphism F eV,∗OV −→
OV generating HomOV (F eV,∗OV ,OV ); and

◦ the previous homomorphism also induces a pullback homomorphism η∗OXV e −→ OX .

Furthermore, the above homomorphisms fit into the following diagram:

η∗F
e
XV e ,∗L

′
∆

//

((

F eX,∗L∆

%%
η∗OXV e

// OX .

The diagram is a composition of trace maps (restricted to smaller domains determined by ∆);
hence it is commutative. Now, applying f∗( ⊗M) to the above diagram and using the projection
formula, we obtain the commutative diagram

f∗η∗
(
F eXV e ,∗L

′
∆ ⊗MV e

)
//

**

f∗
(
F eX,∗L∆ ⊗M

)
((

f∗η∗MV e
// f∗(M) .

Observing that f∗η∗ = F eV,∗fV e,∗ yields another commutative diagram:

F eV,∗fV e,∗
(
F eXV e ,∗L

′
∆ ⊗MV e

)
//

++

f∗
(
F eX,∗L∆ ⊗M

)
((

F eV,∗fV e,∗MV e
// f∗(M) .

Now, note that the top horizontal arrow is split, because it is induced from ν∗L ′
∆ −→ L∆, which

is split as well. Therefore, if we define P := f∗(M) and

S := im
(
f∗(F

e
X,∗L∆ ⊗M) −→ f∗(M)

)
, Q := im

(
fV e,∗(F

e
XV e ,∗L

′
∆ ⊗MV e) −→ fV e,∗MV e

)
,

then we have Q ⊆ P ⊗A A1/pe , S ⊆ P , and (idP ⊗TrF eV )(Q) = S. Therefore, by Lemma 3.20, we

have Q ⊆ S ⊗A A1/pe . Since this holds for any n, the statement of the proposition follows.

Proposition 6.37. Let ∆ be an effective Q-divisor such that (X,∆) is a pair, and assume that
f : X −→ V is projective and V is regular. Let M be a line bundle on X. Then for every n� 0,

S0fV ne,∗
(
σ(XV ne ,∆V ne)⊗MV ne

)
⊆ S0

∆,nef∗(M)

as subsheaves of (f∗(M))V ne .

Proof. As before, let us assume that V is affine, KV ∼ 0, and that H omOV (F i∗OV ,OV ) ∼= F i∗OV

is a free OV -module for all i > 0. By Lemmas 3.12 and 3.15, there is a commutative diagram

FneXV ne ,∗OXV ne

((
1− pne

)(
KXV ne + ∆V ne

))
//

,,

FneXne/V ne,∗OX

((
1− pne

)(
KX/V + ∆

))
��

OXV ne .
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Furthermore, the horizontal arrow in this diagram is split surjective. Therefore, after applying
fV ne,∗( ⊗MV ne), the image of the vertical map still agrees with the image of the diagonal map.
The former is exactly S0

∆,nf∗(M), while the latter contains S0fV ne,∗(σ(X, (∆)V ne)⊗M), since it

is one of the terms in the intersection defining S0fV ne,∗(σ(X, (∆)V ne)⊗M).

Remark 6.38. Assuming that f : X −→ V is projective and M − KX − ∆ is ample, it would
be natural to ask whether im

(
S0fV ne,∗(σ(XV ne,∆V ne

⊗ MV ne) ⊗ MV ne) −→ fV ne,∗Ms

)
equals

S0(Xs, σ(Xs,∆s)⊗Ms) for all perfect points s ∈ V , in analogy with Corollary 3.22. We suspect
that this is true but will not try to prove it here.

Corollary 6.39. Let f : (X,∆) −→ V be a projective morphism from a pair with V regular
and projective over a perfect field k. Further, suppose that M is a line bundle on X such that
M −KX/V −∆ is nef and f -ample (here M denotes a Cartier divisor corresponding to M) and
that rkS0f∗(σ(X,∆)⊗M) equals the general value of H0(Xs, σ(Xs,∆s)⊗Ms). Then the sheaf
S0f∗(σ(X,∆) ⊗M) is weakly positive. In particular, if V is a smooth curve, then it is a nef
vector bundle.

Proof. From the assumption that the rank rkS0f∗(σ(X,∆) ⊗M) equals the general value of
H0(Xs, σ(Xs,∆s) ⊗Ms) follows that the inclusion of Proposition 6.33 is generically an iso-
morphism for every n� 0. However, since S0

φnf∗(M) is weakly positive for every n � 0 by

Theorem 6.31, we obtain by the above generically isomorphic inclusion that (S0f∗(σ(X,∆) ⊗
M))V ne is also weakly positive. Then the weak positivity of S0f∗(σ(X,∆) ⊗M) follows from
Lemma 6.28.

Appendix. Relative Serre’s condition

Here we collect the statements of [HK04] and other sources that are important for the current
paper for ease of reference. In some cases, we also state them in the greater generality that we
need. All schemes are Noetherian and excellent and possess dualizing complexes, and all maps
are separable.

Definition A.1. Let r > 0 be an integer. A coherent sheaf E on a Noetherian scheme X is Sr
if for every x ∈ X,

depthOX,x Ex > min
{
r, dimOX,x Ex

}
.

The sheaf E is said to have full support if Supp E = X. It is reflexive if the natural map
E −→ E ∗∗ := H omOX (H omOX (E ,OX),OX) is an isomorphism.

Definition A.2. If f : X −→ V is a morphism of Noetherian schemes and E is a coherent sheaf
on X, flat over V , then E is Sr over V if E |Xv is Sr for every v ∈ V . That is, for every x ∈ X,

depthOXf(x)

(
E |Xf(x)

)
x
> min

{
r, dimOXf(x)

(
E |Xf(x)

)
x

}
.

We now recall two results from [Gro67] about how depth and dimension behave in families.

Proposition A.3 ([Gro67, Proposition 6.3.1]). Let φ : A −→ B be a local homomorphism of
Noetherian local rings, k the residue field of A, and M and N finite A- and B-modules, respec-
tively. If N is a flat non-zero A-module, then

depthB(M ⊗A N) = depthA(M) + depthB⊗Ak(N ⊗A k) .
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Proposition A.4 ([Gro67, Corollaire 6.1.2]). Let φ : A −→ B be a local homomorphism of
Noetherian local rings, k the residue field of A, and M and N non-zero finite A- and B-modules,
respectively. If N is a flat A-module, then

dimB(M ⊗A N) = dimA(M) + dimB⊗Ak(N ⊗A k) .

From these we obtain the following corollary.

Corollary A.5. Let f : X −→ V be a morphism of Noetherian schemes and E a coherent sheaf
on X flat over V ; then E is Sr over V if and only if for every x ∈ X,

min
{
i |H i

x(E ) 6= 0
}
>depthOV,v OV,v + min

{
r, dim Ex − dim OV,v

}(
= depthOV,v OV,v + min

{
r, dim

(
E |Xv

)
x

})
,

where v := f(x).

Proof. To say that E |Xv has depth equal to t at x is equivalent to asserting that depthx E =
(depthOV,v OV,v) + t, by Proposition A.3. The result follows.

The following vanishing allows us to extend sections over sets of relative codimension 2.

Proposition A.6 ([HK04, Proposition 3.3]). Let f : X −→ V be a morphism of Noetherian
schemes and E a coherent sheaf on X, flat and Sr over V . Let Z ⊆ X be a closed subscheme
of X such that we have codimSupp Ev(Supp Ev∩Zv) > r for every v ∈ V . Then we have H i

Z(E ) = 0
for each 0 6 i < r.

Proof. We follow the proof in [HK04, Proposition 3.3]. First, we certainly have a spectral sequence
Ep,q2 := Hp

x ◦H q
Z ⇒ Hp+q

x . We then induct on r, the base case of r = 0 being trivial. Now, assume
H 0
Z (E ) = . . . = H r−2

Z (E ) = 0 but H r−1
Z (E ) 6= 0. Then, for any x ∈ Z which is a generic point10

of the support of H r−1
Z (E ), we have H0

x(H r−1
Z (E )) 6= 0 (note here that x is probably not a

closed point). Additionally, since x is a point of Z ∩ Supp(E ), we have dim(E |Xv)x > r.
On the other hand, for all i > 0, we have H i

x(H r−1−i
Z (E )) = 0, and so by the spectral

sequence, Hr−1
x (E ) ∼= H0

x(H r−1
Z (E )) 6= 0. This contradicts Corollary A.5.

We now obtain a relative version of Hartog’s phenomena, just as in [HK04].

Proposition A.7 ([HK04, Proposition 3.5, 3.6.1]). Let f : X −→ V be a morphism of Noetherian
schemes and E a coherent sheaf on X which satisfies one of the following two conditions:

(a) either E is reflexive and f is flat and relatively S2,

(b) or E is of full support, flat and S2 over V .

Let j : U ↪→ X be an open set such that for Z := X \ U , we have codimXv Zv > 2 for every
v ∈ V . Then the following natural map is an isomorphism:

E −→ j∗E |U .

Proof. First, assume that E is reflexive. Consider a presentation of E ∗ by locally free sheaves

E2
// E1

// E ∗ // 0 and the dual 0 // E // E ∗1
// E ∗2 .

10A generic point is a minimal prime in the language of commutative algebra.
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Then, applying Proposition A.6 to OX and then applying local cohomology to the above exact
sequence yields

H 1
Z (E ) = H 0

Z (E ) = 0 . (A.1)

If, instead, E is flat and S2 and has full support, then we still have the vanishing (A.1) by
Proposition A.6. Consider then the exact sequence

0 //H 0
Z (E ) // E // j∗E //H 1

Z (E ) .

Applying (A.1) concludes our proof.

Corollary A.8 ([HK04, Proposition 3.6.2]). Let f : X −→ V be a flat, S2 morphism of Noethe-
rian schemes, E a coherent sheaf on X satisfying either part (a) or part (b) of Proposition A.7.
Let F be another coherent sheaf satisfying part (a) or (b) of that proposition. Let j : U ↪→ X
be an open set such that for Z := X \U , we have codimXv Zv > 2 for every v ∈ V . Also assume
that E |U ∼= F |U . Then E ∼= F .

Proof. In any case, j∗E |U = E and j∗F |U = F , and so the result follows.

Proposition A.9 ([HK04, Corollary 3.7]). Let f : X −→ V be a flat, S2 morphism of Noetherian
schemes and j : U ↪→ X an open set such that for Z := X \U , we have codimXv Zv > 2 for every
v ∈ V . Also assume that E is a reflexive, coherent sheaf on U . Then j∗E is reflexive.

Proof. Choose a coherent subsheaf F ⊆ j∗E such that F |U = E [Har77, Exercise II.5.15]. Then
j∗E is reflexive by the following computation:

F ∗∗ ∼= j∗(F
∗∗|U )︸ ︷︷ ︸

by Proposition A.7

∼= j∗E
∗∗︸ ︷︷ ︸

E∼=F |U

∼= j∗E .︸︷︷︸
E is reflexive

This completes the proof.

Proposition A.10. If f : X −→ Y is a projective, flat, relatively S2 and G1, equidimensional
morphism, then ωX/Y is reflexive.

Proof. The proof given in [PS14, Lemma 4.8] works.
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