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Positive cones of dual cycle classes

Mihai Fulger and Brian Lehmann

Abstract

We study generalizations for higher-codimension cycles of several well-known definitions
of the nef cone of divisors on a projective variety X. These generalizations fix some of
the pathologies exhibited by the classical nef cone of higher-codimension classes. As an
application, we recover the expected properties of the cones Effk(X) for all k.

1. Introduction

A fundamental invariant of projective algebraic geometry is the cone of nef divisors Nef(X), for
a projective variety X. By [Kle66], it admits several equivalent characterizations: it is the dual
of the Mori cone of curves NE(X), the closure of the cone of ample line bundle classes, and the
closure of the cone generated by the classes of divisors in basepoint-free linear series.

In higher codimension (greater than one), the picture is more subtle. Let X be a projective
variety over an algebraically closed field, and let Nk(X) denote the numerical group of dimension
k cycles with real coefficients. The pseudoeffective cone Effk(X) is the closure in Nk(X) of the
cone generated by the classes of k-dimensional subvarieties of X. Then Nefk(X) is defined for
smooth X as the dual of Effk(X) with respect to the intersection pairing. When X is singular,
we work instead in the space of dual cycle classes, the abstract dual Nk(X) of Nk(X).

Interestingly, nef classes do not generally share the other positivity properties exhibited by
nef divisors. Indeed, [DELV11] constructs, on abelian varieties, examples of nef classes of codi-
mension two that are not even pseudoeffective. Guided by the alternative characterizations for
the nefness of divisors, in this paper we construct “positive cones” inside the spaces Nk(X).
These are geometric generalizations of nefness in higher codimension which are better suited for
applications. These cones are contained in Nefk(X) and satisfy the following properties (which
we will see are also satisfied by the nef cone):

(i) They are full-dimensional (that is, span Nk(X)) and salient (that is, do not contain lines).

(ii) They contain the complete intersections of ample divisors in their strict interior.

(iii) They are preserved by pullback.

Furthermore, these cones have the following advantages over the nef cone:

(iv) They are contained in Eff
k
(X).

(v) They are preserved by the intersection product Nk(X)×N r(X)
∩−→ Nk+r(X).
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A positive cone of dual classes is a subcone of Nk(X) satisfying properties (i)–(v) above.

1.1 The pliant cone

A globally generated divisor class is the pullback of an effective divisor from a projective space.
The analogous notion in higher codimension is to pull back effective cycle classes from Grassmann
varieties instead. We define the pliant cone PLk(X) to be the closure of the cone generated by
products of such classes with total codimension k.

Example 1.1 (cf. Example 3.13). If X is a Grassmann variety of dimension n, then PLn−k(X) =
Effk(X).

Example 1.2. The paper [DELV11] analyzes two types of abelian varieties in detail: a product
E×n where E is a complex elliptic curve with complex multiplication, and A × A for a very
general complex abelian surface A. In both cases the pliant cone coincides with the effective
cone (in every codimension). It would be interesting to describe the pliant cone for other abelian
varieties.

Theorem 1.3 (cf. Lemmas 3.5, 3.7, 3.14, Remark 3.6). Let X be a projective variety over an
algebraically closed field, and let k > 0. Then PLk(X) is a positive cone of dual classes.

The main difficulty is proving that complete intersections belong to the strict interior
of PLk(X). As an application, we verify that Effk(X) has the expected properties suggested
by the case of the Mori cone, that is, k = 1.

Theorem 1.4 (cf. Lemma 2.12, Corollaries 3.8, 3.16, 3.22). Let X be a projective variety over
an algebraically closed field, and let k > 0. Then

(i) the cone Effk(X) is a full-dimensional and salient subcone of Nk(X);

(ii) complete intersections of dimension k of ample classes are contained in the strict interior of
Effk(X);

(iii) for any ample divisor class h, the function degh : Effk(X) → R>0 defined by α 7→ α · hk is
the restriction to Effk(X) of a norm on Nk(X);

(iv) if π : X → Y is a surjective morphism of projective varieties, then π∗ Effk(X) = Effk(Y ).

The subtlety of the theorem is the treatment of the pseudoeffective classes that are not
effective but only limits of effective classes. While some cases of this theorem are certainly
known (see for example [DJV13, Lemma 2.2]), surprisingly a proof in this generality seems to
have been missing from the literature.

In Definition 3.2 we give an equivalent definition for pliancy in terms of characteristic classes of
globally generated vector bundles on X. From this perspective, the pliant cone appears implicitly
in the work of Fulton and Lazarsfeld [FL83] on the positivity of characteristic classes of nef vector
bundles.

1.2 The basepoint-free cone

A basepoint-free linear series of divisors gives a family of divisors on X such that for a fixed
subvariety Y ⊂ X, the general member of the family intersects Y properly. Inspired by this, we
say that an effective class α ∈ Effn−k(X) is strongly basepoint free if there exist a projective
morphism p : U → W with equidimensional fibers of dimension n − k onto a quasi-projective
variety W and a flat map s : U → X such that (s|F )∗[F ] = α, where F is a general fiber of p.
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For X smooth, we define the basepoint-free cone BPFk(X) in Nk(X) to be the closure of the
cone generated by the strongly basepoint-free classes. We emphasize that basepoint freeness is
naturally a “contravariant” property preserved by pullback, so that Nk(X) is the right ambient
space for the cone.

Example 1.5 (cf. Example 5.9). If X is a smooth projective homogeneous space under the tran-

sitive action of a connected algebraic group G, then BPFk(X) = Eff
k
(X) for all k.

Example 1.6 (cf. Example 5.11). Let X be a smooth Mori dream space of dimension n. Then
BPFn−1(X) = Nefn−1(X). (The existence of many small modifications is an important part of
the proof; we do not know how to characterize the basepoint-free cone of curves for arbitrary
smooth X.)

Basepoint freeness turns out to be surprisingly versatile. Its properties were instrumental in
other work by the authors in [FL16a] and [FL16b].

Theorem 1.7 (cf. Lemmas 5.3, 5.4, 5.7, Corollary 5.8). Let X be a smooth projective variety
over an algebraically closed field, and let k > 0. Then BPFk(X) is a positive cone of dual classes,
and, in addition,

(vi) PLk(X) ⊆ BPFk(X) ⊆ Nefk(X);

(vii) if π : Y → X is a flat morphism of relative dimension d from a smooth projective variety Y
and α ∈ BPFk+d(Y ), then π∗α ∈ BPFk(X).

We do not know if the flat pullback of cycles descends to numerical equivalence. If it does,
then one can naturally define the cone BPFk(X) ⊂ Nk(X) for any projective variety X and all
the properties above will still hold.

1.3 The universally pseudoeffective cone

If ξ is a nef divisor class on X and π : Y → X is a morphism of projective varieties, then π∗ξ is
a pseudoeffective divisor class on Y . In fact, this property determines the nefness of ξ. Inspired
by this, we say that α ∈ Nk(X) is universally pseudoeffective if π∗α is pseudoeffective for any
morphism of projective varieties π : Y → X with Y smooth. (The definition also makes sense
when Y is singular, but requires more care.) These classes form a closed convex cone denoted
by Upsefk(X).

By letting π range over inclusions of k-dimensional subvarieties in X, we see that a universally
pseudoeffective class is nef. Pulling back by the identity of X, we see that universally pseudo-
effective classes are pseudoeffective, hence in view of the examples in [DELV11], the inclusion
Upsefk(X) ⊂ Nefk(X) may be strict.

Theorem 1.8 (cf. Remarks 4.4, 4.2, Proposition 4.8, Lemma 5.7). Let X be a projective variety
of dimension n over an algebraically closed field, and let k > 0. Then Upsefk(X) is a positive
cone of dual classes, and, in addition,

(vi) PLk(X) ⊆ Upsefk(X) ⊆ Nefk(X);

(vii) when X is smooth, PLk(X) ⊆ BPFk(X) ⊆ Upsefk(X) ⊆ (Nefk(X) ∩ Effn−k(X));

(viii) suppose that π : Y → X is a flat morphism from a projective variety Y of relative dimension
d and that X is smooth; if α ∈ Upsefk+d(Y ) then π∗α ∈ Upsefk(X);

(ix) suppose that π : Y → X is a dominant morphism from a projective variety Y and α ∈
Nk(X); if π∗α is universally pseudoeffective, then α is as well.

3



M. Fulger and B. Lehmann

While a priori weaker than pliancy or basepoint freeness, universal pseudoeffectivity is easier
to compute.

Examples 1.9. (1) If X is a smooth projective variety of dimension n, then Upsefn−1(X) =
Nefn−1(X) = Mov1(X), where the latter is the movable cone of curves in the sense of [BDPP13];
see Example 4.6.

(2) If X is a smooth spherical (for example, toric) variety of dimension n, then Upsefk(X) =
Nefk(X) ⊆ Effn−k(X) for all k; see Example 4.5.

(3) The same conclusion holds if X is a projective bundle over a smooth projective curve; see
Example 4.14.

(4) If S is a smooth projective surface and F is a rank two ample vector bundle on S, then the
zero section of the total space of F sitting as an open subset in X = P(O ⊕ F∨) is in the strict
interior of Upsef2(X); see Example 4.12.

We also give a simpler criterion for testing universal pseudoeffectivity.

Proposition (Proposition 4.9). Let X be a projective variety over an algebraically closed field.
A class α ∈ Nk(X) is universally pseudoeffective if and only if π∗α is pseudoeffective for any
projective morphism π : Y → X that is generically finite onto its image.

The maps π need not be dominant. In characteristic zero we may replace “generically finite”
with “birational” in the above (cf. Remark 4.10).

1.4 Comparisons

The following table encapsulates the properties of dual positive classes. In our opinion, all prop-
erties except the last are essential.

pliancy
basepoint
freeness

universal
pseudoeffectiveness

nefness

defines a
full-dimensional
salient cone?

X X X X

preserved by
pullback?

X X X X

contains complete
intersections in
interior of cone?

X X X X

preserved by
intersection product?

X X X X

contained in

Eff
k
(X)?

X X X X

preserved by
flat pushforward
to smooth base?

? X X X

can be checked
after pullback by
surjective morphism?

? ? X X

For X smooth we have inclusions PLk(X) ⊆ BPFk(X) ⊆ Upsefk(X) ⊆ Nefk(X). We have
seen that the last inclusion may be strict, and the following important example shows that we
may have strict inequalities PLk(X) ( Upsefk(X) and BPFk(X) ( Upsefk(X).

Example 1.10. The paper [BH15] constructs a toric fourfold X and a nef surface class α on
X which give a counterexample to a question of Demailly concerning positive currents. Their
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construction also shows that α is not basepoint free (and hence not pliant). Since every nef
class on a toric variety is universally pseudoeffective, we have BPF2(X) ( Upsef2(X). (See
Example 5.12 for details.)

The definition and study of pliancy and basepoint freeness are motivated by their applications,
while universal pseudoeffectivity is an important intersection-theoretic positivity property that
they share. It is interesting to ask how these positivity notions interact with other versions in
the literature (for example, Hartshorne’s definition via the ampleness of the normal bundle of a
local complete intersection (l.c.i.) subscheme [Har70] and Ottem’s extension [Ott12]). We discuss
these connections more in Section 6, together with some variations of pliancy and universal
pseudoeffectivity.

Organization

In Section 2 we set up the notation, recalling in particular the definition of the numerical
groups Nk(X). We establish basic properties of the dual spaces Nk(X), showing in particu-
lar that they are generated by polynomials in Chern classes of vector bundles on X. We also
give an overview of the known properties of Effk(X) and Nefk(X). Section 3 is dedicated to the
study of the pliant cone. As an application we recover the expected properties of Effk(X) that
seem to have been missing from the literature. The properties and examples of the universally
pseudoeffective cone are illustrated in Section 4, while the properties of the basepoint-free cone,
essential to the work of the authors in [FL16a] and [FL16b], are described in Section 5. We end
with a list of open questions in Section 6.

2. Background and preliminaries

Throughout, we will work over an algebraically closed ground field K of arbitrary characteristic.
A variety is an irreducible reduced scheme of finite type over K.

2.1 Cycles and dual cycles

A cycle on a projective variety X is a finite formal linear combination Z =
∑

i aiVi of closed
subvarieties of X. We use the denominations integral, rational, or real when the coefficients
are Z, Q, or R, respectively. When all Vi have dimension k, we say that Z is a k-cycle. When for
all i we have ai > 0, we say that the cycle is effective. With any closed subscheme V ⊂ X, we
associate its fundamental integral cycle [V ] as in [Ful84, § 1.5].

The group of integral k-cycles is denoted by Zk(X). Its rank is usually infinite. In order to
study the geometry of cycles on X, several equivalence relations have been introduced on Zk(X).
One example is rational equivalence; the rational equivalence classes form the Chow group Ak(X),
which may still have infinite rank.

2.1.1 Characteristic classes of vector bundles. For any vector bundle E of rank e on X and
any nonnegative integer i, Fulton [Ful84, § 3.1] constructs a Segre class si(E

∨) which is a graded
linear operator on the Chow groups Ak(X). Now, [Ful84, § 2.5] first defines a first Chern class
action for line bundles. It then defines

si(E
∨) ∩ α := π∗

(
ci+e−1

1 (OP(E)(1)) ∩ π∗α
)
∈ Ak−i(X)
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for any α ∈ Ak(X), where π : P(E) → X is the projection map of the projective bundle of
quotients associated with E, and π∗ is the flat pullback of [Ful84, § 1.7]. The dual of E appears
since [Ful84] works with projective bundles of lines instead of quotients. As a result, the classes
which naturally reflect the positivity of E in our setting are the dual Segre classes si(E

∨) and
not the Segre classes si(E).

The Chern classes of E are the linear operators defined in such a way that the total Chern
class c(E) := c0(E) + c1(E) + . . . is a formal inverse of s0(E) + s1(E) + . . .. Since the Chern
class operations are commutative and associative (see [Ful84, § 3.2]), there is a natural way of
defining P (EI)∩[Z] for any finite collection of vector bundles {Ei}i∈I on X, where P (EI) denotes
a weighted-homogeneous polynomial on the Chern classes of these bundles (assigning weight j
to a jth Chern class).

We use the following properties of Chern/Segre classes:

– (Projection formula, cf. [Ful84, Theorem 3.2(b,c)]) If π : X → Y is a proper morphism
and EI a collection of vector bundles on Y , then π∗(P (π∗EI) ∩ α) = P (EI) ∩ π∗α.

– (Compatibility with pullback, cf. [Ful84, Theorem 3.2(b,d), Proposition 6.3, Example 8.1.6])
If π : X → Y is flat or l.c.i., or if Y is smooth, then P (π∗EI) ∩ π∗α = π∗(P (EI) ∩ α),
where π∗α is the flat pullback [Ful84, § 1.7], the Gysin action [Ful84, § 6.2], or the refined
intersection [Ful84, § 8.1], respectively.

– (Whitney formula, cf. [Ful84, Theorem 3.2(e)]) If 0 → E → F → G → 0 is a short exact
sequence of vector bundles, then c(F ) = c(E) · c(G).

– (cf. [Ful84, Example 3.1.1]) If L is a line bundle, then

si(E ⊗ L) =
i∑

j=0

(−1)i−j
(
e+ i

e+ j

)
sj(E)c1(L)i−j .

– Any weighted-homogeneous polynomial in Chern classes of vector bundles P (EI) can be
rewritten as a weighted-homogeneous polynomial Q(EI) in dual Segre classes of these same
vector bundles. This is easily proved by induction using the formal inverse relationship and
ci(E

∨) = (−1)ici(E).

2.1.2 Numerical equivalence. We will work with an equivalence relation coarser than rational
equivalence. [Ful84, § 19] defines a k-cycle Z to be numerically trivial if

deg(P (EI) ∩ Z) = 0 (2.1)

for any weight k homogeneous polynomial P (EI) in Chern classes of a finite set of vector bundles
on X. Here deg : A0(X) → Z is the group morphism that sends any point to 1. The quotient
of Zk(X) by the numerically trivial cycles is denoted by Nk(X)Z; this is a free abelian group of
finite rank by [Ful84, Example 19.1.4]. It is a lattice inside Nk(X)Q := Nk(X)Z ⊗Z Q and inside

Nk(X) := Nk(X)Z ⊗Z R .

We call the latter the numerical group. It is a finite-dimensional real vector space, and its dimen-
sion is positive only when 0 6 k 6 dimX. If Z is a real k-cycle, its class in Nk(X) is denoted
by [Z].

It is useful to consider the abstract dual notions Nk(X)Z, Nk(X)Q, and Nk(X) of Nk(X)Z,
Nk(X)Q, and Nk(X) with coefficients Z, Q, and R, respectively. We call Nk(X) := Nk(X)∨

the numerical dual group. Note that if P = P (EI) is a weight k homogeneous polynomial in
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Chern classes of a finite set of vector bundles, then P induces an element [P ] of Nk(X) via the
operational nature of Chern classes. In fact, we have the formal identification

Nk(X) =
homogeneous Chern R-polynomials P of weight k

Chern polynomials P such that P ∩ α = 0 for all α ∈ Nk(X)
. (2.2)

Example 2.1. The group N1(X) is the Néron–Severi space of real Cartier divisors modulo nu-
merical equivalence. Indeed, using the determinant construction, we see that a first Chern class
of a rank r locally free sheaf can also be interpreted as a first Chern class of some invertible sheaf.
Thus, N1(X) is the space of curves with real coefficients modulo classes which have vanishing
intersection against first Chern classes of invertible sheaves. The formal dual N1(X) is then the
real space of first Chern classes of invertible sheaves modulo those with vanishing intersection
against every curve, and we interpret an invertible sheaf as a rational equivalence class of Cartier
divisors.

Remark 2.2. In his senior thesis at Princeton, Conner Jager checked that if X is smooth and pro-
jective, then Nk(X) (and in fact even Nk(X)Q) is generated linearly by the Chern classes ck(E)
as E ranges over the vector bundles on X. (The idea is to use a Riemann–Roch isomorphism to
show that Nk(X) is generated additively by the Chern character classes chk(E), and then show
that ck(E) is in the linear span of chk(E

⊕s) as s ranges over the positive integers.)

Example 2.3. If X is a projective variety of dimension n, then Zn(X) = An(X) = Nn(X)Z =
Z·[X]. The morphism deg : Z0(X)→ Z that sends all points to 1 factors through an isomorphism
deg : N0(X)Z → Z.

Remark 2.4. The quotient map Zk(X)→ Nk(X)Z factors through Ak(X). Using (2.1) we deduce
that many of the attributes of Chow groups descend to numerical groups with their natural
grading:

– proper pushforwards π∗ (Dually, the groups Nk(X) have proper pullbacks π∗ := (π∗)
∨.)

– actions of polynomials in Chern classes for vector bundles (A weighted-homogeneous poly-
nomial P = P (EI) of degree i maps Nk(X) to Nk−i(X); we denote the image of α ∈ Nk(X)
by P ∩ α.)

– the projection formula (If π : Y → X is a proper morphism and P (EI) is a polynomial in
the Chern classes on X, then for any α ∈ Nk(X),

π∗(P (π∗EI) ∩ α) = P (EI) ∩ π∗α .)

– Gysin homomorphisms (Suppose that π : Y → X is an l.c.i. morphism of codimension d.
Then [Ful84, Example 19.2.3] shows that the Gysin homomorphism π∗ : Ak(X)→ Ak−d(Y )
descends to numerical groups. Similarly, π∗ exists when π : Y → X is a morphism of pro-
jective varieties with X smooth.)

Remark 2.5. Multiplication of polynomials induces a graded ring structure on N∗(X). We call
this the numerical dual ring of X. If π : Y → X is a proper morphism, then π∗ := (π∗)

∨ is a ring
homomorphism by the projection formula.

Notation 2.6. Where there is little danger of confusion, we often use · instead of ∩ to denote the
intersection of cycles with Chern classes or dual classes.

Caution. We do not know if the flat Chow pullbacks [Ful84, § 1.7] respect numerical equivalence.
However, flat numerical pullbacks exist when the base is smooth; see Remark 2.10.
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The association [P ]→ P ∩ [X] induces a natural map

ϕ : Nn−k(X)→ Nk(X) , (2.3)

which is not usually an isomorphism. Its dual is the corresponding natural map ϕ : Nk(X) →
Nn−k(X). We have similar statements for Q-coefficients.

Example 2.7. If X is projective of dimension n, then the map ϕ : N1(X) → Nn−1(X) is the
numerical version of the cycle map from Cartier divisors to Weil divisors. It is a consequence
of [Ful84, Example 19.3.3] that this map is injective and the dual ϕ : Nn−1(X) → N1(X) is
surjective. (An element in the kernel is [c1(L)] for some line bundle L such that c1(L) ∩ [X]
is numerically trivial in the sense of (2.1). In particular, deg(c1(L) · cn−1

1 (OX(H)) ∩ [X]) =
deg(c2

1(L) · cn−2
1 (OX(H)) ∩ [X]) = 0 for some ample bundle O(H) on X. The cited reference

implies c1(L) ∩ [C] = 0 for any 1-cycle C. Therefore [c1(L)] = 0 in N1(X).)

Example 2.8. When X is singular, quite often ϕ is not an isomorphism. For example, let Y ⊂ PN
be a projective variety of dimension n with dimNn−1(Y ) > 1. Denote by X := C(Y ) ⊂ PN+1

the projective cone over Y of dimension n + 1, and by π : Z → X the blow-up of the ver-
tex, so that Z has the structure of a projective bundle of relative dimension 1 over Y with
bundle map f : Z → Y . We claim that dimN1(X) = 1 and dimNn(X) = dimNn−1(Y ) > 1.
Therefore ϕ : N1(X)→ Nn(X) is not an isomorphism. (We verify that π∗f

∗ induces an isomor-
phism Nk−1(Y ) ' Nk(X) for all k > 0. Here f∗ is a smooth pullback, so it respects numerical
equivalence. The variety Z contains two notable disjoint Cartier divisors: the zero section E
of the geometric vector bundle associated with OPN (1)|Y and the compactifying hyperplane at
infinity F . Note that E and F are both sections of f , isomorphic to Y via f |E and f |F , respec-
tively, and π(E) is the vertex of X, while π|F is the identity of Y . In particular, X contains
a copy of Y , the intersection C(Y ) ∩ PN ⊂ PN+1. We have Nk(Z) = f∗Nk−1(Y )⊕ E · f∗Nk(Y ).
Since E is contracted to a point, π∗(E · f∗Nk(Y )) = 0 for all k > 0. On the other hand, for any
α ∈ Nk−1(Y ), we have π∗f

∗α = 0 if and only if α = 0. Indeed by [Ful84, Theorem 6.2(a)] we
have (π∗f

∗α)|Y = (π|F )∗(f
∗α|F ) = α.)

Remark 2.9. When X is smooth and projective, the intersection theory of [Ful84, Chapter 8]
endows A∗(X) with a ring structure, graded by codimension. This descends to N∗(X)Z.

By [Ful84, Example 15.2.16(b)], we have an isomorphism ch: K(X)⊗Q→ A(X)⊗Q. A con-
sequence is that any Chow Q-class is of the form P (EI)∩ [X] for some Chern polynomial P (EI)
with rational coefficients. Descending to numerical equivalence, we see that the natural mor-
phism ϕ : Nn−k(X)Q → Nk(X)Q defined above is an isomorphism. The pairing between Nk(X)Q
and Nk(X)Q induced by the ring structure is the same as their pairing as dual spaces. The
analogous identification is also valid for real coefficients. For any morphism π : Y → X of rel-
ative dimension d from a projective scheme Y , we define the pullback π∗ : Nk(X) → Nk+d(Y )
as ϕ ◦ (π∗)

∨. Note that this pullback agrees with the refined Gysin homomorphisms of [Ful84,
Chapter 8].

In particular, we recover the classical definition for numerical triviality on smooth varieties:
Z ∈ Zk(X) is numerically trivial if [Z] · β = 0 for any β ∈ Nn−k(X)Z.

Remark 2.10. Let π : Y → X be a flat morphism of projective varieties with X smooth. By
[Ful84, Proposition 8.1.2] for any cycle Z ∈ Ak(X) we have π∗[Z] = [π−1Z] (where π−1 denotes
the flat pullback of cycles [Ful84, § 1.7]).
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2.2 The pseudoeffective cone

We say that a class α ∈ Nk(X) is effective if α = [Z] for some effective cycle Z. This notion is
closed under positive linear combinations, hence it is natural to consider the following.

Definition 2.11. The closure of the convex cone generated by effective k-cycles on X in Nk(X)
is denoted by Effk(X). It is called the pseudoeffective cone. A class α ∈ Nk(X) is called pseu-
doeffective if it belongs to Effk(X) and big if it belongs to the interior of Effk(X). For classes
α, β ∈ Nk(X), we use the notation α � β to denote that β − α is pseudoeffective.

We say that β ∈ Nk(X) is pseudoeffective if ϕ(β) ∈ Effn−k(X), where ϕ is the map (2.3).

The pseudoeffective dual classes form a closed cone in Nk(X) that we denote by Eff
k
(X).

The pseudoeffective cone is full-dimensional. In Corollary 3.8 we show that it is also salient.

Lemma 2.12. If h1, . . . , hk are ample classes in N1(X), then h1 · . . . · hk ∩ [X] is big.

Proof. It suffices to consider the case where hi ∈ N1(X)Q for each i. If Zj are distinct subvarieties
whose classes generate Nn−k(X), then α =

∑
j [Zj ] is big. There exist an integer m � 0 and

ample Cartier divisors D1, . . . , Dk of class mh1, . . . ,mhk, respectively, such that each Di contains
∪jZj in its Weil support and the set ∩iDi is of dimension n−k. Then mkh1 · . . . ·hk∩ [X] = α+β
for some effective class β. The sum of a big and a pseudoeffective class is big.

(Pseudo)effectivity is the natural covariant positivity notion for cycles; it is preserved under
proper pushforward and flat pullback from a smooth target. We can say more when dealing with
a dominant morphism.

Remark 2.13. Let π : Y → X be a dominant morphism of projective varieties. If Z ⊂ X is
an arbitrary closed subvariety of dimension k, then there exists an effective class α ∈ Nk(Y )Q
such that π∗α = [Z]. (Let h be an ample divisor class in N1(Y )Z, and let T be an irreducible
component of π−1Z that dominates Z. Let d be the relative dimension of the induced morphism
π : T → Z. Then hd · [T ] is an effective Q-cycle and π∗(h

d · [T ]) = c[Z] for some c ∈ Q+. Put
α = 1

ch
d · [T ].)

A consequence is that π∗ Effk(Y ) has dense image in Effk(X). Note that it is possible for the
image of a closed convex cone under a linear map of finite-dimensional real vector spaces to no
longer be closed. We nonetheless prove π∗ Effk(Y ) = Effk(X) in Corollary 3.22.

2.3 The nef cone

The cone dual to Effk(X) in Nk(X) is the nef cone Nefk(X). Any element β ∈ Nefk(X) is called
nef. Attesting to its contravariant nature, nefness is preserved under proper pullbacks.

Remark 2.14. Since Effk(X) is full-dimensional, Nefk(X) is salient. In Lemma 3.7 we see that
this cone is also full-dimensional.

Remark 2.15. Let π : Y → X be a dominant morphism of projective varieties. If β ∈ Nk(X) is
such that π∗β ∈ Nefk(Y ), then β ∈ Nefk(X). (Nefness on X is verified by testing nonnegative
pairing against the closed subvarieties of dimension k. Then apply the projection formula and
Remark 2.13.)

Example 2.16. If h1, . . . , hk ∈ Nef1(X), then h1 · . . . · hk ∈ Nefk(X). In Corollary 3.15 we see
that if the hi are ample for all i, then their intersection is in the interior of Nefk(X). Note

9
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that complete intersections do not always generate a full-dimensional cone. For example when
X = G(2, 4), we have dimN1(X) = 1 while dimN2(X) = 2.

More generally, if E is a nef vector bundle (that is, OP(E)(1) is a nef line bundle), then

ck(E) ∈ Nefk(X) for all k. (This is an easy consequence of [Ful84, Example 12.1.7(c)].) If E is
ample, then ck(E) belongs to the strict interior of Nefk(X) for all k.

For k > 1, [DELV11] provides examples of nef classes that do not have nef intersection
in N∗(X) and of nef classes that are not pseudoeffective. There, X is a self-product of an abelian
variety. In the next section we present a more geometric positivity notion that avoids such
pathologies.

3. The pliant cone

Just as nef divisors (considered as limits of semiample divisors) are modeled after the hyperplane
class on Pn, pliant classes are modeled after Schubert cycle classes on Grassmannians up to taking
products.

Definition 3.1 ([Ful84, § 14.5]). Fix positive integers k and e. Let λ = (λ1, . . . , λk) be a decreas-
ing partition of k involving only nonnegative integers that are no greater than e. The (weighted)
Schur polynomial sλ is defined to be the determinant in formal variables c1, . . . , ce

sλ :=

∣∣∣∣∣∣∣∣∣
cλ1 cλ1+1 . . . cλ1+k−1

cλ2−1 cλ2 . . . cλ2+k−2
...

...
. . .

...
cλk−k+1 cλk−k+2 . . . cλk

∣∣∣∣∣∣∣∣∣ ,
where by convention c0 = 1 and ci = 0 if i 6∈ [0, e]. If we assign the weight i to the variable ci,
then sλ is a degree k weighted-homogeneous polynomial. Given a vector bundle E of rank e,
we denote by sλ(E) the corresponding Schur polynomial in the Chern classes of E. The Chern
classes ck(E) and the dual Segre classes sk(E

∨) are particular cases of this construction.

Let Q denote the tautological quotient bundle over a Grassmannian G. Note that Q is globally
generated. The Schubert cycles on G have numerical class given by Schur polynomials in the
Chern classes of Q (see [Ful84, § 14.6] or [Laz04, Remark 8.3.6]). When E is a globally generated
vector bundle on X, the Schur polynomial classes of E are pullbacks of Schubert cycle classes
via the induced Gauss map. See also Example 3.13.

Definition 3.2. The pliant cone PLk(X) is the closed convex cone in Nk(X) generated by
monomials

∏
i sλi(Ei) in Schur polynomial classes of globally generated vector bundles on X.

The construction is also motivated by the work of Fulton–Lazarsfeld [FL83] on positive poly-
nomials of ample vector bundles. We will see that the pliant cone satisfies the desired intersection-
theoretic properties described in the introduction.

Example 3.3. For any globally generated vector bundle E we have that c1(E) is the class of the
nef line bundle detE. Thus PL1(X) = Nef1(X).

Remark 3.4. Note that the definition of the pliant cone is stable under products. In particular,
the class of a complete intersection is pliant. We do not know if the pliant cone coincides with
the cone generated by Schur polynomial classes of globally generated bundles (without taking
products).

10



Positive cones of dual cycle classes

Lemma 3.5. The pliant cone PLk(X) generates Nk(X) as a vector space, that is, it is full-dimen-
sional.

Proof. Since the pliant cone is closed under products, it suffices to show that for any vector
bundle E on X the Chern class ci(E) can be expressed as a sum of products of Chern classes
of globally generated vector bundles. (Note that the Chern class ck is the Schur polynomial
corresponding to the partition (k, 0, . . . , 0).)

The proof is by induction on i. Let H be a fixed very ample divisor on X. There exists
a positive integer m such that E(mH) is globally generated. The formula for Chern classes of
a tensor product (as recalled in Section 2.1.1) expresses ci(E(mH)) as a sum of ci(E) with
other terms involving c1(H) and cj(E) for j < i. By induction on i, we conclude that ci(E)
can be written as a linear combination of products of Chern classes of globally generated vector
bundles.

Remark 3.6. Since global generation is preserved by the pullback of vector bundles, if π : Y → X
is a morphism of projective varieties, then π∗ PLk(X) ⊂ PLk(Y ).

Lemma 3.7. If Z ⊂ X is a subvariety of dimension d, then for any [P ] ∈ PLk(X), we have

P ∩ [Z] ∈ Effd−k(X). In particular, we have an inclusion PLk(X) ⊂ Eff
k
(X) ∩Nefk(X), so that

PLk(X) is a salient cone and Nefk(X) is full-dimensional.

Proof. This follows from [Ful84, Example 12.1.7(a)].

Corollary 3.8. The cone Effk(X) is salient.

Proof. The dual of a full-dimensional cone is salient.

Remark 3.9. The previous result seems to have been missing from the literature. Over C, it is
implied by [DJV13, Lemma 2.2]. Similar statements are proved in [BFJ09, Proposition 1.3] and
[CHMS14, Lemma 2.3] for Cartier divisors.

Example 3.10. If H is a projective nonsingular homogeneous space, then PLk(H) ⊆ Eff
k
(H) ⊆

Nefk(H) for all k. (Lemma 3.7 gives the first inclusion. For the second inclusion, note that
using the group action and Kleiman’s lemma [Kle74, Theorem 2(i)], we can deform any two
subvarieties V and W of H until they meet properly; hence V ·W is algebraically equivalent
to an effective cycle.) When H is one of the examples of abelian varieties in [DELV11], the last
inclusion is strict.

Example 3.11. On P1 consider the vector bundle E = O ⊕ O ⊕ O(−1). Set X = P(E) and let
π : X → P1 denote the projection. Let ξ denote the class of OP(E)(1), and let f denote the
class of a fiber of π. The Grothendieck relation is ξ3 = −ξ2f = −1. Using for example [Ful11,
Theorem 1.1] and [FL16a, Proposition 7.1], we find

Eff
1
(X) = Mov

1
(X) = 〈f, ξ〉 , Nef1(X) = 〈f, ξ + f〉

and

Eff
2
(X) =

〈
ξf, ξ2

〉
, Nef2(X) =

〈
ξf, ξ2 + ξf

〉
.

We prove PL2(X) = Nef2(X). Since ξf = (ξ + f)f is a product of nef divisors, it is enough to
show that ξ2 + ξf is pliant. Consider the bundle Q given by the short exact sequence

0→ OP(E)(−1)→ π∗E∨ → Q→ 0 .

Then Q is globally generated and c2(Q) = ξ2 + ξf .

11
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Remark 3.12. To compute the pliant cone we often guess that it coincides with one of the other
positive cones and then construct globally generated vector bundles with specified Schur (often
Chern) classes. For the other positive cones we usually have better techniques. A telling example
is that of projective bundles over curves of arbitrary genus (see [Ful11, Theorem 1.1] for Effk(X),
[FL16a, Proposition 7.1] for Movk(X), and Example 4.14 for Upsefk(X)). In Example 5.10 we
compute all the BPFk(X) cones when X is a projective bundle over P1.

Example 3.13. If X is a product of Grassmann varieties, then

PLk(X) = Eff
k
(X) = Nefk(X) .

These cones are rational polyhedral, generated by classes of products of Schubert cycles from each
Grassmann factor. In particular, Definition 3.2 agrees with the definition given in the introduction
in terms of products of pullbacks of effective classes on Grassmann varieties. (Consider first the
case where X = G is a single Grassmann variety. Then Nk(G) and Nk(G) admit dual bases of
effective classes determined by the Schubert cycles (see [Ful84, § 14.6] or [Laz04, Remark 8.3.6]).
These are Schur classes of the universal quotient bundle on G, which is a globally generated vector
bundle. When X is a product, the classes of the products of Schubert cycles in each Grassmann
factor give bases of Nk(X) for all k by [Ful84, Proposition 14.6.5]. It is straightforward to check
that the members of these bases are pliant. Furthermore, the corresponding bases of Nk(X) and
Nk(X) = NdimX−k(X) are dual to each other for each k.

We show that complete intersections are in the interior of the pliant cone and describe several
important applications of this result.

Lemma 3.14. If h1, . . . , hk are ample classes in N1(X), then h1 · . . . · hk is in the interior of
PLk(X).

Proof. Let h be any ample class in N1(X). There exists m� 0 such that mhi − h is ample for
all i. Then mkh1 · . . . · hk = hk +P , where [P ] ∈ PLk(X). Therefore it is enough to show that hk

is in the interior of PLk(X) for some ample class h.

Lemma 3.5 and its proof allow us to choose finitely many monomials in Chern classes of
finitely many ample globally generated vector bundles {Ei}i∈I on X such that these monomials
span Nk(X) as a vector space. The sum of all these monomials is a polynomial with positive
coefficients P (EI) whose class necessarily lies in the interior of PLk(X).

If E := ⊕i∈IEI , then c(E) =
∏
i c(Ei), where c(E) = 1 + c1(E) + c2(E) + · · · is the total

Chern class of E. In particular, for all j and for all i ∈ I, we have

cj(E) = cj(Ei) + Pij(EI) (3.1)

for some [Pij(EI)] ∈ PLj(X). Note that E is again globally generated and ample. It is important
to work with Chern classes here, instead of arbitrary Schur classes, because this ensures that the
Pij have no negative coefficients.

Let R(E) be the polynomial obtained from P (EI) by replacing every occurrence of cj(Ei)
by cj(E). By (3.1), we can write R(E) = P (EI) + P ′(EI), where [P ′(EI)] ∈ PLk(X),; hence
[R(E)] is also in the interior of PLk(X).

Let γ : X → G be the Gauss map induced by E. Then [R(E)] = γ∗[R(Q)], where Q is the
universal quotient bundle on G. Let C = γ∗ PLk(G) ⊂ PLk(X). Since C contains [R(E)], any
element in the interior of C is also interior to PLk(X).

Since E is ample, γ is finite. (If γ contracts a curve C, then E|C is trivial. This contradicts
ampleness. See [Laz04, Proposition 6.1.7].) If a is a generator for the cone of ample divisors

12
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on G, then h = γ∗a is ample on X. Lemma 2.12 and Example 3.13 show that ak is in the interior
of PLk(G). Then hk is in the interior of C, therefore also in the interior of PLk(X).

Corollary 3.15. If h1, . . . , hk are ample divisors classes, then h1 · . . . · hk is in the interior
of Nefk(X).

3.1 Geometric applications

Corollary 3.16 (Geometric norms). If h is an ample divisor class on X, then for all k there
exists a norm ‖ · ‖ on Nk(X) such that ‖α‖ = hk ∩ α for any α ∈ Effk(X).

Proof. By Lemma 3.5 and Corollary 3.15, we can choose nef dual classes β1, . . . , βm that span
Nk(X) and such that [hk] =

∑
i βi. Then ‖ ·‖ =

∑
i |βi∩·| is a norm on Nk(X) with the required

property.

Corollary 3.17. Let X be a projective variety. If α ∈ Effk(X) has degree zero with respect to
some polarization H on X, that is, deg(ck1(OX(H)) ∩ α) = 0, then α = 0.

Corollary 3.18 (Finiteness of integral classes of bounded degree). LetX be a projective variety,
and let H be a very ample divisor on X. Then for all M > 0,

#
{
α ∈ Nk(X)Z ∩ Effk(X) | deg

(
ck1(OX(H)) ∩ α

)
< M

}
<∞ .

Remark 3.19. Corollaries 3.16–3.18 were known for curve classes; see [Laz04, Theorem 1.4.29
and Example 1.4.31]. When working over C, the result of Corollary 3.17 can be improved to
homological equivalence. See [DJV13, Proposition 2.1 and Lemma 2.2]. Then Corollary 3.15 is
also valid for homological equivalence on complex projective varieties.

Many cohomology theories have the strong Lefschetz property. A long-standing open question
concerning numerical groups is if they verify it as well.

Conjecture 3.20 (Strong Letschetz). Let X be a smooth projective variety of dimension n.
Let h be an ample divisor class. Then ∩hn−2k : Nk(X) → Nn−k(X) is an isomorphism for all
k 6 bn/2c.

Corollary 3.17 shows that we can exclude the pseudoeffective case from the conjecture. Note
that the smoothness condition is necessary: if X is singular, then usually dimNn−1(X) =
dimNn−1(X) > dimN1(X) (see Example 2.8).

That the degree of a cycle with respect to an arbitrary ample polarization restricts to a norm
on the pseudoeffective cone also allows us to construct “bounded” lifts for effective cycles by
dominant morphisms.

Proposition 3.21. Let π : Y → X be a surjective morphism of projective varieties. Let ‖·‖ and |·|
be arbitrary norms on Nk(Y ) and Nk(X), respectively. There is some constant C depending only
on π and on the choice of norms on Nk(Y ) and Nk(X) such that for any effective R-k-cycle Z
on X, there is an effective R-k-cycle Z ′ on Y with π∗Z

′ = Z satisfying

‖[Z ′]‖ 6 C|[Z]| .

When Z has integer coefficients, we can choose Z ′ having rational coefficients with denominators
bounded independently of Z.

Proof. By repeating the argument for each component, we can assume that Z is a closed sub-
variety of X. Let A be a very ample divisor on Y , and let H be a very ample divisor on X.

13
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By Corollary 3.16, we can assume that the restrictions of the norms ‖·‖ and |·| to Effk(Y ) and
Effk(X), respectively, are the degree functions with respect to the polarizations A and H, respec-
tively. Let T be a component of a (dimX)-dimensional complete intersection of elements of |A|
that dominates X. Then π∗T = cX, where c is a positive integer depending only on π and A.

We do induction on the dimension of X for dimX > k. When dimX = k, we have Z = aX
for some a > 0 and we can put Z ′ = (a/c)T . Put C = ‖[T ]‖/|[X]|. Now suppose dimX > k.
Let ı : T ↪→ Y be the inclusion. We can assume T = Y . Indeed, ı∗ is continuous and preserves
pseudoeffectivity, and the norm induced by the degree with respect to A restricts to the norm
induced by A|T . Therefore we can assume that π is generically finite and surjective.

There exists an effective Cartier divisor E on Y such that −E is π-ample. Replacing H by
a fixed multiple depending only on π and E, we can assume that π∗H − E is ample on Y . By
Corollary 3.16, the ample divisors π∗H − E and A determine equivalent norms on Nk(Y ), so
without loss of generality we can assume A = π∗H − E. By abuse of notation, we also use E as
notation for the support of E.

Let π′ : Y ′ → X ′ denote a flattening of π. Let S ⊂ X denote the union of π(E) and the ex-
ceptional locus for the birational morphism X ′ → X. Note that π|E : E → S and the restrictions
A|E and H|S depend only on π, A, and H. Also note that dimSi < dimX for every component
Si of S.

By applying induction to the components Si of S and the maps π|Si , we see that the conclusion
holds if Z ⊂ S. If Z is not contained in S, let Z̄ be a k-dimensional component of π−1{Z}
that dominates Z. Then π∗Z̄ = c′Z, where c′ > 0 and Z̄ is irreducible, not contained in E.
Furthermore, by taking strict transforms of Z and Z̄ on X ′ and Y ′, respectively, [Ful84, Example
1.7.4] shows c′ 6 deg(π′) for the flat map π′. The function

t→ (π∗H − tE)k ∩ [Z̄]

is decreasing on [0, 1]. This and the projection formula imply

Ak ∩ [Z̄] = (π∗H − tE)k ∩ [Z̄] 6 π∗Hk ∩ [Z̄] = Hk ∩ c′[Z] .

One can choose the constant C by taking the maximum over deg(π′), all constants showing up
in the finitely many induction steps, and all finitely many constants appearing as proportionality
bounds between equivalent norms. Similarly, one obtains the last statement of the proposition
by taking a maximum over deg(π′) and all constants showing up in the finitely many induction
steps.

Corollary 3.22. If π : Y → X is a dominant morphism of projective varieties, then π∗ :
Effk(Y )→ Effk(X) is surjective for all k.

Proof. Let α be a pseudoeffective class on X. Write α as a limit of effective classes αi. For each i,
Proposition 3.21 constructs an effective class βi on Y such that π∗βi = αi, whose degree with
respect to some polarization on Y is bounded independently of i. Since the degree restricts to
a norm on the pseudoeffective cone, we can find a limit point β for the sequence βi. Note that β
is pseudoeffective. Since π∗ is continuous, π∗β = α.

We also use Lemma 3.14 to construct bases for Nk(X) with good positivity properties, at
least when X is smooth. The second part of the following lemma is an important technical
instrument in the proof of [FL16b, Theorem 8.9].

Lemma 3.23. Let X be a smooth projective variety of dimension n > 2. Then
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(i) Nk(X) is generated by pliant classes with irreducible representatives {Tr};
(ii) if π : X → Y is a surjective morphism to a projective variety with dimY > n− k, then we

can choose the Tr such that they are not contracted by π for any r.

Proof. Arguing as in Section 2.1.1 and Lemma 3.5, we can find a set of very ample vector
bundles {Ei} such that Nk(X) is generated by weight k monomials in dual Segre classes sj(E

∨
i ).

These monomials belong to PLk(X).

Let P denote the fiber product ×XP(Ei), let ξi denote the pullback to P of the Serre bundle
OP(Ei)(1), and let p : P→ X be the (smooth) projection map of relative dimension d.

The proof of [Ful84, Proposition 3.1(b)] shows that the weight k dual Segre monomials in
the Ei are given by p∗(

∏d+k
j=1 ξij ). The number of repetitions of each index i in the list of the ij

determines which dual Segre class of Ei appears in the monomial. Since we want to allow several
Segre classes of the same bundle to appear in a monomial, we repeat each Ei in the initial list k
times so that each class can be obtained from a different factor in P.

Since dimX > 2 and the Ei are very ample vector bundles, the linear systems |ξi| are not
composites with a pencil for any i. Then Bertini’s theorem implies that the support of a general
complete intersection

∏d+k
j=1 ξij is irreducible, and then the same is true of its image Tr through π.

For part (ii), let h be a very ample divisor class on Y . Since Tr is effective, it is contracted
by π if and only if [Tr] · π∗hn−k = 0. The class π∗hn−k is effective and nonzero under the
assumption dimY > n − k. It is enough to prove that [Tr] belongs to the interior of PLk(X).
Knowing that pliancy is closed under products and that complete intersections are interior (cf.
Lemma 3.14), it is enough to check that we can choose Ei such that every nonzero sj(E

∨
i ) belongs

to the interior of PLj(X). For this, replace each Ei by Ei ⊗ detEi in the initial list. Note that
c1(detEi) = c1(Ei) = s1(E∨i ). Then the formula in [Ful84, Example 3.1.1] shows that the linear
span of the dual Segre monomials is unchanged. Furthermore, sj((Ei ⊗ detEi)

∨) is a positive
linear combination of dual Segre monomials of Ei, one of which is a positive scalar multiple of
the interior complete intersection class cj1(detEi).

4. Universally pseudoeffective classes

Universal pseudoeffectivity is the positivity notion that directly generalizes the intersection-
theoretic properties of nef divisors.

Definition 4.1. We say that α ∈ Nk(X) is universally pseudoeffective (upsef) if π∗α ∈ Eff
k
(Y )

for any proper morphism π : Y → X from a projective variety Y . The cone of all such classes is
denoted by Upsefk(X).

Remark 4.2. Universally pseudoeffective classes are nef.

Example 4.3. For any projective variety X we have

Upsef1(X) = Nef1(X) .

(Nefness for divisors is preserved by pullback and nef divisors are pseudoeffective, which implies
Nef1(X) ⊆ Upsef1(X). If α is a universally pseudoeffective class of a Cartier divisor, then α∩ [C]
is a pseudoeffective 0-cycle for any irreducible curve C in X, hence α is a nef divisor class.)

Remark 4.4. Lemma 3.7 shows PLk(X) ⊆ Upsefk(X) for all k. Together with Remark 4.2 this
implies that Upsefk(X) is full-dimensional and salient, and contains complete intersections in its
strict interior.
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Example 4.5. If X is a nonsingular projective spherical (for example, toric) variety, then we have
Upsefk(X) = Nefk(X) for all k. The proof is analogous to that of [Li15, Theorem 3.4]. Let π : Y →
X be a projective morphism, and let η ∈ Nefk(X). Let Γ: Y → X × Y be the graph morphism
associated with π. We use the same notation for its image. By [Li15, Corollary 3.3], drawing
on [FMSS95, Lemma 3], the graph Γ is rationally equivalent to an effective cycle

∑
i ciAi × Bi,

where the Ai are irreducible subvarieties of X, and the Bi are irreducible subvarieties of Y . Note
that π∗η = p2∗([Γ] · p∗1η). Then

π∗η =
∑
i

cip2∗(p
∗
1([Ai] · η) · p∗2[Bi]) =

∑
i, dimAi=k

(ci[Ai] · η)[Bi] ,

which is in fact effective.

Example 4.6. If X is a nonsingular projective variety of dimension n and Mov1(X) denotes the
movable cone of curves, then

Upsefn−1(X) = Mov1(X) .

Namely, if α ∈ Upsefn−1(X), then α∩ [D] ∈ Eff
n−1

(D) for any effective divisor D. By [BDPP13]
and its extension to arbitrary characteristic in [FL16a, § 2.2.3], it follows that α ∈ Mov1(X).

Now, let α ∈ Mov1(X). Let π : Y → X be a morphism from a projective variety Y , and let
Z = π(Y ) with its closed embedding ı : Z ↪→ X. Write p for the induced morphism Y → Z.

If dimZ < n − 1, then π∗α = 0. If dimZ = n − 1, then ı∗α ∈ Eff
n−1

(Z) = Upsefn−1(Z),
since we can write α as a limit of effective curve cycles without components in Z. Therefore

π∗α ∈ p∗Upsefn−1(Z) ⊂ Eff
n−1

(Y ).

Finally, suppose that π is dominant. Let π′ : Y ′ → X ′ be a flat birational model of π; up to
base change over an alteration [dJ96], we can assume that X ′ is smooth. Note that the pullback α′

of α to X ′ is a movable curve by the projection formula and the main result of [BDPP13]. Then
(π′)∗(α′ ∩ [X ′]) = ϕ ◦ (π′∗)

∨(α′) is pseudoeffective, because flat pullbacks preserve effectivity for
cycles. Thus the pushforward π∗α ∩ [Y ] is also pseudoeffective.

Example 4.7. If X satisfies Eff
k
(X) = Sk Nef1(X), where Sk Nef1(X) is the cone in Nk(X)

generated by complete intersections, then

Sk Nef1(X) = PLk(X) = Upsefk(X) = Eff
k
(X) .

This is the case for example when X = A×A and A is a very general complex abelian surface, or
when X = En, where E is a complex elliptic curve with complex multiplication (cf. [DELV11]).

Proposition 4.8. Let π : Y → X be a dominant morphism of projective varieties. If π∗α ∈
Upsefk(Y ) for some α ∈ Nk(X), then α ∈ Upsefk(X).

Proof. Let Z → X be a morphism, and let T be a subvariety of Z ×X Y that dominates Z and
has dimT = dimZ. Such a subvariety exists because π is dominant. The result follows from the
projection formula, using the functoriality of pullbacks and the assumption on π∗α.

Definition 4.1 does not seem practical for checking upsefness. It would be useful to give simpler
criteria; a step in this direction is the following.

Proposition 4.9. Let α ∈ Nk(X). Then α ∈ Upsefk(X) if and only if π∗α ∈ Eff
k
(Y ) for any

π : Y → X that is generically finite onto its image (which can be a proper subset of X).
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Proof. By definition any upsef class satisfies the property in the proposition. Conversely, let α
be a class which verifies said property. We use flattenings to check that it is universally pseudo-

effective. Taking π = idX , we see α ∈ Eff
k
(X).

Let π : Y → X be an arbitrary morphism of projective varieties. Let Z be the image of π
inside X, and denote by f : Y → Z the induced dominant map and by ı : Z → X the closed
embedding. Let f̄ : Ȳ → Z̄ be a flattening of f with generically finite morphism τ : Z̄ → Z

and Z̄ nonsingular. By assumption, (ıτ)∗α ∈ Eff
k
(Z̄). Using the projection formula, it suffices

to show f̄∗(ıτ)∗α ∈ Eff
k
(Ȳ ). Hence, without loss of generality, we can assume that π is flat and

dominant and that X is nonsingular. We want to show π∗α ∈ Eff
k
(Y ). Since X is nonsingular

and π is flat, π∗ is defined on numerical groups and preserves pseudoeffectivity. Furthermore,

π∗(α ∩ [X]) = (π∗α) ∩ [Y ] by [Ful84, Theorem 3.2(d)]. Consequently, π∗α ∈ Eff
k
(Y ).

Remark 4.10. If resolutions of singularities exist, for example in characteristic zero, we can replace
“generically finite” by “birational” in the proposition.

Example 4.11. Suppose that X is a smooth projective fourfold. Let α ∈ Nef1(X) and β ∈
Eff

1
(X). Let δ ∈ N2(X) be a class such that π∗δ ∈ Eff

2
(Y ) for any π : Y → X that is generically

finite and dominant (or just birational in characteristic zero). For example, δ ∈ Upsef2(X). If
γ := α · β + δ ∈ N2(X) is nef, then γ is universally pseudoeffective.

To see this, we apply Proposition 4.9. It suffices to consider morphisms π : Y → X that are
generically finite onto their images. By precomposing, we may furthermore assume that Y is
smooth. Since codimension two nef classes on smooth projective varieties of dimension at most
three are pseudoeffective, we may assume dimY = 4. Then π∗γ = π∗α · π∗β + π∗δ is again

pseudoeffective by assumption, since π∗β ∈ Eff
1
(Y ) for dominant π.

An interesting particular case of the above concerns an example of Fulton–Lazarsfeld [FL82],
further investigated in [Pet09].

Example 4.12. Let F be an ample rank two vector bundle on P2 sitting in an exact sequence
0 → O(−n)2 → O(−1)4 → F → 0 for sufficiently large n. The existence of such F is explained
in [Gie71] and [Laz04, Example 6.3.67]. Let

X = P(O ⊕ F∨) ,

and let

S = P(O) ⊂ X .

Fulton–Lazarsfeld [FL82, Counter-example to Conjecture A] verify that S, which can also be
seen as the zero section of the total space X0 = X \ P(F∨) of F , has ample normal bundle
(in fact, NSX

0 = NSX = F ), but no multiple of [S] moves in a nontrivial algebraic family
inside X0. Peternell [Pet09] observes that the multiples of S also do not move in X, and that [S]
is in the strict interior of Eff2(X). Since S has ample normal bundle, [S] ∈ Nef2(X) (see [Laz04,
Corollary 8.4.3]).

We show that in fact [S] belongs to the strict interior of Upsef2(X). Writing [P(O)] · [P(F∨)]
= 0 in X, from the Grothendieck relation one can compute

[S] = (ξ + π∗c1(F )) · ξ + π∗c2(F ) ,

where π : X → P2 is the bundle map, and where ξ is the class in N1(X) of the relative O(1)
Serre bundle. Observe that ξ+π∗c1(F ) is ample. It is the relative O(1) for (O⊕F∨)⊗det(F ) =
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det(F ) ⊕ F , which is ample. Also note that ξ is effective, since O ⊕ F∨ has a section, and that
π∗c2(F ) is universally pseudoeffective, being the pullback of a positive multiple of the generator

of Eff
2
(P2). Then the previous example applies to the nef class [S]. Perturbing by a small multiple

of the complete intersection (ξ + (1 − ε)π∗c1(F ))2 for sufficiently small ε, one sees that [S] also
belongs to the strict interior of Upsef2(X).

The proof actually shows that if S is a smooth projective surface and F is an ample vector
bundle on S of rank two, then the zero section of the total space of F sitting as an open subset
in X = P(O ⊕ F∨) is in the strict interior of Upsef2(X).

Proposition 4.13. Let π : X → Y be an equidimensional morphism of projective varieties with
relative dimension d and with Y smooth. Then π∗Upsefk(X) ⊂ Upsefk−d(Y ).

Proof. Let α ∈ Upsef(X). Suppose that f : Z → Y is a morphism from a projective variety Z
that is generically finite onto its image. Precompose to make Z smooth if necessary. Consider
the fiber product (where Z ′ may be reducible)

Z ′ −−−−→
f ′

X

π′
y yπ
Z −−−−→

f
Y .

Note that π′ is still equidimensional of relative dimension d, and by the dual of [Ful84, Proposi-
tion 6.2(a)] (that is, π∗f∗β = f ′∗π

′∗β for all β ∈ Nk−d(Z)) we have f∗π∗α = π′∗f
′∗α in Nk−d(Z).

Then as can be verified by pairing against any P ∈ NdimZ−(k−d)(Z), we obtain

(π′∗f
′∗α) ∩ [Z] = π′∗(f

′∗α ∩ [Z ′]) ,

which is pseudoeffective by the universal pseudoeffectivity of α.

We end this subsection with a nontrivial computation of the universally pseudoeffective cones.

Example 4.14. Let X = PC(E), where E is a vector bundle on a smooth curve C. Then
Upsefk(X) = Nefk(X) for all k.

Proof. Since the inclusion Upsefk(X) ⊆ Nefk(X) holds true in general, it is enough to show that
every nef class is universally pseudoeffective. Consider the Harder–Narasimhan decomposition
E = E0 ⊃ E1 ⊃ · · · ⊃ El = 0 with semistable successive quotients Qi = Ei−1/Ei of slopes
µi := degQi/rank(Qi) forming an increasing sequence µ1 < µ2 < · · · < µl−1.

By [FL16a, § 7.1],

Nefk(X) =
〈
ξk + ν(k)ξk−1f, ξk−1f

〉
,

where ξ is the class of the relative Serre line bundle OE(1) of the projective bundle map
π : X → C, where f is the class of a fiber of π, and where the ν(k) are computed in terms
of the ranks and degrees of the Qi. Moreover, ξk−1f = (ξ+af)k−1f for any a ∈ R. In particular,
ξk−1f is an intersection of nef divisor classes, therefore universally pseudoeffective as well. It is
then enough to show that ξk + ν(k)ξk−1f is upsef.

Let r = rank(Q1). By [FL16a, § 7.1], we have ν(k) = −kµ1 for k 6 r. Therefore ξk +
ν(k)ξk−1f = (ξ−µ1f)k is the self-intersection of the nef class ξ−µ1f , which is upsef. In particular,
the statement of the example is true when E is semistable. Assume henceforth k > r.

Let h : Z → C be any morphism from a projective variety Z, and let F : Z → X be a morphism
such that h = π ◦ F . Such an F corresponds to a surjection h∗E → L onto a line bundle on Z,
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and we have L = F ∗OE(1). By abuse of notation, we also write ξ = c1(L) for its class in N1(Z)
and denote by f the pullback of the fiber of π to Z. We want to show that ξk + ν(k)ξk−1f is
pseudoeffective.

If h∗E1 maps to 0 inside L, then F (Z) ⊂ P(Q1) ⊂ P(E) and, since k > r = dimP(Q1), we
have ξk + ν(k)ξk−1f = 0. If not, then h∗E1 maps onto L ⊗ I for some nonzero ideal sheaf I
on Z. One can show I = JOZ , where J ⊂ OX is the ideal sheaf of P(Q1) (see for example
[Ful11, Proposition 2.4]). The blow-up Z̃ := BlIZ is the component of the fiber product Z ×X
BlP(Q1)P(E) that dominates Z. By [Ful11, Proposition 2.4], we have an induced morphism Z̃ →
P(E1). Denote by ξ1 the class of the Serre bundle for the map P(E1)→ C and by e the class of
the exceptional divisor on BlP(Q1)P(E). By abuse of notation, we also denote by ξ, ξ1, e, and f

their respective pullbacks to Z̃.

We want to show that ξk + ν(k)ξk−1f is pseudoeffective on Z. By the projection formula it is
enough to verify this after pulling back to Z̃. By [Ful11, Proposition 2.4], we have

e(ξ − µ1f)r = 0 and e = ξ − ξ1 . (4.1)

Rewrite

ξk + ν(k)ξk−1f = (ξ − µ1f)r
(
ξk−r + (ν(k) + rµ1)ξk−r−1f

)
.

By (4.1), given that ξ − µ1f is a nef divisor class, it is enough to show that

ξk−r1 + (ν(k) + rµ1)ξk−r−1
1 f

is pseudoeffective on Z̃. This holds by induction because ν(k) + rµ1 = ν
(k−r)
1 , where the ν

(i)
1 give

the nontrivial boundaries ξi1 + ν
(i)
1 ξi−1

1 f of Nefi(P(E1)), as follows from [FL16a, § 7.1].

5. Basepoint-free classes

One common way of constructing “positive” classes on X is to take the class of a general fiber
of a morphism from X. These classes are always nef and effective. In fact, for any subvariety V
of X we can find a fiber that has expected dimension of intersection with V . In this section, we
define the notion of a basepoint-free class which satisfies similar properties.

Definition 5.1. Let X be a projective variety of dimension n. We say that α ∈ Nn−k(X) is
a strongly basepoint-free (strongly bpf) class if there exist

(i) an equidimensional quasi-projective scheme U of finite type over K,

(ii) a flat morphism s : U → X, and

(iii) a proper morphism p : U → W of relative dimension n− k to a quasi-projective variety W
such that each component of U surjects onto W ,

such that

α = (s|Fp)∗[Fp] ,

where Fp is a general fiber of p. Note that the resulting class is independent of the choice of fiber.
We say that p represents α.

When X is smooth, the basepoint-free cone BPFk(X) is defined to be the closure of the cone
generated by such classes.

Remark 5.2. The terminology indicates that the class α is “basepoint free” in the following
sense: for every subvariety V ⊂ X there is an effective cycle of class α that intersects V in the
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expected dimension. To see this, let d denote the codimension of V . Then s−1V has codimension
at least d in U by flatness, and s−1(V ) ∩ Fp has codimension at least d in Fp. Then V ∩ s(Fp)
has codimension at least d in s(Fp) by the upper-semicontinuity of fiber dimensions.

Even though we define basepoint freeness using families of cycles, which gives it a “co-
variant” feel, we will show that BPFk(X) is preserved by pullback between smooth varieties,
but BPFk(X) ∩ [X] is not preserved by (arbitrary) pushforward. Thus for smooth varieties the
basepoint-free cone is really a “contravariant” cone.

It is clear that BPFk(X) ⊂ Nefk(X) and BPFk(X) ∩ [X] ⊂ Effk(X). Basepoint-free classes
also have an important property that we do not know for the pliant cone.

Lemma 5.3. Let π : X → Y be a flat morphism of smooth projective varieties. Then π∗BPFk(X)
⊂ BPFk(Y ).

Proof. Immediate.

We next verify that, as suggested by Remark 5.2, for strongly basepoint-free cycles we can
exhibit explicit effective cycles that represent numerical intersections or pullbacks. We will use
these to verify that BPFk satisfies the main properties desired for positive cones.

Lemma 5.4. Let f : X → Y be a projective morphism to a smooth projective variety Y . Let
p : U → W be a strongly bpf family on Y with flat map s : U → Y . For every top-dimensional
(effective) cycle T on a general fiber Uw of p there exists a canonically defined (effective) cycle
X ∩f T with support equal to X ×Y |T | and whose pushforwards represent

(i) f∗(s|T )∗[T ] ∩ [X] ∈ N∗(X) on X,

(ii) (s|T )∗f∗[X] ∩ [T ] ∈ N∗(|T |) on |T |,
(iii) (s|T )∗[T ] · f∗[X] ∈ N∗(Y ) on Y .

In case (i), if T = Uw, then X ∩f Uw = U ′w, where U ′ = U ×Y X. In particular, if X is also
smooth, then f∗BPFk(Y ) ⊂ BPFk(X).

Proof. Let Γf : X → X × Y be the graph of f . Since Y is smooth, Γf is a regular embedding.
Consider the flat base change map X × U → X × Y . For general w ∈ W , the arguments of
Remark 5.2 and the regularity of the embedding Γf show that X ×Y Uw = X ×X×Y (X ×Uw) is
equidimensional of the expected dimension or empty. The same is true for any top-dimensional
cycle T on Uw.

We are in a setting of proper intersections (cf. [Ful84, § 7.1]). Then by counting every com-
ponent of X ×Y |T | with its (positive) multiplicity of intersection (again in the sense of [Ful84,
§ 7.1]), we get a canonically defined effective cycle X ∩f T supported on it and representing
X ·Γf

(X × T ) in the sense of [Ful84, § 6.2]. But this is [X] ·f [T ] = f ![T ] as in [Ful84, Defi-

nition 8.1.2]. Its pushforward to X is f !(s|T )∗[T ] = [X] ·f (s|T )∗[T ] by the projection formula
[Ful84, Proposition 8.1.1(c)].

Since Y is nonsingular, by [Ful84, Example 15.2.16(b)] there exists a Chern polynomial with
Q-coefficients such that P ∩ [Y ] = (s|T )∗[T ]. Then by [Ful84, Example 8.1.6 and Corollary 8.1.3],

[X] ·f (P ∩ [Y ]) = (f∗P ∩ [X]) ·f [Y ] = f∗P ∩ [X] ∈ A∗(X) .

But the numerical class of f∗P ∩ [X] is by definition f∗(s|T )∗[T ]∩ [X] ∈ N∗(X). The pushforward
to |T | is analogous, and the pushforward to Y is computed by the projection formula.
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When X is also smooth and T = Uw, it is enough to observe that X ·Γf
(X × Uw) =

[U ′w], which is true because Γf is a regular embedding. (See also the proof of [Ful84, Corolla-
ry 8.1.3]).

Corollary 5.5. Let π : X → Y be a morphism of projective varieties with Y smooth. Let
p : U →W be a strongly bpf family on Y of class α, with flat map s : U → Y . Suppose that V is
a cycle on X whose support is contracted by π. Then the class [V ] ·π∗α is represented by a cycle
on X whose support is contracted by π.

Proof. For w general, we may suppose that for any component Vi of V the set-theoretic intersec-
tion of π(Vi) with Supp(Uw) has the expected dimension. Consider the intersection cycle Vi∩f Uw
as defined in Lemma 5.4. Since each component of this cycle has the expected codimension, the
map from any component of this set to f(Vi) ∩ Supp(Uw) has positive-dimensional fibers.

Corollary 5.6. If X is a smooth projective variety, then the intersection of basepoint-free
classes on X is basepoint free.

Proof. Suppose that p : U → W and p′ : U ′ → W ′ are strongly bpf families on X. Consider the
diagram

U ×X U ′ −−−−→ Uy ys
U ′ −−−−→

s′
X

The composed map U ×X U ′ → X is flat, and the family p× p′ : U ′ ×X U →W ×W ′ represents
the intersection class by Lemma 5.4.

Lemma 5.7. Let X be a smooth projective variety. Then PLk(X) ⊆ BPFk(X) ⊆ Upsefk(X).

Proof. To see the first inclusion, by Lemma 5.4 it suffices to show Eff
k
(G) = BPFk(G) for a

Grassmannian G. But we can construct flat families representing elements Eff
k
(G) using the

group action. More precisely, suppose that Z is a Schubert variety on G(V ). Set W = PGL(V ),
and consider the family U ⊂ W × G(V ) whose fiber over g ∈ W is gZ. Then the projection
s : U → G(V ) is flat since it is PGL(V )-equivariant, showing that [Z] ∈ BPF(G(V )).

By Lemma 4.8, we may check containment in Upsef after pulling back via a dominant map.
In particular, by passing to an alteration to verify the Upsef property, it suffices to consider
pullbacks to smooth varieties. The second inclusion then follows from Lemma 5.4.

Corollary 5.8. Let X be a smooth projective variety. Then BPFk(X) is a full-dimensional
salient cone.

Example 5.9. The proof of Lemma 5.7 shows BPFk(H) = Upsefk(H) = Eff
k
(H) ⊂ Nefk(X) for

any smooth projective homogeneous space H. When H is one of the examples of abelian varieties
of [DELV11], the last inclusion may be strict.

Example 5.10. Let E be a vector bundle over P1, and let X = P(E). Then BPFk(X) = Nefk(X)
for all k.

We follow the notation of Example 4.14 and do induction on the number of semistable factors
of E. When E is semistable, X is isomorphic to a product. The generators (ξ−µ1f)k and ξk−1f
of Nefk(X) are both pliant, and we conclude by Lemma 5.7.
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For general E, the same argument as in the semistable case works as long as k 6 r =
rankQ1. It is enough to check that ξk + ν(k)ξk−1f is strongly basepoint free for all k > r. Let
Z := BlP(Q1)P(E) with blow-down map σ : Z → X and bundle map η : Z → P(E1). On Z we
have

σ∗
(
ξk + ν(k)ξk−1f

)
= σ∗(ξ − µ1f)r · η∗

(
ξk−r1 + ν

(k−r)
1 ξk−r−1

1 f1

)
.

Since we work over P1, the varieties X and Z are toric. Since the class ξ − µ1f is nef, it is also

semiample and in particular strongly basepoint free. The class ξk−r1 + ν
(k−r)
1 ξk−r−1

1 f1 is strongly
basepoint free by induction. From (the proofs of) Lemma 5.4 and Corollary 5.6, it follows that
σ∗(ξk + ν(k)ξk−1f) is strongly basepoint free.

Again because we work over P1, the bundle E is split. Then we also have an inclusion P(E1) ⊂
P(E) = X such that P(E1) ∩ P(Q1) = ∅ in X and [P(E1)] = (ξ − µ1f)r. Thus Z = BlP(Q1)P(E)
contains the copy σ−1P(E1) of P(E1) that does not meet the exceptional locus of σ, and with
numerical class σ∗(ξ − µ1f)r.

Furthermore, σ−1P(E1) is a complete intersection of r sections of ξ − µ1f corresponding to
a basis of the trivial component of E⊗OP1(−µ1). Let p denote the corresponding basepoint-free
family. It follows that the general element of the basepoint-free family constructed by intersecting
the pullback of p and the pullback basepoint-free family from P(E1) does not meet the exceptional
locus of σ. Up to shrinking the base, we see this as a family of cycles on X representing the class
ξk + ν(k)ξk−1f , which is then also strongly basepoint free.

The following example shows that the basepoint-free cone of curves coincides with the nef cone
for any smooth Mori dream space X. The curves we construct come from small Q-factorializations
of X which extract the Zariski decomposition of divisors on X.

Example 5.11. Let X be a smooth Mori dream space of dimension n (for example, a toric variety).
We prove BPFn−1(X) = Nefn−1(X).

Recall that by [BDPP13] the cone Nefn−1(X) is generated by the positive products 〈Dn−1〉
as D varies over all movable divisors (where 〈−〉 denotes the positive product). We can turn
this into a geometric construction as follows. Fix an ample divisor A on X. Let α be a class on
an extremal ray of Nefn−1(X), and let D be a divisor on the boundary of the movable cone of
divisors such that the rays spanned by 〈(D+ εA)n−1〉 approach the ray spanned by α. Then the
same is true if we replace A by any big divisor B using the continuity of the positive product.

There is a small birational contraction φD : X 99K X ′ such that D′ := φD∗D is a semiample
divisor; for simplicity, we rescale D so that we may suppose that D′ is basepoint free. Let W be
a common smooth resolution of X and X ′ with birational maps ψ : W → X and ψ′ : W → X ′.
Fix an ample divisor A′ on X ′, and let B be the strict transform class on X. Note that for
sufficiently small δ > 0, the variety X ′ is the minimal model for D + δB and D′ + δA′ is the
pushforward of this class. Then for sufficiently small δ, we have〈

(D + δB)n−1
〉

= ψ∗
〈
ψ∗(D + δB)n−1

〉
= ψ∗

〈
ψ′∗(D′ + δA′)n−1

〉
= φ−1

D∗
〈
(D′ + δA′)n−1

〉
.

Define a flat family of curves pδ : C → W on X ′ by taking complete intersections of n − 1
general elements of a very ample linear series which is a multiple of D′ + δA′ (for sufficiently
small rational δ). Let U ⊂ X ′ be the open subset on which φD is an isomorphism. Note that
the complement of U has codimension two. Since C defines a flat family of curves, the preimage
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of U has complement of codimension two in C. Since pδ has fiber-dimension one, this set does
not dominate the base W . Thus by removing a proper closed subset from W , we obtain a family
of curves p0

δ : C0 →W 0 whose map to X ′ is flat and factors through U .

The strict transform of a general member of this family to X defines a basepoint-free curve
class. Since this strict transform avoids the exceptional locus of the map φD, we see that the
limit of the rays spanned by the fibers of p0

δ as δ goes to 0 is the same as α, finishing the proof.

Finally, we recall the example of [BH15] which proves that universally pseudoeffective classes
need not be basepoint free.

Example 5.12. Let X be a smooth projective variety, and suppose that some multiple of a class
α ∈ N2(X) is represented by an irreducible surface S. Then the Hodge index theorem shows that
the pairing

N1(X)×N1(X)→ R , (D1, D2) 7→ D1 ·D2 · α
must have at most one positive eigenvalue.

Using a combinatorial argument, [BH15, § 5] constructs a smooth toric fourfold X and a nef
surface class α satisfying the following properties:

(i) The class α generates an extremal ray of Nef2(X).

(ii) The signature of the pairing on N1(X)×N1(X) given by intersection against α has three
distinct positive eigenvalues.

We show that α is not a limit of sums of classes which are nef and represent irreducible R-cycles.
In particular, α 6∈ BPF2(X), but by Example 4.5 we have α ∈ Upsef2(X). We will need the
following useful cone lemma.

Lemma 5.13. Let C be a closed full-dimensional salient convex cone which is the closure of
a cone generated by a set {ci} inside a finite-dimensional vector space. Let α ∈ C span an
extremal ray. Then there exist a subsequence {cj} of {ci} and positive real numbers rj such that
α = limj→∞ rjcj .

Suppose that α is in the closure of the cone generated by nef irreducible cycles. By property (i)
above, α spans an extremal ray of this cone. Applying Lemma 5.13 to this cone (considered as
a full-dimensional cone inside of the vector space it spans), we see that α is a limit of rescalings
of irreducible nef cycles, giving a contradiction to property (ii).

6. Questions

6.1 The pliant cone

We have defined the pliant cone in terms of monomials in Schur classes of globally generated
bundles on X. The motivation for using Schur classes is that with this definition it is easy to

see Eff
k
(G) = PLk(G) for any Grassmann variety G. This is used in the proof of Lemma 3.14,

where we say that since complete intersections are big, they are also in the interior of the pliant
cone on G.

Question 6.1. What happens if we change the definition of the pliant cone to include only
monomials in Chern classes, or only monomials in dual Segre classes of vector bundles?
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Example 6.2. Let X = G(2, 4), and let Q be the universal quotient bundle of rank two on X.

Then Eff
2
(X) is generated by the Schur classes s(1,1)(Q) = c2

1(Q) − c2(Q) and s(2)(Q) = c2(Q)
of Q. Note that s(1,1)(Q) = s2(Q∨); that is, s(1,1)(Q) equals the second dual Segre class.

If we use only monomials in Chern classes of Q, then we get the smaller cone generated
by c2

1(Q) and c2(Q). While if we use only monomials in dual Segre classes of Q, we obtain the
“complementary” cone generated by s2(Q∨) = c2

1(Q)− c2(Q) and s2
1(Q∨) = c2

1(Q).

However, if we also use R, the dual of the universal subbundle of rank two, so that we have
an exact sequence 0 → R∨ → O⊕4

X → Q → 0 and R is globally generated, then c1(R) = c1(Q)

and c2(R) = s2(Q∨). Therefore Eff
2
(X) is generated by the Chern monomials c2(R) and c2(Q),

or by the dual Segre monomials s2(Q∨) and s2(R∨).

It is interesting to see if in higher codimension one can express the classes of Schubert cycles
on Grassmannians as Chern monomials and as Segre monomials of globally generated bundles
obtained by tensoring Schur functors Sλ(R)⊗ Sµ(Q).

Example 3.13 describes the pliant cone for products of Grassmann varieties. The next example
to consider is homogeneous varieties.

Question 6.3. Let f : X → H be a morphism to a projective nonsingular homogeneous variety

(for example, a partial flag variety or an abelian variety), and let α ∈ Eff
k
(H). Is it true that

f∗α ∈ PLk(X)? Equivalently, is it true that Eff
k
(H) = PLk(H)?

A property of nefness is that it can be checked on dominant covers. It is not clear that the
same is true for pliancy.

Question 6.4. LetX be a (smooth) (complex) projective variety, and let π : Y → X be a dominant
projective morphism. Assume π∗α ∈ PLk(Y ). Then do we have α ∈ PLk(X)?

By analogy with the other notions of positivity, we ask the following.

Question 6.5. Let π : Y → X be a flat morphism from a projective variety Y to a smooth
projective variety X of relative dimension d. Suppose α ∈ PLk+d(Y ). Then do we have π∗α ∈
PLk(X)?

6.2 Chern classes for ample vector bundles

Another way to modify the definition of the pliant cone is to allow arbitrary nef vector bundles
instead of just globally generated ones. However, it is not clear if the resulting cone consists of
effective classes. The following question is also posed in [FL83] and [DELV11, § 6].

Question 6.6. Let E be a nef (or ample) vector bundle on a projective variety, and let λ be
a partition. Is the Schur class sλ(E) ∩ [X] pseudoeffective? Is this true for Chern classes?

Since nefness is preserved by pullback, this is the same as asking if sλ(E) is universally
pseudoeffective. The answer is “yes” for dual Segre classes sk(E

∨) := s(1r)(E), that is, when λ
is the partition (1, . . . , 1) of k. The answer is also known to be “yes” for the Chern classes ck(E)
when k ∈ {1, dimX−1,dimX}. Quite generally it is a consequence of a result of Bloch–Gieseker
[Laz04, Theorem 8.2.1] that sλ(E) belongs to Nefk(X) for any partition λ of length k. The first
unknown case is c2 for nef bundles on fourfolds. The issue here is that if, say, E is ample, then
Symm(E) (or in characteristic zero also E⊗m) is globally generated for large m, but c2(E) is
not a scalar multiple of the pliant classes c2(Symm(E)) or c2(E⊗m). It is also true that if E is
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p-ample in characteristic p > 0 (cf. [Gie71]), then ck(E) is pseudoeffective for all k, since ck(E)
is proportional to ck(E

pe), and the iterated Frobenius pullback Ep
e

is globally generated for
large e. Gieseker [Gie71] constructs an example of an ample bundle on P2 that is not p-ample.

Question 6.7. Let E be a nef vector bundle on X (that is, OP(E)(1) is a nef line bundle). Is it
true that sλ(E) is pliant?

Another question related to Question 6.6 is the following.

Question 6.8. Let X be a smooth projective variety, and let Y be a closed subvariety with nef
(or ample) normal bundle. Is [Y ] universally pseudoeffective?

If f : Z → X is a morphism of projective varieties, then f∗[Y ] = p1∗(Γf · [Z × Y ]), where
p1 : Z×X → Z is the first projection and Γf ⊂ Z×X is the graph of f . Given that NZ×Y Z×X =
(p1|Y )∗NYX is still nef, the universal pseudoeffectivity of Chern classes of nef bundles would
imply the pseudoeffectivity of Γf · [Z × Y ] in view of [Ful84, Proposition 6.1(b)], hence also that
of f∗[Y ]. It is known [Laz04, Corollary 8.4.3] that [Y ] is nef.

If Schur polynomials in Chern classes of nef bundles are not universally pseudoeffective, then
it is interesting to ask what cone they generate. In particular, it would be very interesting if they
generate the entire nef cone. The following question is a step in this direction.

Question 6.9. Let E and F be nef vector bundles on X, and let λ and µ be partitions. Is
sλ(E) · sµ(F ) nef?

A positive answer, applied to the examples of [DELV11], would show that Nefk(X) is not
the closure of the cone generated by classes sλ(E) with E nef and λ a partition of k. A negative
answer would show that the answer to Question 6.6 is also “no”.

6.3 The universally pseudoeffective cone

By considering all maps of projective varieties π : Y → X in the definition of universal pseudoef-
fectivity, we guaranteed that this notion is preserved by pullback and in particular stable under
products, thus removing some of the pathologies of nefness exhibited in [DELV11].

Question 6.10. Let α ∈ Nk(X) be such that we have ı∗α ∈ Eff
k
(Y ) for all embeddings of closed

subvarieties ı : Y ↪→ X. Then do we have α ∈ Upsefk(X)?

A slightly weaker version of this also appears in [DELV11].

Question 6.11 ([DELV11]). Let X be a smooth (complex) projective variety. Let α ∈ Nk(X)
be such that α · [Y ] is pseudoeffective for any closed subvariety Y ⊂ X. It is true that we have
α ∈ Upsefk(X)?

This is weaker than the previous question because the pseudoeffectivity of α · [Y ] = ı∗ı
∗α

is only implied by that of ı∗α. We expect that the answer to the next question is “no”, but
a counterexample is missing.

Question 6.12. Let X be a (smooth) (complex) projective variety. Is Upsefk(X) = Eff
k
(X) ∩

Nefk(X)?

June Huh asked the authors whether a stronger statement is true.
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Question 6.13. Let X be a smooth complex projective variety. Is Eff
k
(X)∩Nefk(X) the closure

of the cone generated by classes α such that for each subscheme T ⊂ X there exists a Q-cycle Z
whose support meets T properly and with [Z] = α?

The smallest dimension where a counterexample might exist is n = 4 and k = 2. It is also
expected that a counterexample should exist in any birational equivalence class of sufficiently
large dimension.

6.4 Curves

Curves provide an important test case for understanding the various positive cones. Let X be
a smooth projective variety of dimension n, and define the cone CIn−1(X) ⊂ Nn−1(X) to be the
cone generated by complete intersections of nef divisors. Note that CIn−1(X) is a positive cone
of dual classes: it is full-dimensional, salient, nef, and contains complete intersections of ample
divisors in its interior.

We have Nefn−1(X) = Upsefn−1(X) and

CIn−1(X) ⊂ PLn−1(X) ⊂ BPFn−1(X) ⊂ Nefn−1(X) .

The question is whether any other equalities hold. Example 3.11 shows that there can be a strict
containment CIn−1(X) ( PLn−1(X), and Example 5.11 gives many examples where CIn−1(X) (
BPFn−1(X). However, one wonders if for example the (n−1)-dual Segre class of an ample vector
bundle (corresponding to the partition λ = (1n−1)) is contained in CIn−1(X).

Recall that by the main result of [BDPP13], the nef cone of curves is generated by pushfor-
wards of complete intersections of ample divisors on birational models. It is sometimes incon-
venient that this cone does not coincide with CIn−1(X), and it would be very interesting if the
complete intersection cone could be recovered naturally from a different perspective.

6.5 Other positive cones

There are many other ways to construct positive cones. We have already discussed several varia-
tions of the definition of the pliant cone: one can use a smaller set of classes (such as dual Segre
classes; see Section 6.1) or a larger set of bundles (such as all ample bundles; see Section 6.2). It
would be very interesting to have a better understanding of the resulting cones.

One can also define many minor variations of the basepoint-free cone. For example, one
can define BPFk(X) by taking the cone generated by classes of k-dimensional components of
arbitrary flat families of subschemes. The resulting cone also contains the pliant cone, but it is
not clear how it differs otherwise.

Finally, there are many other notions of positivity in the literature which may be suitable for
constructing cones. First, [Har70] defines an ample subvariety of a smooth variety X to be an
l.c.i. subscheme with ample normal bundle. Unfortunately, it is not clear that the classes of such
subvarieties span Nk(X); indeed, this is a very subtle question even just for l.c.i. subvarieties.
An alternative is proposed by [Ott12]; it defines positivity by the q-ampleness of the exceptional
divisor on a blow-up. Ottem has communicated to us a sketch of the fact that the classes of such
subvarieties span a full-dimensional cone in Nk(X).

Alternatively, one can focus on the positivity of currents as discussed in [BDPP13]
and [DELV11]. Unfortunately, to relate the resulting cones with cycles in higher codimensions it
seems that one often must assume some version of the Hodge conjecture. Nevertheless, it would
be useful to see some different approaches to positivity from this perspective.
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