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On the h-principle and specialness for complex

projective manifolds

Frédéric Campana and Jörg Winkelmann

Abstract

We show that a complex projective manifold X which satisfies Gromov’s h-principle is
special in the sense of the first author’s paper “Orbifolds, Special Varieties, and Classi-
fication Theory” (Annals of the Institut Fourier, 2004), and raise some questions about
the reverse implication, the extension to the quasi-Kähler case, and the relationships of
these properties to the Oka property. The guiding principle is that the existence of many
Stein manifolds with degenerate Kobayashi pseudometric gives strong obstructions to
the complex hyperbolicity of projective manifolds satisfying the h-principle.

1. Introduction

We start by recalling the notion of h-principle.

Definition 1.1 (Gromov). A complex space X is said to satisfy the h-principle (a property
abbreviated as hP (X)) if for every Stein manifold S and every continuous map f : S → X there
exists a holomorphic map F : S → X which is homotopic to f .

The origin of this notion lies in the work of Grauert and Oka. Grauert showed that for any
continuous section s of a holomorphic principal bundle with fibre a complex Lie group G over
a Stein manifold S, there exists a holomorphic section homotopic to s. The classification of
continuous complex thus reduces to that of holomorphic vector bundles. This was established
by Oka for complex line bundles. Considering products G× S, Grauert’s result also shows that
complex Lie groups satisfy the h-principle. This has been extended by Gromov to elliptic (and
later by Forstneric to subelliptic) manifolds. These include homogeneous complex manifolds
(for example Pn, Grassmannians, and tori) and complements Cn \ A, where A is an algebraic
subvariety of codimension at least two. Subelliptic manifolds contain as many entire curves
as possible, and therefore are opposite to Brody hyperbolic complex manifolds. Since generic
hyperbolicity is conjectured (and sometimes known) to coincide with general type in algebraic
geometry, it is thus natural to assume that for projective varieties, satisfying the h-principle is
related to being special as introduced in [Cam04], since specialness is conjectured there to be
equivalent to C-connectedness. In this article we investigate these relationships with particular
emphasis on projective manifolds.
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The main result is as follows.

Main Theorem. Let X be a complex projective manifold satisfying the h-principle. Then

(i) the manifold X is special;

(ii) every holomorphic map from X to a Brody hyperbolic Kähler manifold is constant.

For an arbitrary complex manifold we prove the statements below.

Theorem 1.2. Let X be a complex manifold satisfying the h-principle. Then

(i) the manifold X is homotopically C-connected;

(ii) if X is an algebraic variety, its quasi-Albanese map is dominant.

Let us now recall and introduce some notation.

Definition 1.3. We say that a complex space X is

(i) C-connected if any two points of X can be connected by a chain of entire curves, that
is, holomorphic maps from C to X (this property is preserved by passing to unramified
coverings and images by holomorphic maps; if X is smooth, this property is also preserved
under proper modifications);

(ii) Brody-hyperbolic if any holomorphic map h : C→ X is constant;

(iii) homotopically C-connected if every holomorphic map f ′ → Y from any unramified covering
X ′ of X to a Brody-hyperbolic complex space Y induces maps πk(f) : πk(X

′) → πk(Y )
between the respective homotopy groups which are zero for every k > 0.

Observe that any holomorphic map f : X → Y between complex spaces is constant if X is
C-connected and Y is Brody-hyperbolic. Thus C-connectedness implies weak C-connectedness.
Also, any contractible X is homotopically C-connected.

There exist projective smooth threefolds which are homotopically C-connected, but not C-
connected. An example can be found in [CW09].

It is easy to verify that every subelliptic manifold X is C-connected. Conversely, all known ex-
amples of connected complex manifolds satisfying the h-principle admit a holomorphic homotopy
equivalence to a subelliptic complex space.

This suggests the following question.

Question 1.4. Let X be a complex connected manifold. If X satisfies the h-principle, does this
imply that there exists a holomorphic homotopy equivalence between X and a C-connected
complex space Z?

Since a compact manifold cannot be homotopic to a proper analytic subset for compact
manifolds, this question may be reformulated as follows.

Question 1.5. Let X be a compact complex connected manifold. If X satisfies the h-principle,
does this imply that X is C-connected?

Combining Theorem 6.1 with the abelianity conjecture of [Cam04], we obtain the following
purely topological conjectural obstruction to the h-principle.

Conjecture 1.6. Every projective manifold satisfying the h-principle has an almost abelian
fundamental group.
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Our proof of the implication “h-principle ⇒ special” depends on Jouanoulou’s trick, which
is not available for non-algebraic manifolds.

Still, we believe that the statement should also hold in the Kähler case (for which specialness
is defined as in Definition 2.1 below).

Conjecture 1.7. Every compact Kähler manifold satisfying the h-principle is special.

This implication might also hold for quasi-projective manifolds, provided their topology is
sufficiently rich (non-contractibility being obviously a minimal requirement). Particular cases
involving the quasi-Albanese map (dominance and connectedness) have been established, using
[NWY07]. See Theorems 7.1 and 7.4 in Section 7.

The converse direction (“special⇒ h-principle”) is almost completely open. Based on classifi-
cation and known results (see [FL11] for a survey), the implication does hold for curves as well as
surfaces which are rational, ruled over an elliptic curve, or blow-ups of either abelian or bielliptic
surfaces. The question remains open for all other special surfaces, and thus in particular for K3,
or even Kummer, surfaces. In higher dimensions even less is known; for example, the case of P3

blown-up in a smooth curve of degree three or more is far from being understood.

Still, with a sufficient amount of optimism one might hope for a positive answer to the
following question.

Question 1.8. Let X be a smooth (or at least normal) quasi-projective variety. Assume that X
is either special or C-connected. Does it follow that X satisfies the h-principle? In that case, is
it Oka (see Section 9)?

We present some examples showing that there is no positive answer for arbitrary (that is,
non-normal, non-Kähler, or non-algebraic varieties). There are examples of the following types
which do not satisfy the h-principle despite being C-connected, or being special in the sense of
Definition 2.1:

(i) a non-normal projective curve which is special and C-connected;

(ii) a non-compact and non-algebraic complex manifold which is C-connected;

(iii) a compact non-Kähler surface which is special.

See Section 9 for more details.

Remark 1.9. (1) Any contractible complex space trivially satisfies the h-principle. The notion of
h-principle is thus of interest only for non-contractible manifolds X. Since positive-dimensional
compact manifolds are never contractible, this is not relevant for projective manifolds. However,
there do exist examples of contractible affine varieties of log general type ([Ram71, Miy01])
indicating that for non-compact varieties an equivalence “h-principe ⇔ special” can hold only if
the topology of the variety is sufficiently non-trivial.

(2) Let u′ : X ′ → X be an unramified covering, with X and X ′ smooth and connected. Then
hP (X) implies hP (X ′) (see Lemma 6.6), but the converse is not true. To see this, consider a
compact Brody-hyperbolic manifold X which is an Eilenberg–MacLane K(π, 1)-space, but is not
contractible (for example, a projective curve of genus g > 2 or a compact ball quotient). Then
its universal cover X̃ is contractible and therefore satisfies the h-principle. On the other hand,
being Brody-hyperbolic and non-contractible, X itself cannot satisfy the h-principle.

(3) For any given X and f , after possibly replacing the initial complex structure J0 of S by
another one, J1 = J1(f), homotopic to J0, the existence of F as in Definition 1.1 is always
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true if dimC(S) > 3. If dimC(S) = 2, one must first compose with an orientation preserving
homeomorphism of S; see [For11, Section 9.10].

2. Specialness

2.1 Specialness and the core map

We refer to [Cam04] for more details on this notion, to which the present section is an extremely
sketchy introduction. Roughly speaking, special manifolds are higher-dimensional generalisations
of rational and elliptic curves, thus opposite to manifolds of general type in the sense that they,
and their finite étale covers, do not admit non-degenerate meromorphic maps to orbifolds of
general type. Many qualitative properties of rational or elliptic curves extend or are expected to
extend to special manifolds, although they are much more general (see Remark 2.2(7) below).

Definition 2.1. Let X be a connected compact Kähler manifold. Let p > 0, and let L ⊂ Ωp
X be

a saturated rank one coherent subsheaf. We define

κsat(X,L) := lim sup
m>0

{
log(h0(X,mL))

log(m)

}
,

where H0(X,mL) ⊂ H0(X, (Ωp
X)⊗m) is the subspace of sections taking values in L⊗mx ⊂ (Ωp

X)⊗mx
at the generic point x of X.

By a generalisation of Castelnuovo–De Franchis due to Bogomolov (see [Bog79]), we have
κsat(X,L) 6 p, with equality if and only if L = f∗(KY ) at the generic point of X for some
meromorphic dominant map f : X 99K Y with Y a compact p-dimensional manifold.

We say that L is a Bogomolov sheaf on X if κsat(X,L) = p > 0, and that X is special if it
has no Bogomolov sheaf.

Remark 2.2. (1) A special manifold has no dominant meromorphic map f : X 99K Y onto a
positive-dimensional manifold Y of general type, since L := f∗(KY )sat would provide a Bogo-
molov sheaf on X. In particular, X is not of general type (that is, κ(X) := κ(X,KX) < dim(X)).

(2) Specialness is a bimeromorphic property. If X is special, so is any Y dominated by X (that
is, for which a dominant rational map f : X 99K Y exists).

(3) If X is special, and if f : X ′ → X is unramified finite, then X ′ is also special. The proof (see
[Cam04]) is surprisingly difficult. It shows that specialness implies weak specialness, defined as
follows: X is weakly special if none of its unramified covers has a dominant meromorphic map
f : X 99K Y onto a positive-dimensional manifold Y of general type.

(4) The notion of weak specialness looks natural, and is easy to define. Unfortunately, it does not
lead to any meaningful structure result such as the one given by the core map, stated below. On
the other hand, it is also too weak to characterise the vanishing of the Kobayashi pseudometric
(see item (10) below).

(5) Geometrically speaking, a manifold X is special if and only if it has no dominant rational
map onto an orbifold pair (Y,∆) of general type. We do not define these concepts here. See
[Cam04, Cam11a] for details.

(6) Compact Kähler manifolds which are either rationally connected or have κ = 0 are special
(see [Cam04]).

(7) For any n > 0 and any κ ∈ {−∞, 0, 1, . . . , (n − 1)}, there exist special manifolds with
dim(X) = n and κ(X) = κ. For details, see [Cam04, Section 6.5].
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(8) For curves, special is equivalent to weakly special, and also to non-hyperbolic. For surfaces,
special is equivalent to weakly special, and also to κ < 2 together with π1(X) almost abelian.
Thus special surfaces are exactly the ones with

(i) κ = −∞ and q 6 1; or
(ii) κ = 0; or

(iii) κ = 1 and q(X ′) 6 1 for any finite étale cover X ′ of X.

(9) Another quite different characterisation of compact Kähler special surfaces X is as follows:
X is special if and only if it is C2-dominable (with the possible exception of non-elliptic K3
surfaces, which are special, but not known to be C2-dominable). One direction is essentially due
to [BL00].

(10) For n > 3 there exist n-dimensional projective manifolds X which are weakly special,
but not special (see [BT04]), and no simple characterisation of specialness depending only on κ
and π1 exists. Moreover, there are examples of weakly special varieties for which the Kobayashi
pseudometric does not vanish identically (see [CP07, CW09]).

The central results concerning specialness, which motivated its introduction, are the following
two structure theorems (see [Cam04, Cam11a] for definitions and details).

Theorem 2.3. For any compact Kähler manifold X, there exists a unique almost holomorphic1

meromorphic map with connected fibres cX : X 99K C(X) such that:

(i) its general fibre is special; and

(ii) its orbifold base (C(X),∆cX ) is of general type (and a point exactly when X is special).

The map cX is called the core map of X. It functorially splits X into its parts of opposite
geometries (special vs. general type).

Conjecture 2.4. For any X as above, cX = (J ◦ r)n, where n := dim(X). Here J and r
are orbifold versions of the Moishezon fibration and of the rational quotient, respectively. In
particular, special manifolds are then towers of fibrations with general fibres having either κ = 0
or κ+ = −∞.

Theorem 2.5. The preceding conjecture holds if the orbifold version of Iitaka’s Cn,m-conjecture
is true.

Remark 2.6. The two theorems above extend naturally to the full orbifold category.

The last (conditional) decomposition naturally leads (see [Cam11a]) to the following conjec-
tures.

Conjecture 2.7. (i) If X is special, π1(X) is almost abelian.

(ii) The manifold X is special if and only if its Kobayashi pseudometric vanishes identically.

(iii) The manifold X is special if and only if X is C-connected.

2.2 Orbifold Kobayashi–Ochiai and factorisation through the core map

The following orbifold version of the Kobayashi–Ochiai extension theorem will be crucial in the
proof of our main result.

Theorem 2.8 ([Cam04, Theorem 8.2]). Let X be a compact Kähler manifold, let cX : X 99K
C(X) be its core map2, let M ⊂M be a non-empty Zariski open subset of the connected complex

1This means that its generic fibre does not meet its indeterminacy locus.
2Or, more generally, any map f : X → Y of general type in the sense of [Cam04].
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manifold M , and let ϕ : M99KX be a meromorphic map such that g := cX ◦ ϕ : M99KC(X) is
non-degenerate (that is, submersive at some point of M). Then g extends meromorphically to M .

Corollary 2.9. Let X be a compact Kähler manifold. If there exists a non-degenerate mero-
morphic map ϕ : Cn99KX, then X is special.

This is an indication in the direction of Conjecture 2.7(ii).

Proof. By Theorem 2.8 applied to M := Cn ⊂ M := Pn, the existence of such a map ϕ implies
the existence of a surjective meromorphic map ϕ : Pn99KX. This contradicts Theorem 2.3(ii)
unless C(X) is a point, that is, unless X is special.

Theorem 2.10. Let X,Z be complex projective manifolds, and let M be a smooth algebraic
variety admitting a surjective algebraic morphism τ : M → Z whose fibres are all affine spaces
(biholomorphic to Ck). Let G : M 99K X be a meromorphic map such that g := cX ◦ G : M →
C(X) is non-degenerate. Then g also factors through τ and the core map cZ : Z 99K C(Z); that
is, g = ϕ ◦ cZ ◦ τ for some ϕ : C(Z) 99K C(X).

Proof. The variety M can be compactified to a compact smooth projective variety M by adding
a hypersurface D with normal crossings. By Theorem 2.8, the map g extends algebraically to
g : M → C(X). Denote by τ : M → Z the extension of τ to M .

The functoriality of the core gives two maps, cτ : C(M) → C(Z) and cG : C(M) → C(X).
We have g = cg ◦ cM . The fibres of cτ are rationally connected, since those of τ are. Thus cτ is
an isomorphism by [Cam04, Theorem 3.26]. The composed map ϕ := cg ◦ c−1τ : C(Z) → C(X)
provides the desired factorisation, since g = cg ◦ cM = cg ◦ c−1τ ◦ cZ ◦ τ = ϕ ◦ cZ ◦ τ .

Remark 2.11. The conclusion still holds if we replace cX by any fibration with general type
orbifold base and only assume that the fibres of τ are rationally connected manifolds and that all
components of D are mapped surjectively onto Z by τ . This follows from [GHS03] and [Cam04,
Theorem 3.26].

3. Jouanoulou’s trick

Proposition 3.1. Let X be a projective manifold. Then there exist a smooth affine complex
variety M and a surjective morphism τ : M → X such that

(i) the morphism τ : M → X is a homotopy equivalence;

(ii) every fibre of τ is isomorphic to some Cn; in particular, every fibre has vanishing Kobayashi
pseudodistance;

(iii) the morphism τ is a locally holomorphically trivial fibre bundle;

(iv) the morphism τ admits a real-analytic section.

Remark 3.2. This is known as Jouanoulou’s trick (see [Jou73]). This construction was introduced
in Oka’s theory in [Lár05], where the class G of good manifolds is introduced. The latter are
defined as manifolds with a Stein affine bundle over some quasi-projective manifold, with fibre
Cn for some n. This class contains Stein manifolds, quasi-projective manifolds, and is stable by
various usual geometric operations.

Proof. We first treat the case of X := PN , denoting by PN∗ its dual projective space. Let
D ⊂ P := PN × PN∗ be the divisor consisting of pairs (x,H) such that x ∈ H. In other words,
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it is the incidence graph of the universal family of hyperplanes of PN . This divisor D is ample,
since it intersects positively the two family of lines contained in the fibres of both projections
of P . Let V be its complement in P . The projection τP onto the first factor of P , restricted
to V , satisfies the requirements for X := PN . A real-analytic section is obtained by choosing a
hermitian metric on Cn+1 and sending a complex line to its orthogonal hyperplane.

In the general case, first embed X in some PN . Then, let M = τ−1P (X) and denote by τ the
restriction of τP to M . Now M is a closed algebraic subset of V and therefore likewise affine.
Everything then restricts from PN to X.

Note that when X = P1, we recover the two-dimensional affine quadric as M (and indeed, P1

is diffeomorphic to S2).

If X is a projective curve, we may also obtain a bundle M → X with the desired properties
in a different way. Let Q2 = P1 × P1 −D, where D is the diagonal. Taking the first projection,
we get an affine bundle Q2 → P1 with fibre C over P1, which is an affine variety. Now we choose
a finite morphism f from X to P1 and define M → X via base change.

Question 3.3. Given a complex manifold Z, do there exist a Stein manifold S and a holomorphic
map f : S → Z whose fibres are isomorphic to Cn? Is this true at least when Z is compact
Kähler?

4. Opposite complex structures and associated cohomological integrals

4.1 Inverse images of forms under meromorphic maps

Lemma 4.1. Let f : X99KY be a dominant meromorphic map between compact complex man-
ifolds, where dim(X) = n, and let I(f) ⊂ X be the indeterminacy set. For every c ∈ Hk,k(Y ),
there exists a unique cohomology class c′ ∈ Hk,k(X) such that

[α] · c′ =
∫
X\I(f)

α ∧ f∗β (4.1)

for every closed smooth (n− k, n− k)-form α on X and every closed smooth (k, k)-form β on Y
with [β] = c.

We define the inverse image of the De Rham cohomology class [c] with respect to the mero-
morphic map f by f∗([c]) := c′.

Proof. First, we observe that C ′ is unique, if it exists. Indeed, if two coholomology classes c and
c′ both satisfy (4.1), then (c′ − c′′) · a = 0 for all a ∈ Hk,k(X), implying that they are equal.

Next, let τ ′ : X ′ → X be a blow-up such that f lifts to a holomorphic map F : X ′ → Y . Using
Poincaré duality, F ∗β may be identified with a linear form on Hn−k,n−k(X ′). Restricting this
linear form to τ∗Hn−k,n−k(X) and again using Poincaré duality, we see that there is a unique
cohomology class c′ such that

[α] · c′ =
∫
X′
τ∗(α) ∧ F ∗β .

Furthermore, ∫
X′
τ∗(α) ∧ F ∗β =

∫
X\I(f)

α ∧ f∗β

since α ∧ f∗β is a top-degree form and both the exceptional divisor of the blow-up and the
indeterminacy set I(f) of the meromorphic f are sets of measure zero.
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From the characterization of this inverse image, it is clear that it is compatible with compo-
sition of dominant meromorphic maps. It is also clear that it specializes to the usual pull-back if
the meromorphic map under discussion happens to be holomorphic.

Caveat: This inverse image gives linear maps between the cohomology groups, but, as can be
seen by easy examples, it does not define a ring homomorphism between the cohomology rings.

4.2 Opposite complex structures

Given a complex manifold X, we define the opposite or conjugate complex manifold (also called
opposite complex structure on M) as follows. If X0 is the underlying real manifold and J is
the almost complex structure tensor of X, we define the opposite complex manifold to be X0

equipped with −J as complex structure tensor.

If (zi)i are local holomorphic coordinates on (X, J), their complex conjugates (zi)i provide
holomorphic coordinates for (X,−J). Thus the opposite almost complex structure −J is inte-
grable if and only if J is integrable.

Now, consider the complex projective space Pn(C). The map

[z0 : . . . : zn] 7→ [z0 : . . . : zn]

defines a biholomorphic map between Pn(C) and its opposite. As a consequence, we deduce that
if a complex manifold X is projective, so is its opposite X.

Now assume that X admits a Kähler form ω. Then the opposite complex manifold X is
again a Kähler manifold. Indeed, since ω(v, w) = g(Jv,w) defines the Kähler form on a complex
manifold admitting a Riemannian metric g for which J is an isometry, we see that X admits
a Kähler metric with −ω as Kähler form. The same property applies if g is, more generally, a
hermitian metric on X, and ω its associated Kähler form, defined from J and g by the formula
above.

Orientation. On a Kähler manifold X with Kähler form ω, the orientation is defined by
imposing that ωn be positively oriented, where n = dimC(X). This implies that if X is a Kähler
manifold and X is its opposite, the identity map of the underlying real manifold defines an
orientation-preserving diffeomorphism if n = dimC(X) is even and an orientation-reversing one
if n is odd.

4.3 Inverse image of forms and opposite complex structures

Lemma 4.2. Let X be an n-dimensional compact complex manifold, let X be its conjugate, and
let ζ : X → X be a smooth map homotopic to the identity map idX of X. Let c : X 99K Y be
a meromorphic map to a compact complex manifold Y . Let c ◦ ζ =: ϕ : X → Y . Let α be a
d-closed smooth differential form of degree 2d on Y , and let ωX be a smooth closed (1, 1)-form
on X. Then we have

I ′ =:

∫
X
ζ∗(ωn−dX ∧ c∗(α)) = (−1)d ·

∫
X
ωn−dX ∧ c∗(α) := (−1)d · I .

Proof. From the remarks above on the orientations of X and X, and the fact that id∗X(ωX) =
−ωX , we get I = (−1)n

∫
X ω

n−d
X ∧ c∗α.
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Since ζ is homotopic to idX , and c ◦ ζ = ϕ, we have

I = (−1)n
∫
X
ζ∗(ωn−dX ∧ c∗(α))

= (−1)n
∫
X
ζ∗(ωn−dX ) ∧ ϕ∗(α) = (−1)n

∫
X

(−1)n−dωn−d
X
∧ ϕ∗(α)

= (−1)d
∫
X
ωn−d
X
∧ ϕ∗(α) = (−1)d · I ′ .

Corollary 4.3. In the situation of Lemma 4.2, assume that X is compact Kähler, dim(Y ) > 0,
and that c : X 99K Y is non-degenerate (that is, dominant). Then ϕ := c ◦ ζ : X 99K Y is not
meromorphic.

Proof. Assume that ϕ is meromorphic. After suitable modifications, we may assume that Y
is Kähler. Let α := ωY be a Kähler form on Y . Choose d = 1 in Lemma 4.2. Then I :=∫
X ω

n−1
X ∧ c∗(ωY ) > 0. On the other hand, I ′ :=

∫
X ω

n−1
X
∧ ϕ∗(ωY ) > 0. From Lemma 4.2 we

deduce that I ′ = −I, giving a contradiction.

5. The h-principle and Brody-hyperbolicity

5.1 The h-principle and weak C-connectedness
Proposition 5.1. For any n > 0, the n-dimensional sphere Sn is homotopic to the (complex)
n-dimensional affine quadric Qn defined as follows:

Qn =

{
z = (z0, . . . , zn) ∈ Cn+1 :

∑
k

z2k = 1

}
.

Any two points of Qn are connected by an algebraic C∗, and so its Kobayashi pseudometric
vanishes identically.

Proof. Let q be the standard non-degenerate quadratic form in Rn+1. The set Qn(R) of real
points of Qn obviously coincides with Sn. An explicit real analytic isomorphism ρ : Qn → Nn

with the real normal (that is, orthogonal) bundle Nn := {(x, y) ∈ Sn×Rn+1 : q(x, y) = 0} of Sn

in Rn+1 is given by ρ(z = x+ i · y) := (λ(z) · x, λ · y), where λ(z)−1 :=
√

1 + q(y, y). The map ρ
is in particular a homotopy equivalence.

The last assertion is obvious, since any complex affine plane in Cn+1 intersects Qn either in
a conic with one or two points deleted, or in a two-dimensional complex affine space.

Question 5.2. Let Z be a connected differentiable manifold or a finite-dimensional CW -complex.
Do there exist topological obstructions to the existence of a Stein manifold S homotopic to Z
with vanishing Kobayashi pseudodistance?

In particular, does there exist a Stein manifold with vanishing Kobayashi pseudodistance (for
example, C-connected) and homotopic to a smooth connected projective curve of genus g > 2?

The main difficulty here is the condition on the Kobayashi pseudodistance. In fact, it is
not too hard to give an always positive answer if one drops the condition on the Kobayashi
pseudodistance.

Proposition 5.3. Let Z be a connected differentiable manifold or a finite-dimensional CW -
complex (as always with countable base of topology). Then there exists a Stein manifold M
homotopic to Z.
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Proof. This is a known consequence of the classical characterisation of Stein spaces by Grauert
(see [For11, Corollary 3.5.3] and the references there, for example). We give here a short proof,
using a deep theorem of Eliashberg.

If Z is a CW -complex, we embed Z into some Rn. Then Z is homotopic to some open
neighbourhood of Z in Rn. Since open subsets of Rn are manifolds, it thus suffices to deal with
the case where Z is a differentiable manifold. By taking a direct product with some Rk, we may
furthermore assume dimR(Z) > 2. Let M = T ∗Z

τ7→ Z denote the cotangent bundle. Then M
carries a symplectic structure in a natural way and therefore admits an almost complex structure.
Fixing a metric h on M = T ∗Z and choosing an exhaustive Morse function ρ on Z, we can use
p(v) = ρ(τ(v))+h(v) as an exhaustive Morse function on M . By construction, the critical points
of p are all in the zero-section of the cotangent bundle of Z and coincide with the critical points
of ρ. Therefore, there is no critical point of index greater than dim(Z) = 1

2 dim(M). By a result
of Eliashberg ([Eli90, Theorem 1.3.1]) it follows from the existence of such a Morse function and
the existence of an almost complex structure that M can be endowed with a structure of Stein
complex manifold. This completes the proof since M is obviously homotopy equivalent to Z.

Theorem 5.4. Let X be a complex space which satisfies the h-principle. Then X is homotopically
C-connected.

Proof. Assume that it is not. Since hP (X) is preserved by passing to unramified coverings (see
Lemma 6.6), we may assume that X ′ = X in Definition 1.3(iii). Then there exists a holomorphic
map g → Y with Y Brody-hyperbolic and such that there exists a non-zero induced homotopy
map πk(g) : πk(X) → πk(Y ) with k > 0. Let f : Sk → X be a continuous map defining a non-
trivial element g ◦ f : Sk → Y in πk(Y ), where Sk denotes the k-dimensional sphere. Let Qk be
the k-dimensional affine quadric, and let ϕ : Qk → Sk be a continuous map which is a homotopy
equivalence (its existence is due to Proposition 5.1). Then f ◦ ϕ : Qk → Y is a continuous map
which is not homotopic to a constant map. But due to the Brody-hyperbolicity of Y , every
holomorphic map from Qk to Y must be constant, contradicting our initial assumption.

Corollary 5.5. Let X be a Brody-hyperbolic complex manifold. Then X satisfies the h-
principle if and only if it is contractible.

Proof. The h-principle is trivially true if X is contractible. Conversely, assume that hP (X) holds.
Then X is homotopically C-connected by Theorem 5.4. Since in addition X is Brody-hyperbolic,
the identity map id: X → X must induce the zero morphism on every homotopy group πk(X).
Hence πk(X) = 0 for every k and consequently X is contractible.

Corollary 5.6. Let X be a positive-dimensional compact complex Brody-hyperbolic manifold.
Then X does not satisfy the h-principle.

Proof. Positive-dimensional compact manifolds are not contractible.

In particular, compact Riemann surfaces of genus g > 2 do not satisfy the h-principle.

Remark 5.7. There exist holomorphic maps f : X → Y with X and Y both smooth and projective
which are not homotopic to a constant map, since the homological degree is non-zero, although
πk(f) = 0 for all k > 0. For example, take a compact Riemann surface X of genus g > 2 and let
f be any non-constant map to P1 (example suggested by Bogomolov).

Therefore it is not clear whether being homotopically C-connected implies that every holo-
morphic map to a Brody-hyperbolic complex space must be homotopic to a constant map.

Theorem 5.8 solves this issue in the projective case, assuming the h-principle.
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5.2 Projective Brody-hyperbolic targets

Theorem 5.8. Let X be an irreducible projective complex space satisfying the h-principle. Let
f : X 99K Y be a meromorphic map to a Brody hyperbolic Kähler manifold Y . Assume either
that f is holomorphic, or that X is smooth. Then f is constant.

Proof. For every meromorphic map f : X 99K Y there exists a proper modification X̂ → X such
that f can be lifted to a holomorphic map defined on X̂. If X is smooth, this modification can be
obtained by blowing up smooth centers, implying that the fibres of X̂ → X are rational. Since
Y is Brody-hyperbolic, holomorphic maps from rational varieties to Y are constant. Hence X
being smooth implies that f is already holomorphic.

Thus in any case, we may assume that f is holomorphic. Assume by contradiction that f is
not constant. Because X is projective, we can find a compact complex curve C on X such that
f |C is non-constant.

Let C be C equipped with its conjugate (that is, opposite) complex structure, and let j : C →
C be the set-theoretic identity map. Let τ : E → C be an holomorphic affine C-bundle as given
by Proposition 3.1.

Since X is assumed to satisfy the h-principle, the continuous map j ◦ τ : E → X is homotopic
to a holomorphic map h : E → X. Because Y is Brody-hyperbolic, the map f ◦ h : E → Y is
constant along the fibres of τ . Hence f ◦ h is equal to ϕ ◦ τ for a holomorphic map ϕ : C → Y .
Observe that ϕ and f ◦ j : C → Y are homotopic to each other, but the first map is holomorphic
while the latter is antiholomorphic. This is a contradiction, because now

0 <

∫
C
ϕ∗ω =

∫
C

(f ◦ j)∗ω < 0

for any Kähler form ω on Y .

6. The h-principle implies specialness for projective manifolds

Theorem 6.1. Let X be a complex projective manifold. If X satisfies the h-principle, then X
is special in the sense of [Cam04].

Proof. Let X denote the underlying real manifold equipped with the opposite complex structure
and let ι : X → X denote the antiholomorphic diffeomorphism induced by the identity map of
this underlying real manifold. Recall that X is also projective. Hence we can find a Stein manifold
M together with a holomorphic fibre bundle τ : M → X with some Ck as fibre (Proposition 3.1).

Let σ : X → M denote a smooth (real-analytic, for example) section (whose existence is
guaranteed by Proposition 3.1). Since we have assumed that X satisfies the h-principle, there
must exist a holomorphic map h : M → X homotopic to ι ◦ τ . Define ζ := h ◦ σ : X → X. Thus
ζ is homotopic to idX .

Let c : X 99K C be the core map of X. We assume that X is not special, that is, that
d := dim(C) > 0. Let n = dim(X). We claim that c ◦ ζ : X 99K C is non-degenerate, and thus,
that so is g := c ◦ h : M → C(X).

Let indeed ωC and ωX be Kähler forms on C and on X, respectively, and let d := dim(C).
Then I :=

∫
X ω

n−d
X ∧c∗(ωdC) > 0. By Lemma 4.2, we have I ′ :=

∫
X ζ
∗(ωn−dX ∧c∗(ωdC)) = (−1)d ·I 6=

0. This implies (c ◦ ζ)∗(ωdC) 6= 0, and thus that c ◦ ζ is not of measure zero. By Sard’s theorem,
this implies that c ◦ ζ is non-degenerate, and therefore so is c ◦ h.

We consider the meromorphic map c ◦ h := g : M99KC. By Theorem 2.10, it follows that
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we obtain an induced meromorphic map ϕ : X99KC such that ϕ ◦ τ = g, and thus such that
ϕ = ϕ ◦ τ ◦ σ = c ◦ h ◦ σ = c ◦ ζ.

We now consider the integral J =
∫
X ω

n−1
X ∧ c∗X(ωC). We have J > 0, giving a contradiction

by Corollary 4.3. Hence X cannot satisfy the h-principle unless dim(C) = 0, that is, unless X is
special.

A consequence of Theorem 6.1 and Conjecture 2.7 is the following homotopy restriction for
the h-principle to hold.

Conjecture 6.2. If X is complex projective manifold satisfying the h-principle, then π1(X) is
almost abelian.

Notice that this conjecture is true if π1(X) has a faithful linear representation in some
GL(N,C) or is solvable, by [Cam11a] and [Cam11b], respectively.

The result above on projective manifolds raises the following questions.

Question 6.3. (1) Are compact Kähler manifolds satisfying the h-principle special? This is true,
at least, for compact Kähler surfaces (see Theorem 6.4 and its corollary below).

(2) Let X be a quasi-projective manifold satisfying the h-principle. Assume that X is not
homotopy-equivalent to any proper subvariety Z ⊂ X. Does it follow that X is special?

We have some partial results towards answering these questions.

Theorem 6.4. LetX be a compact Kähler manifold satisfying the h-principle. Then the Albanese
map of X is surjective.

Proof. The proof of Theorem 7.1 applies.

Corollary 6.5. Let X be a compact Kähler surface satisfying the h-principle. Then X is special.

Proof. Assume that it is not. Then X is in particular not weakly special. Since X is not of general
type, by Theorem 6.1, there exist a finite étale cover π′ : X ′ → X and a surjective holomorphic
map f ′ : X ′ → C onto a curve C of general type. Because X ′ also satisfies the h-principle, by
Lemma 6.6 below, this contradicts Theorem 6.4

Lemma 6.6. Let π′ : X ′ → X be an unramified covering between complex spaces. If X satisfies
the h-principle, so does X ′.

Proof. Let f : S → X ′ be a continuous map from a Stein space S. By assumption, there is a
holomorphic map g : S → X homotopic to π ◦ f . The homotopy lifting property for coverings
implies that g can be lifted to a holomorphic map G : S → X ′ which is homotopic to f .

7. Necessary conditions on the quasi-Albanese map

We give two necessary conditions bearing on the quasi-Albanese map for a quasi-projective
manifold X to satisfy the h-principle. These conditions are necessary for X to be special.

Theorem 7.1. Let X be a complex quasi projective manifold for which the quasi-Albanese map
is not dominant. Then X does not satisfy the h-principle.
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Proof. Let A be the quasi-Albanese variety of X, and let Z denote the closure of the image
of X under the quasi-Albanese map a : X → A. We may assume eA ∈ Z. By a generalization
of a theorem of Kawamata (see [Kaw80] and [NW14, Theorem 5.6.19]), there are finitely many
sub-semitori Ti ⊂ A and Ti-orbits Si ⊂ A such that Si ⊂ Z and such that every translated
sub-semitorus of A which is contained in Z must already be contained in one of the Si. By
Lemma 7.2 below, there is an element γ0 ∈ π1(A) which is not contained in any of the π1(Si). By
the functoriality properties of the quasi-Albanese map, the group homomorphism π1(X)→ π1(A)
is surjective. Thus we can lift γ0 to an element γ ∈ π1(X). Let us now assume that the h-principle
holds. In this case there must exist a holomorphic map f from C∗ toX inducing γ. By composition
we obtain a holomorphic map

F = a ◦ f ◦ exp: C −→ Z ⊂ A .

Now Noguchi’s logarithmic version of the theorem of Bloch–Ochiai ([NW14, Theorem 4.8.17])
implies that the analytic Zariski closure of F (C) in Z is a translated sub-semitorus of A. Therefore
F (C) must be contained in one of the Si. But this implies

(a ◦ f)∗ (π1(C∗)) ⊂ π1(Si) ,

which contradicts our choice of γ.

Lemma 7.2. Let Γ1, . . . ,Γk be a family of subgroups of G = Zn with rankZΓi < n. Then
∪iΓi 6= G.

Proof. For a subgroup H ⊂ G ⊂ Rn, we denote by N(H, r) the number of elements x ∈ H with
||x|| 6 r. Then N(H, r) = O(rd) if d is the rank of the Z-module H. Now N(Γi, r) = O(rn−1),
but N(G, r) = O(rn). This implies the statement.

Theorem 7.1 has the following consequence.

Corollary 7.3. Let X be an algebraic variety which admits a surjective morphism F onto an
algebraic curve C. If C is hyperbolic, then X does not satisfy the h-principle.

Proof. Let A and J denote the quasi-Albanese varieties of X and C, respectively. By the functo-
riality of the quasi-Albanese, we have an induced map F1 : A→ J . Now F1(A) is a semi-abelian
subvariety of J , the variety J is generated as an algebraic group by the image of C in J , and
F1 : X → C is surjective. It follows that F1 : A→ J is surjective.

Next, observe that dim(J) > dim(C) due to the hyperbolicity of C. Therefore the induced
map from X to J is not dominant. As a consequence, the quasi-Albanese map X → A is likewise
not dominant.

By similar reasoning, using [NWY07], we obtain the following result.

Proposition 7.4. Let X be a quasi-projective manifold which admits a finite map onto a semi-
abelian variety. Then X satisfies the h-principle only if X is a semi-abelian variety.

8. (Counter-)examples

We now present examples showing that the desired implications “special =⇒ h-principle”
and “C-connected =⇒ special” certainly do not hold without imposing some normality and
algebraicity, Kählerness, or completeness conditions on the manifold in question.
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Example 8.1. There is a non-normal projective curve X which is rational and C-connected, but
does not satisfy the h-principle.

We start with X̂ = P1 and define X by identifying 0 and ∞ in X̂ = C ∪ {∞}. Via the map
[x0 : x1] 7→ [x30 + x31 : x20x1 : x0x

2
1] the quotient space X can be realized as

X ' {[z0 : z1 : z2] : z0z1z2 = z31 + z32} .

Let X̃ denote the universal covering of X. Then X̃ consists of countably infinitely many 2-
spheres glued together. By Hurewitz’s theorem, π2(X̃) ' H2(X̃,Z) ' Z∞. The long homotopy
sequence associated with the covering map implies π2(X) ' Z∞. As a consequence, the group
homomorphism

Z ' π2(X̂) −→ π2(X) ' Z∞

induced by the natural projection π : X̂ → X is not surjective. Now, let Q denote the two-
dimensional affine quadric. Note that Q is a Stein manifold which is homotopic to the 2-sphere.
Because π2(X̂)→ π2(X) is not surjective, there exists a continuous map f : Q→ X which cannot
be lifted to a continuous map from Q to X̂. On the other hand, every holomorphic map from the
complex manifold Q to X can be lifted to X̂, because X̂ is the normalization of X. Therefore,
there exists a continuous map from Q to X which is not homotopic to any holomorphic map.
Thus X does not satisfy the h-principle.

Example 8.2. There are non-Kähler compact surfaces, namely Inoue surfaces, which do not
satisfy the h-principle, although they are special.

These Inoue surfaces are compact complex surfaces of algebraic dimension zero with ∆×C as
universal covering and foliated by complex lines. They are special in the sense of Definition 2.1,
because since their algebraic dimension is zero, there are no Bogomolov sheaves. On the other
hand, the image of any holomorphic map from C∗ to such a surface is contained in one of those
leaves. This implies that there are many group homomorphisms from Z to the fundamental group
of the surface which are not induced by holomorphic maps from C∗. For this reason Inoue surfaces
do not satisfy the h-principle.

Example 8.3. There is a non-compact complex manifold which is C-connected, but does not
satisfy the h-principle.

Due to Rosay and Rudin ([RR88, Theorem 4.5]) there exists a discrete subset S ⊂ C2 such
that F (C2) ∩ S 6= ∅ for any non-degenerate holomorphic map F : C2 → C2. (Here F is called
non-degenerate if and only if there is a point p with rank(DF )p = 2.) Let X = C2 \ S. Due
to the discreteness of S, it is easy to show that X is C-connected. Now let G = SL2(C). Then
G is a Stein manifold which is homotopic to S3. Let p ∈ SL2(C) and let v, w ∈ TpG. Using
the exponential map, there is a holomorphic map from C2 to G for which v and w are in the
image. From this it follows easily that for every holomorphic map F : G→ X and every p ∈ G,
we have rank(DF )p 6 1. Hence F ∗ω ≡ 0 for every threeform ω on X and every holomorphic
map F : G → X. This implies that for every holomorphic map F : G → X, the induced map
F ∗ : H3(X,R)→ H3(G,R) is trivial. On the other hand, there are continuous maps f : S3 → X
for which f∗ : H3(X,C) → H3(S3,C) is non-zero. Namely, choose p ∈ S. Since S is countable,
there is a number r > 0 such that ||p − q|| 6= r for all q ∈ S. Then f : v 7→ p + rv defines a
continuous map from S3 = {v ∈ C2|v|| = 1} to X which induces a non-zero homomorphism
f∗ : H3(X,C)→ H3(S3,C).

As a consequence, X does not satisfy the h-principle.
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9. Does special imply the h-principle?

We consider the question: if X is projective, smooth, and special, does it satisfy the h-principle?
The question is very much open, even in dimension two.

For projective curves, we know that the h-principle is satisfied if and only if X is special.

The projective surfaces known to satisfy the h-principle are the following ones: rational sur-
faces, minimal surfaces ruled over an elliptic curve, blown-up abelian surfaces and their étale
undercovers, termed bielliptic.

This means that the special projective surfaces not known to satisfy the h-principle are, on
the one hand, blown-up K3 and Enriques surfaces, and, on the other hand, the blown-ups of
surfaces with κ = 1, which are either

(i) elliptic fibrations over an elliptic base without multiple fibre, or

(ii) elliptic fibrations over a rational base with at most four multiple fibres, where the sum of the
inverses of the multiplicities is at least two (respectively, one) if there are four (respectively,
three) multiple fibres.

In higher dimension (even three), essentially nothing is known. In particular, the cases of
Fano, rationally connected, and even rational manifolds (for example, P3 blown up along a
smooth curve of degree three or more) are open.

For n-dimensional Fano or rationally connected manifolds with n > 3, even the existence
of a non-degenerate meromorphic map from Cn to X is open. Non-existence would contradict
the Oka property (see the definition below). If such a map exists, nothing is known about the
unirationality of X (see [Uen75, Cam04], for example).

Let us first remark that the h-principle is not known to be preserved by many standard
geometric operations preserving specialness. In particular, this concerns

(i) smooth blow-ups and blow-downs,

(ii) products,

(iii) (finite) étale coverings, for which only one direction is known (cf. [For11]).

Except for trivial cases it is very hard to verify the h-principle directly. The most important
method for verifying the h-principle is Gromov’s theorem that the h-principle is satisfied by
elliptic manifolds. In the terminology of Gromov ellipticity means the existence of a holomorphic
vector bundle p : E → X with zero section z : X → E and a holomorphic map s : E → X such
that s ◦ z : X → X is the identity map, and the derivative ds : E → TX is surjective along z(E),
where E ⊂ TE is the kernel of the derivative dp : TE → TX along z(X) ⊂ E.

Homogeneous complex manifolds (for example Pn, Grassmannians, tori) are examples of
elliptic manifolds. Complements Cn \ A of algebraic subvarieties A of codimension at least two
are also known to be elliptic.

For a complex manifold X, being elliptic also implies that X is Oka; that is, every holomorphic
map h : K → X on a compact convex subset K of Cn can be uniformly approximated to any
precision by holomorphic maps H : Cn → X. Forstneric’s theorems ([For11]) show that Oka
manifolds satisfy stronger approximation properties. All known examples of Oka manifolds are
subelliptic, a slight weakening of ellipticity. We refer to [Gro89, For11, FL11] for more details and
generalisations of these statements. See also [Lár04] for an interpretation of the Oka property in
terms of model structures.
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We thus have the following sequence of implications (the first two are always valid, the last
for projective manifolds; see [For11]):

elliptic⇒ Oka⇒ h-principle⇒ special

Although the notions of Oka and of satisfying the h-principle differ in general (for example,
the unit disc is evidently not Oka, but satisfies the h-principle because it is contractible), one
may ask the following question.

Question 9.1. Is any projective manifold satisfying the h-principle Oka?
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Theory, I: Higher K-Theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), 293–
216, Lecture Notes in Math., vol. 341, Springer, Berlin, 1973. http://dx.doi.org/10.1007/
BFb0067063

313

http://dx.doi.org/10.1007/s002220050021
http://dx.doi.org/10.1070/IM1979v013n03ABEH002076
http://dx.doi.org/10.5802/aif.2027
http://dx.doi.org/10.1017/S1474748010000101
http://dx.doi.org/10.1017/S1474748010000101
http://dx.doi.org/10.1007/s00229-010-0413-x
http://dx.doi.org/10.1112/S0010437X06002685
http://dx.doi.org/10.1007/s00229-008-0231-6
http://dx.doi.org/10.1142/S0129167X90000034
http://nyjm.albany.edu/j/2011/17a-2.html
http://dx.doi.org/10.1007/978-3-642-22250-4
http://dx.doi.org/10.1007/978-3-642-22250-4
http://dx.doi.org/10.1090/S0894-0347-02-00402-2
http://dx.doi.org/10.2307/1990897
http://dx.doi.org/10.1007/BFb0067063
http://dx.doi.org/10.1007/BFb0067063


F. Campana and J. Winkelmann

Kaw80 Y. Kawamata, On Bloch’s conjecture, Invent. Math. 57 (1980), no. 1, 97–100. http://dx.doi.
org/10.1007/BF01389820

Lár04 F. Lárusson, Model structures and the Oka principle, J. Pure Appl. Algebra 192 (2004), no. 1–3,
203–223. http://dx.doi.org/10.1016/j.jpaa.2004.02.005

Lár05 , Mapping cylinders and the Oka principle, Indiana Univ. Math. J. 54 (2005), no. 4,
1145–1159. http://dx.doi.org/10.1512/iumj.2005.54.2731

Miy01 M. Miyanishi, Open algebraic surfaces, CRM Monograph Series, vol. 12, Amer. Math. Soc.,
Providence, RI, 2001.

NW14 J. Noguchi and J. Winkelmann, Nevanlinna theory in several complex variables and Diophantine
approximation, Grundlehren Math. Wiss., vol. 350, Springer, Tokyo, 2014. http://dx.doi.org/
10.1007/978-4-431-54571-2

NWY07 J. Noguchi, J. Winkelmann, and K. Yamanoi, Degeneracy of holomorphic curves into algebraic
varieties, J. Math. Pures Appl. 88 (2007), no. 3, 293–306. http://dx.doi.org/10.1016/j.
matpur.2007.07.003

Ram71 C.P. Ramanujam, A topological characterisation of the affine plane as an algebraic variety, Ann.
of Math. 94 (1971), 69–88. http://dx.doi.org/10.2307/1970735

RR88 J.-P. Rosay and W. Rudin, Holomorphic maps from Cn to Cn, Trans. Amer. Math. Soc. 310
(1988), no. 1, 47–86. http://dx.doi.org/10.2307/2001110

Uen75 K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Lecture Notes
in Math., vol. 439, Springer-Verlag, Berlin–New York, 1975. http://dx.doi.org/10.1007/

BFb0070570

Frédéric Campana frederic.campana@univ-lorraine.fr
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