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Birational geometry of cluster algebras

Mark Gross, Paul Hacking and Sean Keel

Abstract

We give a geometric interpretation of cluster varieties in terms of blowups of toric va-
rieties. This enables us to provide, among other results, an elementary geometric proof
of the Laurent phenomenon for cluster algebras (of geometric type), extend Speyer’s
example [Spe13] of upper cluster algebras which are not finitely generated, and show
that the Fock-Goncharov dual basis conjecture is usually false.
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Introduction

Cluster algebras were introduced by Fomin and Zelevinsky in [FZ02a]. Fock and Goncharov
introduced a more geometric point of view in [FG09], introducing the A and X cluster varieties
constructed by gluing together “seed tori” via birational maps known as cluster transformations.

In this note, motivated by our study of log Calabi–Yau varieties initiated in the two-di-
mensional case in [GHK11], we give a simple alternate explanation of basic constructions in
the theory of cluster algebras in terms of blowups of toric varieties. Each seed roughly gives
a description of the A or X cluster variety (more precisely, the Aprin, At (defined in § 2) or X
cluster variety) as a blowup of a toric variety, and a mutation of the seed corresponds to changing
the blowup description by an elementary transformation of a P1-bundle. Certain global features
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of the cluster variety not obvious from the expression as a union of tori are easily seen from this
construction. For example, it gives a simple geometric explanation for the Laurent phenomenon
(originally proved in [FZ02b]); see Corollary 3.11. From the blowup picture it is clear that the
Fock–Goncharov dual basis conjecture, particularly the statement that tropical points of the
Langlands dual A parameterize a natural basis of regular functions on X , can fail frequently;
see § 7.

In more detail, in § 1, we explain the basic philosophical point of view demonstrating how a
study of log Calabi–Yau varieties can naturally lead to the basic notions of cluster algebras. This
section can be read as an extended introduction; its role in the paper is purely motivational. In
§ 2, we review the definitions of cluster varieties, following [FG09]. We pay special attention to
the precise procedure for gluing tori via cluster transformations, as this has not been discussed
to the precision we need in the literature.

Section 3 is the heart of the paper. Here we describe how cluster transformations, which
a priori are birational maps between algebraic tori, can be viewed naturally as isomorphisms
between blowups of certain associated toric varieties. In this manner, cluster transformations can
be interpreted as elementary transformations, a standard procedure for modifying P1-bundles in
algebraic geometry. This procedure blows up a codimension two center in a P1-bundle meeting
any P1 fibre in at most one point, and blows down the proper transform of the union of P1 fibres
meeting the center.

This is a very general construction, covered in § 3.1; we then specialize to the case of the A
and X cluster varieties in § 3.2. Unfortunately, our construction does not work in general for
the A cluster variety, but does work for the A variety with principal coefficients. This variety
Aprin fibres over an algebraic torus with A being the fibre over the identity element of the torus.
Properties such as the Laurent phenomenon for A can be deduced from that for Aprin. Many of
the phenomena discussed here also work for a very general fibre At of the map from Aprin; we
call such a cluster variety an A cluster variety with general coefficients. The algebra of regular
functions of such a cluster variety is of the kind considered by Speyer in [Spe13].

The key result is Theorem 3.9, which gives the precise description of the X , principal A cluster
varieties and A cluster varieties with general coefficients up to codimension two in terms of a
blowup of a toric variety. The toric variety and the center of the blowup is specified very directly
by the seed data determining the cluster variety. An immediate consequence is the Laurent
phenomenon, Corollary 3.11.

In § 4, we give another description of the principal A cluster variety and A cluster variety
with general coefficients in terms of line bundles on the X cluster variety. There is in fact an
algebraic torus which acts on Aprin, and the quotient of this action is X , making Aprin a torsor
of X . We give a precise description of this family in terms of line bundles on X . Furthermore,
there are tori TK∗ and TK◦ such that there are a map X → TK∗ and an action of TK◦ on any A
cluster variety with general coefficients determined by the seed data. We show that for any such
sufficiently general A cluster variety At, there is a φ = φ(t) ∈ TK∗ such that up to codimension
two, At is the universal torsor of Xφ, essentially obtained as Spec

⊕
L∈Pic(Xφ) L. In particular,

this allows us to identify the corresponding upper cluster algebra with the Cox ring of Xφ. This is
a slight simplification of the discussion: see the main text for precise statements. The Cox ring of
any variety with finitely generated torsion free Picard group is factorial; see [Arz09] and [BH03].
This explains the ubiquity of factorial cluster algebras remarked on, for example, in [Kel12, § 4.6].

The remainder of the paper now restricts to the case that the skew-symmetric matrix de-
termining the cluster algebra has rank two. This case is quite easy to interpret geometrically,
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since now the family X → TK∗ is a family of surfaces. In fact, the fibres are essentially the
interiors of Looijenga pairs. A Looijenga pair is a pair (Y,D) where Y is a rational surface and
D ∈ | −KY | is a cycle of rational curves, U := Y \D is the interior. We study moduli of such
pairs in [GHK15]. Here, we show (Theorem 5.5) that essentially X → TK∗ coincides with a type
of universal family constructed in [GHK15]. Our construction implies that in many cases, the
kernel of the skew-symmetric matrix carries a canonical symmetric form, invariant under mu-
tations; see Theorem 5.6. Though not (as far as we know) previously observed, this symmetric
form controls the gross geometry of X , in particular the generic fibre of X → TK∗ . Indeed, the
fibre is affine if and only if the form is negative definite; when the form is indefinite the fibres
are the complement of a single point in a compact complex analytic space, and thus have no
non-constant global functions. Thus in this indefinite case (which from the blowup point of view
is the generic situation) the only global functions on X are pulled back from TK∗ , contradicting
the dual basis conjecture of [FG09]; see § 7.

In § 6, we give a general procedure for constructing upper cluster algebras with general or
principal coefficients which are not finitely generated. These examples generalize that given by
Speyer in [Spe13], and suggest that “most” upper cluster algebras are not finitely generated.
These examples arise because Cox rings tend not to be finitely generated. Indeed, finite generation
of the Cox ring of a projective variety is a very strong (Mori Dream Space) condition; see [HK00].

For the genesis of this article we refer to the Acknowledgements at the end of this paper.

In this paper, we will always work over a field k of characteristic zero.

1. Log Calabi–Yau varieties and a geometric motivation for cluster varieties

To a geometer, at least to the three of us, the definition of a cluster algebra is rather bizarre and
overwhelming. Here we explain the geometric motivation in terms of log Calabi–Yau varieties.
There are two elementary constructions of log Calabi–Yau (CY) varieties. The first method is to
glue together tori in such a way that the volume forms patch. The second method is to blow up
a toric variety along a codimension two center which is a smooth divisor in a boundary divisor,
and then remove the strict transform of the toric boundary. As we will see, the simplest instances
of either construction are closely related, and either leads to cluster varieties. The first approach
extends the viewpoint of [FG09], the second was inspired by [Loo81].

Definition 1.1. Let (Y,D) be a smooth projective variety with a normal crossings divisor, and
let U = Y \D. By [Iit77], the vector subspace

H0(Y, ωY (D)⊗m) ⊂ H0(U, ω⊗mU )

(where the inclusion is induced by restriction) depends only on U , that is, is independent of the
choice of normal crossings compactification. We say that U is log Calabi–Yau (log CY) if for all
m this subspace is one-dimensional, generated by Ω⊗m for a volume (that is, nowhere vanishing)
form Ω ∈ H0(U, ωU ). Note that by definition Ω is unique up to scaling.

In practice, log CY varieties are often recognized using the following lemma.

Lemma 1.2. Let (Y,D) be a dlt pair with KY +D trivial (in particular Cartier) and Y projective.
Let U ⊂ Y \D be a smooth open subset, with (Y \D) \ U of codimension at least two. Then U
is log CY.

For the definition of dlt (divisorial log terminal); see [KM98, Definition 2.37]. As this section
should be viewed as purely motivational, the reader who wishes to avoid the technicalities of
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the minimal model program should feel free to assume that the pair (Y,D) has in fact normal
crossings.

Proof. When (Y,D) has normal crossings this is immediate from Definition 1.1. The definition
of dlt is such that the vector space of Definition 1.1 can be computed using a dlt (instead of
normal crossings) compactification.

Remark 1.3. The data (Y,D) with U ⊆ Y \D as in the lemma is called a minimal model for U .
One example of a minimal model is a pair (Y,D) with D ∈ | −KY | a reduced normal crossings
divisor. This is a minimal model for U = Y \ D. The main conjectures of the minimal model
program would imply every log CY has a minimal model; see [BCHM10].

Lemma 1.4. (i) Let U ⊂ V be an open subset, with (U,Ω) log CY. Then V is log CY if and
only if Ω extends to a volume form on V , and in this case Ω is a scalar multiple of the
volume form of V .

(ii) Let µ : U 99K V be a birational map between smooth varieties which is an isomorphism
outside codimension two subsets of the domain and range. Then U is log CY if and only
if V is.

Proof. For statement (i), if V is log CY, then clearly its volume form restricts to a scalar multiple
of the volume form on U . Now suppose U is log CY, and its volume form Ω extends to a volume
form on V . We have U ⊆ V ⊆ Y where Y is a compactification of both U and V . Thus Ω (and its
powers) obviously has at worst simple poles on any divisor contained in Y \V , and it is unique in
this respect, since we have the same properties for Ω as a volume form on U . Next, statement (ii)
follows from statement (i), passing to the open subsets where the map is an isomorphism, noting
that in statement (i), when the complement of U has codimension at least two, the extension
condition is automatic.

Definition 1.5. We say a log CY U has maximal boundary if it has a minimal model (Y,D)
with a zero-dimensional log canonical center. For example, this is the case if (Y,D) is a minimal
model for U such that D has simple normal crossings and contains a zero-dimensional stratum,
that is, a point which is the intersection of dim(Y ) distinct irreducible components of D.

Example 1.6. Consider the group G = PGLn. There are the 2n − 1 minors of an n × n matrix
given by the square submatrices in the upper right corner or the lower left corner. For example,
for n = 3 these are the four minors

a1,3 , a3,1 ,

∣∣∣∣a1,2 a1,3

a2,2 a2,3

∣∣∣∣ , ∣∣∣∣a2,1 a2,2

a3,1 a3,2

∣∣∣∣
and the determinant of the 3 × 3 matrix itself. Let D ⊂ Y = P(Matn×n) = Pn2−1 be the union
of the 2n− 1 divisors given by the zero locus of these minors. Note the total degree of D is

1 + 2 + · · ·+ (n− 1) + 1 + 2 + · · ·+ (n− 1) + n = n2 ,

so D ∈ |−KY |. With some non-trivial effort, one can check (Y,D) is dlt, with a zero-dimensional
log canonical center, and thus (Y,D) is a minimal model for the smooth affine log CY with
maximal boundary U ⊂ G, the non-vanishing locus of this collection of minors. U is by definition
the open double Bruhat cell in G.

A log CY U with maximal boundary will (in dimension at least two) always have infinitely
many minimal models. The set of possibilities leads to a fundamental invariant, as follows.
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Definition 1.7. Let (U,Ω) be a log CY. Define

U trop(Z) := {divisorial discrete valuations v : k(U) \ {0} → Z | v(Ω) < 0} ∪ {0}
:= {(E,m) |m ∈ Z+, E ⊂ (Y \ U), Ω has a pole along E} ∪ {0} .

(1.1)

Here k(U) is the field of rational functions of U , a discrete valuation is called divisorial if it is
given by the order of vanishing of a divisor on some variety birational to U . Furthermore, we
define

v(gdz1 ∧ · · · ∧ dzn) := v(g)

for z1, . . . , zn local coordinates in a neighborhood of the generic point of the divisor corresponding
to v; this is independent of the choice of coordinates as a change of coordinates only changes g by
a unit. In the second expression E is a divisorial irreducible component of the boundary in some
partial compactification U ⊂ Y , and two divisors on two possibly different birational varieties
are identified if they give the same valuation on their common field of fractions.

The simplest example of a log CY with maximal boundary is an algebraic torus

TN := N ⊗Gm ,

for N = Zn. Note H0(TN ,OTN ) = k[M ], where M = Hom(N,Z) is the character lattice of TN .

Lemma 1.8. Restriction of valuations to the character lattice M induces a canonical isomorphism

T trop
N (Z) = N .

A minimal model for TN is the same as a complete TN -equivariant toric compactification.

Proof. This is an easy log discrepancy computation, using, for example, [KM98, Lemmas 2.29
and 2.45].

Thus U trop(Z) gives an analog for any log CY of the cocharacter lattice of a torus. Note
however that in general U trop(Z) is not a group as addition does not make sense. We conjecture
that there is also an analog of the character lattice, or equivalently, the dual torus.

Conjecture 1.9 [GHK11]. Let (Y,D) be a simple normal crossings minimal model for a log
CY with maximal boundary U = Y \ D, and assume D supports an ample divisor (note that
this implies U is affine). Let R = k[Pic(Y )∗]. The free R-module V with basis U trop(Z) has a
natural finitely generatedR-algebra structure whose structure constants are non-negative integers
determined by counts of rational curves on U . The associated fibration p : Spec(V )→ Spec(R) =
TPic(Y ) is a flat family of affine log CY varieties with maximal boundary. Letting K be the
kernel of the natural surjection Pic(Y ) � Pic(U), p is TK-equivariant. The quotient family
Spec(V )/TK → TPic(U) depends only on U (is independent of the choice of minimal model), and
is the mirror family to U .

Remark 1.10. An analog of Conjecture 1.9 is expected for compact Calabi–Yau varieties, but
perhaps only with formal (for example, Novikov) parameters, and for Calabi–Yau varieties near
the so-called large complex structure limit. This will be discussed in forthcoming work. The
maximal boundary condition means the boundary is highly degenerate — we are thus already
in some sense in the large complex structure limit, and so one can hope that no formal power
series or further limits are required. This is one reason to focus on this case. The other is the
wealth of fundamental examples.
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The conjecture is of interest independently of mirror symmetry: in many instances the varie-
ty U and its prospective mirror are known varieties of compelling interest. The conjecture then
gives a new construction of a variety we already care about, a construction which in particular
endows the mirror (and each fibre of the family) with a canonical basis of functions. In any
case mirror symmetry is conjecturally an involution, the mirror of the mirror being a family of
deformations of the original U . Thus the conjecture says in particular that any affine log CY
with maximal boundary is a fibre of the output of such a construction, and thus in particular has
a canonical basis of functions, BU . One then expects BU to be the tropical set of the conjectural
mirror.

We call a partial compactification U ⊂ Y a partial minimal model if the volume form Ω has
a pole on every irreducible divisorial component of Y \ U . One checks using Lemma 1.8 that
a partial minimal model for an algebraic torus is the same thing as a toric variety. We further
conjecture that for any partial minimal model (not necessarily affine) of an affine log CY U
with maximal boundary, BU ∩ H0(Y,OY ) ⊂ H0(Y,OY ) is a basis of regular functions on Y .
For example we conjecture that the open double Bruhat cell U ⊂ G has a canonical basis of
functions, and that the subset of basis elements which extend regularly to G gives a basis of
functions on G.

After tori, the next simplest example of a log CY with maximal boundary is obtained by gluing
together algebraic tori in such a way that the volume forms patch. More precisely, suppose that

A =
⋃
s∈S

TN,s

is a variety covered by open copies of the torus TN indexed by the set S. This gives canonical
birational maps µs,s′ : TN,s 99K TN,s′ for each pair of seeds s, s′ ∈ S. Then A will be log CY if and
only if each birational map is a mutation, that is, preserves the volume form: µ∗(Ω) = Ω. In this
case each choice of seed torus TN,s ⊂ A gives a canonical identification Atrop(Z) = T trop

N,s (Z) = N .

We can reverse the procedure. Beginning with a collection of such mutations satisfying the
cocycle condition, we can canonically glue together the tori along the maximal open sets where
the maps are isomorphisms to form a log CY A. See Proposition 2.4 for details. The simplest
example of a mutation comes from a pair (n,m) ∈ N × M with 〈n,m〉 := m(n) = 0. It is
defined by

µ∗(n,m)(z
m′) = zm

′ · (1 + zm)〈m
′,n〉 (1.2)

where zm
′
, zm ∈ k[M ] are the corresponding characters of TN . Cluster varieties are log CY

varieties formed by gluing tori by mutations of this simple sort (and compositions of such) for a
particular parameterizing set S. See § 2 for details.

Though these are the simplest non-toric log CY varieties, there are already very interesting
examples, including double Bruhat cells for reductive groups, their flag varieties and unipotent
radicals, and character varieties of punctured Riemann surfaces. See [BFZ05] and [FG06].

Note that these simple mutations come in obvious dual pairs — we can simply reverse the
order and consider

(m,−n) ∈ Hom(N ×M,Z) = M ×N , (1.3)

so that µ(m,−n) defines a birational automorphism of TM . Thus for each A :=
⋃

s∈S TN,s built
from such maps, there is a canonical dual X :=

⋃
s∈S TM,s, just obtained by replacing each torus

(and each mutation) by its dual. For the particular parameterizing set S used in cluster varieties,
Fock and Goncharov made the following remarkable conjecture.
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Conjecture 1.11. The setAtrop(Z) parameterizes a canonical vector space basis for H0(X ,OX ).
The structure constants for the algebra H0(X ,OX ) expressed in this basis are non-negative
integers.

(Here we are treating the notationally simpler case of skew-symmetric cluster varieties, the
general case involving a Langlands dual seed.)

Note that as stated A and X are on completely equal footing, so the conjecture includes the
analogous statement with the two reversed. Fock and Goncharov have a different definition of,
for example, Atrop(Z), which they denote A(Zt), as points of A valued in the tropical semi-field.
But it is easy to check that this agrees with our definition, which has the advantage that it makes
sense for any log CY, while theirs is restricted to varieties with a so-called positive atlas of tori.

In somewhat more detail, a skew-symmetric cluster variety is defined using initial data of a
lattice N with a skew-symmetric form {·, ·} : N × N → Z, and each mutation is given by the
pair (n, {n, ·}) for some n ∈ N . When {·, ·} fails to be unimodular, the dual M does not have a
skew-symmetric form, and in this case A and X are on unequal footing. In this case A, by the
Laurent phenomenon, always has many global functions, but X may have very few.

Conjecture 1.11 was inspired by the case A := U ⊂ G of Example 1.6, which has a celebrated
canonical basis of global functions constructed by G. Lusztig; see [Lus90]. Conjecture 1.9 suggests
that the existence of this basis may have a priori nothing to do with representation theory, or
cluster varieties, but is rather a general feature of affine log CY varieties with maximal boundary.

In § 7 we show that Conjecture 1.11 as stated is often false. But if we add the condition
that X is affine, it becomes a very special case of Conjecture 1.9, and for that reason we refer to
X ,A as Fock–Goncharov mirrors. In view of the highly involved existing proposals for synthetic
constructions of mirror varieties, [KS06], [GS11], [GHK11], this simple alternative — replace each
torus in the open cover by its dual — is an attractive surprise. We will prove many instances of
Conjecture 1.11 in [GHKK14].

We now turn to the main idea in this paper, which connects the traditional description above
of cluster varieties via gluing tori to the description we will develop in this paper, involving
blowups of toric varieties. Here is some cluster motivation for the blowup approach. Each seed s
gives a torus open subset TN,s ⊂ A, together with n cluster variables, a basis of characters.
These give a priori rational functions on A and thus a birational map b : A 99K An, whose
inverse restricts to an isomorphism of the structure torus Gn

m ⊂ An with TN,s ⊂ A. The Laurent
phenomenon is equivalent to the statement that b is regular, and thus in particular suggests that
each seed determines a construction of A as (an open subset of) a blowup of a toric variety (in
fact An) along a locus in the toric boundary. Stated this way, it is natural to wonder whether
it holds for X as well. We will show this indeed holds for X , and while it fails for general A, a
slightly weaker version is true which is still good enough for the Laurent phenomenon.

Log CY varieties with maximal boundary are closed under blowup in the following sense.

Lemma 1.12. Let Ū ⊂ Ȳ be a log CY open subset of a smooth (not necessarily complete)
variety, let D̄ := Ȳ \ Ū and let H ⊂ D̄ \ Sing(D̄) be a smooth codimension two (not necessarily
irreducible) subvariety. Let b : Y → Ȳ be the blowup along H, let D ⊂ Y be the strict transform
of D̄ and let U := Y \D. Then U is log CY, with unique volume form the pullback under b of
the volume form on Ū . In addition, U has maximal boundary if Ū does.

Proof. If E is the exceptional divisor of b, then it is standard that KY = b∗KȲ + E (using the
fact that H has codimension two) and that D = b∗D̄ − E. Thus KY +D = 0.
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Now starting with the simplest example, an algebraic torus, we get many examples via the
following notion.

Definition 1.13. Continuing with notation as in the lemma, we say that U = Y \D is a cluster
log CY and that b : (Y,D)→ (Ȳ , D̄) is a toric model for U if

(i) the variety (Ȳ , D̄) is toric and the fan for Ȳ consists only of one-dimensional cones R>0vi
for vi ∈ N primitive, with TN the structure torus of Ȳ (equivalently, the boundary D is a
disjoint union of codimension one tori);

(ii) the connected components of H are the subtori zwi + 1 = 0 ⊂ TN/Z·vi for some wi ∈
(N/Z · vi)∗ = v⊥i ⊂M .

As the name suggests, the log CY varieties obtained by this simple blowup construction and
those obtained in the previous discussion as tori glued in the simplest way are frequently the
same. Note that the toric model determines a canonical torus open subset

TN = Ȳ \ D̄ ⊂ Y \D = U .

Remarkably, there are (usually infinitely) many other torus open sets. Given a toric model for U ,
and a choice of a center, that is, a connected component of H, or equivalently, a choice of one of
the primitive lattice points v = vk, there is a natural mutation which produces a new log CY U ′,
with a birational map U 99K U ′. Under certain conditions, this map will be an isomorphism
outside a codimension two subset (of domain and range). In these nice situations, this produces,
up to codimension two, a second copy of TN living in U . Iterating the procedure produces an
atlas of torus open sets. Here is a sketch; full details are given in § 3.

The connection with mutation of seeds comes via the tropical set. Note that a mutation
µ : U 99K V between log CY varieties canonically induces an isomorphism of tropical sets

µt : U trop(Z)→ V trop(Z), v → v ◦ µ∗ .

For the mutation µ(n,m) : TN 99K TN of (1.2), one computes

µt(n,m) : N = T trop
N (Z)→ T trop

N (Z) = N, µt(n′) = n′ + [〈m,n′〉]−n , (1.4)

where for a real number r, [r]− := min(r, 0). This illustrates the general fact that µt is piecewise
linear but not linear (unless µ is an isomorphism). This explains the geometric origin of piecewise
linear maps in the cluster theory (and tropical geometry; see [HKT09, § 2]). Here, we view
U trop(Z) as a collection of valuations. If we think of elements of U trop(Z) as boundary divisors
with integer weight, as in the second formula in (1.1), µt is simply a strict transform (also called
pushforward) for the birational map µ.

Now we explain how to mutate from one toric model of a cluster log CY to another. Continuing
with the situation of Definition 1.13, we choose one index, k, and let v = vk, with corresponding
divisor Dk. The center Hk = H ∩Dk determines what is known as an elementary transformation
in algebraic geometry. We explain this in a simplified, but key, situation.

Let Σv be the fan, with two rays, with support Rv, so that the corresponding toric variety
XΣv is isomorphic to TN/Zv × P1, with π : XΣv → TN/Zv the projection. Write D± for the two
toric divisors corresponding to the rays generated by ±v. Viewing XΣv \D− as an open subset
of Ȳ , the center Hk is identified with a codimension two subscheme H+ ⊂ D+ ⊂ XΣv . Let
H− = π−1(π(H+)) ∩D−.

There is then a birational map µ : XΣv 99K XΣv obtained by blowing up H+ and then blowing
down the strict transform of π−1(π(H+)). One checks that µ is described by (1.2). Clearly by
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construction µ is resolved by the blowup b : Y ′ → XΣv along H+, and one can check that
µ ◦ b : Y ′ → XΣv is regular as well, being the blowup along H−; see Lemma 3.2.

This description of the elementary transformation extends to give birational maps between
closely related toric models. For simplicity assume −v 6= vi for any i (in § 3 we consider the
general case). Now let Σ+ be the fan consisting of rays R>0vi together with −R>0v. The toric
model gives us a blowup b : Y → XΣ+ . (This is a slight abuse of notation, because we added one
ray, −R>0v. But note that we do not blow up along the new boundary divisor D− ⊂ XΣ+ , and
in forming U we throw away the strict transform of boundary divisors, so adding this ray does
not change U at all). Let Σ− be the fan with rays R>0µ

t(vi) together with −R>0v = −R>0µ
t(v).

In § 3.2 we show that in good situations,

b′ := µ ◦ b : Y → XΣ−

is regular outside a codimension two subset and give formulae for the centers, which again are
of the cluster log CY sort. Thus the elementary transformation induces a new toric model for U
(up to changes in codimension two), and, in particular, a second torus open subset of U . This
recovers the standard definition of mutations for cluster algebras [FZ02a]. From this perspective,
each seed is interpreted as the data for a toric model of the same (up to codimension two)
cluster log CY. Note that in the mutated toric model b′ : Y → XΣ− , there is now a center in the
boundary divisor D−, but no center in D+. In the original model b : Y → XΣ+ , there is a center
in D+ ⊂ XΣ+ (this divisor is the strict transform of D+ ⊂ XΣ−) but no center in D− ⊂ XΣ+ .
For all the other boundary divisors, there is a center in either model. This difference between
the chosen index k and the other indices accounts for the peculiar sign change in the formula for
seed mutation; see (2.3).

Unfortunately, this procedure does not always give a precise identification between the picture
of cluster varieties as obtained from gluing of tori and the picture given by blowups of toric
varieties. The reason is that b′ above need not always be regular off a codimension two subset.
It turns out that this works in certain cases, including all X cluster varieties and principal A
cluster varieties. See § 2 for a review of the definitions of the latter, and § 3 for further details.

Remark 1.14. There is no need to restrict to the special centers of Definition 1.13(2): one can
consider the blowup of an arbitrary hypersurface in each boundary divisor. An elementary trans-
form gives a mutation of a toric model in the same way, but the formulae for how the centers
change are more complicated. For a general center, we checked that one obtains the mutation
formulae of [LP12]. In this note we restrict our treatment to the cluster variety case, as it is
simpler and sufficient for our applications.

There are many formulae in the Fomin–Zelevinsky, Fock–Goncharov definitions of cluster
algebras, which we reproduce in the next section. But we note that only one, (1.2), is essential.
This is the birational mutation, µ, between tori in the A-atlas. Its canonical dual, arising from
(1.3), gives the mutation for the Fock–Goncharov mirror; see (2.6) and (2.5) below. The formula
for the change of seed, (2.3), comes from the tropicalization, µt, of the birational mutation, (1.4).
Note that in (2.3), e′i = µt(ei) for i 6= k and e′k = µt(−ek) = −ek. This is the peculiar sign change
explained above.
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2. Review of the X and A cluster varieties

We follow [FG09], with minor modifications. We will fix once and for all in the discussion the
following data, which we will refer to as fixed 1 data:

– a lattice N with a skew-symmetric bilinear form {·, ·} : N ×N → Q;

– an unfrozen sublattice Nuf ⊆ N , a saturated sublattice of N ; if Nuf = N , we say the fixed
data has no frozen variables;

– an index set I with |I| = rankN and a subset Iuf ⊆ I with |Iuf | = rankNuf ;

– positive integers di for i ∈ I with greatest common divisor 1;

– a sublattice N◦ ⊆ N of finite index such that {Nuf , N
◦} ⊆ Z, {N,Nuf ∩N◦} ⊆ Z;

– M = Hom(N,Z), M◦ = Hom(N◦,Z).

Given this fixed data, seed data for this fixed data is a labeled collection of elements of N

s := (ei | i ∈ I)

such that {ei | i ∈ I} is a basis for N , {ei | i ∈ Iuf} a basis for Nuf , and {diei | i ∈ I} is a basis
for N◦.

A choice of seed data s defines a new (non-skew-symmetric) bilinear form on N by

[·, ·]s : N ×N → Q , [ei, ej ]s = εij := {ei, ej}dj
Note that εij ∈ Z as long as we do not have i, j ∈ I \ Iuf . This bilinear form depends on the seed.
We drop the subscript s if it is obvious from the context.

Remark 2.1. Suppose that we specify a basis ei, i ∈ I for a lattice N , Iuf ⊆ I, positive integers
di and a matrix εij satisfying diεij = −djεji and εij ∈ Z provided we do not have i, j ∈ I \ Iuf .
This data determines the data N , Nuf , N

◦, {·, ·}, etc. It will turn out that εij for i, j ∈ I \ Iuf

does not affect the schemes we construct, and it is standard in the literature to just consider
rectangular matrices (εij)i∈Iuf ,j∈I . We wish, however, to emphasize that the fixed data does not
depend on the particular choice of seed.

Given a seed s, we obtain a dual basis {e∗i } for M and a basis {fi} of M◦ given by fi = d−1
i e∗i .

We use the notation

〈·, ·〉 : N ×M◦ → Q
for the canonical pairing given by evaluation. We also write for i ∈ Iuf , vi := {ei, ·} ∈ M◦. We
have two natural maps defined by {·, ·}:

p∗1 : Nuf →M◦ p∗2 : N →M◦/N⊥uf

Nuf 3 n 7→ (N◦ 3 n′ 7→ {n, n′}) N 3 n 7→ (Nuf ∩N◦ 3 n′ 7→ {n, n′})

For the future, let us choose a map

p∗ : N →M◦ (2.1)

such that p∗|Nuf
= p∗1 and the composed map N → M◦/N⊥uf agrees with p∗2. Different choices2

of p∗ differ by a choice of map N/Nuf → N⊥uf .

1This terminology is not standard in the cluster literature. Rather, what we call fixed data along with seed data
is referred to as seed data in the literature. We prefer to distinguish the data which remains unchanged under
mutation from the data which changes.
2We note that [FG09] gives an incorrect definition when Nuf 6= N , as the formula p∗(n) = {n, ·} may not give a
result in M◦.
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Given seed data s, we can associate two tori

Xs = TM = Spec k[N ] and As = TN◦ = Spec k[M◦] .

We write X1, . . . , Xn as coordinates on Xs corresponding to the basis vectors e1, . . . , en, that
is, Xi = zei , and similarly coordinates A1, . . . , An corresponding to the basis vectors f1, . . . , fn,
that is, Ai = zfi . The coordinates Xi, Ai are called cluster variables. These coordinates give
identifications

Xs → Gn
m , As → Gn

m . (2.2)

We write these two split tori as (Gn
m)X and (Gn

m)A in the X and A cases, respectively.

Remark 2.2. These tori come with the following structures.

(i) Let K = ker p∗2; then the inclusion K ⊆ N induces a map Xs → TK∗ = Speck[K]. Further-
more, the torus T(N/Nuf)∗ = Spec k[N/Nuf ] is a subtorus of Xs and hence acts on Xs.

(ii) Let K◦ = K ∩N◦; then the inclusion K◦ → N◦ induces a map of tori TK◦ → As. This gives
an action of TK◦ on As. Furthermore, there is a natural inclusion

N⊥uf = {m ∈M◦ | 〈m,n〉 = 0 ∀n ∈ Nuf} ⊆M◦ .

This induces a map As → TN◦/Nuf∩N◦ = Spec k[N⊥uf ].

(iii) The chosen map p∗ : N → M◦ defines a map p : As → Xs. Furthermore, p∗ induces maps
p∗ : K → N⊥uf ⊆M◦ and p∗ : N/Nuf → (K◦)∗, giving maps

p : TN◦/Nuf∩N◦ → TK∗ and p : TK◦ → T(N/Nuf)∗ ,

respectively. We then obtain commutative diagrams

As
p //

��

Xs

��
TN◦/Nuf∩N◦ p

// TK∗

TK◦
p //

��

T(N/Nuf)∗

��
As p

// Xs

We next define a mutation of seed data.

For r ∈ Q define [r]+ = max(0, r). Given seed data s and k ∈ Iuf , we have a mutation µk(s)
of s given by a new basis

e′i :=

{
ei + [εik]+ek for i 6= k ,

−ek for i = k .
(2.3)

Note that {e′i | i ∈ Iuf} still form a basis for Nuf and the die
′
i still form a basis for N◦. Dually,

one checks that the basis {fi} for M◦ changes as

f ′i :=

{
−fk +

∑
j [−εkj ]+fj for i = k ,

fi for i 6= k .

One also checks that the matrix εij changes via the formula

ε′ij := {e′i, e′j}dj =


−εij for k ∈ {i, j} ,
εij for εikεkj 6 0 and k 6∈ {i, j} ,
εij + |εik|εkj for εikεkj > 0 and k 6∈ {i, j} .

(2.4)
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We also define birational maps

µk : Xs 99KXµk(s)

µk : As 99KAµk(s)

via pull-back of functions

µ∗kz
n = zn(1 + zek)−[n,ek] for n ∈ N , (2.5)

µ∗kz
m = zm(1 + zvk)−〈dkek,m〉 for m ∈M◦ . (2.6)

These maps are more often seen in the cluster literature as described via pull-backs of cluster
variables:

µ∗kX
′
i =

{
X −1
k for i = k ,

Xi(1 +X
− sgn(εik)
k )−εik for i 6= k ,

(2.7)

and

Ak · µ∗kA′k =
∏

j: εkj>0

A
εkj
j +

∏
j: εkj<0

A
−εkj
j , µ∗kA

′
i = Ai for i 6= k . (2.8)

The correspondence between these two descriptions can be seen using Xi = zei , X ′i = ze
′
i and

Ai = zfi , A′i = zf
′
i .

Remark 2.3. Note that in the notation of (1.2), the mutation (2.6) is

µ(−dkek,vk) : TN◦ 99K TN◦ .

By (1.4), its tropicalization is

µtk(n) = n+ [〈vk, n〉]−(−dkek) = n+ [{n, dkek}]+ek ,

and thus the seed mutation (2.3) is also given by

e′i =

{
µtk(ei) for i 6= k ,

−ek = −µtk(ek) for i = k .
(2.9)

On the other hand, the mutation (2.5) is µ(dkvk,ek) : TM 99K TM . This tropicalizes to

µtk(m) = m+ [〈dkek,m〉]−vk .

Note that as p∗ is a linear function, the vi transform under the mutation in the same way the ei
do; that is, v′k = −vk, v′i = vi + [εik]+vk for i 6= k. But µtk(vi) = vi + [εik]−vk 6= v′i, so we do not
obtain an equation analogous to (2.9). Rather, one checks that

−v′i =

{
µtk(−vi) for i 6= k ,

−µtk(−vk) for i = k .
(2.10)

One checks easily the commutativity of the diagrams

TK◦ //

=

��

As
p //

µk

��

Xs
//

µk

��

TK∗

=

��
TK◦ // Aµk(s) p

// Xµk(s)
// TK∗

(2.11)
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T(N/Nuf)∗
//

=

��

Xs

µk

��
T(N/Nuf)∗

// Xµk(s)

As
//

µk

��

TN◦/Nuf∩N◦

=

��
Aµk(s)

// TN◦/Nuf∩N◦

(2.12)

We can now define the X and A cluster varieties associated with the seed s. We will first
need the following general gluing construction.

Proposition 2.4. Let {Xi} be a collection of integral, separated schemes of finite type over a
field k, with birational maps fij : Xi 99K Xj for all i, j, with fii the identity and fjk ◦ fij = fik
as rational maps. Let Uij ⊆ Xi be the largest open subset such that fij : Uij → fij(Uij) is an
isomorphism. Then there is a scheme X obtained by gluing the Xi along the open sets Uij via
the maps fij .

Proof. First, the sets Uij exist: take Uij to consist of all points x in the domain of fij at which
fij is a local isomorphism. By [Gro60, 6.5.4], these are precisely the points x such that f∗ij :
OXj ,fij(x) → OXi,x is an isomorphism. By [Gro60, 8.2.8], fij |Uij is an open immersion.

By [Har77, Exercise II 2.12], it is now sufficient to check that fij(Uij ∩ Uik) = Uji ∩ Ujk.
Clearly fij(Uij ∩Uik) ⊆ Uji. If x ∈ Uij ∩Uik, then fjk can be defined at fij(x) ∈ Uji via fik ◦f−1

ij .
Then, clearly fjk is a local isomorphism at fij(x), so fij(x) ∈ Ujk. Conversely, if y ∈ Uji ∩ Ujk,
then y = fij(x) for some x ∈ Uij . Clearly fik = fjk ◦ fij is a local isomorphism at x, so x ∈ Uik
also and y ∈ fij(Uij ∩ Uik).

Let T be the oriented rooted tree with |Iuf | outgoing edges from each vertex, labeled by the
elements of Iuf . Let v be the root of the tree. Attach the seed s to the vertex v. Now, each simple
path starting at v determines a sequence of seed mutations, just mutating at the label attached
to the edge. In this way we attach a seed to each vertex of T. We write the seed attached to a
vertex w as sw. We further attach copies Xsw ,Asw to w.

If T has a directed edge from w to w′ labeled with k ∈ Iuf , with associated seeds sw and
µk(sw) = sw′ , we obtain mutations µk : Xsw 99K Xsw′ , µk : Asw 99K Asw′ . We can view these
maps as arising from traversing the edge in the direction from w to w′; we use the inverse maps
µ−1
k if we traverse the edge from w′ to w.

Now for any two vertices w,w′ of T, there is a unique simple path γ from one to the other.
We obtain birational maps

µw,w′ : Asw 99K Asw′ , µw,w′ : Xsw 99K Xsw′

between the associated tori. These are obtained by taking the composition of mutations or their
inverses associated with each edge traversed by γ in the order traversed, using a mutation µk
associated with the edge if the edge is traversed in the direction of its orientation, and using µ−1

k

if the edge is traversed in the opposite direction.

These birational maps clearly satisfy µw′,w′′ ◦ µw,w′ = µw,w′′ as birational maps; hence, by
Proposition 2.4, we obtain schemes X or A by gluing these tori using these birational maps.

Remark 2.5. Note that µk ◦ µk : As 99K Aµk(µk(s)) is not the identity when expressed as a map
Speck[M◦] 99K Speck[M◦]; rather, it is the isomorphism given by the linear map M◦ → M◦,
m 7→ m − 〈dkek,m〉vk. This map takes the basis {fi} for the seed µk(µk(s)) to the basis {fi}
for the seed s. This is why µk ◦ µk is only the identity when viewed as an automorphism of
Speck[A±1

1 , . . . , A±1
n ].
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Remark 2.6. As we shall see in Theorem 3.14, the A variety is always separated, but the X variety
usually is not. It is not clear, however, whether either of these schemes is Noetherian. This will
sometimes cause problems in what follows, but these problems are purely technical. In particular,
given any finite connected regular subtree T′ of T, we can use the seed tori corresponding to
vertices in T′ to define open subschemes of X and A. We shall write these subschemes as X ft

and Aft respectively. We will not need to be particularly concerned about which subtree T′ we
use, only that it be sufficiently big for the purpose at hand. However, we shall always assume
that T′ contains the root vertex v and all its adjacent vertices.

Remark 2.7. The structures (i)–(iii) of Remark 2.2 described on individual seed tori, being
compatible with mutations as seen in (2.11) and (2.12), induce corresponding structure on X
and A. In particular,

(i) there are a canonical map λ : X → TK∗ and a canonical action of T(N/Nuf)∗ on X ;

(ii) there are a canonical action of TK◦ on A and a canonical map A → TN◦/Nuf∩N◦ ;

(iii) there is a map p : A → X ; this map is compatible with the maps and actions of items (i)
and (ii) as indicated in Remark 2.2(iii).

Definition 2.8. The X -cluster algebra (A-cluster algebra) associated with a seed s is Γ(X ,OX )
(or Γ(A,OA)).

Remark 2.9. The A-cluster algebra is usually called the upper cluster algebra in the literature;
see [BFZ05]. This can be viewed as the algebra of Laurent polynomials in k[M◦] which remain
Laurent polynomials under any sequence of mutations. Such a Laurent polynomial is called a
universal Laurent polynomial. The algebra which is usually just called the cluster algebra is the
sub-algebra of the field of fractions k(As) = k(A1, . . . , An) of As generated by all functions

{µ∗v,w(A′i) |A′i is a coordinate on Asw , w a vertex of T} .

We note that the cluster algebras arising via this construction are still a special case of the general
definition given in [FZ02a], and are called cluster algebras of geometric type in the literature.
These include most of the important examples.

We end this section with several variants of the constructions above.

Construction 2.10. When there are frozen variables (that is, Nuf 6= N) one frequently might
want to allow the frozen variables Xi, i 6∈ Iuf or Ai, i 6∈ Iuf to take the value zero. Thus, one
replaces Xs, As with

Xs := Spec k[{X±1
i | i ∈ Iuf} ∪ {Xi | i 6∈ Iuf}] ,

As := Spec k[{A±1
i | i ∈ Iuf} ∪ {Ai | i 6∈ Iuf}] .

These varieties can be defined somewhat more abstractly as toric varieties, with fans the set
of faces of the cone generated by {e∗i | i 6∈ Iuf} and {diei | i 6∈ Iuf}, respectively. One sees from
(2.7) and (2.8) that no Xi or Ai for i 6∈ Iuf is inverted by mutations. Thus cluster varieties X ,
A can be defined via gluing these modified spaces as before. In particular, we obtain a map
A → Speck[{Ai | i 6∈ Iuf}].

In any event, Fock and Goncharov [FG11] define the special completion of the X variety,
written as X̂ , by replacing each Xs with the affine space Speck[X1, . . . , Xn] and using the same
definition for the birational maps between the Xs as usual.
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Construction 2.11. We define the notion of cluster algebra with principal coefficients. In
general, given fixed data N, {·, ·} as usual along with seed data s, we construct the double of the
lattice via

Ñ = N ⊕M◦, {(n1,m1), (n2,m2)} = {n1, n2}+ 〈n1,m2〉 − 〈n2,m1〉 .

We take Ñuf = Nuf ⊆ Ñ and Ñ◦ the sublattice N◦ ⊕M . The lattice Ñ with its pairing {·, ·}
and sublattices Ñuf , Ñ

◦ can now play the role of fixed data. Given a seed s for the original fixed
data, we obtain a seed s̃ for Ñ with basis {(ei, 0), (0, fα)}. We use the convention that indices
i, j, k ∈ I are used to index the first set of basis elements and α, β, γ ∈ I are used to index the
second set of basis elements. The integer di associated with (ei, 0) or dα associated with (0, fα)
is then taken to agree with di or dα of the original seed. Then the matrix ε̃ determined by this
seed is given by

ε̃ij = εij , ε̃iβ = δiβ , ε̃αj = −δαj , ε̃αβ = 0 .

One notes that M̃ = Hom(Ñ ,Z) = M ⊕N◦ and M̃◦ = M◦ ⊕N . Furthermore, given a choice of

p∗ : N →M◦, we can take the map p∗ : Ñ → M̃◦ to be given by

p∗(ei, 0) = (p∗(ei), ei) , p∗(0, fα) = (−fα, 0) ,

so that p∗ is an isomorphism.

With this choice of fixed and seed data, the corresponding A cluster variety will be written as
Aprin. The ring of global functions on Aprin is the upper cluster algebra with principal coefficients
at the seed s of [FZ07, Definition 3.1].

The variety Aprin has an additional relationship with X . There are two natural inclusions,

p̃∗ : N → M̃◦ π∗ : N →M◦

n 7→ (p∗(n), n) n 7→ (0, n)

The first inclusion induces for any seed s an exact sequence of tori

1 −→ TN◦ −→ Aprin,s
p̃−→ Xs −→ 1 .

One checks that p̃ commutes with the mutations µk on Aprin,s and Xs. Thus, we obtain a mor-
phism p̃ : Aprin → X . The TN◦ action on Aprin,s gives a TN◦ action on Aprin, making p̃ the
quotient map for this action and Aprin a TN◦-torsor over X . On the other hand, π∗ induces a
projection

π : Aprin → TM . (2.13)

We note that if e ∈ TM denotes the identity element, then π−1(e) = A. To see this, note that the
fibre of π : Aprin,s → TM over e is canonically As, and a mutation µk on Aprin,s specializes to the
corresponding mutation on As. The open subset on which a mutation µw,w′ : Aprin,sw → Aprin,sw′

is an isomorphism onto its image restricts to the corresponding open subset of Asw ; otherwise,
Aprin would not be separated, contradicting Theorem 3.14.

Definition 2.12. Let t ∈ TM . We write At for the fibre π−1(t). We call this an A cluster variety
with general coefficients.

Construction 2.13. In case there are no frozen variables, that is, N = Nuf , we have p∗ = p∗2
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and K = ker p∗. We then have a commutative diagram

N
p̃∗ // M̃◦

K

λ∗

OO

i∗
// N

π∗

OO

where both i∗ and λ∗ are the inclusion. This induces a commutative diagram

X

λ
��

Aprin
p̃oo

π

��
TK∗ TMi

oo

(2.14)

Note that for t ∈ TM , p̃ restricts to a map pt : At → λ−1(i(t)) = Xi(t).

3. The geometry of cluster varieties

We now give our description of cluster varieties as blowups of toric varieties and mutations as
elementary transformations of P1-bundles. This gives rise to most of the results in this paper,
including a simple explanation for the Laurent phenomenon and counterexamples to some basic
conjectures about cluster algebras.

3.1 Elementary transformations.

The basic point is that the gluing of adjacent seed tori can be easily described in terms of blowups
of toric varieties, and that mutations have a simple interpretation as a well-known operation in
algebraic geometry known as an elementary transformation. To describe this in general, we fix
a lattice N with no additional data and a primitive vector v ∈ N . The projection N → N/Zv
gives a Gm-bundle π : TN → TN/Zv. A non-zero regular function f on TN/Zv can be viewed as a
map

f : TN/Zv \ V (f)→ TZv ⊆ TN = N ⊗Z Gm

t 7→ v ⊗ f(t)

to obtain a birational map

µf : TN 99K TN

t 7−→ f(π(t))−1 · t .

Note that on the level of pull-back of functions, this is defined, for m ∈M = Hom(N,Z), by

zm 7→ zm(f ◦ π)−〈m,v〉.

Indeed, this is easily checked by choosing a basis f1, . . . , fn of M with 〈f1, v〉 = 1, 〈fi, v〉 = 0 for
i > 1. This gives coordinates xi = zfi , 1 6 i 6 n, on TN , so that the projection π is given by
(x1, . . . , xn) 7→ (x2, . . . , xn), and the map µf is given by

(x1, . . . , xn) 7→ (f(x2, . . . , xn)−1x1, x2, . . . , xn) .

Now consider the fan Σv,+ = {R>0v, 0} in N . This defines a toric variety TV(Σv,+)
isomorphic to A1 × TN/Zv and containing a toric divisor D+. It has a canonical projection
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π : TV(Σv,+)→ TN/Zv, which induces an isomorphism D+
∼= TN/Zv. Set

Z+ = π−1(V (f)) ∩D+ .

This hypersurface may be non-reduced. Define

T̃V(Σv,+)→ TV(Σv,+) the blowup of Z+,

D̃+ the proper transform of D+ and Uv,+ = T̃V(Σv,+) \ D̃+ .

Note that Γ(Uv,+,OUv,+) = Γ(TV(Σv,+),OTV(Σv,+))[f/x1].

We can also use µf to define a variety Xf obtained by gluing together two copies of TN
using µf along the open subsets TN \ V (f ◦ π) ⊆ TN .

We then obtain the following basic model for describing gluings of tori as blowups of toric
varieties.

Lemma 3.1. There is an open immersion Xf ↪→ Uv,+ such that Uv,+ \Xf is of codimension two
in Uv,+. Furthermore, the projection π : Uv,+ → TN/Zv is a Gm-bundle over TN/Zv \ V (f), while
the fibres of π over V (f) are each a union of two copies of A1 meeting at a point. The locus
where π is not smooth is precisely Uv,+ \Xf .

Proof. Using coordinates (x1, . . . , xn) for TV(Σv,+) as before, with D+ given by x1 = 0, note
that the ideal of Z+ is (x1, f). Thus the blowup of Z+ is given by the equation ux1 = vf in
P1 × TV(Σv,+). We define two embeddings of TN ,

ι1 : (x1, . . . , xn) 7→
(
(f, x1), (x1, . . . , xn)

)
,

ι2 : (x1, . . . , xn) 7→
(
(1, x1), (x1f, x2, . . . , xn)

)
.

Noting that µf = ι−1
2 ◦ ι1, it is clear that these maps give an embedding of Xf . The divisor D̃+

is given by the equation v = x1 = 0, so the only points of Uv,+ missed by the open immersion
Xf ↪→ Uv,+ are the points where u = x1 = 0, that is, points of the form

(
(0, 1), (0, x2, . . . , xn)

)
with f(x2, . . . , xn) = 0. The remaining statements are clear.

Next we examine how this gives a basic model for a mutation. Consider the fan Σv :=
{R>0v,R60v, 0}. This defines a toric variety we write as P, which comes with divisors D+, D−
corresponding to the two rays and a map

π : P→ TN/Zv ,

identifying D+ and D− with TN/Zv. Let

Z+ = D+ ∩ V (f ◦ π),

Z− = D− ∩ V (f ◦ π) .

We have two blowups

b± : P̃± → P
that are the blowups of Z+ and Z−.

Lemma 3.2. The rational map µf : TN 99K TN extends to a regular isomorphism µf : P̃+ → P̃−.

Proof. Working in coordinates (x1, . . . , xn) as before, we can describe P as P1 × TN/Zv with
coordinates (x1 : y1) on P1 and coordinates x2, . . . , xn on TN/Zv. Here D+ is given by x1 = 0
and D− by y1 = 0. Then µf is given as(

(x1 : y1), (x2, . . . , xn)
)
7→
(
(x1, f(x2, . . . , xn)y1), (x2, . . . , xn)

)
.

153



Mark Gross, Paul Hacking and Sean Keel

This fails to be defined precisely where x1 = f = 0, that is, along Z+; blowing up Z+ clearly
resolves this indeterminacy. Thus, µf : P 99K P lifts to a morphism µf : P̃+ → P. On the other
hand, since the ideal sheaf of Z− in P (locally generated by y1 and f) pulls back via µf to an
invertible sheaf on P̃+, this morphism factors as a morphism µf : P̃+ → P̃− by the universal
property of blowing up.

To see that µf viewed this way is a regular isomorphism, note that the inverse rational map
µ−1
f can be written as t 7→ f(π(t)) · t, and thus as a map P 99K P is written as(

(x1 : y1), (x2, . . . , xn)
)
7→
(
(f(x2, . . . , xn)x1, y1), (x2, . . . , xn)

)
.

This lifts to a well-defined morphism µ−1
f : P̃− → P̃+, as before. Thus µf is an isomorphism

between P̃+ and P̃−.

Remark 3.3. This lemma should be interpreted as saying that µf : P 99K P can be viewed
as the birational map described as the blowup of Z+ followed by the contraction of the proper
transform of π−1(V (f)) ⊆ P in P̃+ to Z− ⊆ P. This is a birational operation called an elementary
transformation in algebraic geometry.

Furthermore, let D̃± be the proper transform of D± in either P̃+ or P̃−. Then combining
Lemmas 3.1 and 3.2, this tells us that there are open immersions of Xf in P̃± \ (D̃+ ∪ D̃−),
missing a codimension two subset. The roles the two coordinate tori of Xf play are reversed
under these two immersions; one of the tori of Xf is the inverse image of the big torus orbit
under the blowup P̃− → P, while the other torus in Xf is the inverse image of the big torus orbit
under the blowup P̃+ → P.

We need an extended version of the above setup.

Construction 3.4. Suppose that we have the data of a fan Σ = {R>0vi | 1 6 i 6 `} ∪ {0},
where v1, . . . , v` ∈ N are primitive, and w1, . . . , w` ∈M with 〈vi, wi〉 = 0. We allow some of the
points vi to coincide. Let a1, . . . , a` be positive integers, let c1, . . . , c` ∈ k×, and let µi : TN 99K TN
be defined as before by the data fi = (1 + ciz

wi)ai and vi, where ci ∈ k×. Let TV(Σ) be the toric
variety defined by Σ, and let Di be the toric divisor corresponding to R>0vi.

In what follows, we use the notation V̄ (fi) for the closure of V (fi) ⊆ TN in TV(Σ). Define

Zj = Dj ∩ V̄ (fj) , π : T̃V(Σ)→ TV(Σ) the blowup along
⋃`
i=1 Zi and

D̃j the proper transform of Dj .

On the other hand, define a scheme X as follows. Let T0, . . . , T` be `+1 copies of the torus TN .
The map µi is viewed as an isomorphism

ϕ0i := µi : U0i → Ui0

between open sets of T0 and Ti, respectively, with U0i taken as the largest possible such open
subset. Indeed, we can take U0i = T0 \ V (fi) and Ui0 = Ti \ V (fi). In addition, for 1 6 i, j 6 `,
define ϕij := µj ◦ µ−1

i , and define Uij to be the largest subset of Ti on which ϕij defines an open
immersion. The identifications ϕij then provide gluing data to obtain a scheme X, in general not
separated, by Proposition 2.4.

Lemma 3.5. There is a natural morphism

ψ : X → ŨΣ := T̃V(Σ) \
⋃
i

D̃i ,

which in special cases satisfies the following properties:
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(i) If dimZi ∩Zj < dimZi for all i 6= j, then ψ is an isomorphism outside a set of codimension
at least two.

(ii) If Zi ∩ Zj = ∅ for all i 6= j, then ψ is an open immersion. In particular, in this case, X is
separated.

Proof. This is just a slightly more involved version of the argument of Lemma 3.1. We first
describe maps of the tori Ti, 0 6 i 6 `, into ŨΣ. We have a canonical identification of T0 with
the big torus orbit TN of TV(Σ), isomorphic to π−1(TN ) ⊆ ŨΣ. On the other hand, for a given i,
let J be the set of indices such that vj = vi if and only if j ∈ J . Note that TV(Σvi,+) is an open
subset of TV(Σ). Using coordinates x1, . . . , xn on TV(Σvi,+) as in the proof of Lemma 3.1, we

obtain an open subset of T̃V(Σ) described as a subset of TV(Σvi,+)× P1 given by the equation
ux1 = v

∏
j∈J fj . With this description, we define ιi : Ti → ŨΣ by

ιi : (x1, . . . , xn) 7→
(
(
∏

j∈J\{i}

fj , x1), (fix1, x2, . . . , xn)
)
.

Note that ιi contracts the locus fi =
∏
j∈J\{i} fj = 0 in Ti, so this is not an embedding unless

the Zj are disjoint. In this coordinate chart, ι0 is given by

ι0 : (x1, . . . , xn) 7→
(
(
∏
j∈J

fj , x1), (x1, . . . , xn)
)
.

From this one sees that ιi ◦ µi = ι0 on U0i. In particular, the maps ιi, 0 6 i 6 n are compatible
with the gluings ϕij , and hence we obtain the desired map ψ.

In case (i), each ιi, i > 1, is an open immersion outside a set of codimension at least two,
and as in Lemma 3.1, it is easy to see that the image misses a codimension > 2 set. In case (ii),
each ιi is an open immersion. Thus ψ is a local isomorphism, and it is enough to show that ψ is
injective to see that it is an open immersion. Certainly ψ is injective on each Ti. If x ∈ Ti, y ∈ Tj
have ψ(x) = ψ(y), then ιi(x) = ιj(y). Noting that ϕij = ι−1

j ◦ ιi as rational maps, we see that
ϕij is a local isomorphism at x and ϕij(x) = y. Thus x ∈ Uij and x and y are identified by the
gluing maps, so they give the same point in X.

Next we understand the general setup for a mutation.

Given elements v ∈ N , w ∈M with 〈w, v〉 = 0, define the piecewise linear transformation

Tv,w : NR → NR, n 7→ n+ [〈n,w〉]−v

Note that this coincides with the tropicalization of µ(v,w) in (1.2) as given in (1.4).

Now in the situation of this construction, let us impose one additional restriction on the
starting data vi, wi, namely,

〈wi, vj〉 = 0⇔ 〈wj , vi〉 = 0 . (3.1)

Pick some index k and let

Σ+ = Σ ∪ {R60vk} ,
and define Σ− by applying T−vk,akwk to each ray of Σ+. Let Dk,+ ⊆ TV(Σ+) be the divisor
corresponding to R>0vk in Σ+ and let Dk,− ⊆ TV(Σ−) be the divisor corresponding to R60vk
in Σ−. For j 6= k, write Dj,± for the divisor corresponding to R>0vj in Σ+ or to R>0T−vk,akwk(vj)
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in Σ−. Finally, we can set

Zj,+ = V̄ (fj) ∩Dj,+

Zj,− =

{
V̄ (fj) ∩Dj,− if 〈wk, vj〉 > 0 ,

V̄
(
(1 + cjc

ak〈wj ,vk〉
k zwj+ak〈wj ,vk〉wk)aj

)
∩Dj,− if 〈wk, vj〉 6 0 .

Let T̃V(Σ±) be the blowups of TV(Σ±) at this collection of subschemes.

Lemma 3.6. The map µk = µfk : TN 99K TN defines a birational map

µk : T̃V(Σ+) 99K T̃V(Σ−) .

If dim V̄ (fk) ∩ Zj,+ < dimZj,+ whenever 〈wk, vj〉 = 0, then this extension is an isomorphism
outside sets of codimension at least two.

Proof. We first analyze the map µk before blowing up the hypersurfaces Zj,+, j 6= k. So abusing

notation, assume that T̃V(Σ±) is just obtained by blowing up Zk,±. Off of a closed subset of

codimension two, we can cover T̃V(Σ+) with open sets, one isomorphic to P̃+ with v = vk,
and the remaining ones of the form Uρ \ V̄ (fk). Here ρ ranges over dimension one cones of Σ+

not equal to R>0vk or R60vk, and Uρ denotes the standard affine toric open subset of TV(Σ+)
corresponding to ρ. Denoting Dρ ⊆ Uρ the toric divisor, note that Dρ ∩ V̄ (fk) = ∅ if wk is
non-zero on ρ, as then either zwk or z−wk vanishes on Dρ and V̄ (1 + zwk) = V̄ (1 + z−wk). Thus
we only fail to cover codimension two subsets of the form Dρ ∩ V̄ (fk) such that wk is zero on ρ.
So for the purposes of describing the extension of µk up to codimension two, it will be sufficient
to restrict to the open subset U of T̃V(Σ+) covered by these open sets.

By Lemma 3.2, µk gives a well-defined morphism on the open subset isomorphic to P̃+, so
we need to check that µk defines a morphism on each of the remaining sets. If 〈wk, ρ〉 > 0, then
for any m ∈ ρ∨ ∩M = (T−vk,akwk(ρ))∨ ∩M , µ∗k acts by

zm 7→ zmf
−〈m,vk〉
k ,

taking a regular function to a regular function on Uρ \ V̄ (fk). If 〈wk, ρ〉 < 0, then if m ∈
(T−vk,akwk(ρ))∨ ∩M , we see that µk acts by

zm 7→ zm(1 + ckz
wk)−ak〈m,vk〉 = zm−ak〈m,vk〉wk(ck + z−wk)−ak〈m,vk〉 .

But m − ak〈m, vk〉wk ∈ ρ∨ by definition of T−vk,akwk , so this is again a regular function on
Uρ \ V̄ (fk). This shows that µk is a morphism on U ; to show that it is an isomorphism onto its
image, we repeat the same process for µ−1

k .

To prove the result after blowing up the hypersurfaces Zj,±, first note that if 〈wk, vj〉 6= 0,
then Zj,+ ⊆ U , and we need to show that µk(Zj,+) = Zj,−. This can be checked in cases. If
〈wk, vj〉 > 0, then Zj,− is defined by the equation fj on Dj . Now if 〈wk, vj〉 > 0, we have
fk|Dj = 1, so that µ∗k(fj)|Dj = fj |Dj . If 〈wk, vj〉 = 0, then 〈wj , vk〉 = 0 by assumption (3.1), so
that µ∗kz

wj = zwj , so again µ∗k(fj) = fj . If 〈wk, vj〉 < 0, then noting the definition of Zj,− in this
case,

µ∗k((1 + cjc
ak〈wj ,vk〉
k zwj+ak〈wj ,vk〉wk)aj ) = (1 + cjc

ak〈wj ,vk〉
k zwj+ak〈wj ,vk〉wk(1 + ckz

wk)−ak〈wj ,vk〉)aj

= (1 + cjc
ak〈wj ,vk〉
k zwj (ck + z−wk)−ak〈wj ,vk〉)aj .

However, z−wk vanishes identically on Dj in this case, so when restricting to Dj , this coincides
with fj . This shows that µk extends to a regular map after blowing up U along the Zj,± for
those j with 〈wk, vj〉 6= 0.
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Finally, if 〈wk, vj〉 = 0, then we do not necessarily have Zj,+ ⊆ U , and if V̄ (fk) contains
an irreducible component of Zj,+, the map µk need not extend as an isomorphism across the
exceptional divisor of the blowup of Zj,+. Hence we need to use the stated hypothesis, which
implies that Zj,+ \ U is of codimension at least three. Since µ∗k(fj) = fj when 〈wk, vj〉 = 0,
it then follows that µk extends to an isomorphism outside a set of codimension at least two
in T̃V(Σ+).

3.2 The X - and Aprin-cluster varieties up to codimension two.

Since the ring of functions on a non-singular variety is determined outside a set of codimension
two, we can study the X - and Aprin-cluster algebras by describing the corresponding varieties up
to codimension two.

Suppose given fixed data as in § 2. Let s be a seed. Consider the fans

Σs,A := {0} ∪ {R>0diei | i ∈ Iuf} ,
Σs,X := {0} ∪ {−R>0divi | i ∈ Iuf}

in N◦ and M , respectively. These define toric varieties TVs,A and TVs,X respectively. We remark
that the minus signs in the definition of Σs,X are forced on us by (2.10).

Each one-dimensional ray in one of these fans corresponds to a toric divisor, which we write
as Di for i ∈ Iuf (not distinguishing the X and A cases). For i ∈ Iuf , we can define closed
subschemes

ZA,i := Di ∩ V̄ (1 + zvi) ⊆ TVs,A ,

ZX ,i := Di ∩ V̄ ((1 + zei)ind divi) ⊆ TVs,X ,
(3.2)

where ind divi denotes the greatest degree of divisibility of divi in M . Let (T̃Vs,A, D) and

(T̃Vs,X , D) be the pairs consisting of the blowups of TVs,A and TVs,X along the closed sub-
schemes ZA,i and ZX ,i, respectively, with D the proper transform of the toric boundaries.

We note that in the A case the divisors Di are distinct and hence the centers of the blowups
are disjoint. In the X case, however, vi and vi′ might be positively proportional to each other,
so that Di = Di′ . Then the two centers ZX ,i, ZX ,i′ may intersect. However, it is easy to see
that this intersection occurs in higher codimension, that is, dimZX ,i ∩ZX ,i′ < dimZX ,i. Thus in
the X case, we are in the situation of Lemma 3.5(i) and in the A case, we are in the situation of
Lemma 3.5(ii).

Finally, we define Us,A := T̃Vs,A \D and Us,X := T̃Vs,X \D. Clearly, these varieties contain
the seed tori As and Xs; hence, given vertices w,w′ ∈ T, we obtain a birational map µw,w′ of
seed tori inducing birational maps

µw,w′ : Usw,A 99K Usw′ ,A , µw,w′ : Usw,X 99K Usw′ ,X .

Since Aprin is defined to be a special case of the construction of the A cluster variety, we also
obtain in the same way birational maps

µw,w′ : Usw,Aprin 99K Usw′ ,Aprin .

In this case the projection Ñ◦ → M projects all rays of Σs,Aprin to 0, so we obtain a morphism
TVs,Aprin → TM . The fibres of this map are (non-canonically) isomorphic to TVs,A. After blowing
up the centers ZAprin,i, we get morphisms π : Us,Aprin → TM which commute with the mutations
µw,w′ . Write a fibre of π over t ∈ TM as Us,At . We then obtain birational maps on fibres of π
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over t,

µw,w′ : Usw,At 99K Usw′ ,At .

We recall the following definition from [BFZ05].

Definition 3.7. A seed s is coprime if, writing (2.8) as Ak · µ∗kA′k = Pk, the Pk, k ∈ Iuf ,
are pairwise coprime. We say that a seed s is totally coprime if all seeds obtained by repeated
mutations of s are coprime.

We then have the following result.

Lemma 3.8. Let U ′s,A ⊂ A (respectively, U ′s,X ⊂ X ) be the union of the tori As (respectively,
Xs) and Aµi(s) (respectively, Xµi(s)), i ∈ Iuf .

(i) For k ∈ Iuf , with w′ = µk(w), the maps

µw,w′ : Usw,X 99K Usw′ ,X , µw,w′ : Usw,Aprin 99K Usw′ ,Aprin

are isomorphisms outside codimension two.

(ii) The map µw,w′ : Usw,A 99K Usw′ ,A is an isomorphism outside codimension two if the seed sw
is coprime.

(iii) The map µw,w′ : Usw,At 99K Usw′ ,At is an isomorphism outside codimension two for t ∈ TM
general (that is, t contained in some non-empty Zariski open subset).

(iv) The map U ′s,A 99K Us,A is an open immersion with image an open subset whose complement
has codimension at least two.

(v) The map U ′s,X 99K Us,X is an isomorphism outside a set of codimension two.

Proof. These are all special cases of construction 3.4. For cases (i) and (ii), in the X (respectively,
Aprin, A) case, we take the vectors vi to be −divi/ ind(divi) ∈ M (respectively, (diei, 0) ∈ Ñ◦,
diei ∈ N◦) for i ∈ Iuf , the vectors wi to be ei ∈ N (respectively, (vi, ei) ∈ M̃◦, vi ∈ M◦). In all
these cases, the constants ci are taken to be 1. The integers ai are taken to be ai = ind(divi)
(respectively, ai = 1). In all three cases, the cluster mutation µk coincides with the µk as defined
in Construction 3.4. In the notation of Lemma 3.6, taking Σ+ = Σsw,X (respectively, Σsw,Aprin ,
Σsw,A), we observe that Tdkvk,ek (respectively, T(−dkek,0),(vk,ek), T−dkek,vk) applied to the rays of
Σ+ gives Σ− := Σsw′ ,X , (respectively, Σsw′ ,Aprin , Σsw′ ,A) as follows immediately from (2.3) and
Remark 2.3.

We now only need to check the hypothesis of Lemma 3.6 to see that µw,w′ is an isomorphism
outside codimension two subsets. In the X case, fk = 1 + zek , and from this the condition is
easily checked. In the A case, fk = 1 + zvk , which coincides with Pk up to a monomial factor.
The hypothesis then follows from the coprime condition, and the principal coefficient case is
automatically coprime as the (vk, ek), k ∈ Iuf , are linearly independent.

The At case (iii) is similar to the A case, except that now fk = 1 + zek(t) · zvk , so we take
ck = zek(t). If t is chosen generally, then the hypothesis of Lemma 3.6 continues to hold.

Case (v) follows from part (i) of Lemma 3.5. Case (iv) follows from part (ii) of Lemma 3.5.

The main result in this section is then as follows.
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Theorem 3.9. Let w,w′ be vertices in T.

(i) The induced birational maps

Usw,X
µw,w′
99999K Usw′ ,X 99K X

ft

Usw,Aprin

µw,w′
99999K Usw′ ,Aprin 99K A

ft
prin

are isomorphisms outside a codimension two set. (See Remark 2.6 for X ft, Aft. We use a
finite subtree of T containing both w and w′.)

(ii) If the initial seed is totally coprime, then

Usw,A
µw,w′
99999K Usw′ ,A 99K A

ft

is an isomorphism outside a codimension two set.

(iii) If t ∈ TM is very general (outside a countable union of proper closed subsets), then

Usw,At
µw,w′
99999K Usw′ ,At 99K A

ft
t

is an isomorphism outside a codimension two set.

In particular, as all schemes involved are S2, these maps induce isomorphisms on rings of regular
functions.

Proof. That the maps µw,w′ are isomorphisms outside codimension two sets follows from Lemma
3.8. For the remaining statements in (i-iii), consider just the X case, as the other cases are
identical. By Lemma 3.5, each of the Us,X is isomorphic, outside a codimension two set, to the
gluing of the seed torus Xs to its adjacent seed tori Xµk(s), k ∈ Iuf . This gives a birational

map Us,X 99K X ft ⊆ X . (Here we use any choice of regular subtree of T containing the vertex
corresponding to s and its adjacent vertices. The subtree is taken to be finite but as large as
we would like.) Since X ft is covered, up to codimension two subsets, by some finite collection
{Usw,X }, we see that each Usw,X is isomorphic to X ft outside a codimension two subset. We need
to use X ft rather than X , for if X is not Noetherian, the subset of X we fail to cover need not
be closed.

Remark 3.10. More generally than the principal coefficient case, the totally coprime hypothesis
also holds if the matrix (εij)i∈Iuf ,16j6n has full rank; see [BFZ05, Proposition 1.8]. Of course, this
holds in particular for the principal coefficient case.

We immediately obtain from this a geometric explanation for the well-known Laurent phe-
nomenon.

Corollary 3.11 (The Laurent phenomenon). For a seed s, let q ∈ M◦ (respectively, q ∈ N)
have non-negative pairing with each ei (respectively, each −vi) for i ∈ Iuf . Equivalently, zq

is a monomial which is a regular function on the toric variety TVs,A (respectively, TVs,X ).
Then zq is a Laurent polynomial on every seed torus, that is, zq ∈ H0(A,OA) (respectively,
zq ∈ H0(X ,OX )).

Proof. By assumption, zq is a regular function on TVs,A (or TVs,X ), and hence pulls back and
restricts to a regular function on Us,A (respectively, Us,X ). In the X case, the result then follows
from Theorem 3.9, since then zq also defines a regular function on X ft for any choice of subtree
of T, and hence also defines a regular function on X .
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The A case then follows from the Aprin case, since the mutation formula (2.6) for A is obtained
from that for Aprin by setting z(0,ei) = 1 for (e1, . . . , en) the initial seed.

Remark 3.12. Note that in the A case, with no frozen variables, (that is, Iuf = I) the condition
on q is exactly that q is in the non-negative span of the e∗i , that is, that zq is a monomial, with
non-negative exponents, in the cluster variables of the seed. In particular, this applies to any
cluster variable, in which case the statement gives the usual Laurent phenomenon. From this
point of view the difference between A and X is that the fan Σs,A always looks the same (it
is the union of coordinate rays), and, in particular, TVs,A has many global functions (this is
a toric open subset of An), while Σs,X can be any arbitrary collection of rays, and TVs,X has
non-constant global functions if and only if all these rays lie in a common half space.

Remark 3.13. By [BFZ05, Definition 1.1], the algebra H0(U ′s,A,OU ′s,A) = H0(Us,A,OUs,A) (see

part (4) of Lemma 3.8) is the upper bound. In an earlier version of this paper we claimed Theorem
3.9 for A (without any coprimality assumption), which would, in particular, imply that the upper
bound is equal to the upper cluster algebra. But Greg Muller set us straight, by giving us an
example where the upper cluster algebra is strictly smaller than the upper bound.

We learned the following theorem, and its proof, from M. Shapiro.

Theorem 3.14. The canonical map ι : A → SpecAup is an open immersion, where Aup =
Γ(A,OA) is the upper cluster algebra. In particular, A is separated.

Proof. The variety A is covered by open sets of the form As, for various seeds s. First, note
that the induced map ιs : As → SpecAup is an open immersion. Indeed, this map is induced
by the inclusion ι∗s : Aup ⊆ k[A±1

1 , . . . , A±1
n ] =: B, where A1, . . . , An are the cluster coordinates

on As. One checks that this is a local isomorphism: given (a1, . . . , an) ∈ As, a1, . . . , an 6= 0,
the corresponding maximal ideal is m = 〈A1 − a1, . . . , An − an〉 ⊆ B. By the Laurent phe-
nomenon, A1, . . . , An ∈ Aup, and thus A1, . . . , An are invertible in the localization Aup

(ι∗s )−1(m)
.

Thus Aup
(ι∗s )−1(m)

∼= Bm, and ιs is a local isomorphism. Hence by [Gro60, I, 8.2.8], ιs is an open
immersion.

To show that ι itself is now an open immersion, it is sufficient to show it is one-to-one
since it is a local isomorphism. Let x ∈ As, y ∈ As′ be such that ι(x) = ι(y). Let A1, . . . , An
be the cluster coordinates on As. Again by the Laurent phenomenon, there is an inclusion
k[A1, . . . , An] ⊆ Aup, hence a map ψ : SpecAup → An. The composition ψ ◦ ιs is the obvious
inclusion and (ψ ◦ ιs)−1 ◦ (ψ ◦ ιs′) agrees, as a rational map, with µw′,w, where w′, w are the
vertices of T corresponding to the seeds s′, s. Thus the map µw′,w is defined at y, since ψ ◦ ιs′ is
defined at y and (ψ ◦ ιs)−1 is defined at ψ(ιs′(y)) = ψ(ιs(x)). Furthermore, µw′,w is then a local
isomorphism at y as it agrees with ι−1

s ◦ ιs′ at y, and ιs and ιs′ are local isomorphisms at x and y,
respectively. So the gluing map defining A identifies x and y, and ι is injective.

4. The At and Aprin cluster varieties as torsors

We fix in this section fixed data and a seed s as usual. We shall assume that there are no
frozen variables, that is, Iuf = I, Nuf = N , and furthermore that the matrix ε has no zero row
(or equivalently no zero column). Note that if ε does have a zero row, the same is true for all
mutations, so this condition is mutation independent. We then obtain the X , A, Aprin and At
varieties.
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Denote by X the open subset of X obtained by gluing together the seed tori Xs and Xµk(s),
1 6 k 6 n. This still comes with a map λ : X → TK∗ as in construction 2.13, and we write Xφ

for the fibre over φ ∈ TK∗ .
We first compute the Picard group of X and Xφ.

Theorem 4.1. For φ ∈ TK∗ , Pic(X) ∼= Pic(Xφ) ∼= coker(p∗ : N →M◦).

Proof. We first need to describe precisely how X and Xφ are glued together out of tori. Let
U0 = Xs, Ui = Xµi(s), 1 6 i 6 n. We have birational gluing maps ϕij : Ui 99K Uj given by

ϕ0j = µj , ϕij = µj ◦ µ−1
i . These glue over sets Uij as in Proposition 2.4. Note that

U0j = Xs \ V (1 + zej ) ,

by (2.5) and the fact that no row or column of ε is zero. The same description applies to Uj0.
On the other hand, noting that

(µj ◦ µ−1
i )∗(zn) = zn(1 + zej (1 + zei)[ej ,ei])[−n,ej ](1 + zei)[n,ei] ,

one sees that if we set

hij =

{
1 + zej (1 + zei)[ej ,ei] for [ej , ei] > 0 ,

(1 + zei)−[ej ,ei] + zej for [ej , ei] 6 0 ,

then

Uij = Xµi(s) \ (V (1 + zei) ∪ V (hij)) .

Now the Uij also map to TK∗ , with fibres Uij,φ over φ, so that Xφ is obtained by gluing the sets
Ui,φ (the fibres of Ui → TK∗ over φ) via the restriction of the ϕij to Uij,φ. Choose a splitting
N = K ⊕N ′. A regular function on a fibre of Xs → TK∗ is a linear combination of restrictions
of monomials zn

′
, n′ ∈ N ′, to the fibre.

In particular, we have

Γ(U0i,O×U0i
) = {czn(1 + zei)−a | c ∈ k×, n ∈ N, a ∈ Z} ,

Γ(Uij ,O×Uij ) = {czn(1 + zei)−ah−bij | c ∈ k×, n ∈ N, a, b ∈ Z} ,

Γ(U0i,φ,O×U0i,φ
) = {czn(1 + zei)−a | c ∈ k×, n ∈ N ′, a ∈ Z} ,

Γ(Uij,φ,O×Uij,φ) = {czn(1 + zei)−ah−bij | c ∈ k×, n ∈ N ′, a, b ∈ Z} ,

(4.1)

noting that as ei 6∈ K for any i by our assumption on ε, 1 + zei has some zeroes on Uij,φ. We
will now compute Pic(Xφ), the argument for Pic(X) being identical except that N ′ is replaced
by N below. We compute Pic(Xφ) = H1(Xφ,O×Xφ) using the Čech cover {Ui,φ | 0 6 i 6 n} with

Ui,φ∩Uj,φ identified with Uij,φ for i < j. Indeed, this cover calculates Pic(Xφ) because Pic(Ui,φ) =
Pic(Uij,φ) = 0 for all i and j. Thus a Čech 1-cochain consists of elements gij ∈ Γ(Uij,φ,O×Uij,φ) for

each i < j. In particular, if (gij) is a 1-cocycle, necessarily gij = (µ−1
i )∗(g−1

0i g0j), and the elements
g0i can then be chosen independently. From (4.1), the group of 1-cocycles is then identified with

Z1 :=
n⊕
i=1

(k× ⊕N ′ ⊕ Z) .

On the other hand, Γ(Ui,φ,O×Ui,φ) = k× ⊕ N ′. A 0-cochain g = (gi)06i6n, gi ∈ k× ⊕ N ′ then

satisfies (∂g)0i = g−1
0 µ∗i (gi), where ∂ denotes Čech coboundary. Given (2.5), we can then view ∂
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as a map

C0 :=
n⊕
i=0

(k× ⊕N ′)→ Z1, (ci, ni)06i6n 7→ (cic
−1
0 , ni − n0, [ni, ei])16i6n .

Thus modulo ∂(C0), every element of Z1 is equivalent to some (1, 0, ai)16i6n. Thus Z1/∂(C0) is
isomorphic to Zn/(∂(C0)∩Zn), where Zn ⊂ Z1 via the last component for each i. But ∂(C0)∩Zn
consists of the coboundaries of elements (1, n0)06i6n, and the coboundary of such an element is
(1, 0, [n0, ei])16i6n. If we identify Zn with M◦ using the basis fi, then with n0 = ej , we obtain
the element of M◦ given by

n∑
i=1

[ej , ei]fi =
n∑
i=1

{ej , ei}e∗i = p∗(ej) .

This proves the result.

Remark 4.2. We note that the calculations in the proof above demonstrate easily how Xe (and
hence X and X ) can fail to be separated. Indeed, suppose that ei, ej agree after projection to
N/K. In particular, [n, ei] = [n, ej ] for any n ∈ N and [ej , ei] = 0. Thus µj ◦µ−1

i is the identity on
k[N/K] ∼= Xµi(s),e ∼= Xµj(s),e, but Uij,e is a proper subset of Xµi(s),e. So the two tori are glued via
the identity across a proper open subset of each torus, and we obtain a non-separated scheme.

Construction 4.3. We now recall the construction of the universal torsor over a scheme X
with finitely generated Picard group. Ideally, we would like to define the universal torsor as the
affine scheme over X

UTX := Spec
⊕
L∈PicX

L .

However, the quasi-coherent sheaf of OX -modules appearing here does not have a natural algebra
structure, since elements of PicX represent isomorphism classes of line bundles. If PicX is
in fact a free abelian group, we can proceed as in [HK00] and choose a set of line bundles
L1, . . . ,Ln whose isomorphism classes form a basis for the Picard group, and write, for ν ∈ Zn,
Lν :=

⊗n
i=1 L

νi
i . Then

⊕
ν∈Zn Lν does have a natural algebra structure.

If PicX has torsion, then we need to make use of the definition given in [BH03, § 3]. We can
choose a sufficiently fine open cover U of X such that every isomorphism class of line bundle
on X is represented by a Čech 1-cocycle for O×X with respect to this cover. Denoting the set of
Čech 1-cocycles as Z1(U,O×X), we choose a finitely generated subgroup Λ ⊆ Z1(U,O×X). If for
λ ∈ Λ, we denote by Lλ the corresponding line bundle, we can choose Λ so that the natural map
Λ → PicX, λ 7→ [Lλ], is surjective. Then multiplication gives a sheaf of OX -algebras structure
to R :=

⊕
λ∈Λ Lλ.

To obtain the universal torsor, we need to define an ideal I ⊆ R generated by relations
coming from isomorphisms Lλ ∼= Lλ′ . However, these isomorphisms must be chosen carefully, so
[BH03] defines the notion of a shifting family. Let Λ0 = ker(Λ → PicX). A shifting family is a
set of OX -module isomorphisms {ρλ : R → R|λ ∈ Λ0} such that

(i) the isomorphism ρλ maps Lλ′ to Lλ′+λ, for every λ ∈ Λ0, λ′ ∈ Λ;

(ii) for every λ1, λ2 ∈ Λ0, ρλ1+λ2 = ρλ1 ◦ ρλ2 ;

(iii) if f , g are sections of Lλ1 , Lλ2 , respectively, for λ1, λ2 ∈ Λ, and λ ∈ Λ0, we have ρλ(fg) =
fρλ(g).
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A shifting family defines a sheaf of ideals I ⊆ R such that I(U) is generated by elements of the
form f − ρλ(f) for f ∈ R(U), λ ∈ Λ0.

Given a shifting family, the universal torsor is then defined to be UTX := SpecR/I. A priori
UTX depends on the choice of shifting family (although [BH03] proves that any two choices
are isomorphic provided that k is algebraically closed and Γ(X,O×X) = k×; see Lemma 3.7 of
[BH03]). If PicX is torsion free, then this ambiguity disappears. Thus, in general, we will talk
about a choice of universal torsor.

Given a seed s and t ∈ TM , let At (respectively, Aprin) be the variety defined by gluing together
the seed tori Aprin,s,t, Aprin,µi(s),t (respectively, Aprin,s, Aprin,µi(s)), 1 6 i 6 n, analogously to X.

Theorem 4.4. (i) Let t ∈ TM , φ = i(t) ∈ TK∗ (see (2.14)). The torsor pt : At → Xφ of
construction 2.13 is a universal torsor for Xφ. For very general t, pt : Aft

t → X ft
φ is a

universal torsor for X ft
φ .

(ii) For m ∈M◦, let Lm denote the line bundle on X associated with m under the identification
Pic(X) ∼= M◦/p∗(N). Specifically, Lm is the representative of the isomorphism class given
by the Čech 1-cocycle represented by m ∈M◦ in the proof of Theorem 4.1. Then

Aprin = Spec
⊕
m∈M◦

Lm .

Furthermore, the line bundle Lm on X extends to a line bundle Lm on X ft, and similarly

Aft
prin = Spec

⊕
m∈M◦

Lm

(using the same finite subtrees of T to define both Aft
prin and X ft).

Proof. We first prove the statements for Aprin, X and At, Xφ. Continuing with the notation of
the proof of Theorem 4.1 and construction 4.3, we take the open covers

U = {Xs} ∪ {Xµi(s) | 1 6 i 6 n} = {Ui | 0 6 i 6 n} ,
Uφ = {Xs,φ} ∪ {Xµi(s),φ | 1 6 i 6 n} = {Ui,φ | 0 6 i 6 n} ,

as usual. We saw in the proof of Theorem 4.1 that M◦ is naturally identified with a subgroup
of both Z1(U,O×X) and Z1(Uφ,O×Xφ). Taking the subgroup Λ of this cocycle group to be M◦, we

obtain

Λ0 = ker(Λ→ Pic(Xφ)) = ker(M◦ →M◦/p∗(N)) = p∗(N) .

This then gives rise to a sheaf of OX -algebras R =
⊕

λ∈Λ Lλ and a sheaf of OXφ-algebras Rφ
defined by the same formula. For the two cases, we have the maps p̃ : Aprin → X and pt : At → Xφ

of construction 2.13. Noting that

Ui,Aprin := p̃−1(Ui) =

{
Aprin,s for i = 0 ,

Aprin,µi(s) for i > 0 ,

Ui,At := p−1
t (Ui,φ) =

{
Aprin,s,t for i = 0 ,

Aprin,µi(s),t for i > 0 ,

we see that the morphisms p̃, pt are affine. Thus to prove both parts of the theorem, it is sufficient
to construct morphisms of sheaves of OX -algebras or OXφ-algebras

ψ : R → p̃∗OAprin , ψφ : Rφ → p∗OAt (4.2)
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such that ψ is an isomorphism and the kernel of ψφ is an ideal I arising from a shifting family.

First, by construction, Rφ|Ui,φ ∼=
⊕

m∈M◦ OUi,φem, and the transition function on U0i,φ for

the generator em is (1 + zei)−〈diei,m〉. The same formulae hold for R. Let Iφ ⊆ Γ(Ui,OUi) = k[N ]

be the ideal of the fibre Ui,φ ⊆ Ui, and let It ⊆ Γ(Ui,Aprin ,OUi,Aprin
) = k[M̃◦] be the ideal of

the fibre Ui,At of π : Ui,Aprin → TM over t. Then Rφ|Ui,φ is the quasi-coherent sheaf associated
with the free k[N ]/Iφ-module with basis {em |m ∈ M◦}, while R|Ui is the quasi-coherent sheaf
associated with the free k[N ]-module with the same basis.

Second, note that p̃∗OUi,Aprin
(respectively, p∗OUi,At ) is the quasi-coherent sheaf associated

with the k[N ]-algebra k[M̃◦] (respectively, the k[N ]/Iφ-algebra k[M̃◦]/It). The algebra structure

is given by the map N → M̃◦, n 7→ (p∗(n), n). There are natural maps R|Ui → p̃∗OUi,Aprin
and

Rφ|Ui,φ → (pt)∗OUi,At induced by the maps of k[N ]- or k[N ]/Iφ-modules given by em 7→ z(m,0).
We first check that these maps respect the transition maps. We do this for the case of At → Xφ,
the case of Aprin → X being identical. On U0i,φ, em is glued to (1 + zei)−〈diei,m〉em as observed

above, while z(m,0) ∈ k[M̃◦]/It is transformed via the A mutation µi. But using (2.6),

µ∗i (z
(m,0))

z(m,0)
= (1 + z(vi,ei))−〈diei,m〉.

This can be viewed via p∗t as the function on U0i,φ given by (1 + zei)−〈diei,m〉. This shows that
the transition maps match up, and we obtain the desired map (4.2).

Note that ψ is easily seen to be an isomorphism. On the other hand, the kernel I of ψφ is
generated on Ui,φ by elements of

⊕
emk[N ]/Iφ of the form em−em+p∗(n)z

−n for m ∈M◦, n ∈ N .
This arises from the family of identifications {ρp∗(n)} defined by ρp∗(n)(em) = em+p∗(n)z

−n. This
is easily checked to be a shifting family.

This completes the proof for Aprin, X and At, Xφ. To prove the result for Aft
prin, X ft, etc.,

one just notes that the corresponding spaces are equal to Aprin, X, etc. outside codimension
two sets.

Definition 4.5. Given a choice of shifting family for a scheme X over a field k with finitely
generated Picard group, the Cox ring Cox(X) of X is the k-algebra of global sections of R/I. If
PicX is free, this coincides with the usual definition

Cox(X) =
⊕
ν

Γ(X,Lν) ,

after a choice of line bundles L1, . . . ,Ln whose isomorphism classes give a basis for PicX.

Corollary 4.6. (i) The upper cluster algebra with principal coefficients is isomorphic to⊕
m∈M◦

Γ(X,Lm) .

(ii) If the initial seed is totally coprime, the upper cluster algebra is isomorphic to the Cox ring
of Xe.

(iii) For t ∈ TM very general, Γ(At,OAt) is isomorphic to the Cox ring of Xi(t).

Proof. This follows because under the hypotheses, the upper cluster algebra Γ(A,OA) coincides
with Γ(A,OA) by Theorem 3.9 and Lemma 3.5. The latter algebra has the desired description
by Theorem 4.4. The principal coefficient case is similar.
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Corollary 4.7. If Pic(X) is torsion free (that is, if M◦/p∗(N) is torsion free), then the upper
cluster algebra with principal coefficients Γ(Aprin,OAprin) and for very general t, the upper cluster
algebra with general coefficients Γ(At,OAt) are factorial. If the initial seed is totally coprime,
then the upper cluster algebra Γ(A,OA) is factorial.

Proof. For the cases other than Aprin, this follows from Theorem 1.1 of [Arz09], (see also [BH03,
Proposition 8.4].)

For the principal case, we note that the map p̃ : Aprin → X is a TN◦-torsor, and that if Pic(X)
is torsion-free, then Pic(X)∗ ⊆ N◦ and TPic(X)∗ is a subtorus of TN◦ . Write X ′ = Aprin/TPic(X)∗ .
Note that X ′ = Spec

⊕
m∈p∗(N) Lm. But Lm ∼= OX as a line bundle for m ∈ p∗(N), so X ′ → X

is a trivial T(p∗(N))∗-torsor. In particular, Pic(X ′) ∼= Pic(X) and Aprin is the universal torsor
over X ′. The results cited above show that the Cox ring of X ′ is a unique factorization domain
(UFD), so the upper cluster algebra with principal coefficients is also a UFD.

5. The X variety in the rank ε = 2 case

In this section we will fix seed data as usual, with the same assumptions as in the previous
section, namely that there are no frozen variables and that no row (or column) of ε is zero. We
will assume furthermore rank ε = 2, that is, rankK = rankN − 2. In this case, the morphism
X → TK∗ is a flat family of two-dimensional schemes (flatness following from the fact that the
maps Xs → TK∗ are flat for each seed). We can use the description of the X variety given in § 3.2
to develop a geometric feeling for this family.

Now K⊥ ⊆ M is a saturated rank two sublattice by the assumption on the rank of ε.
Furthermore, divi ∈ K⊥ for each i and these vectors are non-zero by the assumption on ε.
Choose a complete non-singular fan Σ̄ in K⊥ such that each −divi generates a ray of Σ̄. Via the
inclusion K⊥ ⊆M , Σ̄ also determines a fan in M , which we denote by Σ. Note that Σ contains
the fan of one-dimensional cones Σs,X . Then the projection M → K∗ ∼= M/K⊥ induces a map

λ̄ : TV(Σ)→ TK∗ ,

each of whose fibres is a complete toric surface TV(Σ̄); we in fact have non-canonically TV(Σ) ∼=
TV(Σ̄)× TK∗ , arising from a choice of splitting M = K⊥ ⊕K∗.

Let Di denote the divisor of TV(Σ) corresponding to the ray generated by −divi. For each i
we obtain a (possibly non-reduced) hypersurface Zi ⊆ Di given by

Zi := Di ∩ V
(
(1 + zei)ind divi

)
as in (3.2).

Lemma 5.1. The underlying closed subset of Zi is the image of a section qi : TK∗ → TV(Σ) of
λ̄ if and only if the image of ei in N/K is primitive.

Proof. A choice of splittingM = K⊥⊕K∗ gives a dual splittingN ∼= N/K⊕K. Write ei = (e′i, e
′′
i )

under this splitting. The monomial zei is non-vanishing on Di as 〈ei,−divi〉 = 0. Then restricting
zei to λ̄−1(φ) ∩ Di for some φ ∈ TK∗ , we obtain a monomial (ze

′′
i (φ)) · ze′i ∈ k[(divi)

⊥], where
(divi)

⊥ is a sublattice of N/K. Thus Zi ∩ λ̄−1(φ) ∩Di consists of a single point if and only if e′i
is primitive; that is, the image of ei is primitive in N/K.

The following is an enhanced restatement of Theorem 3.9.
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Lemma 5.2. Let Y → TK∗ be the flat family of surfaces obtained by blowing up the subschemes
Zi ⊆ TV(Σ) in some order. Let D ⊆ Y be the proper transform of the toric boundary of TV(Σ),
λ : Y \ D → TK∗ the induced map.

(i) The variety X ft is isomorphic to Y \ D outside a set of codimension at least two.

(ii) If φ ∈ TK∗ is very general (that is, in the complement of a countable union of proper
closed subsets), then λ−1(φ) is isomorphic to the fibre X ft

φ of X ft → TK∗ outside a set of
codimension two.

Proof. Statement (i) is immediate from Theorem 3.9, observing that blowing up the Zi in some
order differs only in codimension two with the blowup of the subscheme

⋃
i Zi. For statement (ii),

we first use the explicit description of X given at the beginning of § 4. Indeed, X is obtained by
gluing together tori Ui, 0 6 i 6 n as described explicitly in the proof of Theorem 4.1. Denote by
Ui,φ, Uij,φ the fibres of Ui, Uij → TK∗ over φ. If Zi ∩ Zj ∩ λ̄−1(φ) = ∅, it is then easy to see that
the maximal open set of the domain for which the map ϕij |Ui,φ : Ui,φ 99K Uj,φ is an isomorphism
is precisely Uij,φ. Thus Xφ is constructed as the space X is in Lemma 3.5. The schemes Zi in that
construction coincide with the schemes λ̄−1(φ) ∩Zi. Thus, provided φ does not lie in λ̄(Zi ∩Zj)
for any i, j, Lemma 3.5 applies to show that there is an open immersion Xφ → λ−1(φ) which is
an isomorphism outside a codimension two subset of λ−1(φ).

To complete the argument, we follow the proofs of Lemma 3.8 and Theorem 3.9. If s′ = µk(s)
and X ′, Y ′, Z ′i, etc., are constructed using the seed s′, then the argument of Lemma 3.8 shows
that provided φ 6∈ λ(Zi ∩ Zj), λ′(Z ′i ∩ Z ′j) for any pair i 6= j, λ−1(φ) is isomorphic to (λ′)−1(φ)
off codimension two. Thus Xφ and X ′φ are isomorphic outside a set of codimension two, and the
argument is finished as in Theorem 3.9.

Thus the family X ft → TK∗ can be thought of, away from codimension two, as a family of
surfaces obtained by blowing up a collection of points on the boundary of a toric variety, and
then deleting the proper transform of the boundary. In general, since these points are being
blown up with multiplicity, Y \ D can be singular. We will first see that any surface obtained
via blowups on the boundary of a toric surface is deformation equivalent to any surface in the
family Y → TK∗ constructed using some seed.

Construction 5.3. Let Ȳ be a complete non-singular toric surface, with toric boundary D̄,
given by a fan Σ̄ in a lattice N ∼= Z2. Choose a collection of irreducible boundary divisors
D̄1, . . . , D̄n (possibly with repetitions) and let wi ∈ N be the primitive generator of the ray
corresponding to D̄i. Fix positive integers νi, 1 6 i 6 n. Suppose that w1, . . . , wn generate N .

We will use this data to construct seed data, as follows. Set N = Zn with basis {ei} and let M
be the dual lattice as usual. Define a map ψ : N → N by ei 7→ wi. By assumption, ψ is surjective.
Choose an isomorphism

∧2N ∼= Z. The map ϕ : N → M given by n̄ 7→ (n 7→ ψ(n) ∧ n̄) gives a
primitive embedding of the lattice N into M by the surjectivity of ψ. Let ν = gcd(ν1, . . . , νn).
We then obtain an integer-valued skew-symmetric form {·, ·} on N by setting

{n1, n2} = νψ(n1) ∧ ψ(n2) ∈ Z .

Note that kerψ coincides with K = {n ∈ N | {n, ·} = 0}. Set di = νi/ν. This gives us seed data
{ei} for the fixed data N = Nuf , {·, ·} and {di}.

We now analyze the family Y → TK∗ arising from this seed data. Using the inclusion ϕ, we
write Σ for the fan Σ̄ as a fan in M . We write Di for the toric divisor of TV(Σ) corresponding
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to the ray generated by wi. We note that with

vi = p∗(ei) = {ei, ·} = −νϕ(ψ(ei)) ,

we have −divi = νiϕ(wi). As ψ is surjective, N/K ∼= N , and the image wi of each ei in N/K is
primitive. Thus by Lemma 5.1, the closed sets Zi are images of sections of Di → TK∗ . It then
follows by Lemma 5.2 that the general fibre of λ : Y → TK∗ is obtained by blowing up Ȳ at a
collection of points p1, . . . , pn, with pi ∈ D̄i taken with multiplicity νi.

We now consider the special case that all νi = 1. First we note the following.

Proposition 5.4. Giving

– fixed data with rankN = n, no frozen variables, di = 1 for all i and such that {·, ·} has rank
two and the induced non-degenerate skew-symmetric pairing on N/K is unimodular, and

– a seed s for this fixed data such that the image of each ei in N/K is primitive

is equivalent to giving primitive vectors w1, . . . , wn ∈ N where N is a rank two lattice and for
which w1, . . . , wn generate N .

Proof. Construction 5.3 explains how to pass from the data of the vectors wi to the fixed and
seed data. Here we take νi = 1 for all i in that construction. Conversely, given fixed and seed
data as in the proposition, we take N = N/K, wi the image of each ei. The only unimodular
integral skew-symmetric pairing on N , up to sign, is given by {n1, n2} = n1∧n2, after a choice of
identification

∧2N ∼= Z. Thus after making a suitable choice of identification, the given pairing
{·, ·} on N agrees with the one described in construction 5.3.

Continuing with the notation above, with ν1 = · · · = νn = 1, consider the family λ : Y → TK∗

of blown up toric surfaces. In this case, a general fibre λ−1(φ) for φ ∈ TK∗ is obtained by blowing
up reduced points on the non-singular part of the toric boundary of Ȳ . A fibre (Y,D) = (Yφ,Dφ)
is what we call a Looijenga pair in [GHK15]. Given a cyclic ordering of the irreducible components
of D = D′1 + · · · + D′r, one gets a canonical identification of the identity component Pic0(D) of
PicD with Gm; see [GHK15, Lemma 2.1]. (We note that the divisors D1, . . . , Dn are a possibly
proper subset of D′1, . . . , D

′
r, and the former occur with repetitions and need not be cyclically

ordered). Furthermore, we define D⊥ ⊆ Pic(Y ) by

D⊥ := {H ∈ Pic(Y ) |H ·D′i = 0 ∀i} .

Then the period point of (Y,D) is the element of Hom(D⊥,Pic0(D)) given by restriction.

Theorem 5.5. Let π : Y → Ȳ be the blowup describing Y , with exceptional divisors E1, . . . , En
over Z1 ∩ λ̄−1(φ), . . . , Zn ∩ λ̄−1(φ). Then there is a natural isomorphism

K → D⊥ ,
∑

aiei 7→ π∗C −
∑

aiEi ,

where C is the unique divisor class such that

C ·D′j =
∑

i:Di=D′j

ai . (5.1)

Under this identification and the canonical identification Pic0(D) ∼= Gm, the period point of
(Y,D) in Hom(D⊥,Pic0(D)) coincides with φ ∈ TK∗ = Hom(K,Gm).
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Proof. Recall the standard description of the second homology group of the toric variety Ȳ :

0→ H2(Ȳ ,Z)→ Zr → N → 0 ,

where the map Zr → N takes the ith generator of Zr to the primitive generator of the ray of
Σ̄ corresponding to the divisor D̄′i. The inclusion H2(Ȳ ,Z) ↪→ Zr is given by α 7→ (α ·D′i)16i6r.
Since Ȳ is a non-singular proper rational surface, we have H2(Ȳ ,Z) ∼= Pic(Ȳ ). In particular, if∑
aiei is an element of K, then (

∑
j:Dj=D′i

aj)16i6r ∈ H2(Ȳ ,Z). Thus there is a unique element

C ∈ H2(Ȳ ,Z) ∼= Pic(Ȳ ) satisfying (5.1). It is then clear that π∗C −
∑
aiEi ∈ D⊥. That this is

an isomorphism is easily checked.

We now need to calculate OY (π∗C −
∑
aiEi)|D. As the identification Pic0(D) with Gm

requires a choice of cyclic ordering of the divisors D′i, or equivalently of the divisors D̄′i, we order
w′1, . . . , w

′
r clockwise as defined using the choice of isomorphism

∧2N → Z. In particular, this
choice of isomorphism also allows an identification of N with M = Hom(N,Z), via n ∈ N̄ acting
by n′ 7→ (n′ ∧ n). Thus, in particular, zw

′
i can be viewed as a coordinate on D′i which is zero on

pi,i+1, the intersection point of D′i and D′i+1, and infinite at pi−1,i (all indices taken modulo r).

We next note that OȲ (C)|D̄ was calculated in the proof of [GHK15, Lemma 2.6(1)]. Let
mi ∈ D′i be the point where zw

′
i takes on the value −1. Then

OȲ (C)|D̄ = OD̄(
r∑
j=1

(C · D̄′j)mj) .

Thus we have the same identity for the restriction of OY (π∗C) to D. So if Ei ∩D = pi, we then
have

L := OY (π∗C −
∑

aiEi)|D ∼= OD
(
−

n∑
i=1

aipi +

r∑
j=1

(C · D̄′j)mj

)
.

This line bundle is described under the isomorphism Pic0(D) ∼= Gm of [GHK15, Lemma 2.6], as
follows. We have L|D′j = OD′j ((C · D̄

′
j)mj −

∑
i:Di=D′j

aipi). Viewing this trivial line bundle as a

subsheaf of the sheaf of rational functions, and using a splitting M = K⊥ ⊕K∗, N = N/K ⊕K
as in the proof of Lemma 5.1, a trivializing section is given by the rational function

σj :=

∏
i:Di=D′j

(zw
′
j · ze′′i (φ) + 1)ai

(zw
′
j + 1)C·D̄

′
j

since Zi is given by the equation zei + 1 = 0 and under the choice of splitting ei = (wi, e
′′
i ), with

wi = w′j if Di = D′j . The image of the line bundle in Gm is

r∏
j=1

σj+1(pj,j+1)/σj(pj,j+1) =

n∏
i=1

(ze
′′
i (φ))ai .

Remembering that we are viewing φ ∈ Hom(K,Gm), we see that ze
′′
i (φ) = φ(e′′i ). Note that if∑

aiei ∈ K, we have
∑
aiei =

∑
aie
′′
i . Thus we see that the element of Gm corresponding to

our line bundle is precisely φ(
∑
aiei). Thus φ is the period point of (Y,D).

This shows that the families Y → TK∗ agree with the universal families of Looijenga pairs
constructed in [GHK15].

We can also use the observations above to define an unexpected mutation invariant in the
situation of Proposition 5.4.
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Theorem 5.6. Given fixed data and seed data satisfying the conditions of Proposition 5.4,
the isomorphism K ∼= D⊥ of Theorem 5.5 induces a symmetric integral pairing on K via the
intersection pairing on D⊥ ⊆ Pic(Y ). This symmetric pairing on K is independent of mutation.

Proof. It is enough to check the independence under a single mutation µk. So suppose given seeds
s, s′ = µk(s). These two seeds give rise to families Y,Y ′ → TK∗ . Fix φ ∈ TK∗ sufficiently general
so that the fibres Yφ and Y ′φ are both blowups of toric varieties Ȳ , Ȳ ′ at distinct points. These

toric varieties are related by an elementary transformation as follows. Let ψ : N → N = N/K
be the quotient map. If Σ̄, Σ̄′ are the fans in N defining Ȳ and Ȳ ′ respectively, then Σ̄′ is
obtained from Σ̄ as follows. First, we can assume that both Σ̄ and Σ̄′ contain rays generated by
wk and −wk. Then we can assume that the remaining rays of Σ̄′ are obtained by applying the
piecewise linear transformation

Tk : n̄ 7→ n̄+ [n̄ ∧ wk]+wk .

Note, in particular, that this is compatible with (2.3).

The map N → N/Rwk defines P1-fibrations g : Ȳ → P1, g′ : Ȳ ′ → P1.

By Lemma 3.6, the seed mutation µk : TN 99K TN extends to a birational map µk : Y → Y ′
which is an isomorphism outside sets of codimension at least two. In fact, one checks easily from
the details of the proof that this birational map restricts to a biregular isomorphism between Y
and Y ′. Specifically, this isomorphism is described as follows. Let p1, . . . , pn be the points of Ȳ
blown up to obtain Y , and p′1, . . . , p

′
n the points of Ȳ ′ blown up to obtain Y ′. Then if Yk, Y

′
k

denote the blowup of Ȳ , Ȳ ′ at pk, p
′
k, respectively, we already have an isomorphism µk : Yk → Y ′k,

and p′i = µk(pi) for i 6= k. The isomorphism µk : Y → Y ′ is then obtained by further blowing
up the points pi, p

′
i for i 6= k. Furthermore, the composition Yk

µk−→Y ′k → Ȳ ′ contracts the proper
transform of the curve Fk = g−1(g(pk)) to p′k. In particular, the curve class Fk −Ek ∈ Pic(Y ) is
mapped to E′k.

We now need to check that the composition of isomorphisms (D′)⊥ ∼= K ∼= D⊥ given in
Theorem 5.5 coincides with µ∗k : (D′)⊥ → D⊥. To do so, suppose given

∑
aiei =

∑
a′ie
′
i ∈ K.

Then ai = a′i for i 6= k and a′k = −ak +
∑

i[εik]+ai by (2.3). These determine classes C ∈ Pic(Ȳ ),
C ′ ∈ Pic(Ȳ ′) as in Theorem 5.5. It is enough to check that if π1 : Yk → Ȳ , π′1 : Y ′k → Ȳ ′ are
the blowups at pk, p

′
k, respectively, then µ∗k((π

′
1)∗(C ′) − a′kE′k) = π∗1(C) − akEk. Call these two

divisors C ′1 and C1, respectively. Since the Picard group of Yk is easily seen to be generated
by the proper transforms of the toric divisors of Yk, and µk takes the boundary divisor of Yk
corresponding to ρ ∈ Σ̄ to the boundary divisor of Y ′k corresponding to Tk(ρ) ∈ Σ̄′, it is enough
to check that C ′1 and C1 have the same intersection numbers with the boundary divisors of Yk.
It is clear that C ′1 and C1 have the same intersection numbers with all boundary divisors except
possibly those corresponding to the rays ±R>0wk. Call these two divisors Dk,± ⊆ Yk. Then

C1 ·Dk,+ =
∑

i:wi=wk,i 6=k
ai = C ′1 ·Dk,+ ,

while

C1 ·Dk,− =
∑

i:wi=−wk,i 6=k
ai = C ′1 ·Dk,− .

This proves the result.
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6. Examples of non-finitely-generated upper cluster algebras

We will now use the material of the previous two sections to construct examples of non-finitely-
generated upper cluster algebras with principal coefficients and with general coefficients. These
examples are a generalization of the example of Speyer [Spe13]. They fail to be finitely generated
as a consequence of the following result.

Lemma 6.1. Let A be a ring, let R be an M = Zn-graded A-algebra and let R =
⊕

m∈M Rm. If
R0 = A and Rm is not a finitely generated A-module for some m ∈M , then R is not Noetherian.

Proof. Let I be the homogeneous ideal of R generated by Rm. We show that I is not finitely
generated as an ideal. Suppose to the contrary that homogeneous f1, . . . , fp ∈ R generate I.
Necessarily fi =

∑
rijfij for some rij ∈ R and fij ∈ Rm, so we can assume that I is generated

by a finite number of fij ∈ Rm. But Rm = I ∩ Rm is the R0-module generated by the fij and
R0 = A, contradicting the assumption that Rm is not finitely generated as an A-module.

In what follows, suppose given fixed data and seed data satisfying the hypotheses of Proposi-
tion 5.4. This gives rise to the family λ : (Y,D)→ TK∗ of Loojienga pairs, obtained by blowing
up a sequence of centers Z1, . . . , Zn ⊆ Ȳ × TK∗ in some order, for Ȳ a toric surface.

Theorem 6.2. Let (Y,D) be the general fibre of (Y,D)→ TK∗ . Suppose that every irreducible
component of D has self-intersection −2. Then,

(i) the algebra Γ(Aprin,OAprin) is non-Noetherian;

(ii) for t ∈ TM very general and At the corresponding cluster variety with general coefficients,
Γ(At,OAt) is non-Noetherian.

Proof. Let X be, as usual, the subset of X obtained by gluing together the initial seed torus Xs

and adjacent seed tori Xµk(s). By Corollary 4.6, Γ(Aprin,OAprin) =
⊕

m∈M◦ Γ(X,Lm), and this
gives an M◦-grading on this algebra. In addition, by Lemma 5.2, X and Y \ D agree outside a
set of codimension at least two, and both X and Y \D are non-singular. So PicX ∼= Pic(Y \D).
Thus for each m ∈M◦, Lm can be viewed as a line bundle on Y \D, and Lm has the same space
of sections regardless of whether Lm is viewed as a bundle on X or on Y \D. So, by the lemma,
it will suffice to show that Γ(Y \D,OY) = A := k[K] and find some line bundle L on Y \D such
that Γ(Y \ D,L) is not a finitely generated A-module.

To show Γ(Y \ D,OY) = A, it is sufficient to show that a regular function on Y \ D must be
constant on the very general fibre of λ : Y \ D → TK∗ = Speck[K]. So consider the fibre (Y,D)
of (Y,D) → TK∗ over φ ∈ TK∗ . The space of regular functions on Y \D can be identified with
lim→H

0(Y,OY (nD)). Consider the long exact cohomology sequence associated with

0→ OY (nD)→ OY ((n+ 1)D)→ OY ((n+ 1)D)|D → 0 .

Note that D ∈ D⊥ since all components of D have square −2. Also note that with φ ∈ TK∗

= Hom(D⊥,Pic0(D)), φ(D) is the normal bundle of D in Y by Theorem 5.5. Thus as φ is
very general, φ(D) is not torsion. So H0(D,OD(nD)) = 0 for all n > 0, and we see that
H0(Y,OY (nD)) = k for all n > 0. Thus the only regular functions on Y \D are constant.

Now let E be the exceptional divisor over the last center Zi blown up in constructing Y, so
that E is a P1-bundle over TK∗ . Then we claim that Γ(Y \D,OY(E)) is not a finitely generated
A-module. Note that

Γ(Y \ D,OY(E)) = lim
−→
n>0

Γ(Y,OY(E + nD)) .
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Since each of these groups is an A-module, it is sufficient to show that the increasing chain of
A-modules

Γ(Y,OY(E)) ⊆ Γ(Y,OY(E +D)) ⊆ Γ(Y,OY(E + 2D)) ⊆ · · · (6.1)

does not stabilize. We have a long exact sequence

0−→H0(Y,OY(E + (n− 1)D))
i−→H0(Y,OY(E + nD))−→H0(D,OD(E + nD))

−→H1(Y,OY(E + (n− 1)D))−→H1(Y,OY(E + nD))−→H1(D,OD(E + nD)) .

If (Y,D) is any fibre of (Y,D)→ TK∗ , one checks easily that H1(Y,OY (E ∩ Y )) = 0 (as E ∩ Y
is an irreducible −1-curve) and that H1(D,OD((E ∩D) + nD)) = 0 (using that E ∩D consists
of one point). It then follows from cohomology and base change along with the fact that TK∗ is
affine that H1(D,OD(E + nD)) = 0 for all n > 0 and H1(Y,OY(E)) = 0. Inductively from the
long exact sequence above one sees H1(Y,OY(E + nD)) = 0 for all n > 0. Thus the cokernel of
the inclusion i in the long exact sequence above is H0(D,OD(E+nD)). Now λ∗OD(E+nD) is a
line bundle on TK∗ , again by cohomology and base change, and since TK∗ is an algebraic torus,
this line bundle must be trivial. Thus H0(D,OD(E + nD)) = A, and we see that the chain (6.1)
never stabilizes.

The argument for At for t very general is identical but easier, as we have already done the
relevant cohomology calculations on (Y,D) a very general fibre of (Y,D)→ TK∗ . Then one makes
use of Corollary 4.6, (3).

Example 6.3. Using Construction 5.3 it is easy to produce many examples satisfying the hy-
potheses of the theorem above. For example, let Σ̄ be the fan for P2, with rays generated by
w1 = w2 = w3 = (1, 0), w4 = w5 = w6 = (0, 1) and w7 = w8 = w9 = (−1,−1). Take all νi = 1.
Thus a general (Y,D) involves blowing three points on each of the coordinate lines of P2, so D
is a cycle of three (−2)-curves.

This is very closely related to the example of Speyer [Spe13], which in the terminology of
construction 5.3 again involves taking the fan for P2, w1 = (1, 0), w2 = (0, 1) and w3 = (−1,−1),
but taking all νi = 3. The surface (Y,D) will be constructed by performing a weighted blowup
of one point on each of three coordinate lines on P2. Then D is still a cycle of three (−2)-curves,
but the situation requires some additional analysis because Y is in fact singular (having three
A2-singularities).

Remark 6.4. In fact, there is a much broader range of counterexamples: suppose that the blowup
(Y,D) → Ȳ × TK∗ factors through (Y,D) → (Y ′,D′), such that a very general fibre (Y ′, D′) of
(Y ′,D′)→ TK∗ has the property that every irreducible component of D′ has self-intersection −2.
Then the argument above shows that the Cox ring of Y ′ \D′ is non-Noetherian, and Y ′ \D′ is
an open subset of Y \ D. If U ⊆ V , then the Cox ring of V surjects onto the Cox ring of U ,
so the fact that the Cox ring of Y ′ \ D′ is non-Noetherian implies that the Cox ring of Y \ D
is non-Noetherian. A similar but slightly more delicate argument also applies to the principal
coefficient case.

In fact, we expect that whenever the intersection matrix of D is negative definite, the Noethe-
rian condition fails.

7. Counterexamples to the Fock–Goncharov dual bases conjecture

Fock and Goncharov [FG09] gave an explicit conjecture about the existence of k-bases for the
X and A cluster algebras. We will state it loosely here, under the assumption that all di = 1, so
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that M = M◦, N = N◦. This merely allows us to avoid discussing Langlands dual seeds.

Conjecture 7.1 [FG09], 4.1. The group N parameterizes a canonical basis for H0(X ,OX ), and
M parameterizes a canonical basis of sections for H0(A,OA).

In fact, the conjecture as stated in [FG09] is much stronger, giving an explicit conjectural
description of the bases as the set of positive universal Laurent polynomials which are extremal,
that is, not a non-trivial sum of two other positive universal Laurent polynomials. This strongest
form of the conjecture has now been disproven in [LLZ14], in which examples are given where
the set of all extremal positive universal Laurent polynomials are not linearly independent. Here
we give a much more basic counterexample to a much weaker form of the conjecture.

We shall again restrict to the case where there are no frozen variables. We will merely assume
that the conjectured basis is compatible with the TK action on A given by Remark 2.2(iii),
and the map λ : X → TK∗ in the natural way. We assume that the canonical basis element
of Γ(X ,OX ) corresponding to n ∈ K is λ∗(zn). Furthermore, for π : M → K∗ the natural
projection dual to the inclusion K → N , we assume that the set π−1(m) parameterizes a basis
for the subspace of H0(A,OA) of weight m eigenvectors for the TK action.

We indicate now why a basis with these properties cannot exist in general. We consider the
rank two cluster algebras produced by construction 5.3, following the notation of the construction,
taking all νi = 1. The general fibre of λ : X → TK∗ is isomorphic outside codimension two
subsets to the general fibre of λ : Y \ D → TK∗ . A fibre of the latter map is of the form
U := Y \ D, where (Y,D) is a Looijenga pair with a map Y → Ȳ obtained by blowing up
points on the toric boundary. Since the initial data of the wi in construction 5.3 can be chosen
arbitrarily, and, in particular the points wi may be repeated as many times as we like, we can
easily find examples for which D ⊆ Y is analytically contractible, that is, for which there is
an analytic map (Y,D) → (Y ′, p) with exceptional locus D and p ∈ Y ′ a single point. Further,
U = Y \ D = Y ′ \ {p}, and so H0(U,OU ) = H0(Y ′,OY ′) = k. Even if D is not contractible
but rather a cycle of (−2)-curves as in Theorem 6.2, the very general fibre Y \D will only have
constant functions. It follows that

H0(X ,OX ) = H0(TK∗ ,OTK∗ ) = k[K] .

Thus there are no functions for points of N \K to parameterize.

Consider the conjecture in the opposite direction. Assume for simplicity that, as in Corollary
4.7, Pic(X) = Pic(Xt) = M/p∗(N) is torsion free. Then (M/p∗(N))∗ = K = Ker(p∗ : N → M).
The Fock–Goncharov conjecture for Aprin implies the analogous result for very general At, that
is, the existence of a canonical basis of the upper cluster algebra with very general coefficients
H0(At,O), parameterized by X trop(Z). We have

H0(At,OAt) = Cox(Xi(t)) =
⊕

m∈K∗=Pic(Xi(t))

H0(Xi(t),Lm)

by Corollary 4.6. Here Lm is a line bundle representing the isomorphism class given by m.
Assuming that the canonical bases are compatible with the natural torus actions, for m ∈ K∗,
π−1(m) ⊂ X trop(Z) restricts to a basis for the weight m-eigenspace H0(Xi(t),Lm) of H0(At,O)
under the TK action, for π : X trop(Z) → K∗ = M/p∗(N), the natural map induced by the
fibration X → TK∗ . But any choice of seed identifies X trop(Z) with M and each fibre of π with
a p∗(N) = N/K torsor. Thus the conjecture implies that all line bundles on Xt have isomorphic
spaces of sections, with basis parameterized (after choice of seed) by an N/K-affine space. This
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is a very strong condition — most varieties have line bundles with no non-trivial sections, and
rather than an affine space one would expect (for example by comparison with the toric case)
sections parameterized by integer points of a polytope. Explicitly, the example of Theorem 6.2
clearly has line bundles with non-isomorphic spaces of sections.

This reasoning suggests to us that the conjecture can only hold if X is affine up to flops.

Conjecture 7.2. If the Fock–Goncharov conjecture holds then H0(X ,OX ) is finitely generated,
and the canonical map X → Spec(H0(X ,OX )) is an isomorphism, outside a codimension two
set.

The results of § 5 imply that when the hypotheses of Theorem 5.6 are satisfied, the conditions
in Conjecture 7.2 hold if and only if the generic fibre of X → TK∗ is affine, which is true if and
only if the canonical symmetric form on K given by Theorem 5.6 is negative definite. Indeed,
the generic fibre of X → TK∗ is isomorphic, outside a codimension two set, to a surface Y \D
as in Theorem 5.5. But if Y \D is affine, then D supports an ample divisor, and by the Hodge
index theorem, D⊥ is negative definite. Conversely, if D⊥ is negative definite, there must be some
integers ai such that (

∑
aiDi)

2 > 0. The result then follows from [GHK11, Lemma 6.8] and the
fact that (Y,D) is chosen generally in the family.
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