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Inversion of adjunction for quotient singularities

Yusuke Nakamura and Kohsuke Shibata

Abstract

We prove the precise inversion of the adjunction formula for quotient singularities and
klt Cartier divisors. As an application, we prove the semi-continuity of minimal log
discrepancies for klt hyperquotient singularities.

1. Introduction

The minimal log discrepancy is an invariant of singularities defined in birational geometry.
Shokurov proved that two conjectures on the minimal log discrepancies, the LSC (lower semi-
continuity) conjecture and the ACC (ascending chain condition) conjecture, imply the termina-
tion of flips conjecture [Sho04]. We refer the reader to [Kaw14, Kaw15, Nak16a, MN18, Kaw21,
HLS19] for the recent developments related to the ACC conjecture. In this paper, we focus on the
LSC conjecture. We always work over an algebraically closed field of characteristic zero unless
otherwise stated.

Conjecture 1.1 (LSC conjecture). Let (X, a) be a log pair, and let |X| be the set of all closed
points of X with the Zariski topology. Then the function

|X| → R>0 ∪ {−∞} , x 7→ mldx(X, a)

is lower semi-continuous.

The LSC conjecture is known to be true in the following cases:

(1.1.1) the case when dimX 6 3 [Amb99],

(1.1.2) the case when X is smooth [EMY03],

(1.1.3) more generally, the case when X is a normal local complete intersection variety [EM04],

(1.1.4) the case when X has only quotient singularities [Nak16b],

(1.1.5) the case when X is a smooth variety over an algebraically closed field of arbitrary char-
acteristic under some condition [Shi19].

The main purpose of this paper is to prove the LSC conjecture for varieties with hyperquotient
singularities, more generally, the quotient of a complete intersection variety by a finite linear
group action.
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Inversion of adjunction for quotient singularities

Theorem 1.2 (Theorem 6.2). Suppose that a finite subgroup G ⊂ GLN (k) acts on ANk freely
in codimension one. Let X := ANk /G be the quotient variety. Let Y be a subvariety of X of
codimension c which has only Kawamata log terminal (klt) singularities, and let a be an R-ideal
sheaf on Y . Suppose that Y is locally defined by c equations in X. Then the function

|Y | → R>0 ∪ {−∞} , y 7→ mldy(Y, a)

is lower semi-continuous, where we denote by |Y | the set of all closed points of Y with the Zariski
topology.

In this paper, we also treat the PIA (precise inversion of adjunction) conjecture.

Conjecture 1.3 (PIA conjecture, [Kol92, Conjecture 17.3.1]). Let (X, a) be a log pair, and
let D be a normal Cartier prime divisor. Let x ∈ D be a closed point. Suppose that D is not
contained in the cosupport of the R-ideal sheaf a. Then we have

mldx
(
X, aOX(−D)

)
= mldx(D, aOD) .

The PIA conjecture is known to be true in the following cases:

(1.3.1) the case when X is smooth [EMY03],

(1.3.2) more generally, the case when X is a normal local complete intersection variety [EM04].

In this paper, we study the PIA conjecture for varieties with quotient singularities.

Theorem 1.4 (= Corollary 6.1). Suppose that a finite subgroup G ⊂ GLN (k) acts on ANk freely
in codimension one. Let X := ANk /G be the quotient variety, and let x ∈ X be the image of the
origin of ANk . Let Y be a subvariety of X through x of codimension c, and let a be an R-ideal
sheaf on Y . Suppose that Y is locally defined by c equations at x in X. Let D be a Cartier prime
divisor on Y through x with a klt singularity at x ∈ D. Suppose that D is not contained in the
cosupport of the R-ideal sheaf a. Then it follows that

mldx
(
Y, aOY (−D)

)
= mldx(D, aOD) .

By Theorem 1.4, Theorem 1.2 can be reduced to the case (1.1.4) when X has quotient
singularities. Hence this paper is mainly devoted to proving Theorem 1.4.

The main tools of this paper involve the theory of the arc space of a quotient singularity
established by Denef and Loeser in [DL02] and the technique on arc spaces for proving (1.3.1)
established by Ein, Mustaţă and Yasuda in [EMY03].

By the theory of Denef and Loeser, the arc space of quotient variety can be studied by
those of certain k[t]-schemes. We briefly review their theory here. Suppose that a finite group
G ⊂ GLN (k) of order d acts on X = Spec k[x1, . . . , xN ]. Let Y ⊂ X be a G-invariant closed
subvariety and I ⊂ k[x1, . . . , xN ] its defining ideal. We denote by Y := Y /G its quotient. For

each γ ∈ G, a k[t]-scheme Y
(γ)

is defined as follows. By changing the basis x1, . . . , xN linearly,
we may assume that γ is a diagonal matrix with entries ξe1 , . . . , ξeN (for 0 6 ei 6 d−1), where ξ
is a primitive dth root of unity in k. Let λ

∗
γ be the ring homomorphism defined by

λ
∗
γ : k[x1, . . . , xN ]G → k[t][x1, . . . , xN ] , xi 7→ t ei/dxi .

Then the k[t]-scheme Y
(γ)

is defined by

Y
(γ)

= Spec k[t][x1, . . . , xN ]/I
(γ)
,
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where I
(γ)

is the ideal generated by elements of λ
∗
γ(I). We denote by Y∞ the arc space of Y ,

which parametrizes k-morphisms Spec k[[t]] → Y . We also denote by Y
(γ)
∞ the arc space of Y

(γ)

which parametrizes k[t]-morphisms Spec k[[t]] → Y
(γ)

. In [DL02], Denef and Loeser investigate

the change of variables formula on the map Y
(γ)
∞ → Y∞. Their theory allows us to compare the

two spaces Y∞ and
⊔
γ∈G Y

(γ)
∞ . In [DL02], they basically work in the case where I = 0 since

they are interested in the quotient singularity. In Sections 2 and 3, we explain their theory in
a more general setting in detail. We will give self-contained proofs of most of the propositions.
However, we emphasize that they are not originally ours. Most of the propositions in Section 2
follow from existing works by Sebag [Seb04] and Yasuda [Yas19] (cf. [Yas04, Yas06]). In [Seb04],
Sebag develops the theory of motivic integration for formal schemes over a complete discrete
valuation ring. In [Yas19], Yasuda develops it for formal Deligne–Mumford stacks over k[[t]] of
arbitrary characteristic. The construction in Section 3 is a special case of the construction in
[Yas16]. The construction in [Yas16] is intrinsic and more general, and it works even in positive
characteristics. See Remarks 2.14 and 3.9 for more detail.

By the result of Ein, Mustaţă and Yasuda in [EMY03] (and [EM09]), the minimal log dis-
crepancy of Y can be described by the codimension of certain contact loci in Y∞. Then by
applying the theory of Denef and Loeser above, it can be described by the codimension of the

corresponding contact loci in Y
(γ)
∞ . This description (Theorem 4.8) is one of the key steps to

prove Theorem 1.4.

In Section 4, to prove Theorem 1.4, we apply the technique of Ein, Mustaţă and Yasuda

in [EMY03] (and [EM09]) to the contact loci in Y
(γ)
∞ . Their argument basically works well even

in our setting because I
(γ)

is generated by a regular sequence outside t = 0 when I is generated
by a regular sequence. However, there are two main difficulties in this step, as we discuss below.

The first difficulty is that Y
(γ)

is neither normal nor a complete intersection in general (see
Remark 4.4). Therefore, we have no standard definition of the relative canonical sheaf ω

Y
(γ)
/k[t]

on Y
(γ)

. We overcome this difficulty by defining an invertible sheaf L
Y

(γ) instead. Furthermore,
Lemma 4.7, which relates the age of γ and certain orders of arcs, is a key lemma for the argument
in [EMY03] to work in our setting.

The second difficulty is that there may be very few arcs on Y
(γ)

. More precisely, the arc

space Y
(γ)
∞ may be a thin set of Y

(γ)
∞ itself (see Definition 2.21 for the definition of a thin set).

For example, if (d, e1, e2, e3) = (3, 0, 1, 2) and I =
(
x3

1 + x3
2 + x3

3

)
, then we have

Y
(γ)

= Spec k[t][x1, x2, x3]/
(
x3

1 + tx3
2 + t2x3

3

)
.

In this case, Y
(γ)
∞ consists of only one arc, and the order of the Jacobian ideal Jac

Y
(γ)
/k[t]

is infin-

ity. If the arc space Y
(γ)
∞ is a thin set, then any arc α ∈ Y (γ)

∞ has order ordα
(

Jac
Y

(γ)
/k[t]

)
=∞,

and because of this, the argument in [EMY03] does not work. In Claim 5.2, we prove that Y
(γ)
∞

is not a thin set if Y is klt and show that the argument in [EMY03] really works. The key
idea in the proof of Claim 5.2 is to apply the result by Hacon and McKernan [HM07], which

states the rational chain connectedness of the fibers of the resolution W → Y
(γ)

of singular-

ities of Y
(γ)

, and prove that there are actually many arcs on W using the result by Graber,
Harris and Starr [GHS03]. The klt assumption in Theorem 1.4 is essentially used in this argu-
ment.
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We also prove the Reid–Tai type formula on minimal log discrepancies (Corollary 4.12). This
gives the affirmative answer to a question by Borisov in [Bor97] of whether the set of minimal
discrepancies of quotient singularities with respect to arbitrary groups coincides with that of
cyclic quotients of the same dimension. We prove Corollary 4.12 using the description of the
minimal log discrepancy in terms of arc spaces of the k[t]-schemes. Moreover, we give another
proof without the theory of arc spaces. As an application of this result, we prove the ACC
conjecture for quotient singularities (Theorem 4.14).

The paper is organized as follows. In Section 2, we review some definitions and facts on pairs
and arc spaces. We also prove some basic results on the arc spaces of k[t]-schemes, which are
necessary for this paper. In particular, we discuss the theory of contact loci and their codimension
for the arc spaces of k[t]-schemes following [EM09], where the arc spaces of k-schemes are dealt
with. In Section 3, we review the theory of arc spaces of quotient varieties established by Denef
and Loeser in [DL02]. As mentioned previously, most of the propositions in Sections 2 and 3 follow
from existing works by Sebag [Seb04] and Yasuda [Yas19, Yas16]. Readers who are familiar with
these papers could skip these sections. In Section 4, we discuss the minimal log discrepancy of
quotient singularities of linear action and describe them by the codimension of cylinders in arc
spaces of the k[t]-schemes defined in the previous section (Theorem 4.8). In Section 5, we prove
the PIA conjecture for hyperquotient singularities (Theorem 5.1). In Section 6, we prove the
main theorems Corollary 6.1 and Theorem 6.2 with some generalizations.

2. Preliminaries

2.1. Notation

• We basically follow the notation and the terminology in [Har77] and [Kol13].

• Throughout this paper, k is an algebraically closed field of characteristic zero. We say that
X is a variety over k or a k-variety if X is an integral scheme that is separated and of finite
type over k.

2.2. Log pairs. A log pair (X, a) is a normal Q-Gorenstein variety X and an R-ideal sheaf a on
X. Here, an R-ideal sheaf a on X is a formal product a =

∏s
i=1 a

ri
i , where a1, . . . , as are non-zero

coherent ideal sheaves on X and r1, . . . , rs are positive real numbers. For a morphism Y → X
and an R-ideal sheaf a =

∏s
i=1 a

ri
i , we denote by aOY the R-ideal sheaf

∏s
i=1(aiOY )ri on Y .

Let (X, a =
∏s
i=1 a

ri
i ) be a log pair. For a proper birational morphism f : X ′ → X from

a normal variety X ′ and a prime divisor E on X ′, the log discrepancy of (X, a) at E is defined as

aE(X, a) := 1 + ordE(KX′ − f∗KX)− ordE(a) ,

where we set ordE(a) =
∑s

i=1 ri ordE(ai). The image f(E) is called the center of E on X; we
denote it by cX(E). For a closed point x ∈ X, we define the minimal log discrepancy at x as

mldx(X, a) := inf
cX(E)={x}

aE(X, a)

if dimX>2, where the infimum is taken over all prime divisors E over X with center cX(E)={x}.
It is known that mldx(X, a) ∈ R>0 ∪ {−∞} in this case (cf. [KM98, Corollary 2.31]). When
dimX = 1, we define mldx(X, a) := infcX(E)={x} aE(X, a) if the infimum is non-negative and
mldx(X, a) := −∞ otherwise.
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2.3. Jet schemes and arc spaces for k-schemes. In this subsection, we briefly review the
definition and some properties of jet schemes and arc spaces. The reader is referred to [EM09]
for details.

Let X be a scheme of finite type over k, and let (Sch/k) be the category of k-schemes and
(Sets) the category of sets. Define a contravariant functor Fm : (Sch/k)→ (Sets) by

Fm(Y ) = Homk

(
Y ×Spec k Spec k[t]/

(
tm+1

)
, X
)
.

Then, the functor Fm is representable by a scheme Xm of finite type over k, and the scheme Xm

is called the mth jet scheme of X. For m > n > 0, the canonical surjective homomorphism
k[t]/

(
tm+1

)
→ k[t]/

(
tn+1

)
induces a morphism πmn : Xm → Xn. We have the projective limit

and projections

X∞ := lim←−
m

Xm , ψm : X∞ → Xm ,

and X∞ is called the arc space of X. There is a bijective map

Homk(SpecK,X∞) ' Homk(SpecK[[t]], X)

for any field K with k ⊂ K.

For m ∈ Z>0 ∪ {∞}, we denote by πm : Xm → X the canonical truncation morphism. For
m ∈ Z>0 ∪ {∞} and a morphism f : Y → X of schemes of finite type over k, we denote by
fm : Ym → Xm the morphism induced by f .

A subset C ⊂ X∞ is called a cylinder if C = ψ−1
m (S) holds for some m > 0 and a constructible

subset S ⊂ Xm. Typical examples of cylinders appearing in this paper are the contact loci
Contm(a) and Cont>m(a) defined as follows.

Definition 2.1. (1) For an arc γ ∈ X∞ and an ideal sheaf a ⊂ OX , the order of a measured
by γ is defined as

ordγ(a) = sup{r ∈ Z>0 | γ∗(a) ⊂ (tr)} ,
where γ∗ : OX → k[[t]] is the ring homomorphism induced by γ.

(2) For m ∈ Z>0, we define Contm(a), Cont>m(a) ⊂ X∞ as

Contm(a) = {γ ∈ X∞ | ordγ(a) = m} ,
Cont>m(a) = {γ ∈ X∞ | ordγ(a) > m} .

By definition, we can see that

Cont>m(a) = ψ−1
m−1(Z(a)m−1) ,

where Z(a) is the closed subscheme of X defined by the ideal sheaf a. Therefore, Contm(a) and
Cont>m(a) become cylinders.

For m 6 n+ 1, we also define the subsets Contm(a)n and Cont>m(a)n of Xn in the same way.

We shall define the codimension for cylinders. For a variety X of dimension n, we denote by
JacX := Fittn(ΩX) the Jacobian ideal of X and by Xsing the singular locus of X (see [Eis95] for
the definition of the Fitting ideal).

Definition 2.2. Let X be a variety, and let C ⊂ X∞ be a cylinder.

(1) Assume that C ⊂ Conte(JacX) for some e ∈ Z>0. Then we define the codimension of C
in X∞ as

codim(C) := (m+ 1) dimX − dim(ψm(C))
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for any sufficiently large m. This is well defined by [EM09, Proposition 4.1].

(2) In general, we define the codimension of C in X∞ as

codim(C) := min
e∈Z>0

codim
(
C ∩ Conte(JacX)

)
.

By convention, codim(C) =∞ if C ⊂ (Xsing)∞.

We recall the definition of the Nash ideals of varieties and morphisms.

Definition 2.3. (1) Let X be a normal Q-Gorenstein variety over k of dimension n, and let r

be a positive integer such that the reflexive power ω
[r]
X :=

(
ω⊗rX

)∗∗
is an invertible sheaf. Then

we have a canonical map

ηr :
(
Ωn
X

)⊗r → ω
[r]
X .

Since ω
[r]
X is an invertible sheaf, an ideal sheaf nr,X ⊂ OX is uniquely determined by Im(ηr) =

nr,X ⊗ ω[r]
X . The ideal sheaf nr,X is called the rth Nash ideal of X.

(2) Furthermore, let f : X → Y be a morphism to a variety Y over k. Then we have a canonical
map

θr : f∗
(
Ωn
Y

)⊗r → ω
[r]
X

and an ideal sheaf nr,f ⊂ OX such that Im(θr) = nr,f ⊗ω
[r]
X . The ideal sheaf nr,f is called the rth

Nash ideal of f .

2.4. Jet schemes and arc spaces for k[t]-schemes. Following [DL02], we extend the def-
inition of the arc spaces of k-schemes in Subsection 2.3 to the case where X is a k[t]-scheme,
namely a scheme over Spec k[t].

Let X be a scheme of finite type over Spec k[t]. Define a contravariant functor Fm : (Sch/k)→
(Sets) by

Fm(Y ) = Homk[t]

(
Y ×Spec k Spec k[t]/

(
tm+1

)
, X
)
.

Then, Fm is representable by a scheme Xm of finite type over k, and the scheme Xm is called
the mth jet scheme of X. We shall also use the same symbols X∞, πmn, ψm, πm for this setting.
Cylinders and the contact loci Contm(a) and Cont>m(a) are also defined in the same way for
this setting.

Remark 2.4. Note that X0 ' X holds if X is a scheme over k. However, this is not true for
k[t]-schemes. Indeed, if X = A1

k[t], then X0 ' A1
k holds. More generally, Xm ' Ym holds for

a k-scheme X and Y = X ×Spec k Spec k[t].

In this paper, we basically treat k[t]-schemes with one of the following two conditions:

(?)n The scheme X is of finite type over Spec k[t]. Any irreducible component of X has di-
mension at least n + 1. Furthermore, any irreducible component dominating Spec k[t] is
exactly (n+ 1)-dimensional.

(??)n The scheme X is a k[t]-scheme with the condition (?)n. Furthermore, any irreducible
components of X dominating Spec k[t] are reduced outside t = 0.

These categories are suitable for defining the Jacobian ideal and the codimension of cylinders.

For a k[t]-schemes X with the condition (?)n, we denote by JacX/k[t] := Fittn(ΩX/k[t]) the
Jacobian ideal of X over k[t]. Under the condition (??)n, we will see in Subsection 2.5 that the
codimension of a cylinder is also defined in the same way as in Definition 2.2.
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Remark 2.5. Let X be a k[t]-scheme with the condition (?)n. Let X(1), . . . , X(`) be the irreducible

components of X dominating Spec k[t]. Then we have X∞ =
⋃`
i=1X

(i)
∞ . Therefore, we can reduce

some problems on the arc space of X to problems for its irreducible component dominating
Spec k[t]. However, we cannot do such a reduction on problems relating to the order of the
Jacobian ideal (cf. Example 2.6).

Example 2.6. The k[t]-schemes

X = Spec
(
k[t][x, y, z]/(tx, ty)

)
, Y = Spec

(
k[t][x, y, z]/(x, y)

)
satisfy the condition (??)1. We have a canonical isomorphism X∞ ' Y∞ on the arc spaces, but
corresponding arcs have different orders of the Jacobian ideals because

JacX/k[t] =
(
t2, tx, ty

)
/(tx, ty) and JacY/k[t] = (1) .

We also define the order of the Jacobian for a morphism.

Definition 2.7. Let X and Y be k[t]-schemes of finite type, and let f : X → Y be a morphism
over k[t]. Let γ : Spec k[[t]] → X be an arc, and let γ′ := f∞(γ). Let S be the torsion part
of γ∗ΩX/k[t]. Then we define the order ordγ(jacf ) of the Jacobian of f at γ as the length of the
k[[t]]-module

Coker
(
γ′∗ΩY/k[t] → γ∗ΩX/k[t]/S

)
.

In particular, if ordγ(jacf ) <∞, then

Coker
(
γ′∗ΩY/k[t] → γ∗ΩX/k[t]/S

)
'
⊕
i

k[t]/
(
tei
)

holds as k[[t]]-modules with some positive integers ei satisfying
∑

i ei = ordγ(jacf ).

By abuse of notation, we set

Conte(jacf ) := {γ ∈ X∞ | ordγ(jacf ) = e}

for e ∈ Z>0. We note that it is not clear from the definition that Conte(jacf ) is a cylinder.

Remark 2.8. In some papers, the Jacobian ideal Jacf of f is defined by Jacf := Fitt0(ΩX/Y ).
We note that ordγ(Jacf ) coincides with the length of the k[[t]]-module

Coker
(
γ′∗ΩY/k[t] → γ∗ΩX/k[t]

)
= γ∗ΩX/Y .

Therefore, if ΩX/k[t] is locally free, then ordγ(Jacf ) = ordγ(jacf ) holds. However, the equality
does not hold in general (cf. Example 2.9).

Example 2.9. Let R = k[t][x, y, z]/
(
xy + z2

)
, and let f : R → R be the homomorphism defined

by f(x) = x2, f(y) = xy and f(z) = xz. Let γ : R → k[[t]] be the arc defined by γ(x) = t
and γ(y) = γ(z) = 0. Then γ∗ΩR/k[t] = k[[t]]dx ⊕ (k[[t]]/(t))dy ⊕ k[[t]]dz. Note that d(f(x)) =
2xdx, d(f(y)) = ydx + xdy and d(f(z)) = zdx + xdz. Therefore, we have ordγ(Jacf ) = 3 and
ordγ(jacf ) = 2.

Additivity holds for the orders of the Jacobian of morphisms.

Lemma 2.10. Let n be a non-negative integer, and let X, Y and Z be k[t]-schemes with the
condition (?)n. Let f : X → Y and g : Y → Z be morphisms over k[t]. Let γ ∈ X∞ be an arc,
and let γ′ := f∞(γ). Suppose that

ordγ(JacX/k[t]) <∞ , ordγ′(JacY/k[t]) <∞ .
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Then we have

ordγ(jacg◦f ) = ordγ(jacf ) + ordγ′(jacg) .

Proof. Set γ′′ := g∞(γ′). Let S, T and U be the torsion parts of γ∗ΩX/k[t], γ
′∗ΩY/k[t] and

γ′′∗ΩZ/k[t], respectively. Since ordγ(JacX/k[t]) < ∞, the scheme X is smooth over k[t] at γ(η),
where η is the generic point of Spec k[[t]]. Hence we have γ∗ΩX/k[t]/S ' k[[t]]⊕n. For the same
reason, we have γ′∗ΩY/k[t]/T ' k[[t]]⊕n. If

ordγ(jacf ) = length
(
Coker

(
γ′
∗
ΩY/k[t]/T → γ∗ΩX/k[t]/S

))
=∞

holds, then we have

ordγ(jacg◦f ) = length
(
Coker

(
γ′′
∗
ΩZ/k[t]/U → γ∗ΩX/k[t]/S

))
=∞ .

Otherwise, γ′∗ΩY/k[t]/T → γ∗ΩX/k[t]/S is injective, and the additivity ordγ(jacg◦f ) = ordγ(jacf )
+ ordγ′(jacg) follows from the additivity of the length of modules.

Nash ideals can also be defined in this setting.

Definition 2.11. Let X be a normal k[t]-variety of relative dimension n. Suppose that X is
smooth over k[t] outside a closed subset of X of codimension two. Then the canonical sheaf
ωX/k[t] is defined (cf. [Kol13, Definition 1.6]). Suppose that there exists a positive integer r such

that ω
[r]
X/k[t] is an invertible sheaf.

(1) Then we have a canonical map

ηr :
(
Ωn
X/k[t]

)⊗r → ω
[r]
X/k[t] .

Since ω
[r]
X/k[t] is an invertible sheaf, an ideal sheaf nr,X ⊂ OX is uniquely determined by

Im(ηr) = nr,X ⊗ ω[r]
X/k[t]. The ideal sheaf nr,X is called the rth Nash ideal of X.

(2) Furthermore, let f : X → Y be a k[t]-morphism from a k[t]-scheme Y . Then we have
a canonical map

θr : f∗
(
Ωn
Y/k[t]

)⊗r → ω
[r]
X/k[t]

and an ideal sheaf nr,f ⊂ OX such that Im(θr) = nr,f ⊗ω
[r]
X/k[t]. The ideal sheaf nr,f is called

the rth Nash ideal of f .

Remark 2.12. In this paper, we only use this definition for a k[t]-variety X ′ of the form X ′ =
X×Spec k Spec k[t], where X is a normal k-variety. In this case, ωX′/k[t] is just the pull-back of ωX
to X ′. Therefore, nr,X′ = nr,XOX′ holds.

Lemma 2.13. (1) Let X be a k[t]-scheme with the condition (?)n, and let γ ∈ Conte(JacX/k[t])
be an arc. Then

γ∗ΩX/k[t] ' k[[t]]⊕n ⊕
⊕
i

k[t]/
(
tei
)

holds as k[[t]]-modules with
∑

i ei = e.

(2) Let r be a positive integer and f : X → Y be a k[t]-morphism which satisfy the assumption
of Definition 2.11(2). Let γ ∈ X∞ be an arc. Suppose ordγ(JacX/k[t]) <∞. Then

r ordγ(jacf ) + ordγ(nr,X) = ordγ(nr,f )

holds.
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Proof. First we prove assertion (1). Since k[[t]] is a principal ideal domain, the finitely gen-
erated module γ∗ΩX/k[t] is isomorphic to a module of the form k[[t]]⊕a ⊕

⊕
i k[t]/(tei). Since

ordγ(JacX/k[t]) = e <∞, the scheme X is smooth over k[t] at γ(η), where η is the generic point
of Spec k[[t]]. Therefore, we have a = n. Then the assertion follows from the definition of JacX/k[t]

and (
t
∑
i ei
)

= Fittn
(
γ∗ΩX/k[t]

)
= γ∗ Fittn

(
ΩX/k[t]

)
= γ∗ JacX/k[t] .

We now prove assertion (2). Let S be the torsion part of γ∗ΩX/k[t]. Let S′ be the torsion part

of
(
γ∗Ωn

X/k[t]

)⊗r
. Since γ∗ω

[r]
X/k[t] is torsion-free, the map

ηr :
(
γ∗Ωn

X/k[t]

)⊗r → γ∗ω
[r]
X/k[t]

factors through
(
γ∗Ωn

X/k[t]

)⊗r
/S′. Hence we have

ordγ(nr,X) = length(Coker ηr) = length
(
Coker

((
γ∗Ωn

X/k[t]

)⊗r
/S′ → γ∗ω

[r]
X/k[t]

))
.

In the same way, we have

ordγ(nr,f ) = length
(
Coker

((
γ′
∗
Ωn
Y/k[t]

)⊗r
/T ′ → γ∗ω

[r]
X/k[t]

))
,

where γ′ = f∞(γ) and T ′ is the torsion part of
(
γ′∗Ωn

Y/k[t]

)⊗r
.

We note that (
γ∗Ωn

X/k[t]

)⊗r
/S′ '

((
γ∗ΩX/k[t]/S

)∧n)⊗r ' k[[t]] ,

and we have

r ordγ(jacf ) = length
(
Coker

((
γ′
∗
Ωn
Y/k[t]

)⊗r
/T ′ → (γ∗Ωn

X/k[t])
⊗r/S′

))
by Definition 2.7. Then the desired formula

r ordγ(jacf ) + ordγ(nr,X) = ordγ(nr,f )

follows from the additivity of the length of modules.

Remark 2.14. (1) In [Seb04], Sebag extends the theory of motivic integration for k[t]-schemes to
the case of formal schemes over k[[t]] with k a perfect field. We also refer the reader to [CNS18]
to this theory.

With a scheme X of finite type over k[t], we can associate the formal scheme X over k[[t]] by

X := lim−→
i>0

Xi , where Xi := X ×Spec k[t] Spec
(
k[[t]]/

(
ti+1

))
.

Then the Greenberg schemes Grm(X ) and Gr(X ) defined in [Seb04] are isomorphic to Xm and
X∞, respectively (cf. [CNS18, Chapter 4, Example 3.3.3]). Therefore, the theory of the Greenberg
schemes developed in [Seb04] and [CNS18] can be applied to the arc spaces X∞ of k[t]-schemes X.

When X is a formal scheme of finite type of relative dimension d over k[[t]], the Jacobian ideal
JacX is defined by JacX = Fittd

(
ΩX/k[[t]]

)
(see [CNS18, Chapter 5, Definition 1.3.1]). When X

is the formal scheme associated with a scheme X of finite type of relative dimension d over k[t],
this definition is compatible with the definition of JacX/k[t] in the sense that

JacX OXi = JacX/k[t]OXi
for each i > 0. This follows from the base change properties of the sheaves of differentials (cf.
[Liu02, Chapter 6, Proposition 1.8(a)]) and the Fitting ideal (cf. [Eis95, Corollary 20.5]). For a
morphism h : X → Y of formal schemes of finite type over k[[t]] and for γ ∈ Gr(X ), the order
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ordt(Jac)h(γ) is defined in [Seb04, Section 5]; it is denoted by ordjach(γ) in [CNS18, Chapter 5,
Section 3.1.1]. This corresponds to ordγ(jach) in Definition 2.7 when h : X → Y is induced by a
k[t]-morphism h : X → Y of k[t]-schemes.

(2) Theorems in [Seb04] and [CNS18] often assume that the formal schemes are flat over k[[t]].
However, many of them can be applied to non-flat formal schemes as well. In particular, they
can be applied to k[t]-schemes with the condition (?)n, as we will see in Subsection 2.5.

(3) Let X be a k[t]-scheme with the condition (?)n. Let X ′ be the maximal closed subscheme of
X which is flat over Spec k[t]. Then we haveX ′∞ = X∞, though the inclusionX ′m ⊂ Xm is not nec-
essarily an equality. Let IX′ ⊂ OX be the defining ideal of X ′. Then there exists a non-negative in-
teger a such that taIX′ = 0 holds in a neighborhood of t = 0. It follows that πm+a,m(Xm+a) ⊂ X ′m.

Furthermore, ordγ(JacX′/k[t]) 6= ordγ(JacX/k[t]) holds for γ ∈ X∞ in general (Example 2.6).
However, as we will see below, the difference is bounded. Since taIX′ = 0 holds, there exists a
non-negative integer a′ such that

ta
′
p−1
(
JacX′/k[t]

)
⊂ JacX/k[t]

in a neighborhood of t = 0, where we set p : OX → OX′ . Hence we have

ordγ
(

JacX′/k[t]

)
6 ordγ

(
JacX/k[t]

)
6 a′ + ordγ

(
JacX′/k[t]

)
for any γ ∈ X∞.

Let h : X → Y be a k[t]-morphism of k[t]-schemes with the condition (?)n. Let Y ′ be the
maximal closed subscheme of Y which is flat over Spec k[t]. Then h induces a k[t]-morphism
h′ : X ′ → Y ′. It follows that ordγ(jach) = ordγ(jach′) for any γ ∈ X∞. This is because(

(i ◦ γ)∗ΩX/k[t]

)
/S →

(
γ∗ΩX′/k[t]

)
/T

is an isomorphism for the inclusion i : X ′ → X and an arc γ : Spec k[[t]] → X ′, where S and T
are the torsion parts of (γ ◦ i)∗ΩX/k[t] and γ∗ΩX′/k[t], respectively.

2.5. The codimension of cylinders in arc spaces. In this subsection, we prove Proposi-
tion 2.17, which is necessary for defining the codimension of cylinders in the arc spaces of k[t]-
schemes. Proposition 2.17 is a generalization of [DL99, Lemma 4.1] (cf. [EM09, Proposition 4.1]).
In their proof, the authors reduce the problem to that for locally complete intersections. The
same strategy works in our setting.

First we state Proposition 2.17 for the case of complete intersections with a little generaliza-
tion. After one replaces JacX with the ideal generated by minors of Jacobian matrix, their proof
works for non–local complete intersection (non-l.c.i.) varieties.

Lemma 2.15. Let N and r be positive integers with N > r. Let R = k[t][x1, . . . , xN ], and let I =
(F1, . . . , Fr) be the ideal generated by elements F1, . . . , Fr ∈ R. We denote by M = Spec(R/I)
the k[t]-scheme corresponding to R/I. Let J ⊂ R be the ideal generated by all the r-minors of
the Jacobian matrix (∂Fi/∂xj)16i6r,16j6N , and let J = (J + I)/I. For non-negative integers m
and e with m > e, the following hold:

(1) ψm
(

Conte
(
J
))

= πm+e,m

(
Conte

(
J
)
m+e

)
.

(2) The morphism πm+1,m : Mm+1 →Mm induces a piecewise trivial fibration

ψm+1

(
Conte

(
J
))
→ ψm

(
Conte

(
J
))

with fiber AN−r.
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Proof. The first statement follows from [CNS18, Chapter 1, Lemma 1.3.3].

The second statement for locally complete intersection varieties is proved in the proof of
Lemma 4.1 in [DL99] (cf. [EM09, Proposition 4.1]). We can apply the same proof as in [DL99,
Lemma 4.1] by replacing Hensel’s lemma with [CNS18, Chapter 1, Lemma 1.3.3].

Remark 2.16. In [EM09, Proposition 4.1], the l.c.i. cases (or, more generally, only the pure-
dimensional cases) are treated. We treat the non-l.c.i. cases in Lemma 2.15 because we will treat
such cases in Section 4 (cf. Remark 4.4).

When X is flat over k[t], Proposition 2.17(1) below is proved in [CNS18, Chapter 5, Propo-
sition 2.3.4], and Proposition 2.17(2) is proved in [Seb04, Lemma 4.5.4] (cf. [CNS18, Chapter 5,
Theorem 2.3.11]). We note here that Proposition 2.17(2) can be reduced to the flat case by
Remark 2.14(3).

Proposition 2.17. Let X be a k[t]-scheme with the condition (?)n from Subsection 2.4. Then
there exists a positive integer c such that the following hold for non-negative integers m and e
with m > ce:

(1) ψm
(

Conte(JacX/k[t])
)

= πm+e,m

(
Conte(JacX/k[t])m+e

)
.

(2) The morphism πm+1,m : Xm+1 → Xm induces a piecewise trivial fibration

ψm+1

(
Conte(JacX/k[t])

)
→ ψm

(
Conte(JacX/k[t])

)
with fiber An.

Proof. In [Seb04, Lemma 4.5.4] (cf. [CNS18, Chapter 5, Theorem 2.3.11]), assertion (2) is proved
for flat formal schemes of finite type of pure relative dimension over k[[t]]. Therefore, assertion (2)
can be reduced to this result by Remark 2.14(1)–(3). On the other hand, it seems that asser-
tion (1) cannot be easily reduced to the flat case (we can only see that ψm

(
Conte(JacX/k[t])

)
=

πm+e+a,m

(
Conte(JacX/k[t])m+e+a

)
by Remark 2.14(3)). However, if we assume the condition (?)n,

it turns out that the proof itself is valid for the non-flat case as well. For the reader’s convenience,
we give a proof below, following the argument in [EM09, Proposition 4.1].

Since the assertion is local on X, we may assume that X ⊂ ANk[t] is affine. Set r := N − n.

Let R := k[t][x1, . . . , xN ], and let IX ⊂ R be the defining ideal of X. Let f1, . . . , fd be generators
of IX . For 1 6 i 6 d, we set

Fi =
d∑
j=1

aijfj

for general aij ∈ k. Then for each subset Λ ⊂ {1, . . . , d} with #Λ = r = N − n, we denote
by MΛ ⊂ ANk[t] the subscheme defined by the ideal IMΛ

:= (Fi | i ∈ Λ) generated by the Fi
with i ∈ Λ. We denote by JΛ ⊂ R the ideal generated by the r-minors of the Jacobian matrix
(∂Fi/∂xj)i∈Λ,16j6N . Set JΛ := (JΛ + IMΛ

)/IMΛ
.

We note that for γ ∈ X∞, we have

ordγ(JacX/k[t]) = min
Λ

ordγ(JΛ) .

Hence

UΛ :=
{
γ ∈ Conte(JacX/k[t])

∣∣ ordγ(JΛ) = e
}

is an open subset of Conte(JacX/k[t]) satisfying Conte(JacX/k[t]) =
⋃

Λ UΛ. Since X is a closed
subscheme of MΛ, we may identify the arc space X∞ with a closed subset of (MΛ)∞. Under this
identification, we have UΛ ⊂ Conte

(
JΛ

)
.
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Then we claim the following (cf. [EM09, Lemma 4.2]).

Claim 2.18. There exists a positive integer cΛ such that the following condition holds for any
non-negative integers m and e satisfying m > cΛe:

• If γ ∈ Conte
(
JΛ

)
⊂ (MΛ)∞ satisfies ψm(γ) ∈ Xm, then γ ∈ X∞.

Proof. Let IX′Λ := (IMΛ
: IX), and let X ′Λ ⊂ ANk[t] be the corresponding subscheme. For a prime

ideal p of R, we note that IMΛ
⊂ p and IX 6⊂ p imply IX′Λ = (IMΛ

: IX) ⊂ p. Therefore, set-
theoretically, X ′Λ is the union of the irreducible components of MΛ which are not contained in X.
Hence we have (MΛ)∞ = X∞ ∪ (X ′Λ)∞. Since any irreducible component of X has dimension at
least n+ 1 and the aij are general elements of k, for any irreducible component X0 of X, there
exists an irreducible component of M0 of MΛ with X0 = M0. Therefore, if MΛ is smooth at a
point x ∈ X, then X is smooth at x and OX,x = OMΛ,x. Hence if (R/IMΛ

)q is a regular local
ring for a prime ideal q of R with IX ⊂ q, then we have

(IX′Λ)q = (IMΛ
: IX)q = ((IMΛ

)q : (IX)q) = Rq .

This implies that X ′Λ ∩ ((MΛ)reg ∩ X) = ∅. Hence MΛ is singular at every point x ∈ X ∩ X ′Λ.
Here we claim that

(♥) JΛ ⊂
√
IX + IX′Λ holds.

Let J ′Λ be the ideal generated by the r-minors of the Jacobian matrix with respect to IMΛ
=

(Fi | i ∈ Λ) and the derivations ∂xj and ∂t. Then by the definition of JΛ, we have JΛ ⊂ J ′Λ.
Let p be a prime ideal satisfying IX + IX′Λ ⊂ p. Since ht(IMΛ

Rp) 6 r and the ring Rp/IMΛ
Rp is

not regular, it follows by the Jacobian criterion (cf. [Mat89, Theorem 30.4]) that J ′Λ ⊂ p, which
proves the claim (♥).

By (♥),

JcΛΛ ⊂ IX + IX′Λ
holds for some cΛ. Suppose γ ∈ Conte

(
JΛ

)
⊂ (MΛ)∞. Since

ordγ
(
JcΛΛ

)
= cΛe < m+ 1 6 ordγ(IX) ,

we have ordγ
(
IX′Λ

)
6 cΛe. Hence γ 6∈ (X ′Λ)∞, and therefore γ ∈ X∞. This completes the proof

of the claim.

Proof of Proposition 2.17, continued. We set c = maxΛ cΛ. Then the assertions (1) and (2) for X
follow from the assertions of Lemma 2.15 for MΛ by Claim 2.18.

We define cylinders in the arc spaces of k[t]-schemes and define their codimension. For a k[t]-
scheme X, a subset C ⊂ X∞ is called a cylinder if C = ψ−1

m (S) holds for some m > 0 and
a constructible subset S ⊂ Xm.

Definition 2.19. Let X be a k[t]-scheme with the condition (??)n. Let C ⊂ X∞ be a cylinder.

(1) Assume that C ⊂ Conte(JacX/k[t]) holds for some e ∈ Z>0. Then we define the codimension
of C in X∞ as

codim(C) := (m+ 1)n− dim(ψm(C))

for any sufficiently large m. This codimension is well defined by Proposition 2.17.

(2) In general, we define the codimension of C in X∞ as

codim(C) := min
e∈Z>0

codim
(
C ∩ Conte

(
JacX/k[t]

))
.
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Remark 2.20. The codimension is also well defined for X with (?)n. However, in this case, we may
have X∞ ∩Conte(JacX/k[t]) = ∅ for any e > 0, and codim(C) =∞ may hold for any cylinder C.
Therefore, we assume (??)n when we discuss the codimension of a cylinder.

Definition 2.21. Let X be a k[t]-scheme with the condition (??)n. A subset A ⊂ X∞ is called
thin if A ⊂ Z∞ holds for some closed subscheme Z of X with the condition (??)` for some
` 6 n− 1.

Remark 2.22. The arc space X∞ is never a thin set of X∞ for a k-variety X. However, X∞ can
be a thin set of X∞ for a k[t]-scheme X even if we assume the condition (??)n. See the example
in Remark 5.3.

Lemma 2.23 (cf. [CNS18, Chapter 6, Proposition 2.4.6]). Let X be a k[t]-scheme with the
condition (?)n, and let C ⊂ X∞ be a cylinder. If C is thin, then C ∩ Conte(JacX/k[t]) = ∅ holds
for any e > 0.

Proof. This follows from [CNS18, Chapter 6, Proposition 2.4.6] and Remark 2.14.

Proposition 2.24 ([Seb04, Lemme 4.3.9]). Let X be a scheme of finite type over k[t], and let C
be a cylinder in X∞. Then its image ψm(C) ⊂ Xm is a constructible subset for any m > 0.

Proof. This follows from [Seb04, Lemme 4.3.9] (cf. [CNS18, Chapter 5, Corollary 1.5.7]) and
Remark 2.14.

Proposition 2.25 (cf. [Seb04, Théorème 6.3.5]). LetX be a k[t]-scheme with the condition (??)n,
and let C be a cylinder in X∞. Let {Cλ}λ∈Λ be a set of countably many disjoint subcylinders
Cλ ⊂ C. If C \ (

⊔
λ∈ΛCλ) ⊂ X∞ is a thin set, then it follows that

codim(C) = min
λ∈Λ

codim(Cλ) .

Proof. This follows from [CNS18, Chapter 6, Lemma 3.4.1 and Example 3.5.2].

Lemma 2.26. Let X be a variety over Spec k[t] which dominates Spec k[t] and has relative
dimension n. Suppose that X is smooth over k. Then there exists a non-negative integer ` such
that the following hold:

(1) We have ordγ(JacX/k[t]) 6 ` for every arc γ ∈ X∞.

(2) We have ψm(X∞) = πm+`,m(Xm+`) for every m > `.

(3) For any m > `, the morphism πm+1,m induces a piecewise trivial fibration ψm+1(X∞) →
ψm(X∞) with fiber An.

Proof. Since X is smooth over k, by the generic smoothness, X is smooth over Spec k[t] outside
finitely many closed points. Therefore, we have an inclusion of ideals

(
t`
)
⊂ JacX/k[t] in a neigh-

borhood of t = 0 for some ` > 0. Hence ordγ(JacX/k[t]) 6 ` holds for any arc γ ∈ X∞. Then
assertions (2) and (3) follow from Lemma 2.15.

Lemma 2.27. Let f : Y → X be a proper birational k[t]-morphism of k[t]-varieties X and Y .
Suppose that Y is smooth over k. Let C ⊂ X∞ be a cylinder. If C is a thin set of X∞, then
f−1
∞ (C) = ∅.

Proof. We may assume that X dominates Spec k[t]. Let n be the relative dimension of X. Since C
is a thin set, there exists a closed subset Z ( X such that C ⊂ Z∞. Set Z ′ := f−1(Z). Then
we have f−1

∞ (C) ⊂ Z ′∞ (cf. Lemma 2.28(2)). Since dominant components of Z ′ have relative
dimension at most n − 1, the cylinder f−1

∞ (C) is also a thin set. By Lemmas 2.23 and 2.26(1),
we have f−1

∞ (C) = ∅.
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Lemma 2.28. (1) Let Z ⊂ X be a closed subscheme of a k[t]-scheme X of finite type. Then the
induced map f∞ : Z∞ → X∞ is a closed immersion.

(2) Moreover, for a k[t]-morphism f : Y → X, it follows that
(
f−1(Z)

)
∞ ' f

−1
∞ (Z∞).

Proof. The assertions follow from the same argument for k-varieties (cf. [EM09, Remarks 2.7
and 2.8]).

2.6. Fundamental properties of the arc spaces of k[t]-schemes. In this subsection, we
prove Proposition 2.33, which is a generalization of [DL02, Lemma 1.17] to k[t]-schemes with the
condition (??)n. Actually, in [DL02, Remark 1.19], it is mentioned that [DL02, Lemma 1.17] can
be generalized to separated reduced schemes of finite type over k[t]. In [Yas19, Lemma 10.20],
Yasuda proves Proposition 2.33 in a more general setting. For the reader’s convenience, we give
a proof of Proposition 2.33 following the argument in [EM09].

Proposition 2.29. Let X be a k[t]-scheme with the condition (?)n. Let p and m be non-negative
integers with 2p+ 1 > m > p.

(1) Let γ ∈ Xp with π−1
m,p(γ) 6= ∅. Then scheme-theoretically, we have

π−1
m,p(γ) ' Homk[t]/(tp+1)

(
γ∗ΩX/k[t],

(
tp+1

)
/
(
tm+1

))
.

(2) Let γ′ ∈ X∞, and let e := ordγ′(JacX/k[t]). Let c be a positive integer appearing in Propo-
sition 2.17. Let T be the torsion part of γ′∗ΩX . Suppose 2p + 1 − e > m > ce and p > e.
For γ = ψp(γ

′), it follows that

π−1
m,p(γ) ∩ ψm

(
Conte

(
JacX/k[t]

))
= πm+e,m

(
π−1
m+e,p(γ)

)
' Homk[t]/(tp+1)

((
γ′∗ΩX/k[t]

)
/T ⊗k[[t]] k[t]/

(
tp+1

)
,
(
tp+1

)
/
(
tm+1

))
.

Proof. We first prove assertion (1). We may assume X = SpecA. Let γ∗ : A→ k[t]/
(
tp+1

)
be the

k[t]-ring homomorphism corresponding to γ. Suppose α ∈ π−1
m,p(γ) and that α∗ : A→ k[t]/

(
tm+1

)
is the k[t]-ring homomorphism corresponding to α. Then we have

π−1
m,p(γ) ' Derk[t]

(
A,
(
tp+1

)
/
(
tm+1

))
, β 7→ β∗ − α∗ ;

here
(
tp+1

)
/
(
tm+1

)
has an A-module structure via γ∗ (cf. [EM09, Proposition 4.4]). Then the

assertion follows from the isomorphisms

Derk[t]

(
A,
(
tp+1

)
/
(
tm+1

))
' HomA

(
ΩA/k[t],

(
tp+1

)
/
(
tm+1

))
' Homk[t]/(tp+1)

(
γ∗ΩX/k[t],

(
tp+1

)
/
(
tm+1

))
.

We now prove assertion (2). Note that

γ∗ΩX/k[t] = γ′∗ΩX/k[t] ⊗k[[t]] k[t]/
(
tp+1

)
'
(
(γ′∗ΩX/k[t])/T ⊗k[[t]] k[t]/

(
tp+1

))
⊕
(
T ⊗k[[t]] k[t]/

(
tp+1

))
.

Since T is the form of
⊕

i k[t]/
(
tei
)

with
∑

i ei = e and, in particular, ei 6 e 6 p, it follows
that T ⊗k[[t]] k[t]/

(
tp+1

)
'
⊕

i k[t]/
(
tei
)
. Note also that λ : γ∗ΩX/k[t] →

(
tp+1

)
/
(
tm+1

)
lifts to

γ∗ΩX/k[t] →
(
tp+1

)
/
(
tm+e+1

)
if and only if λ

(
T ⊗ k[t]/

(
tp+1

))
= 0 holds (Lemma 2.30(2)). This

equivalence and assertion (1) show that

πm+e,m

(
π−1
m+e,p(γ)

)
' Im

(
Homk[t]/(tp+1)

(
γ∗ΩX/k[t],

(
tp+1

)
/
(
tm+e+1

))
−→ Homk[t]/(tp+1)

(
γ∗ΩX/k[t],

(
tp+1

)
/
(
tm+1

)))
' Homk[t]/(tp+1)

((
γ′∗ΩX/k[t]

)
/T ⊗k[[t]] k[t]/

(
tp+1

)
,
(
tp+1

)
/
(
tm+1

))
.
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Since ordγ(JacX/k[t]) = e, it follows from Proposition 2.17(1) that

πm+e,m

(
π−1
m+e,p(γ)

)
= π−1

m,p(γ) ∩ ψm
(

Conte
(

JacX/k[t]

))
.

This completes the proof.

Lemma 2.30. Let m, p, ` be non-negative integers with m > p. Then the following hold:

(1) The k-vector space Homk[t]

(
k[t]/

(
t`
)
,
(
tp+1

)
/
(
tm+1

))
is isomorphic to A` if ` 6 m − p;

otherwise, it is isomorphic to Am−p.
(2) If ` 6 e, only the zero map k[t]/

(
t`
)
→
(
tp+1

)
/
(
tm+1

)
can lift to k[t]/

(
t`
)
→
(
tp+1

)
/
(
tm+e+1

)
.

Proof. The proof is straightforward.

For an arc δ, we denote by δm its image in the space of the mth jets.

Lemma 2.31. Let X and Y be k[t]-schemes with the condition (?)n, and let f : Y → X be a mor-
phism over k[t]. Let e, e′, e′′, q ∈ Z>0. Let cX and cY be positive integers for X and Y appearing
in Proposition 2.17. Suppose max{e+e′, e+e′′, cXe

′, cY e
′′} 6 q−e. Let α ∈ Conte

′
(JacX/k[t]) and

β ∈ Conte
′′
(JacY/k[t]) with fq(βq) = αq and ordβ(jacf ) = e. Then there is a δ ∈ Conte

′′
(JacY/k[t])

with fq+1(δq+1) = αq+1 such that βq−e = δq−e and ordδ(jacf ) = e.

Proof. Let S and T be the torsion parts of α∗ΩX/k[t] and β∗ΩY/k[t], respectively. By Proposi-
tion 2.29(2), we have

π−1
q+1,q−e(αq−e) ∩ ψq+1

(
Conte

′ (
JacX/k[t]

))
' Homk[t]/(tq−e+1)

((
α∗ΩX/k[t]

)
/S ⊗k[[t]] k[t]/

(
tq−e+1

)
,
(
tq−e+1

)
/
(
tq+2

))
and

π−1
q+1,q−e(βq−e) ∩ ψq+1

(
Conte

′′ (
JacY/k[t]

))
' Homk[t]/(tq−e+1)

((
β∗ΩY/k[t]

)
/T ⊗k[[t]] k[t]/

(
tq−e+1

)
,
(
tq−e+1

)
/
(
tq+2

))
.

We may assume that βq+1 corresponds to the zero map via this isomorphisms. Let

w : α∗ΩX/k[t]/S ⊗k[[t]] k[t]/
(
tq−e+1

)
→
(
tq−e+1

)
/
(
tq+2

)
be the morphism corresponding to αq+1 via this isomorphism. Then it is sufficient to show the
existence of a morphism

u : β∗ΩY/k[t]/T ⊗k[[t]] k[t]/
(
tq−e+1

)
→
(
tq−e+1

)
/
(
tq+2

)
such that u ◦ hq−e = w, where

hq−e : α∗ΩX/k[t]/S ⊗k[[t]] k[t]/
(
tq−e+1

)
→ β∗ΩY/k[t]/T ⊗k[[t]] k[t]/

(
tq−e+1

)
is the natural morphism.

By the definition of ordβ(jacf ), we have

Coker
(
β′
∗
ΩX/k[t] → β∗ΩY/k[t]/T

)
' k[t]/

(
ta1
)
⊕ · · · ⊕ k[t]/

(
tan
)

with ai > 0 and
∑

i ai = e, where β′ := f∞(β). Since β′q−e = αq−e and ai 6 q − e+ 1, we have

Coker(hq−e) ' k[t]/
(
ta1
)
⊕ · · · ⊕ k[t]/

(
tan
)
.

Hence we can regard hq−e as the morphism given by the diagonal matrix with entries ta1 , . . . , tan .
Furthermore, since αq = fq(βq), it follows that Im(w) ⊂

(
tq+1

)
/
(
tq+2

)
. Since q > e+ai holds for

each i, we can find a desired u.
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Lemma 2.32. Let X and Y be k[t]-schemes with the condition (?)n, and let f : Y → X be a
morphism over k[t]. Let e, e′, e′′,m ∈ Z>0. Let cX and cY be positive integers for X and Y
appearing in Proposition 2.17. Suppose max{e + e′, e + e′′, cXe

′, cY e
′′} 6 m − e. Let α ∈

Conte
′
(JacX/k[t]) and β ∈ Conte

′′
(JacY/k[t]) with fm(βm) = αm and ordβ(jacf ) = e. Then there

is a δ ∈ Conte
′′
(JacY/k[t]) with βm−e = δm−e such that f∞(δ) = α and ordδ(jacf ) = e.

Proof. By Lemma 2.31, we can construct recursively δ(q) ∈ Conte
′′
(JacY/k[t]) for q > m such that

δ(m) = β, δ
(q+1)
q−e = δ

(q)
q−e and fq(δ

(q)
q ) = αq for every q > m. The sequence

(
δ

(q)
q−e
)
q∈Z>m

defines an

element δ ∈ Conte
′′
(JacY/k[t]) such that δq−e = δ

(q)
q−e for every q > m. By the construction of δ, it

follows that βm−e = δm−e and f∞(δ) = α.

When Y is smooth over k[t], Proposition 2.33 below is proved in [Seb04, Lemma 7.1.3] (cf.
[CNS18, Chapter 5, Theorem 3.2.2]). In [Yas19, Lemmas 10.19 and 10.20], Yasuda proves Propo-
sition 2.33 in a more general setting (for formal Deligne–Mumford stacks of arbitrary character-
istic).

Proposition 2.33 (cf. [DL02, Lemma 1.17, Remark 1.19]). Let X and Y be k[t]-schemes with
the condition (??)n, and let f : Y → X be a morphism over k[t]. Let e, e′, e′′ ∈ Z>0. Let B be
a cylinder of Y∞, and let A = f∞(B). Assume

B ⊂ Conte
′′(

JacY/k[t]

)
∩ Conte(jacf ) , A ⊂ Conte

′
(JacX/k[t]) .

Then A is a cylinder of X∞. Moreover, if f∞|B is injective, then it follows that

codim(B) + e = codim(A) .

Proof. The second statement is obtained by specializing [Yas19, Lemma 10.20] to the case where
Φ = Ψ = k and Y and X are the formal schemes over k[[t]] associated with Y and X, respectively
(cf. Remark 2.14). For the reader’s convenience, we give a proof in our setting below.

First, we prove that A is a cylinder. Let Bm ⊂ Ym be a constructible subset such that
B = ψ−1

m (Bm). By Proposition 2.24, we may assume Bm = ψm(B). Furthermore, we may assume
that m is sufficiently large, and hence B = ψ−1

m−e(πm,m−e(Bm)) also holds. It is enough to show
that A = ψ−1

m (Am) for Am = fm(Bm). The inclusion A ⊂ ψ−1
m (Am) is obvious. We shall show

the opposite inclusion. Suppose that α ∈ X∞ satisfies ψm(α) ∈ Am. Then by the definition
of Am, there exists a β ∈ Y∞ such that its image in Xm coincides with αm. Therefore, by
Lemma 2.32, there exists a γ ∈ Y∞ such that f∞(γ) = α and ψm−e(γ) = ψm−e(β). Since
γ ∈ ψ−1

m−e(πm,m−e(βm)) ⊂ B, it follows that α ∈ f∞(B) = A. Therefore, A is a cylinder.

Next we shall prove that codim(B) + e = codim(A). For this, it is sufficient to show that
dim

(
f−1
m (αm) ∩Bm

)
= e for each αm ∈ Am. Let α ∈ A be a lift of αm, and let β ∈ B be an arc

satisfying f∞(β) = α.

We claim that

πm,m−e
(
f−1
m (αm) ∩Bm

)
= {βm−e} .

Take β′m ∈ f−1
m (αm) ∩ Bm. Then by Lemma 2.32, there exists a γ ∈ B such that γm−e =

πm,m−e(β
′
m) and f∞(γ) = α. Since f∞|B is injective, it follows that β = γ. Therefore, we have

πm,m−e(β
′
m) = βm−e.

Hence we have

f−1
m (αm) ∩Bm = f−1

m (αm) ∩ π−1
m,m−e(βm−e)

⊂ π−1
m,m−e(βm−e) ∩ ψm

(
Conte

′′ (
JacY/k[t]

))
.
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Therefore, by Proposition 2.29, f−1
m (αm) ∩Bm is isomorphic to the kernel of

Homk[t]/(tm−e+1)

((
β∗ΩY/k[t]

)
/T ⊗k[[t]] k[t]/

(
tm−e+1

)
,
(
tm−e+1

)
/
(
tm+1

))
→ Homk[t]/(tm−e+1)

((
α∗ΩX/k[t]

)
/S ⊗k[[t]] k[t]/

(
tm−e+1

)
,
(
tm−e+1

)
/
(
tm+1

))
,

where S and T are the torsion parts of α∗ΩX/k[t] and β∗ΩY/k[t], respectively. By the definition of
ordβ(jacf ), this is isomorphic to

Homk[t]/(tm−e+1)

(⊕
i

k[t]/
(
tai
)
⊗k[[t]] k[t]/

(
tm−e+1

)
,
(
tm−e+1

)
/
(
tm+1

))
,

with ai > 0 and
∑

i ai = e. This is isomorphic to Ae by Lemma 2.30(1). This completes the
proof.

The following lemma is a generalization of Lemma 8.4 in [EM09] to k[t]-schemes. This lemma
plays an important role in the proof of Theorem 5.1.

Lemma 2.34. Let A = Spec k[t][x1, . . . , xN ], and let X ⊂ A be a closed subscheme with the
condition (??)n. Suppose c := N − n > 0. We denote by IX ⊂ k[t][x1, . . . , xN ] the defining ideal
of X in A. Suppose that IX is generated by c elements f1, . . . , fc ∈ k[t][x1, . . . , xN ]. Let C ⊂ A∞
be an irreducible locally closed cylinder. If

• C ⊂
⋂c
i=1 Cont>di(fi) and

• C ∩X∞ ∩ Conte(JacX/k[t]) 6= ∅

hold for some di > 0 and e > 0, then it follows that

codimX∞(C ∩X∞) 6 codimA∞(C) + e−
c∑
i=1

di .

Proof. The same proof as in [EM09, Lemma 8.4] works by replacing JacM in [EM09] with
JacX/k[t]. We note that [EM09, Proposition 4.4(ii)], which is used in the proof, is still true
for our k[t]-scheme X:

• Let p, m and e be non-negative integers with 2p > m > p+ e. Let γ ∈ Xp with π−1
m,p(γ) 6= ∅

and ordγ(JacX/k[t]) = e. Then it follows that π−1
m,p(γ) ' Ae+(m−p)n.

In [EM09, Proposition 4.4(ii)], the assertion above is proved for l.c.i. varieties. This l.c.i. assump-
tion is used only for proving Fittn−1(ΩX/k) = 0. In our case, Fittn−1

(
ΩX/k[t]

)
= 0 holds by the

assumption that IX is generated by c = N − n elements.

2.7. Dimension of the arc spaces of quotient varieties. In this subsection, we prove Propo-
sition 2.35, which is a generalization of [DL02, Lemma 3.5] to singular k[t]-schemes.

Let Y be a k[t]-scheme with the condition (??)n. Suppose that a finite group acts on Y
over k[t]. We denote its quotient by X := Y/G and the quotient map by h : Y → X. Let B ⊂ Y∞
be a G-invariant cylinder and A = h∞(B). Let e, e′, e′′ ∈ Z>0. Assume

B ⊂ Conte
′′
(JacY/k[t]) ∩ Conte(jacf ) , A ⊂ Conte

′
(JacX/k[t]) .
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We have the following diagram:

Y∞ //

h∞

''

ψm
��

Y∞/G

��

// X∞

ψm
��

Ym //

��

Ym/G //

��

Xm

��

Ym−e //

hm−e

77
Ym−e/G // Xm−e .

Proposition 2.35 (cf. [DL02, Lemma 3.5]). In the setting above, the following hold:

(1) The image A is a cylinder of X∞.

(2) codim(B) + e = codim(A).

Proof. The second statement is obtained by specializing [Yas19, Lemma 10.20] to the case where
Φ = Ψ = k, g : [Y/G] → X and C = B/G, where Y and X are the formal schemes over k[[t]]
associated with Y and X, respectively (cf. Remark 2.14). We note that |J∞([Y/G])| is equal
to Y∞/G in the notation of [Yas19], and, furthermore, g∞|B/G is injective. For the reader’s
convenience, we give a proof in our setting below.

By the same argument as that of the proof of Proposition 2.33, we can take a sufficiently
large m and a constructible subset Bm ⊂ Ym, and Am = hm(Bm), such that

A = ψ−1
m (Am) , B = ψ−1

m−e(πm,m−e(Bm)) .

In particular, A is a cylinder of X∞.

In order to prove codim(B) + e = codim(A), it is sufficient to show that dim
(
h−1
m (αm)∩Bm

)
= e for each αm ∈ Am. Let α ∈ A be a lift of αm, and let β ∈ B be an arc satisfying h∞(β) = α.

We claim that

• every arc in πm,m−e
(
h−1
m (αm) ∩Bm

)
has the same image in Ym−e/G.

Take β′m ∈ h−1
m (αm) ∩ Bm. Then by Lemma 2.32, there exists a δ ∈ B such that δm−e =

πm,m−e(β
′
m) and h∞(δ) = α. Since Y∞/G→ X∞ is injective (cf. [GW10, Proposition 12.27(2)]),

it follows that β and δ have the same image in Y∞/G. Therefore, the image of β′m in Ym−e/G
coincides with that of β.

By the claim above, we have

h−1
m (αm) ∩Bm = h−1

m (αm) ∩
⋃
γ∈G

π−1
m,m−e(γ · βm−e)

⊂
⋃
γ∈G

(
π−1
m,m−e(γ · βm−e) ∩ ψm

(
Conte

′′ (
JacY/k[t]

)))
.

Therefore, by Proposition 2.29, the intersection h−1
m (αm)∩Bm is isomorphic to the union of the

kernels Kγ of

Homk[t]/(tm−e+1)

((
(γ · β)∗ΩY/k[t]

)
/Tγ ⊗k[[t]] k[t]/

(
tm−e+1

)
,
(
tm−e+1

)
/
(
tm+1

))
→ Homk[t]/(tm−e+1)

((
α∗ΩX/k[t]

)
/S ⊗k[[t]] k[t]/

(
tm−e+1

)
,
(
tm−e+1

)
/
(
tm+1

))
,
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where S and Tγ are the torsion parts of α∗ΩX/k[t] and (γ ·β)∗ΩY/k[t], respectively. By the definition
of ordβ(jach), the kernel Kγ is isomorphic to

Homk[t]/(tm−e+1)

(⊕
i

k[t]/
(
tai
)
⊗k[[t]] k[t]/

(
tm−e+1

)
,
(
tm−e+1

)
/
(
tm+1

))
,

with ai > 0 and
∑

i ai = e. Therefore, Kγ ' Ae, and hence dim
(
h−1
m (αm) ∩ Bm

)
= e, which

completes the proof.

3. Denef and Loeser’s theory for quotient varieties

In this section, first we review the theory of the arc space of quotient varieties established by
Denef and Loeser [DL02] in more detail (Propositions 3.4 and 3.7). In Subsection 3.3, we study
quotients of singular varieties and make a statement analogous to Proposition 3.7 for this setting
(Proposition 3.8).

3.1. Lifting property of arcs on quotient varieties. Let X be a variety over k, and let G
be a finite group with order d acting on X. Let q : X → X := X/G be the quotient morphism.
Let Z ⊂ X be the minimal closed subset such that q is étale outside Z. Set

Xg
∞ := X∞ \ Z∞ , X

1/d
∞ := Homk

(
Spec k[[t1/d]], X

)
.

Lemma 3.1. Any ϕ ∈ Xg
∞ lifts to X

1/d
∞ . That is, the composition Spec k[[t1/d]]→ Spec k[[t]]

ϕ−→ X
factors through X. Moreover, ϕ has exactly d lifts, and G acts on them transitively.

Proof. We consider the decomposition ϕ′ : Spec k((t)) → Spec k[[t]]
ϕ→ X. First, we see that

there are exactly d lifts Spec k((t1/d))→ X of ϕ′. Let SpecL be the fiber product of q : X → X
and ϕ′ : Spec k((t)) → X. Since q : X → X is étale at the image of the generic point of ϕ, the
extension L/k((t)) is étale. Furthermore, we have LG = k((t)). Note that k((t1/d

′
)) is the unique

finite field extension of k((t)) of degree d′ (cf. [Kol07, Theorem 1.94]). Hence L '
∏c
i=1 k((t1/ai))

for some ai and c. Note that if ai 6= aj , then k((t1/ai)) is not isomorphic to k((t1/aj )). This implies
that LG is not a field if ai 6= aj for some i and j. Therefore, L is decomposed as the product of c
copies of k((t1/a)) for some a and c with ac = d. Hence we have # Homk((t))

(
L, k((t1/d))

)
= d,

and G acts on Homk((t))

(
L, k((t1/d))

)
transitively:

Spec k((t1/d))
∃ //

��

X

��

Spec k((t)) // Spec k[[t]]
ϕ
// X .

By the valuative criterion of properness on X → X, each Spec k((t1/d)) → X factors through
Spec k[[t1/d]]→ X. This completes the proof.

We have two group actions on X
1/d
∞ :

• Let ξ = ξd ∈ k be a dth primitive root of unity in k. The group Z/dZ = 〈ξ〉 acts on X
1/d
∞

as follows. For ϕ = ϕ(t1/d) ∈ X1/d
∞ , we define ϕ(ξt1/d) by the composition Spec k[[t1/d]] →

Spec k[[t1/d]]
ϕ−→ X, where the first map Spec k[[t1/d]] → Spec k[[t1/d]] is a map induced by

the ring homomorphism k[[t1/d]]→ k[[t1/d]], t1/d 7→ ξt1/d.
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• The group G acts on X
1/d
∞ as follows. For γ ∈ G and ϕ ∈ X

1/d
∞ , we define γϕ to be the

composition Spec k[[t1/d]]
ϕ−→ X

γ−→ X.

Lemma 3.2. Let ϕ ∈ Xg
∞, and let ϕ ∈ X1/d

∞ be its lift. Then the following hold:

(1) There exists a unique γ ∈ G such that ϕ(ξt1/d) = γϕ(t1/d).

(2) If ϕ′ is another lift and γ′ satisfies ϕ′(ξt1/d) = γ′ϕ′(t1/d), then γ and γ′ are in the same
conjugacy class.

Proof. Since ϕ, ϕ′ and ϕ(ξt1/d) are lifts of ϕ, assertions (1) and (2) follow from Lemma 3.1.

For γ ∈ G, we define X
1/d,(γ)
∞ and X

g,(γ)
∞ as follows:

• X1/d,(γ)
∞ :=

{
ϕ ∈ X1/d

∞
∣∣ϕ(ξt1/d) = γϕ(t1/d)

}
.

• Xg,(γ)
∞ :=

{
ϕ ∈ Xg

∞
∣∣ϕ lifts to an arc in X

1/d,(γ)
∞

}
.

Lemma 3.3. (1) We have X
g,(γ)
∞ = X

g,(γ′)
∞ if γ and γ′ are in the same conjugacy class.

(2) There is a natural map ργ : X
1/d,(γ)
∞ → X∞.

(3) The space X
1/d,(γ)
∞ and ργ are Cγ-invariant, where Cγ is the centralizer of γ.

(4) The Cγ-action on each fiber over X
g,(γ)
∞ of ργ is transitive.

Proof. (1) If γ′ = βγβ−1 for some β ∈ G and ϕ(ξt1/d) = γϕ(t1/d), then ϕ′ := βϕ satisfies
γ′ϕ′(t1/d) = ϕ′(ξt1/d).

(2) We may assume that X is an affine variety SpecR. Let ϕ ∈ X1/d,(γ)
∞ , and let ϕ∗ : R →

k[[t1/d]] be the corresponding ring homomorphism. Suppose a ∈ RG. It is sufficient to show that
ϕ∗(a) ∈ k[[t]]. Since a = γ · a, we have

(ϕ∗(a))(t1/d) = (ϕ∗(γ · a))(t1/d) = (ϕ∗(a))(ξt1/d) ,

which shows that ϕ∗(a) ∈ k[[t]].

The proof of assertion (3) is straightforward.

(4) Suppose that ϕ1, ϕ2 ∈ X
1/d,(γ)
∞ are lifts of ϕ ∈ Xg,(γ)

∞ . Then by Lemma 3.1, we have ϕ1 =
αϕ2 for some α ∈ G. Since ϕi(ξt

1/d) = γϕi(t
1/d) holds for each i, it follows that αγ = γα.

Proposition 3.4 ([DL02, Section 2.1], cf. [Yas16, Section 3]).

(1) We have Xg
∞ =

⊔
〈γ〉∈Conj(G)X

g,(γ)
∞ .

(2) The map ργ induces two maps

ρ :
⊔

〈γ〉∈Conj(G)

X
1/d,(γ)
∞ → X∞ ,

ρ′ :
⊔

〈γ〉∈Conj(G)

(
X

1/d,(γ)
∞ /Cγ

)
→ X∞ ,

and ρ′ is bijective over Xg
∞.

Proof. Assertion (1) follows from Lemmas 3.1, 3.2(2) and 3.3(1). Assertion (2) follows from
Lemma 3.3.
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3.2. Arc spaces of quotient singularities. Let d be a positive integer, and let ξ be a primitive
dth root of unity in k. Let G ⊂ GLN (k) be a finite group with order d which acts on A = ANk =
Spec k[x1, . . . , xN ]. Set A = A/G = Spec k[x1, . . . , xn]G. Suppose that an element γ ∈ G is the
diagonal matrix with entries ξe1 , . . ., ξen (for 0 6 ei 6 d− 1).

Lemma 3.5 ([DL02, Section 2.3]). The k[t]-ring homomorphism

ε∗γ : k[t][x1, . . . , xn]→ k[t1/d][x1, . . . , xn] , xi 7→ tei/dxi

induces a bijective map εγ : A∞ → A
1/d,(γ)
∞ .

Proof. First, we shall see that ε∗γ induces an injective map εγ : A∞ → A
1/d
∞ . Let ϕ ∈ A∞, and

let ϕ∗ : k[t][x1, . . . , xn] → k[[t]] be the corresponding k[t]-ring homomorphism. Then we define

εγ(ϕ) ∈ A1/d
∞ to be the arc corresponding to the k[t1/d]-ring homomorphism

k[t1/d][x1, . . . , xn]→ k[[t1/d]] , xi 7→ tei/dϕ∗(xi) .

Since the map εγ : A∞ → A
1/d
∞ is injective, it is sufficient to show that its image is A

1/d,(γ)
∞ .

Let ϕ ∈ A
1/d
∞ , and let ϕ∗ : k[t1/d][x1, . . . , xn] → k[[t1/d]] be the corresponding k[t1/d]-ring

homomorphism. Set fi := ϕ∗(xi) ∈ k[[t1/d]]. Then the condition ϕ ∈ A1/d,(γ)
∞ is equivalent to the

condition that

ϕ∗(xi)(ξt
1/d) = ϕ∗(γ · xi)(t1/d)

holds for each i. This condition is equivalent to fi(t
1/d) ∈ tei/dk[[t]] since we have

• ϕ∗(xi)(ξt1/d) = fi(ξt
1/d) and

• ϕ∗(γ · xi)(t1/d) = ϕ∗(ξeixi)(t
1/d) = ξeiϕ∗(xi)(t

1/d) = ξeifi(t
1/d).

This equivalence shows that the image of εγ is A
1/d,(γ)
∞ .

Lemma 3.6. (1) The map εγ is G-equivariant.

(2) There is a natural inclusion A∞/Cγ ↪→
(
A/Cγ

)
∞.

Proof. Assertion (1) easily follows from the definition of the G-actions on A∞ and A
1/d,(γ)
∞ .

Assertion (2) follows from [GW10, Proposition 12.27(2)].

Proposition 3.7 ([DL02, Section 2.7]). The map ε∗γ induces a k[t]-ring homomorphism

λ∗γ : k[t][x1, . . . , xn]G → k[t][x1, . . . , xn]Cγ , xi 7→ tei/dxi

and a morphism λγ :
(
A/Cγ

)
∞ → A∞, and the following diagram commutes:

A∞

����

εγ(bij.)
// A

1/d,(γ)
∞

����

ργ
// A∞ .

A∞/Cγ
(bij.)

//
� _

��

A
1/d,(γ)
∞ /Cγ

::

(
A/Cγ

)
∞

λγ

GG

Moreover, the composite map A∞/Cγ → A∞ is bijective over A
g,(γ)
∞ .
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Proof. Note that ε∗γ induces a k[t]-ring homomorphism k[t][x1, . . . , xn]〈γ〉 → k[t][x1, . . . , xn],
where 〈γ〉 ⊂ G is the subgroup generated by γ. Then λ∗γ is its restriction to

k[t][x1, . . . , xn]G ⊂ k[t][x1, . . . , xn]〈γ〉 .

The second assertion, on the bijectivity, follows from Proposition 3.4(2).

3.3. Arc spaces of quotient varieties. We keep the notation from Subsection 3.2. Suppose
that X ⊂ A is a G-invariant subvariety. In this subsection, we study the arc space of the quotient
variety X := X/G.

Let IX ⊂ k[x1, . . . , xn]G be the defining ideal of X in A = Spec k[x1, . . . , xn]G. We denote by
the same character IX the ideal of k[t][x1, . . . , xn]G generated by the original IX . We denote by

Ĩ
(γ)
X ⊂ k[t][x1, . . . , xn]Cγ , I

(γ)
X ⊂ k[t][x1, . . . , xn]

the ideals generated by λ∗γ(IX) and λ
∗
γ(IX), respectively, where we set λ

∗
γ as the composition of λ∗γ

and the inclusion k[t][x1, . . . , xn]Cγ → k[t][x1, . . . , xn]. Then we have the following commutative
diagram:

k[t][x1, . . . , xn]G
λ∗γ

xi 7→tei/dxi
//

λ
∗
γ

++

����

k[t][x1, . . . , xn]Cγ

����

// k[t][x1, . . . , xn]

����

k[t][x1, . . . , xn]G/IX
λX∗γ
// k[t][x1, . . . , xn]Cγ/Ĩ

(γ)
X

// k[t][x1, . . . , xn]/I
(γ)
X .

We define the arc spaces X̃
(γ)
∞ and X

(γ)
∞ as follows (see Subsection 2.4 for the definition of the

arc spaces for k[t]-schemes):

X̃(γ)
∞ :=

(
Spec k[t][x1, . . . , xn]Cγ/Ĩ

(γ)
X

)
∞ ,

X
(γ)
∞ :=

(
Spec k[t][x1, . . . , xn]/I

(γ)
X

)
∞ .

Then we have the following diagram of arc paces:

A∞ (A/Cγ)∞
λγ

oo A∞oo

λγ

ww

X∞
?�

OO

X̃
(γ)
∞oo

?�

OO

X
(γ)
∞ .oo

?�

OO

Here, the vertical arrows are closed immersions by Lemma 2.28(1). Moreover there is a natural

injective map X
(γ)
∞ /Cγ ↪→ X̃

(γ)
∞ (cf. Lemma 3.6(2)).

Proposition 3.8. The ring homomorphism λ∗γ induces a morphism λXγ : X̃
(γ)
∞ → X∞. Moreover,

the composition X
(γ)
∞ /Cγ ↪→ X̃

(γ)
∞ → X∞ is bijective over X∞ ∩Ag,(γ)

∞ .

Proof. The first assertion is straightforward.

We consider λγ :
(
A/Cγ

)
∞ → A∞ and λγ : A∞ → A∞. We can identify X

(γ)
∞ , X̃

(γ)
∞ and X∞

with the closed subspaces of A∞,
(
A/Cγ

)
∞ and A∞, respectively, and under these identifications,
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we have

λ−1
γ (X∞) = X̃(γ)

∞ , λ
−1
γ (X∞) = X

(γ)
∞

by Lemma 2.28(2). Therefore, the second assertion follows from Proposition 3.7.

Remark 3.9. In [Yas16], Yasuda also generalizes the theory of Denef and Loeser to singular va-
rieties. The construction in [Yas16] is intrinsic and more general, and it even works in positive
characteristics. The propositions in this section are covered in the paper [Yas16]. The correspon-
dence between the notation in this section and [Yas16] is described below.

Let γ ∈ G, and let E be the G-cover of D = Spec k[[t]] corresponding to γ. Then X
1/d,(γ)
∞

in Subsection 3.1 corresponds to the set HomG
D(E, V ) of G-equivariant D-homomorphisms in

[Yas16, Section 3] when V = X ×k D. Furthermore, X
1/d,(γ)
∞ /Cγ corresponds to JG,E∞ V :=

HomG
D(E, V )/CG(H) in [Yas16] when H = 〈γ〉 is the subgroup of G generated by γ.

The diagram

A∞

����

εγ(bij.)
// A

1/d,(γ)
∞

����

ργ
// A∞

A∞/Cγ
(bij.)

// A
1/d,(γ)
∞ /Cγ

::

in Subsection 3.2 corresponds to the diagram

J∞V
|F |

����

(bij.)
// ΞF

����

// J∞X

J∞V
|F |/CG(H)

(bij.)
// JG,E∞ V

p∞

;;

in [Yas16, Section 4] when V = A×k D and X = V/G.

The diagram

A∞ // A∞/Cγ // A∞

X
(γ)
∞ //

?�

OO

X
(γ)
∞ /Cγ //

?�

OO

X∞
?�

OO

in Subsection 3.3 corresponds to

J∞V
|F | // J∞V

|F |/CG(H) // J∞X

J∞v|F | //
?�

OO

J∞v|F |/CG(H) //
?�

OO

J∞x
?�

OO

in [Yas16, Section 7] when v = X ×k D and x = v/G.

We note that v|F | in [Yas16, Section 7] corresponds to the dominant component X
(γ)
dom of

X
(γ)

:= Spec
(
k[t][x1, . . . , xn]/I

(γ)
X

)
. In Section 4 and later, we will work on X

(γ)
itself instead of

v|F | = X
(γ)
dom, although their arc spaces are equal (cf. Remark 2.14(3)). One of the advantages

of working on X
(γ)

instead of X
(γ)
dom is that Lemma 2.34 can be applied to X

(γ)
in the proof of

Theorem 5.1.
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4. Arc spaces of hyperquotient singularities

In this section, we investigate the minimal log discrepancies of hyperquotient singularities in
terms of the arc spaces of k[t]-schemes (Theorem 4.8).

4.1. Arc spaces of quotient singularities. In this subsection, we study the arc spaces of
quotient singularities.

Let d be a positive integer, and let ξ be a primitive dth root of unity in k. Let G ⊂ GLN (k)
be a finite group with order d which acts on A = ANk = Spec k[x1, . . . , xN ]. We denote by

A := A/G

the quotient variety. Let Z ⊂ A be the minimal closed subset such that A→ A is étale outside Z.
We assume codimZ > 2, and hence the quotient map A → A is étale in codimension one. We

fix a positive integer r such that ω
[r]
A is invertible (cf. [Kol13, Section 2.40]).

Let γ ∈ G, and let Cγ be the centralizer of γ in G. We denote by

A(γ) := A/Cγ

the quotient varieties. Since G is a finite group, γ can be diagonalized with entries ξe1 , . . . , ξeN

(for 0 6 ei 6 d − 1) for a suitable basis x1, . . . , xN . We set age(γ) = (1/d)
∑N

i=1 ei (cf. [Kol13,
Definition 3.20]).

Let

λ∗γ : k[t][x1, . . . , xN ]G → k[t][x1, . . . , xN ]Cγ , xi 7→ tei/dxi

be the k[t]-morphism as in Section 3. We have maps

k[t][x1, . . . , xN ]G
λ∗γ

xi 7→tei/dxi
//

λ
∗
γ

++

k[t][x1, . . . , xN ]Cγ
i // k[t][x1, . . . , xN ] ,

where i is the inclusion map and λ
∗
γ = i ◦ λ∗γ is the composite map. We have the following

morphisms between the corresponding k[t]-varieties:

A′ A(γ)′ = (A/Cγ)′
λγ
oo A

′
,q

oo

λγ

uu

where we write Y ′ := Y ×Spec k Spec k[t] for the base change of a k-variety Y .

Lemma 4.1 (cf. [Yas16, Lemma 6.5]). Let α ∈ A∞ be an arc. Set α′ := (λγ ◦ q)∞(α). Then it
follows that

ordα(jacλγ ) =
1

r
ordα′(nr,A) + age(γ) .

Proof. This follows from [Yas16, Lemma 6.5] (cf. Remark 3.9). We note that vV (E) in [Yas16,
Lemma 6.5] is equal to age(γ) when E is the G-cover of Spec k[[t]] corresponding to the conjugacy
class of γ (cf. [WY15, Lemma 4.3]).

For the reader’s convenience, we give a proof in our setting below.

Let

C = Spec k[t1/d][x1, . . . , xN ]G , C = Spec k[t1/d][x1, . . . , xN ] .
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We denote by the same character λγ the k[t1/d]-morphism C → C induced by the original

λγ : A
′ → A′. Then λγ : C → C is decomposed as

C
s // C

t // C ,

which correspond to k[t1/d]-ring homomorphisms

k[t1/d][x1, . . . , xN ] k[t1/d][x1, . . . , xN ]
tei/dxi←pxi
oo k[t1/d][x1, . . . , xN ]G ._?

oo

Let β : Spec k[[t
1
d ]]→ C be the lift of α. Then we have the diagram

Spec k[[t]]
α // A

′ q
//

λγ

$$

A(γ)′ λγ
// A′ // Spec k[t]

Spec k[[t1/d]]

OO

β
// C

OO

s
//

λγ

::C
t
// C

OO

// Spec k[t1/d] .

OO

By abuse of notation, we define the order ordβ(jacλγ ) by

ordβ(jacλγ ) :=
1

d
length

(
Coker

((
λγ ◦ β

)∗
ΩC/k[t1/d] → β∗ΩC/k[t1/d]

))
,

where the length is that of the cokernel considered as a k[[t1/d]]-module. Here, we note that
ΩC/k[t1/d] is locally free because C is smooth over k[t1/d]. Since

Coker
((
λγ ◦ β

)∗
ΩC/k[t1/d] → β∗ΩC/k[t1/d]

)
' Coker

((
λγ ◦ α

)∗
ΩA′/k[t] → α∗Ω

A
′
/k[t]

)
⊗k[[t]] k[[t1/d]] ,

we have ordα
(

jacλγ
)

= ordβ
(

jacλγ
)
. We also define ordβ(jacs) and ordβ′(jact) for β′ := s∞(β)

in the same way. Then we have

ordβ(jacλγ ) = ordβ(jacs) + ordβ′(jact) , ordβ(jacs) = age(γ)

by Lemma 2.10 and an easy calculation. It is then sufficient to show that we have ordβ′(jact)
= (1/r) ordα′(nr,A).

In the commutative diagram(
ΩN
C/k[t1/d]

)⊗r
'
��

t∗
(
ΩN
C/k[t1/d]

)⊗r
��

oo

(
ωC/k[t1/d]

)[r]
t∗
(
ωC/k[t1/d]

)[r]
,'

oo

the vertical map
(
ΩN
C/k[t1/d]

)⊗r → (
ωC/k[t1/d]

)[r]
is an isomorphism because C is smooth over

k
[
t1/d
]
. Furthermore, t∗

(
ωC/k[t1/d]

)[r] → (
ωC/k[t1/d]

)[r]
is an isomorphism since t is étale in

codimension one. By combining this with Lemma 2.13(2), we conclude that r ordβ′(jact) =
ordα′(nr,A). This completes the proof.
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4.2. Arc spaces of hyperquotient singularities. In this subsection, we study the arc spaces
of hyperquotient singularities.

Let ξ, G, γ, Cγ , A, A, Z, A(γ), r, λ∗γ , i, λ
∗
γ , λγ , q, λγ be as in Subsection 4.1. Let f1, . . . , fc ∈

k[x1, . . . , xN ]G be a regular sequence which is contained in the maximal ideal at the origin. We
set

B := Spec k[x1, . . . , xN ]G/(f1, . . . , fc) , B := Spec k[x1, . . . , xN ]/(f1, . . . , fc) .

Suppose that B is normal. Note that ω
[r]
B is invertible since ω

[r]
A is invertible. We define ideals I,

Ĩ(γ) and I
(γ)

as

I := (f1, . . . , fc) ⊂ k[t][x1, . . . , xN ]G ,

Ĩ(γ) :=
(
λ∗γ(f1), . . . , λ∗γ(fc)

)
⊂ k[t][x1, . . . , xN ]Cγ ,

I
(γ)

:=
(
λ
∗
γ(f1), . . . , λ

∗
γ(fc)

)
⊂ k[t][x1, . . . , xN ] .

We define k[t]-schemes B′, B̃(γ) and B
(γ)

as

B′ = Spec k[t][x1, . . . , xN ]G/I ,

B̃(γ) = Spec k[t][x1, . . . , xN ]Cγ/Ĩ(γ) ,

B
(γ)

= Spec k[t][x1, . . . , xN ]/I
(γ)
.

Then we have the following diagram with the induced k[t]-morphisms µ∗γ , µ∗γ and j:

k[t][x1, . . . , xN ]G
λ∗γ

//

λ
∗
γ

++

����

k[t][x1, . . . , xN ]Cγ

����

i
// k[t][x1, . . . , xN ]

����

k[t][x1, . . . , xN ]G/I
µ∗γ
//

µ∗γ

33
k[t][x1, . . . , xN ]Cγ/Ĩ(γ) j

// k[t][x1, . . . , xN ]/I
(γ)

.

Furthermore, we have the following morphisms between the corresponding k[t]-schemes:

A′ A(γ)′
λγ

oo A
′

q
oo

λγ

yy

B′
?�

σ

OO

B̃(γ)
?�

OO

µγ
oo B

(γ)
.

p
oo

µγ

ff

?�
τ

OO

First we give an easy observation on the intersection of B and Z.

Lemma 4.2. We have codimB(Z ∩ B) > 2. In particular, B → B is étale in codimension one,
and B is normal.

Proof. Since codimA(Z) > 2, we have Asing = Z by the purity of the branch locus (cf. [Nag59]).
Since f1, . . . , fc ∈ A is a regular sequence, it follows that Z∩B ⊂ Bsing (cf. [Sta21, tag 00NU]). By
the normality of B, we have codimB(Z ∩B) > 2. Therefore, B → B is étale in codimension one.
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Furthermore, we have codimB

(
Bsing

)
> 2. Since B is Cohen–Macaulay, the normality follows

from Serre’s criterion.

Remark 4.3. Let B
(γ)
t6=0 be the open subscheme of B

(γ)
defined by t 6= 0. We shall see in this

remark that we have a surjective étale morphism(
A1 \ {0}

)
×B → B

(γ)
t6=0 .

First, we have the following natural morphisms:

B
(γ)

= Spec
(
k[t][x1, . . . , xN ]/

(
λ
∗
γ(f1), . . . , λ

∗
γ(fc)

))

B
(γ)
t6=0 := Spec

(
k[t, t−1][x1, . . . , xN ]/

(
λ
∗
γ(f1), . . . , λ

∗
γ(fc)

))?�

OO

Spec
(
k[t1/d, t−1/d][x1, . . . , xN ]/

(
λ
∗
γ(f1), . . . , λ

∗
γ(fc)

))étale

OO

'
��(

A1 \ {0}
)
×B ' Spec

(
k[t1/d, t−1/d][x1, . . . , xN ]/(f1, . . . , fc)

)
.

Here the second morphism is étale since it is induced by the étale homomorphism k[t, t−1] →
k[t1/d, t−1/d]. The third morphism, which is actually an isomorphism, is induced by the ring
isomorphism

k[t1/d, t−1/d][x1, . . . , xN ]→ k[t1/d, t−1/d][x1, . . . , xN ] , xi 7→ tei/dxi ,

whose inverse map is xi 7→ t−ei/dxi. Therefore, we have a surjective étale morphism(
A1 \ {0}

)
×B → B

(γ)
t6=0 .

By Remark 4.3, the k[t]-scheme B
(γ)

satisfies the condition (??)n for n := N−c. Furthermore,
B′ and B̃(γ) also satisfy the condition (??)n.

Remark 4.4. Note that B
(γ)

is not a complete intersection in A
′

in general because λ
∗
γ(f1), . . . ,

λ
∗
γ(fc) is not necessarily a regular sequence. In fact, B

(γ)
is not pure-dimensional in general (cf.

Example 2.6). Hence we do not have the standard definition of the canonical sheaf on B
(γ)

(cf.
Definition 2.11).

We define the following invertible sheaf L
B

(γ) on B
(γ)

instead:

L
B

(γ) := µ∗γ
(
det−1

(
I/I2

))
⊗O

B
(γ)
τ∗ω

A
′
/k[t]

.

Here det−1(I/I2) =
(∧c(I/I2)

)∗
is an invertible sheaf on B′. Then L

B
(γ) fills the role of the

canonical sheaf as follows.

Lemma 4.5. There is a canonical morphism η : Ωn

B
(γ)
/k[t]
→ L

B
(γ) with the following conditions:

(1) We have Im(η) = Jac
B

(γ)
/k[t]
⊗L

B
(γ) .
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(2) There exists a commutative diagram

µ∗γ
(
Ωn
B′/k[t]

)⊗r
//

��

(
Ωn

B
(γ)
/k[t]

)⊗r
��

µ∗γω
[r]
B′/k[t]

// L
[r]

B
(γ) .

Proof. First, we shall see that there exists a canonical morphism

µ∗γ
(
det
(
I/I2

))
⊗O

B
(γ)

Ωn

B
(γ)
/k[t]
→ τ∗ω

A
′
/k[t]

,

whose image is Jac
B

(γ)
/k[t]
⊗τ∗ω

A
′
/k[t]

. We set

R := k[t][x1, . . . , xN ] , S := k[t][x1, . . . , xN ]/I
(γ)
, S := k[t][x1, . . . , xN ]G/I .

Let N ⊂ ΩR/k[t] be the R-submodule which is generated by df for f ∈ I
(γ)

. Then we have

ΩS/k[t] ' (ΩR/k[t]/N) ⊗R S. Since I
(γ)

is generated by c elements, we have
∧c+1N = 0. Hence

a canonical map
∧cN ⊗R

∧N−c ΩR/k[t] → ΩN
R/k[t] induces

c∧
N ⊗R

N−c∧
(ΩR/k[t]/N)→ ΩN

R/k[t] .

By taking -⊗R S and composing with

I/I2 ⊗S S → I
(γ)
/
(
I

(γ))2 h7→d(h)⊗1−−−−−−→ N ⊗R S ,

we have a canonical map( c∧(
I/I2

)
⊗S S

)
⊗S ΩN−c

S/k[t]
→ ΩN

R/k[t] ⊗R S .

The S-module
(∧c (I/I2

)
⊗S S

)
⊗S ΩN−c

S/k[t]
is generated by the elements of the form(

f1 ∧ · · · ∧ f c
)
⊗ (dxi1 ∧ · · · ∧ dxiN−c) ,

and its image in ΩN
R/k[t] ⊗R S is

d
(
λ
∗
γ(f1)

)
∧ · · · ∧ d

(
λ
∗
γ(fc)

)
∧ dxi1 ∧ · · · ∧ dxiN−c .

We note that this is equal to ±∆ · dx1 ∧ · · · ∧ dxN , where ∆ is the determinant of the Jacobian
matrix with respect to λ

∗
γ(fi) for 1 6 i 6 c and ∂xj for j ∈ {1, . . . , N} \ {i1, . . . iN−c}. Hence we

have a canonical morphism

µ∗γ
(
det
(
I/I2

))
⊗O

B
(γ)

Ωn

B
(γ)
/k[t]
→ τ∗ω

A
′
/k[t]

whose image is Jac
B

(γ)
/k[t]
⊗τ∗ω

A
′
/k[t]

. We have proved assertion (1).

For assertion (2), we note that a canonical map µ∗γω
[r]
B′/k[t] → L

[r]

B
(γ) is induced by the isomor-

phism ωB′/k[t] ' det−1
(
I/I2

)
⊗OB′ σ

∗ωA′/k[t] obtained by adjunction. The commutativity of the
diagram is obvious.

In the same way as in Definition 2.11, we denote by n′1,p and n′1,µγ the ideal sheaves on B
(γ)
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satisfying

Im
(
p∗Ωn

B̃(γ)/k[t]
→ L

B
(γ)

)
= n′1,p ⊗ LB(γ) , Im

(
µ∗γΩn

B′/k[t] → L
B

(γ)

)
= n′1,µγ ⊗ LB(γ) .

We now prove Lemmas 4.6 and 4.7 on relations on orders, which will be used in the proof of
Theorem 4.8.

Lemma 4.6. Let α ∈ B(γ)
∞ be an arc with ordα

(
Jac

B
(γ)
/k[t]

)
<∞. Then the following hold:

(1) ordα(jacp) + ordα
(

Jac
B

(γ)
/k[t]

)
= ordα(n′1,p).

(2) ordα
(

jacµγ
)

+ ordα
(

Jac
B

(γ)
/k[t]

)
= ordα

(
n′1,µγ

)
.

Proof. The proof of Lemma 2.13(2) works by Lemma 4.5(1).

Lemma 4.7. Let α ∈ B(γ)
∞ be an arc. Set α′ := µγ∞(α). Suppose α′ 6∈ Z∞. Then it follows that

ordα
(
n′1,µγ

)
=

1

r
ordα′(nr,B′) + age(γ) .

Proof. We have two diagrams (cf. Lemma 4.5(2)):

A′ A
′λγ

oo µ∗γ
(
Ωn
B′/k[t]

)⊗r
//

��

(
Ωn

B
(γ)
/k[t]

)⊗r
��

B′
?�

σ

OO

B
(γ)
,

µγ

oo

?�

τ

OO

µ∗γω
[r]
B′/k[t]

// L
[r]

B
(γ) .

We denote by r
B

(γ) the ideal sheaf on B
(γ)

satisfying

Im
(
µ∗γω

[r]
B′/k[t] → L

[r]

B
(γ)

)
= r

B
(γ) ⊗ L[r]

B
(γ) .

We also denote by r
A
′ the ideal sheaf on A

′
satisfying

Im
(
λ
∗
γω

[r]
A′/k[t] → ω

[r]

A
′
/k[t]

)
= r

A
′ ⊗ ω[r]

A
′
/k[t]

.

By the definition of the Nash ideals (Definition 2.11), we have

r ordα
(
n′1,µγ

)
= ordα

(
r
B

(γ)

)
+ ordα′(nr,B′) .

On the other hand, by Lemma 4.1, we have

r age(γ) = r ordα
(

jacλγ
)
− ordα′(nr,A′)

= r ordα
(
n1,λγ

)
− ordα′(nr,A′)

= ordα
(
r
A
′
)
.

Here the second equality follows from Lemma 2.13(2) and the fact n
1,A
′ = O

A
′ . The third equality

follows from the definition of the ideals n1,λγ
, nr,A′ and r

A
′ and the fact that ordα′(nr,A′) < ∞,

which follows from the assumption α′ 6∈ Z∞. Hence it is sufficient to show that ordα
(
r
B

(γ)

)
=

ordα
(
r
A
′
)
.

Since

ωB′/k[t] ' det−1
(
I/I2

)
⊗OB′ σ

∗ωA′/k[t]

holds by the adjunction formula, we have r
B

(γ) = r
A
′O

B
(γ) by the definition of L

B
(γ) . This

completes the proof.
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4.3. Minimal log discrepancies of hyperquotient singularities via jet schemes. In this
subsection, we investigate the minimal log discrepancies of hyperquotient singularities in terms
of arc spaces. We use the notation from Subsection 4.2.

Theorem 4.8. Let x = 0 ∈ B be the origin, let a ⊂ k[x1, . . . , xN ]G/I be a non-zero ideal, and
let δ be a non-negative real number. Then

mldx
(
B, aδ

)
= inf

w,b1∈Z>0,γ∈G

{
codim(Cw,γ,b1) + age(γ)− b1 − δw

}
holds for

Cw,γ,b1 = Contw
(
aO

B
(γ)

)
∩ Cont>1

(
mxOB(γ)

)
∩ Contb1

(
Jac

B
(γ)
/k[t]

)
,

where mx ⊂ OB is the maximal ideal corresponding to the closed point x ∈ B.

Proof. By [EM09, Theorem 7.4], we have

mldx
(
B, aδ

)
= inf

w,m3∈Z>0

{
codim

(
Contw(a) ∩ Contm3(nr,B) ∩ Cont>1(mx)

)
− m3

r
− δw

}
.

Note that nr,B′ = nr,BOB′ holds by Remark 2.12 and B′m = Bm holds for m ∈ Z>0 ∪ {∞} by
Remark 2.4.

Let w, b1, b2, b3,m1,m2,m3 ∈ Z>0 and γ ∈ G. We denote by Dw,γ,b1,b2,b3,m1,m2,m3 ⊂ B
(γ)
∞ the

cylinder

Contw
(
aO

B
(γ)

)
∩ Cont>1

(
mxOB(γ)

)
∩ Contb1

(
Jac

B
(γ)
/k[t]

)
∩ Contb2

(
Jac

B̃(γ)/k[t]
O
B

(γ)

)
∩ Contb3

(
JacB′/k[t]OB(γ)

)
∩ Contm1(n′1,p) ∩ Contm2

(
n′1,µγ

)
∩ Contm3

(
nr,B′OB(γ)

)
.

By Propositions 3.4 and 3.8, we have

Contw(a) ∩ Contm3(nr,B) ∩ Cont>1(mx) \ Z∞
=

⊔
〈γ〉∈Conj(G)

µγ∞ ◦ p∞
(
Contw

(
aO

B
(γ)

)
∩ Contm3

(
nr,BOB(γ)

)
∩ Cont>1

(
mxOB(γ)

))
\ Z∞ .

Note that µγ∞ ◦ p∞(C) is a thin set of B′∞ for any thin set C of B
(γ)
∞ . Hence we have

codim
(
Contw(a) ∩ Contm3(nr,B) ∩ Cont>1(mx)

)
= min

γ,b1,b2,b3,m1,m2

codim
(
µγ∞ ◦ p∞(Dw,γ,b1,b2,b3,m1,m2,m3)

)
by Proposition 2.25. On the other hand, again by Proposition 2.25, we have

codim(Cw,γ,b1) = min
b2,b3,m1,m2,m3

codim
(
Dw,γ,b1,b2,b3,m1,m2,m3

)
.

By Lemma 4.6, we have ordα(jacp) = m1− b1 for any α ∈ Dw,γ,b1,b2,b3,m1,m2,m3 . Furthermore,
ord(Jac

B
(γ)
/k[t]

) and ord(Jac
B̃(γ)/k[t]

) take constant values b1 and b2 on Dw,γ,b1,b2,b3,m1,m2,m3 and

p∞(Dw,γ,b1,b2,b3,m1,m2,m3), respectively. Hence by applying Proposition 2.35 to p, we have

codim
(
p∞(Dw,γ,b1,b2,b3,m1,m2,m3)

)
= codim

(
Dw,γ,b1,b2,b3,m1,m2,m3

)
+m1 − b1 .

Note that codimB(B∩Z) > 2 by Lemma 4.2 and that µγ∞|p∞(Dw,γ,b1,b2,b3,m1,m2,m3
) is injective

outside Z∞ by Proposition 3.8. By Lemmas 2.10 and 4.6, we have

ordα(jacµγ ) = (m2 − b1)− (m1 − b1) = m2 −m1
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for any α ∈ p∞(Dw,γ,b1,b2,b3,m1,m2,m3). Furthermore, ord(JacB′/k[t]) takes a constant value b3 on
(µγ ◦ p)∞(Dw,γ,b1,b2,b3,m1,m2,m3). Hence by applying Proposition 2.33 to µγ , we have

codim
(
(µγ ◦ p)∞(Dw,γ,b1,b2,b3,m1,m2,m3)

)
= codim

(
p∞(Dw,γ,b1,b2,b3,m1,m2,m3)

)
+m2 −m1 .

By Lemma 4.7, we have m2 − m3/r = age(γ) if (µγ ◦ p)∞(Dw,γ,b1,b2,b3,m1,m2,m3) \ Z∞ is
non-empty. Thus we obtain

codim(Dw,γ,b1,b2,b3,m1,m2,m3) + age(γ)− b1
= codim

(
(µγ ◦ p)∞(Dw,γ,b1,b2,b3,m1,m2,m3)

)
− m3

r
.

Therefore, we obtain the desired formula

mldx
(
B, aδ

)
= inf

w,m3

{
codim

(
Contw(a) ∩ Contm3(nr,B) ∩ Cont>1(mx)

)
− m3

r
− δw

}
= inf

γ,w,b1,b2,b3,m1,m2,m3

{
codim

(
(µγ ◦ p)∞(Dw,γ,b1,b2,b3,m1,m2,m3)

)
− m3

r
− δw

}
= inf

γ,w,b1,b2,b3,m1,m2,m3

{
codim(Dw,γ,b1,b2,b3,m1,m2,m3) + age(γ)− b1 − δw

}
= inf

γ,w,b1

{
codim(Cw,γ,b1) + age(γ)− b1 − δw

}
.

This completes the proof.

Corollary 4.9. In the same setting as in Theorem 4.8, it follows that

mldx
(
B, aδ

)
= inf

w,b1∈Z>0,γ∈G

{
codim(C ′w,γ,b1) + age(γ)− b1 − δw

}
for

C ′w,γ,b1 = Cont>w
(
aO

B
(γ)

)
∩ Cont>1

(
mxOB(γ)

)
∩ Contb1

(
Jac

B
(γ)
/k[t]

)
.

Proof. Let Cw,γ,b1 be the cylinder in Theorem 4.8. We fix γ ∈ G and b1 ∈ Z>0. Since we have
Cw,γ,b1 ⊂ C ′w,γ,b1 , it follows that

inf
w

{
codim(Cw,γ,b1)− δw

}
> inf

w

{
codim(C ′w,γ,b1)− δw

}
.

We fix w′ ∈ Z>0. Then it follows that

codim
(
C ′w′,γ,b1

)
− δw′ = min

w>w′

{
codim(Cw,γ,b1)

}
− δw′ > inf

w

{
codim(Cw,γ,b1)− δw

}
.

The first equality follows from Proposition 2.25, and the last inequality follows from δ > 0.
Therefore, we have the opposite inequality

inf
w

{
codim(Cw,γ,b1)− δw

}
6 inf

w

{
codim(C ′w,γ,b1)− δw

}
.

This completes the proof.

Remark 4.10. Our formula can easily be extended to R-ideals a =
∏r
i=1 a

δi
i , where a1, . . . , ar are

ideals and δ1, . . . , δr are non-negative real numbers. In this setting, we have

mldx

(
B,

r∏
i=1

aδii

)
= inf

w1,...,wr,b1∈Z>0,γ∈G

{
codim(Cw1,...,wr,γ,b1) + age(γ)− b1 −

r∑
i=1

δiwi

}

= inf
w1,...,wr,b1∈Z>0,γ∈G

{
codim(C ′w1,...,wr,γ,b1) + age(γ)− b1 −

r∑
i=1

δiwi

}
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for

Cw1,...,wr,γ,b1 =

( r⋂
i=1

Contwi
(
aiOB(γ)

))
∩ Cont>1

(
mxOB(γ)

)
∩ Contb1

(
Jac

B
(γ)
/k[t]

)
,

C ′w1,...,wr,γ,b1 =

( r⋂
i=1

Cont>wi
(
aiOB(γ)

))
∩ Cont>1

(
mxOB(γ)

)
∩ Contb1

(
Jac

B
(γ)
/k[t]

)
.

We state Theorem 4.8 in the case of quotient singularities.

Corollary 4.11. Let x = 0 ∈ A be the origin, and let a ⊂ k[x1, . . . , xN ]G be a non-zero ideal
and δ be a non-negative real number. Then

mldx
(
A, aδ

)
= inf

w∈Z>0,γ∈G

{
codim(Cw,γ) + age(γ)− δw

}
holds for

Cw,γ = Contw
(
aO

A
′
)
∩ Cont>1

(
mxOA′

)
,

where mx ⊂ OA is the maximal ideal corresponding to the closed point x ∈ A. Furthermore, the
statements analogous to Corollary 4.9 and Remark 4.10 also hold.

Proof. Since A
′

is smooth over k[t], we have Jac
A
′
/k[t]

= O
A
′ . Therefore, the assertion follows

from Theorem 4.8.

As a corollary, we obtain the following Reid–Tai-type formula on minimal log discrepancies.
See also Remark 4.13 for a proof using the resolution of singularities.

Corollary 4.12 (cf. [Bor97, Question 2]). For γ ∈ G, we denote by 〈γ〉 the subgroup of G
generated by γ. Let A〈γ〉 = AN/〈γ〉, and let xγ ∈ A〈γ〉 be the image of the origin of AN . Let a
be an R-ideal sheaf on A. Then it follows that

mldx(A, a) = min
γ∈G

mldxγ
(
A〈γ〉, aOA〈γ〉

)
.

Proof. We fix γ ∈ G and γ′ ∈ 〈γ〉. Then we have a k[t]-ring homomorphism

λ
∗
γ′ : k[t][x1, . . . , xN ]G −→ k[t][x1, . . . , xN ]

by applying the explanation in Subsection 4.1 toG and γ′. We also have a k[t]-ring homomorphism

λ
∗
γ′ : k[t][x1, . . . , xN ]〈γ〉 −→ k[t][x1, . . . , xN ]

for 〈γ〉 and γ′, where we use the same symbol λ
∗
γ′ by abuse of notation. We note that, by definition,

these two maps are compatible with the inclusion k[t][x1, . . . , xN ]G ↪→ k[t][x1, . . . , xN ]〈γ〉, which
is induced by k[x1, . . . , xN ]G ↪→ k[x1, . . . , xN ]〈γ〉.

Let mx ⊂ k[x1, . . . , xN ]G = OA and mxγ ⊂ k[x1, . . . , xN ]〈γ〉 = OA〈γ〉 be the maximal ideals

corresponding to x ∈ A and xγ ∈ A〈γ〉, respectively. Since we have
√

mxOA〈γ〉 = mxγ , it follows
that

Cont>1
(
mxOA′

)
= Cont>1

(
mxγOA′

)
.

Therefore, Cw,γ′ defined in Corollary 4.11 for A, γ′ ∈ G and a is exactly same as Cw,γ′ defined
for A〈γ〉, γ′ ∈ 〈γ〉 and aOA〈γ〉 . Hence the assertion

mldx(A, a) = min
γ∈G

mldxγ
(
A〈γ〉, aOA〈γ〉

)
follows from Corollary 4.11.
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Remark 4.13. We can prove a more general statement following the argument in [Rei80] (cf.
[Kol13, Section 2.42, Theorem 3.21]).

• Let V be a Q-Gorenstein normal variety, and let G be a finite group acting on V . Let x ∈ V
be a closed point, and let x′ ∈ V/G be its image. Let V 〈γ〉 = V/〈γ〉, and let xγ ∈ V 〈γ〉 be
the image of x. Let a be an R-ideal sheaf on V/G. Then it follows that

mldx′(V/G, a) = min
γ∈G

mldxγ
(
V 〈γ〉, aOV 〈γ〉

)
.

By [Kol13, equation (2.42.4)], the inequality

mldx′(V/G, a) 6 min
γ∈G

mldxγ
(
V 〈γ〉, aOV 〈γ〉

)
is easy. Let X ′ → X := V/G be a resolution of singularities. We may assume that some divisor E
on X ′ computes mldx′(X, a), that is, E satisfies

• cX(E) = {x′} and

• mldx′(X, a) = aE(X, a) if mldx′(X, a) > 0, and aE(X, a) < 0 otherwise.

Let V ′ be the normalization of X ′ in the field of fractions k(V ) of V . Let F be a divisor on V ′

which dominates E. We note that G acts on V ′, and we have X ′ = V ′/G. Let GF be the subgroup
of G that consists of an element g ∈ G that fixes F pointwise. Then by [Kol13, Equation (2.42.4)],
we have

aE(V/G, a) = aF ′(V/GF , aOV/GF ) ,

where F ′ is the image of F in V/GF . Since GF is a cyclic group (cf. [IR96, Sections 2.5 and 2.6]),
we get the opposite inequality.

As an application of Corollary 4.12, we can prove the ACC conjecture for quotient singularities
(cf. [Mor20]).

Theorem 4.14. Let n be a positive integer. The set

Aquot(n) := {mldx(X) | X has a quotient singularity at x and dimX = n}

satisfies the ascending chain condition.

Proof. By Corollary 4.12 (or Remark 4.13), the set Aquot(n) is equal to

Acquot(n) := {mldx(X) | X has a cyclic quotient singularity at x and dimX = n} .

Since a cyclic quotient singularity is a toric singularity (cf. [Rei87, Section (4.3)]), the set Acquot

satisfies the ascending chain condition by [Amb06, Theorem 1]. This completes the proof.

5. Precise inversion of the adjunction formula for quotient singularities

In this section, we prove the precise inversion of the adjunction formula for the quotient of a
complete intersection singularity by a finite linear group action (Theorem 5.1).

Let ξ, G, γ, Cγ , Z, A, A, A(γ), r, λ
∗
γ , λγ , q, λγ , fi, I, Ĩ(γ), I

(γ)
, B, B̃(γ), B

(γ)
, p, τ , L

B
(γ) ,

n′1,p and n′1,µγ be as in Section 4.

Theorem 5.1. Let a ⊂ k[x1, . . . , xN ]G be a non-zero ideal, and let δ be a non-negative real
number. We set b = a

(
k[x1, . . . , xN ]G/(f1, . . . , fc)

)
. Suppose b 6= 0. Let x = 0 ∈ A be the origin.

246



Inversion of adjunction for quotient singularities

Suppose that B is klt. Then we have

mldx
(
A, (f1 · · · fc)aδ

)
= mldx

(
B, bδ

)
.

Proof. Since mldx
(
A, (f1 · · · fc)aδ

)
6 mldx

(
B, bδ

)
is true in general by adjunction, it is enough

to prove the opposite inequality mldx
(
A, (f1 · · · fc)aδ

)
> mldx

(
B, bδ

)
.

By Corollary 4.9 (cf. Remark 4.10), we have

mldx
(
A, (f1 · · · fc)aδ

)
= inf

w,v∈Z>0,γ∈G

{
codim

A
′
∞

(Cw,v,γ) + age(γ)− w − δv
}
,

where we define Cw,v,γ ⊂ A
′
∞ as

Cw,v,γ := Cont>w
(
f1 · · · fcOA′

)
∩ Cont>v

(
aO

A
′
)
∩ Cont>1

(
mxOA′

)
.

We fix w, v ∈ Z>0 and γ ∈ G.

First, we note that the following claim holds. It will be proved in the end of the proof of
Theorem 5.1.

Claim 5.2. The intersection C ′ ∩B(γ)
∞ is not a thin set of B

(γ)
∞ for any irreducible component C ′

of Cw,v,γ .

Let C ′w,v,γ ⊂ Cw,v,γ be an irreducible component satisfying

codim
A
′
∞

(Cw,v,γ) = codim
A
′
∞

(
C ′w,v,γ

)
.

Set b1 := min
α∈C′w,v,γ∩B

(γ)
∞

ordα
(

Jac
B

(γ)
/k[t]

)
. Note that b1 <∞ by Claim 5.2. By Lemma 2.34,

we have

codim
A
′
∞

(
C ′w,v,γ ∩ Cont6b1

(
(τ∗)−1 Jac

B
(γ)
/k[t]

))
− w

> codim
B

(γ)
∞

(
C ′w,v,γ ∩B

(γ)
∞ ∩ Contb1

(
Jac

B
(γ)
/k[t]

))
− b1 .

Since C ′w,v,γ is an irreducible closed cylinder, its non-empty open subcylinder has the same
codimension. Therefore,

codim
A
′
∞

(
C ′w,v,γ ∩ Cont6b1

(
(τ∗)−1 Jac

B
(γ)
/k[t]

))
= codim

A
′
∞

(C ′w,v,γ) .

Hence we have

codim
A
′
∞

(Cw,v,γ)− w > codim
B

(γ)
∞

(
Cw,v,γ ∩B

(γ)
∞ ∩ Contb1

(
Jac

B
(γ)
/k[t]

))
− b1 .

Since

Cw,v,γ ∩B
(γ)
∞ ∩ Contb1

(
Jac

B
(γ)
/k[t]

)
⊂ Cont>v

(
bO

B
(γ)

)
∩ Cont>1

(
mxOB(γ)

)
∩ Contb1

(
Jac

B
(γ)
/k[t]

)
,

by applying Corollary 4.9 (cf. Remark 4.10) to B, we obtain the desired formula

mldx
(
A, (f1 · · · fc)aδ

)
= inf

w,v∈Z>0,γ∈G

{
codim

A
′
∞

(Cw,v,γ) + age(γ)− w − δv
}

> inf
v,b∈Z>0,γ∈G

{
codim

B
(γ)
∞

(
Cont>v(bO

B
(γ)) ∩ Cont>1(mxOB(γ))

∩Contb
(
Jac

B
(γ)
/k[t]

) )
− b− δv

}
= mldx

(
B, bδ

)
.
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Therefore, it is sufficient to show Claim 5.2.

Proof of Claim 5.2. First, we introduce some notation. For an arc α ∈ A′∞, we set gαi := α∗(xi) ∈
k[[t]], where α∗ : k[t][x1, . . . , xN ] → k[[t]] is the corresponding ring homomorphism. We denote

by β ∈ A′∞ the trivial arc determined by gβi := 0. Let T ⊂ A
′

be the closed subscheme defined
by the ideal (x1, . . . , xN ) ⊂ k[t][x1, . . . , xN ]. Then we have T∞ = {β}.

Since I
(γ) ⊂ (x1, . . . , xN ), it follows that β ∈ T∞ ⊂ B

(γ)
∞ . Let W ⊂ B

(γ)
be the irreducible

component dominating Spec k[t], and let h : W ′ → W be a resolution of singularities of W .
Let T ′ := h−1(T ). Since B is klt by assumption, we note that B is also klt by Lemma 4.2.
Therefore, W is klt outside t = 0 by Remark 4.3, and hence T ′ → T has a section by [HM07,
Corollary 1.7(2)]. Consequently, there exists an arc β′ ∈ T ′∞ ⊂W ′∞ such that h∞(β′) = β.

Then by Lemma 2.27, it is suffices to show that β ∈ C ′. In order to prove this, we introduce
a k-action on the arc space A

′
∞ as follows. Let α ∈ A′∞ and a ∈ k. Then we define a · α by

ga·αi (t) := aeigαi
(
adt
)
.

We adopt the convention that aei = 1 when a = 0 and ei = 0. Then for f ∈ k[x1, . . . , xN ]G, it is
easy to see that v(t) = u

(
adt
)

when we set

u(t) := α∗
(
λ
∗
γ(f)

)
, v(t) := (a · α)∗

(
λ
∗
γ(f)

)
∈ k[[t]]

for α ∈ A′∞ and a ∈ k. Therefore,

ordα
(
λ
∗
γ(f)

)
= orda·α

(
λ
∗
γ(f)

)
holds if a ∈ k×. Hence any cylinder of form Cont>c(cO

A
′) with an ideal c ⊂ k[x1, . . . , xN ]G is

invariant under the k-action. Therefore, Cw,v,γ and its irreducible component C ′ are invariant
under the k-action. The assertion β ∈ C ′ then follows from the observation that β = 0 · α holds
for any α ∈ Cont>1

(
mxOB(γ)

)
.

This completes the proof of the theorem.

Remark 5.3. In Theorem 5.1, we assume that B is klt. This assumption is essential in the proof
of Claim 5.2.

If B is not klt, then the arc space B
(γ)
∞ itself might be a thin set of B

(γ)
∞ . Let

B = Spec k[x1, x2, x3]/
(
x3

1 + x3
2 + x3

3

)
, (d, e1, e2, e3) = (3, 0, 1, 2) .

Then we have

B
(γ)

= Spec k[t][x1, x2, x3]/
(
x3

1 + tx3
2 + t2x3

3

)
,

and it follows that B
(γ)
∞ = {β}, where β is the trivial arc corresponding to the origin. Therefore,

B
(γ)
∞ turns out to be a thin set of B

(γ)
∞ .

Remark 5.4. Theorem 5.1 can be generalized to R-ideals due to Remark 4.10. Let a be an R-ideal
on A. Then we have

mldx
(
A, (f1 · · · fc)a

)
= mldx(B, aOB) .

Remark 5.5. All the statements in Section 4 are still true when we replace k[x1, . . . , xN ] with
its localization k[x1, . . . , xN ]g at a G-invariant element g which does not vanish at the origin.
Therefore, Theorem 5.1 is also true for the local setting, that is, when B is locally defined by
a regular sequence f1, . . . , fc at the origin and has only klt singularity at the origin.
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6. Proofs of the main theorems

As a corollary of Theorem 5.1, we prove the PIA conjecture for hyperquotient singularities.

Corollary 6.1. Suppose that a finite subgroup G ⊂ GLN (k) acts on ANk freely in codimension
one. Let X := ANk /G be the quotient variety, and let x ∈ X be the image of the origin of ANk .
Let Y be a subvariety of X through x of codimension c, and let a be an R-ideal sheaf on Y .
Suppose that Y is locally defined by c equations at x in X. Let D be a Cartier prime divisor on Y
through x with a klt singularity at x ∈ D. Suppose that D is not contained in the cosupport of
the R-ideal sheaf a. Then it follows that

mldx
(
Y, aOY (−D)

)
= mldx(D, aOD) .

Proof. Let R := k[x1, . . . , xN ]G be the invariant ring. Take an R-ideal sheaf b on X such that
a = bOY , and take local equations f1, . . . , fc ∈ OX,x of Y in X. Furthermore, take g ∈ OX,x
such that its image g ∈ OY,x defines D. We note that Y has a klt singularity at x by inversion
of adjunction (cf. [KM98, Theorem 5.50]). Then it follows that

mldx
(
Y, aOY (−D)

)
= mldx

(
X, (f1 · · · fc · g)b

)
= mldx(D, aOD)

by applying Theorem 5.1 twice (cf. Remark 5.5).

Theorem 6.2. Suppose that a finite subgroup G ⊂ GLN (k) acts on ANk freely in codimension
one. Let X := ANk /G be the quotient variety. Let Y be a subvariety of X of codimension c which
has only klt singularities, and let a be an R-ideal sheaf on Y . Suppose that Y is locally defined
by c equations in X. Then the function

|Y | → R>0 ∪ {−∞} , y 7→ mldy(Y, a)

is lower semi-continuous, where we denote by |Y | the set of all closed points of Y with the Zariski
topology.

Proof. We keep the notation of the proof of Corollary 6.1. Since the lower semi-continuity holds
for X by [Nak16b, Corollary 1.3], it is sufficient to show that

mldy
(
Y, a
)

= mldy
(
X, (f1 · · · fc)b

)
for any y ∈ Y .

We fix a closed point y ∈ Y . Take a closed point y′ ∈ ANk whose image in Y is y. Let
Gy′ := {g ∈ G | g(y′) = y′} be the stabilizer group of y′. Then AN/Gy′ → AN/G is étale at y.
We note that the minimal log discrepancy is preserved under an étale map. Hence by replacing
X = ANk /G with AN/Gy′ and changing the coordinate of AN , we may assume that y′ is the
origin and the group action is still linear. Then we have

mldy
(
Y, a
)

= mldy
(
X, (f1 · · · fc)b

)
by Theorem 5.1, which completes the proof.
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Geometry, Angers, 1979 (Sijthoff & Noordhoff, Alphen aan den Rijn – Germantown, MD, 1980),
273–310.

Rei87 , Young person’s guide to canonical singularities, Algebraic Geometry, Bowdoin, 1985
(Brunswick, Maine, 1985), Proc. Sympos. Pure Math., vol. 46 (Amer. Math. Soc., Providence,
RI, 1987), 345–414.
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