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Voevodsky’s slice conjectures via Hilbert schemes

Tom Bachmann and Elden Elmanto

Abstract

We offer short and conceptual re-proofs of some conjectures of Voevodsky’s on the slice
filtration. The original proofs were due to Marc Levine using the homotopy coniveau
tower. Our new proofs use very different methods, namely, recent development in mo-
tivic infinite loop space theory together with the birational geometry of Hilbert schemes.

1. Introduction

One major application of motivic homotopy theory is Voevodsky’s construction of the Atiyah–
Hirzebruch spectral sequence from motivic cohomology (which coincides Bloch’s higher Chow
groups [Blo86] of algebraic cycles up to reindexing [Voe02a]) converging to algebraic K-theory.
While other constructions of this spectral sequence were proposed prior to motivic homotopy the-
ory (notably [FS02, Lev01]), Voevodsky’s approach is arguably the cleanest and most definitive—
we refer to [Lev18, § 2] for a survey. This spectral sequence is obtained via the slice filtration
constructed in [Voe02b, Voe02c], which is a functorial filtration that one associates to a motivic
spectrum E:

· · · → fqE → fq−1E → · · · f0E → · · ·E .
The associated graded spectra are denoted by

sqE := cofib(fq+1E → fqE)

and are called the qth slice of E. Letting E equal KGL, the motivic spectrum representing
algebraic K-theory, one obtains the desired spectral sequence.

While the construction of this filtration is formal, the identification of the spectral sequence
(in other words, the associated graded pieces) hinged on the next two conjectures. They were
stated by Voevodsky [Voe02c] and proved by Levine [Lev08].

Conjecture 1 ([Lev08, Theorem 10.5.1], [Voe02c, Conjecture 2]). Let k be a perfect field
and 1k denote the motivic sphere spectrum. Then s01k canonically identifies with the spectrum
representing motivic cohomology.

Conjecture 2 ([Lev08, Theorem 9.0.3], [Voe02c, Conjecture 3]). Let k be a perfect field. The
functor

ω∞ : SH(k)→ SHS1
(k) ,

respects the slice filtration.
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Voevodsky’s slice conjectures via Hilbert schemes

We will recall the definition of the slice filtrations on SH(k) and SHS1
(k) in the main text.

Voevodsky further proved that the validity of Conjecture 2 ensures the convergence of the result-
ing spectral sequence [Voe02c, Corollary 3.4], while Conjecture 1 identifies the graded spectra
as suspensions of the motivic cohomology spectrum [Voe02c, Section 5] based on periodicity
properties of the motivic spectrum representing algebraic K-theory. As already mentioned in the
first paragraph, these motivic cohomology spectra have concrete incarnations as Bloch’s higher
Chow groups, usually denoted by CH i(X, j), so that CH i(X, 0) is isomorphic to CH i(X), the
Chow group of codimension i algebraic cycles up to rational equivalence. In total, we obtain a
strongly convergent, cohomologically-indexed spectral sequence

Ep,q2 = Hp−q(X;Z(−q)) = CH−q(X,−p− q)⇒ K−p−q(X)

whenever X is a smooth scheme over a field.

The purpose of this paper is to give an independent, short, and conceptual proof of Conjec-
ture 2 and a simplification of Levine’s proof of Conjecture 1, assuming motivic infinite loop space
theory [EHK+17, EHK+20, BEH+21] as developed by the authors and Hoyois, Khan, Sosnilo,
and Yakerson, building on foundational work of Ananyevskiy, Druzhinin, Garkusha, Neshitov,
and Panin in the seminal papers [GP21, GP20, AGP21, GNP21, DP18], based on unpublished
ideas of Voevodsky’s. In particular, these papers gave rise to motivic infinite loop space theory
by computing the infinite P1-loop space of a variety in terms of framed correspondences. In
fact, a proof of Conjecture 2 along these lines was already envisioned by Voevodsky in [Voe02c],
although our proof proceeds via rather different methods.

The proof of Conjecture 2 is independent because we make no reference to Levine’s proof.
It is short, given the length of this paper. Finally, it is conceptual because we can reformulate
both conjectures as relatively elementary statements about the birational geometry of certain
Hilbert schemes. Indeed, motivic infinite loop space theory furnishes for us geometric models for
the infinite loop space of the motivic sphere spectrum and, in fact, the suspension spectrum of
any smooth k-variety as framed Hilbert schemes [EHK+17, § 5.1]. That slices have something
to do with the birational geometry of varieties is already well known in the literature [KS17,
Pel14]. In lieu of proving Conjecture 1 as stated, we identify s0(1) with a certain explicit framed
suspension spectrum. While this characterizes the spectrum uniquely, the relationship with higher
Chow groups is not clear from this perspective. On the other hand, this simplifies the proof
of Conjecture 1 by replacing Levine’s use of his “reverse cycle map” with a Hilbert schemes
argument; see Remark 16.

Notation and conventions

We fix a field k. We make use of the categories and functors depicted in the following dia-
gram:

Spc(k)∗ SHS1
(k) SH(k)

Spcfr(k)

Σ∞
S1

Σ∞

F

σ∞

Ω∞
S1 ω∞

Ω∞

Ω∞fr

U

Σ∞fr
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Here Spc(k)∗, SHS
1
(k), SH(k), and Spcfr(k) denote, respectively, the pointed unstable motivic

∞-category (see, for example, [BH17, § 2.2]), the category of S1-spectra, that is, the stabilization
of Spc(k)∗, the category of motivic spectra (see, for example, [BH17, § 4.1]), and the category of
motivic spaces with framed transfers [EHK+17, § 3.2]. All parallel functors in opposite directions
are adjoints, the functors Σ∞, Σ∞S1 , σ∞ are the evident infinite suspension functors, and U is the
evident forgetful functor. The diagram of left adjoints (respectively, right adjoints) commutes.

We freely use the language of ∞-categories as set out in [Lur09, Lur16].

2. Some birational geometry of framed Hilbert schemes

For a scheme X and a point x ∈ X, we write

codX(x) = dim(OX,x)

for the codimension of x in X (see also [Sta18, Tag 02IZ]). We will use several times the following
well-known “codimension formula.”

Theorem 3. Let f : X → Y be a flat morphism of locally noetherian schemes and x ∈ X. Then

codX(x) = codY (f(x)) + codXf(x)
(x) .

Proof. Let y = f(x). Note that OXy ,x = OX,x ⊗OY,y
k(y). The theorem is now a restatement of

[GW10, Corollary 14.95].

For the rest of this section, we assume that all schemes are locally noetherian.

Definition 4. Let d ∈ Z. An open immersion U ↪→ X is called d-birational if whenever x ∈ X
with codX(x) 6 d, we have x ∈ U .

Example 5. If d < 0, the condition is vacuous. If d = 0, this coincides with what is usually called
birational (U contains all generic points of X).

Remark 6. It follows from [Sta18, Tag 02I4] that d-birational open immersions are stable under
composition.

The codimension formula tells us that being a d-birational open immersion is fpqc local (on
the base).

Corollary 7. Let α : U → S be arbitrary and p : Y → S flat.

(1) If α is a d-birational open immersion, then so is the base change αY : UY ↪→ Y .

(2) If p is surjective and αU is a d-birational open immersion, then so is α.

Proof. (1) Since open immersions are stable under base change, it is enough to show that for
y ∈ Y with codY (y) 6 d, we have y ∈ UY . By the codimension formula, we have codY (y) >
codS(p(y)), whence p(y) ∈ U by the d-birationality of α. Thus y ∈ UY , as needed.

(2) The morphism α is an open immersion by faithfully flat descent [Sta18, Tag 02L3]. Let
s ∈ S with codS(s) 6 d. Let y ∈ Ys be a generic point, so that codYs(y) = 0. Then by the
codimension formula, we have codY (y) = codS(s) 6 d, so that y ∈ UY . This implies s ∈ U , as
needed.

Corollary 8. If U ↪→ X and V ↪→ Y are d-birational open immersions of flat S-schemes, then
so is U ×S V ↪→ X ×S Y .
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Proof. We have the factorization

U ×S V ↪→ U ×S Y ↪→ X ×S Y

in which both maps are d-birational open immersions by Corollary 7(1), and hence so is the
composite by Remark 6.

The next lemma furnishes a fiberwise criterion for being d-birational.

Lemma 9. Let α : U ↪→ X be an open immersion of flat S-schemes. Then α is d-birational if and
only if for every s ∈ S, the restriction αs : Us ↪→ Xs is (d− codS(s))-birational.

Proof. Suppose that α is d-birational. Let s ∈ S and x ∈ Xs with codXs(x) 6 d − codS(s). By
the codimension formula, we deduce

codX(x) = codS(s) + codXs(x) 6 d ,

and hence x ∈ U ∩Xs = Us.

Conversely, suppose that the fiberwise condition holds. Let x ∈ X with f(x) = s, and suppose
codX(x) 6 d. Then by the codimension formula again, we have

codXs(x) = codX(x)− codS(s) 6 d− codS(s) .

It follows that x ∈ Us ⊂ U . This concludes the proof.

For a (finite locally free) morphism p : S′ → S, we write Rp for the Weil restriction functor
[BLR90, Chapter 7].

Proposition 10. Let p : S′ → S be finite locally free and X → S′ smooth and quasi-projective.
Let α : U ↪→ X be a d-birational open immersion. Then Rp(α) : Rp(U)→ Rp(X) is a d-birational
open immersion.

Proof. Open immersions and smooth schemes are preserved under Weil restriction [BLR90,
Proposition 7.6.2(i) and Proposition 7.6.5(h)]. In particular, Rp(X)→ S is flat. Using Lemma 9,
it is thus enough to show that for s ∈ S, the restriction Rp(α)s is (d − codS(s))-birational. Let
s′ ∈ Ss. Since dimSs = 0, the codimension formula implies that codS(s) = codS′(s

′), and hence
Lemma 9 implies that αs is (d− codS(s))-birational. Since Weil restriction commutes with base
change [CGP15, Proposition A.5.2(1)], we may thus assume that S = Spec(k) is the spectrum
of a field. Applying Corollary 7(2), we may assume that k is algebraically closed.

Writing S′ as a finite disjoint union of its connected components and using Corollary 8,
we may assume that S′ is a finite local k-scheme, and so in particular S′ → S is a universal
homeomorphism [Sta18, Tags 00J8 and 01S4]. We claim that the canonically induced square

p∗RpU p∗RpX

U X

p∗Rp(α)

α

is cartesian. Indeed, for a scheme T over S′, maps into p∗RpX (over S′) are the same as maps T×k
S′ → X. We thus need to show that a map T×kS′ → X factors through U if and only if the com-
posite T → T×kS′ → X does, which follows from the fact that the first map is a homeomorphism.

By [CGP15, Lemma A.5.11], the map p∗RpX → X is faithfully flat, and hence p∗Rp(α) is
d-birational by Corollary 7(1). Since X → S is faithfully flat, so is p∗RpX → S, and hence Rp(α)
is d-birational by Corollary 7(2).
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With this preparation out of the way, we come to our main topic, Hilbert schemes. For X ∈
Smk (quasi-projective, say), we write Hilbfr(An, X) for the (ind-smooth) ind-scheme representing
the functor hnfr,n(X) of [EHK+17, § 5.1.4]. We have

Hilbfr(An, X) =
∐
d>0

Hilbfr
d (An, X) ,

the decomposition by degree; each Hilbfr
d (An, X) is smooth. Finally,

Hilbfr(A∞, X) = colim
n

Hilbfr(An, X) .

Lemma 11. If α : U → X ∈ Smk is a d-birational open immersion of smooth quasi-projective
k-schemes, then so is Hilbfr

m(An, U)→ Hilbfr
m(An, X).

Proof. There are maps I
q−→ Z

p−→ Hilbflci
m (An) with q smooth and p finite locally free such that

Hilbfr
m(An, X) ∼= Rp(I ×X); see [EHK+17, § 5.1.4]. The result thus follows from Corollary 8 and

Proposition 10 (using that Hilbflci
m (An) is smooth, and hence flat).

Recall that a k-scheme X is rational if there exists a span of 0-birational open immersions
X ← U → Ank for some n.

Lemma 12. The scheme Hilbfr
d (An, ∗) is rational.

Proof. We use the notation from the proof of Lemma 11. By construction, I is a GLn-torsor over Z
(for the Zariski topology), and hence is birational to GLn × Z, whence birational to An2 × Z.
By the construction of the Weil restriction [BLR90, Theorem 7.6.4], the scheme Rp(An

2 × Z) is
locally on Hilbflci(An) isomorphic to a product with an affine space. Using Proposition 10, it is
thus enough to show that Hilbflci

d (An) is rational. It is well known to be birational to Symd(An)
(see, for example, [Jel17, Lemma 4.28 and Theorem 4.36]), which is rational since An is [Mat68].
This concludes the proof.

3. The birational localizations

Denote by LdbirSpc(k) the (Bousfield) localization obtained by inverting d-birational open immer-
sions of smooth k-schemes. See [Lur09, § 5.4.4] for one account on the localization of presentable
∞-categories. Variants of these localizations have been considered previously, for example by
Kahn–Sujata [KS17] and Pelaez [Pel14].

Since f × idX is a d-birational open immersion whenever f is (see, for example, Corollary 8),
this is a symmetric monoidal localization (for example, apply [BH17, Proposition 6.16] to S
the spectrum of an algebraically closed field and C = FEtS ∼= Fin). By Zariski descent, the
same localization is obtained by inverting d-birational open immersions between smooth quasi-
projective (or affine) k-schemes.

Write LdbirSH
S1

(k) for the localization obtained by inverting maps of the form Σ∞+n
S1 f+, with

n ∈ Z and f a d-birational open immersion. Similarly, write LdbirSpc(k)∗ for the localization at
maps of the form f+, and LdbirSpcfr(k) for the localization at maps of the form Ff . These are
also symmetric monoidal localizations.

Recall that SHS1
(k)(d) is defined as the localizing subcategory generated by SHS1

(k)∧G∧dm .
The reflection into its right orthogonal is denoted by s[0,d−1].

Lemma 13. Let k be any field.
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(1) The functors

Spc(k)→ Spc(k)∗ → SHS
1
(k)

and F : Spc(k)∗ → Spcfr(k) preserve Ldbir-equivalences.

(2) The forgetful functor Spc(k)∗ → Spc(k) commutes with Ldbir.

(3) Ldbir-equivalences in Spc(k)∗ are stable under finite products.

(4) The forgetful functor U : Spcfr(k)→ Spc(k)∗ commutes with Ldbir.

If k is perfect, then the following also hold.

(5) A morphism α : E→F ∈SHS1
(k) is an Ldbir-equivalence if and only if cof(α)∈SHS1

(k)(d+1).
In fact, the localizing subcategory generated by objects of the form cof(α), where α is an

Ldbir-equivalence, is SHS1
(k)(d+ 1).

(6) For E ∈ SHS1
(k), we have LdbirE ' s[0,d]E.

In the proof, we shall make use of the theory of localizations of presentable∞-categories and
strongly saturated classes of morphisms [Lur09, § 5.5.4, Definition 5.5.4.5].

Proof. Assertion (1) is clear by construction, assertion (3) is immediate from assertion (2), and
assertion (6) from assertion (5).

(2) By construction, the functor detects Ldbir-local objects. This implies that it is enough
to show that it preserves the strongly saturated class of morphisms (in Spc(k)∗) generated by
d-birational open immersions of smooth schemes. By [BH17, Lemma 2.10], for this it is enough
to show that if f is such a map and X ∈ Smk, then f

∐
idX

∐
id∗ is also a d-birational open

immersion. This is clear.

(4) Using assertion (2), it suffices to show that the functor Spcfr(k) → Spc(k) commutes
with Ldbir. Let us write hfr : Spc(k) → Spcfr(k) for the left adjoint of the previous functor; it is
characterized as a sifted colimit–preserving functor which sends the (motivic localization of the)
presheaf represented by smooth k-scheme X to the (motivic localization of the) presheaf hfr(X)
classifying tangentially framed correspondences (see [EHK+17, Definition 2.3.4] and below).

Arguing as above for assertion (2), we apply [BH17, Lemma 2.10] to Spcfr(k). Using that
Spcfr(k) is semiadditive [EHK+17, Proposition 3.2.10(iii)] and the localization Ldbir on Spc(k) is
symmetric monoidal, it is enough to prove that if f : X → Y is a d-birational open immersion
of smooth quasi-projective k-schemes, then hfr(f) : hfr(X) → hfr(Y ) becomes an equivalence
in LdbirSpc(k). By [EHK+17, Corollary 2.3.25 and Theorem 5.1.8], it is enough to show that
Hilbfr(A∞, X)→ Hilbfr(A∞, Y ) is an Ldbir-equivalence. This follows from Lemma 11.

(5) Using Lemma 14 below, it suffices to show the “in fact” part. Since α : X × (An \ 0) →
X ×An is (n− 1)-birational and cof(α) ' X+ ∧Tn, one inclusion is clear; for the other one, it is

enough to show that if U ↪→ X is a d-birational open immersion, then X/U ∈ SHS1
(k)(d + 1).

This is well known; we include the proof for the convenience of the reader. Let Z = X \ U ; we
shall prove the claim by induction on dimZ. By generic smoothness [Sta18, Tag 0B8X], there
exists a smooth dense open U ′ ⊂ Z; let Z ′ = Z \ U ′. The cofiber sequence

X \ Z ′/U \ Z ′ → X/U → X/X \ Z ′

implies that it is enough to show that X \Z ′/U \Z ′, X/X \Z ′ ∈ SHS1
(k)(d+ 1). For the former,

this follows from homotopy purity [MV99, Theorem 3.2.23], for the latter it holds by induction.
This concludes the proof.
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We made use of the following technical result, which is surely well known.

Lemma 14. Let C be a stable presentable ∞-category and S a small set of morphisms in C
closed under desuspension. Write S0 for the localizing subcategory of C generated by cofibers of
morphisms in S. Then the strong saturation of S consists of those maps α with cof(α) ∈ S0.

Proof. Let A be a strongly saturated class of morphisms stable under desuspensions, and write A1

for the set of objects X ∈ C such that 0→ X ∈ A. Then A1 is closed under colimits and desus-
pensions, hence is a localizing subcategory. Moreover by stability, α : X → Y is an A-equivalence
(that is, in A) if and only if 0 → cof(α) is an A-equivalence. It follows that A0 = A1, and also
that A 7→ A0 is an inclusion-preserving bijection between strongly saturated classes stable under
desuspension and localizing subcategories. Consequently, strongly saturated classes stable under
desuspension containing S are in bijection with localizing subcategories containing S0. The result
now follows from the observation that if S is closed under desuspension, then so is its strong
saturation.

As usual, we denote by SH(k)eff ⊂ SH(k) the localizing subcategory generated by σ∞SHS1
(k)

and put SH(k)eff(d) = G∧dm ∧ SH(k)eff ; this is equivalently the localizing subcategory generated

by σ∞SHS1
(k)(d). We put Lbir = L0

bir.

4. Proof of Conjecture 1

Recall from [Hoy21, § 4] the framed presheaf Z ∈ PΣ

(
Corrfr(k)

)
, and from [EHK+17, EHK+20]

the presheaf FSynfr' hfr(∗). There is an evident “degree” map of framed presheaves FSynfr→ Z,
factoring in fact through an evident sub-presheaf N.

Theorem 15. Let k be any field.

(1) The map FSynfr → N is an Lbir-equivalence in Spcfr(k).

(2) The map Σ∞fr FSynfr → Σ∞fr Z identifies with the canonical map

1→ s0(1) ∈ SH(k) .

Proof. (1) By Lemma 13(2,4), it suffices to show that the underlying map of unpointed motivic

spaces is an Lbir-equivalence. Since it is the coproduct of the maps FSynfr
d → ∗ and FSynfr

d

Lmot'
Hilbfr

d (A∞, ∗), see [EHK+17, Corollary 2.3.25], it suffices to show that each Hilbfr
d (An, ∗) is ratio-

nal. This is Lemma 12.

(2) By [BH17, Lemma B.1] and [Hoy21, Lemma 20], all terms are stable under essentially
smooth base change, so we may assume that k is perfect. It follows from assertion (1) and
Lemma 13(6) that 1 ' Σ∞fr FSynfr → Σ∞fr N induces an equivalence on s0. Moreover, Σ∞fr N ' Σ∞fr Z
since Z is the group completion of N. It thus remains to show that Σ∞fr Z is right orthogonal to
SH(k)eff(1). But now, π∗(Σ

∞
fr Z)0 is 0 if ∗ 6= 0 and else Z, so π∗(Σ

∞
fr Z)−1 = 0, which implies what

we want since homotopy sheaves are unramified. This concludes the proof.

Proof of Conjecture 1. The unit map u : 1 → KGL induces a map s0(u) : s0(1) → s0(KGL).
Theorem 15(2), Conjecture 2 (to be proved in the next section), and Voevodsky’s arguments
from [Voe02c] (see also Example 22) imply that s0(u) is an equivalence. The zero slice of KGL
is identified with higher Chow groups in [Lev08, Theorem 6.4.1], whence the result.

Remark 16. Theorem 15(2) shows that if E ∈ SH(k)eff is provided with a map 1→ E such that
πi(E)0 = 0 for i 6= 0 and π0(1)0 → π0(E)0 is isomorphic to GW → Z, then the induced maps
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s0(1) → s0(E) ← E are both equivalences. Indeed, for the second equivalence, we just need to
show that f1E ' 0, which follows from πi(E)−1 = 0 (since it is the contraction of the zero sheaf),
and for the first equivalence, we need only verify that we get an isomorphism on πi(−)0, which
is now immediate from the theorem.

In principle, one can identify s0(1) with the spectrum representing higher Chow groups by
verifying that the latter do satisfy these properties. However, at some point it needs to be proved
that the spectrum representing higher Chow groups (even granting its existence) is effective.
Voevodsky proves this (in characteristic zero) by studying the birational geometry of motivic
Eilenberg MacLane spaces, and Levine deduces this from his homotopy coniveau tower theory.
We have no new arguments for this. In effect, our argument replaces the deduction of s0(1) from
s0(KGL) in [Lev08, § 10] involving the “reverse cycle map.”

5. Proof of Conjecture 2

For d < 0, we define SHS1
(k)(d) = SHS1

(k) and fd = id: SHS1
(k) → SHS1

(k)(d). The next
result is Conjecture 2. In Levine’s approach [Lev08], he directly proves Corollary 19 below,
which immediately implies the theorem.

Theorem 17. Let k be a perfect field. Then

ω∞(SH(k)eff(d+ 1)) ⊂ SHS1
(k)(d+ 1) .

Proof. If d < 0, there is nothing to show. Otherwise, by Lemma 13(5), it suffices to show that
if f : X → Y is a d-birational open immersion of smooth, quasi-projective k-schemes, then
ω∞Σ∞+ f ∈ SHS

1
(k) is an Ldbir-equivalence. Using Lemma 18 below, this follows from Lem-

ma 13(1,3,4).

The following technical result is a variant of [Voe02c, Proposition 4.4].

Lemma 18. Let X ∈ Spcfr(k) (where k is a perfect field). Then ω∞Σ∞fr X ∈ SH
S1

(k) can be
obtained as a colimit of S1-desuspensions of suspension spectra of the form Σ∞S1UX×n. Moreover,
this expression is natural in X .

Proof. Writing ω∞Σ∞fr X as the colimit of desuspensions of its constituent spaces, we have

ω∞Σ∞fr X ' colim
n

Σ−nΣ∞S1Ω∞ΣnΣ∞fr X .

It is thus enough to prove that the spaces

Ω∞Σ∞fr ΣnX ∈ Spc(k)∗

are of the desired form, say for n > 1. We view X as an object of PΣ

(
Corrfr(k)

)
. It follows from

the motivic recognition principle [EHK+17, Theorem 3.5.14] that

Ω∞Σ∞fr ΣnX ' Lgp
motΣ

nX .

Writing ΣnX as an iterated sifted colimit and using semiadditivity, we find that ΣnX ' BnX ,
where the bar construction Bn is just applied sectionwise. In particular, ΣnX ' BnX is of the
desired form. Since the forgetful functor PΣ

(
Corrfr(k)

)
→ PΣ(Smk) preserves motivic equiva-

lences [EHK+17, Proposition 3.2.14], it suffices to show that BnX is motivically group complete
(that is, LmotB

nX is group complete). Since n > 1, the presheaf BnX is sectionwise connected
(see, for example, [Seg74, Proposition 1.5]), and hence LmotB

nX is connected by [MV99, Corol-
lary 3.3.22]. This concludes the proof.
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We deduce the following structural result, also originally due to Levine [Lev08, Theorem 9.0.3].

Recall that SH(k) ' SHS1
(k)
[
G∧−1
m

]
, and so objects of SH(k) can be modeled by Gm-Ω-spectra,

that is, sequences (E0, E1, . . . ) with Ei ∈ SHS
1
(k), together with equivalences Ei ' ΩGmEi+1.

Corollary 19. (1) The functor ω∞ : SH(k) → SHS1
(k) commutes with the functors fd and

sd for all d ∈ Z.

(2) If E ∈ SH(k) is represented by the Gm-Ω-spectrum (E0, E1, . . . ), then fdE is repre-
sented by the Gm-Ω-spectrum (fdE0, fd+1E1, . . . ). In particular, E is effective if and only if

Ei ∈ SHS
1
(k)(i).

Proof. (1) The categories SH(k)eff(d) and SHS1
(k)(d) define non-negative parts of t-structures

by [Lur16, Proposition 1.4.4.11]. By construction, σ∞ is right-t-exact, and hence ω∞ is left-
t-exact. Since it is also right-t-exact by Theorem 17, we deduce that ω∞ is t-exact, that is,
commutes with fd. The claim about sd follows immediately.

(2) We have Ei ' ω∞
(
G∧im ∧ E

)
. Hence we compute

fd(E)i ' ω∞
(
G∧im ∧ fdE

)
' ω∞

(
fd+i

(
G∧im ∧ E

))
' fd+i

(
ω∞
(
G∧im ∧ E

))
' fd+i(Ei) .

Here we have used part (1) for the third equivalence (which is the only non-trivial one in the
string above). This concludes the proof.

We also deduce the following principle, slightly generalizing an argument of Voevodsky. The
analog in topology is the following fact: if E is a connective spectrum, then it is d-connective as
soon as its infinite loop space is d-connective.

Proposition 20. Let k be a perfect field and E ∈ SH(k)veff . Then E ∈ SH(k)eff(d) as soon as
Σ∞Ω∞E ∈ SH(k)eff(d).

Proof. We may assume d > 0. Using the recognition principle and Lemma 18, or alternatively
[Voe02c, Proposition 4.4], we find that ω∞E is in the localizing subcategory generated by sus-
pension spectra of products of Ω∞E. Since [Mor04, Lemma 6.2.2 and footnote 45]

Σ∞S1(X × Y ) ' Σ∞S1X ∨ Σ∞S1Y ∨ Σ∞S1X ∧ Y ,

this is equivalently the localizing subcategory generated by smash powers of Σ∞S1Ω∞E. It fol-
lows that σ∞ω∞E is in the localizing subcategory generated by smash powers of Σ∞Ω∞E, and
hence (1) σ∞ω∞E ∈ SH(k)eff(d). By the triangle identities, the composite

ω∞E → ω∞σ∞ω∞E → ω∞E

is the identity, whence (2) ω∞E is a summand of ω∞σ∞ω∞E.

Corollary 19 implies that F ∈ SH(k)eff is d-effective if and only if ω∞F is d-effective. Thus
ω∞σ∞ω∞E is d-effective by point (1), whence so is ω∞E by point (2), and hence so is E. This
concludes the proof.

Example 21. We can use this to give a slightly different proof of Theorem 15 (that is, deter-
mine s0(1)) over perfect fields. Namely, let F denote the fiber of the degree map FSynfr,gp → Z.
It is enough to show that Σ∞F ∈ SH(k)eff(1). But by [BEH+21], we have

F
Lmot' FSynfr+

∞
Lmot' Hilbfr

∞(A∞, ∗)+ .

Since Σ∞ inverts acyclic maps, the result thus follows again from Lemma 12.
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Example 22. The argument of Example 21 is modeled on Voevodsky’s determination of s0(KGL),
which we can restate in our language as follows: Using that Ω∞KGL equals Z × Gr, where Gr
is the infinite Grassmannian variety, arguing as above, one is reduced to showing that Gr is
rational. This is well known.

Example 23. The converse of Proposition 20 is false. Let E = HZ/2 ∧ Gm. We claim that
Σ∞Ω∞E 6∈ SH(k)eff(1). For this it suffices to construct a non-zero map Σ∞Ω∞E → ΣHZ/2
or, equivalently, a non-zero map Ω∞HZ/2 ∧ Gm → Ω∞ΣHZ/2. Any group-like monoid M
is equivalent as a pointed space to π0(M) ×M>1; applying this construction sectionwise and
projecting to the M>1 part, we obtain the desired non-zero map

Ω∞HZ/2 ∧Gm → Ω∞(HZ/2 ∧Gm)>1 ' K(Z/2, 1) ' Ω∞ΣHZ/2 .
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