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An explicit solution to the weak Schottky problem

Hershel M. Farkas, Samuel Grushevsky and Riccardo Salvati Manni

Abstract

We give an explicit weak solution to the Schottky problem, in the spirit of Riemann
and Schottky. For any genus g, we write down a collection of polynomials in genus g
theta constants such that their common zero locus contains the locus of Jacobians
of genus g curves as an irreducible component. These polynomials arise by applying
a specific Schottky–Jung proportionality to an explicit collection of quartic identities
for genus g − 1 theta constants.

1. Introduction

We work throughout over the field of complex numbers. Our main result is the following explicit
weak solution to the classical Schottky problem.

Theorem 1.1 (Main theorem). For any g > 4, let S34 denote the following degree 23·2
g−4+1

polynomial in genus g theta constants, evaluated at some period matrix τ :∏
aε,bε,cε=±1
a0,...,0=1

∑
ε∈(Z/2Z)g−4

aε

(
θ
[
E 0 0 0 ε
0 0 0 0 0

]
θ
[
E 0 0 0 ε
1 1 1 1 1

]
θ
[
E 0 1 1 ε
0 1 0 0 0

]
θ
[
E 0 1 1 ε
1 0 1 1 1

]
· θ
[
1+E 1 0 0 ε
0 0 0 1 0

]
θ
[
1+E 1 0 0 ε
1 1 1 0 1

]
θ
[
1+E 1 1 1 ε
0 1 0 1 0

]
θ
[
1+E 1 1 1 ε
1 0 1 0 1

] )1/2
+ bε

(
θ
[
1+E 0 1 0 ε
0 0 0 0 0

]
θ
[
1+E 0 1 0 ε
1 1 1 1 1

]
θ
[
1+E 0 0 1 ε
0 1 0 0 0

]
θ
[
1+E 0 0 1 ε
1 0 1 1 1

]
· θ
[
E 1 1 0 ε
0 0 0 1 0

]
θ
[
E 1 1 0 ε
1 1 1 0 1

]
θ
[
E 1 0 1 ε
0 1 0 1 0

]
θ
[
E 1 0 1 ε
1 0 1 0 1

] )1/2
+ cε

(
θ
[
E 0 0 0 ε
0 0 1 1 0

]
θ
[
E 0 0 0 ε
1 1 0 0 1

]
θ
[
E 0 1 1 ε
0 1 1 1 0

]
θ
[
E 0 1 1 ε
1 0 0 0 1

]
· θ
[
1+E 1 0 0 ε
0 0 1 0 0

]
θ
[
1+E 1 0 0 ε
1 1 0 1 1

]
θ
[
1+E 1 1 1 ε
0 1 1 0 0

]
θ
[
1+E 1 1 1 ε
1 0 0 1 1

] )1/2
,

where E := ε1 + · · · + εg−4 ∈ Z/2Z. For any 3 6 j < k 6 g, let Sjk be obtained from S34
by swapping columns 3 and j and columns 4 and k of the characteristics of all theta constants
appearing in the expression.

Then the collection of equations {Sjk = 0}36j<k6g gives a weak solution to the Schottky
problem; that is, the common zero locus of the modular forms {Sjk}36j<k6g contains the Jacobian
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locus as an irreducible component.

Here, and throughout the paper, we write 0 and 1 for strings of zeroes or ones of appropriate
length.

One can say that the theory we deal with here began with Riemann’s papers [Rie57, Rie66].
In [Rie66] in particular, it seems clear that Riemann was working towards understanding what
we now think of as the Schottky problem, even though the main immediate application was
a proof of the Jacobi inversion theorem. The field then blossomed, with a flurry of activity by
Krazer, Wirtinger, Noether, Schottky, Frobenius, Baker, and many others—see the many refer-
ences in [RF74]. In the middle of the twentieth century, the interest in the Schottky problem
seems to have waned, probably due to the fact that the length of the identities increased expo-
nentially, and not much new was discovered on the classical Schottky problem. The interest in the
subject was then rekindled in the 1970s, in particular by Rauch’s rediscovery of [SJ09], where
what are now called the Schottky–Jung proportionalities were stated without proof. These were
proven rigorously by the first author [Far70], and their connection with the Schottky problem was
discussed in [FR70]. A period of intense activity followed, including Mumford’s development of
the algebraic theory of the theta function and the emergence of relations with integrable systems.

Various approaches to the Schottky problem were developed by the 1980s, and various geo-
metric solutions to the problem were then obtained (surveyed, for example, in [vGe98, Gru12]).
Igusa [Igu81] and Freitag [Fre83] showed that Schottky’s original equation [Sch88] indeed gives
the solution to the Schottky problem in genus 4. Accola [Acc83] gave a collection of equations
in theta constants that characterize the Jacobian locus in genus 5, up to additional irreducible
components. Arbarello and De Concini [AD84] showed that there exists a finite set of equations
in theta constants and their derivatives that characterize Jacobians (however, making them ex-
plicit requires the elimination of 3g complex numbers from a system of equations). Shiota [Shi86]
proved Novikov’s conjecture characterizing Jacobians by their theta function satisfying the KP
equation, and various other approaches were developed.

In a spirit closest to the current paper, Van Geemen [vGe84] and Donagi [Don87a] showed that
the classical Schottky–Jung approach gave a weak solution to the Schottky problem—however,
their results do not lead to explicit equations, as we will explain shortly.

More recently, Krichever [Kri10] proved the celebrated Welters’ trisecant conjecture [Wel84],
characterizing Jacobians by their Kummer varieties having trisecant lines. We hope that our
explicit solution of the weak Schottky problem, motivated by the viewpoint of [RF74], may lead
to a further rejuvenation of interest in this classical subject.

We now state the Schottky problem more precisely and motivate our main theorem. Denote
byMg the moduli space of curves of genus g, denote by Ag the moduli space of complex, princi-
pally polarized abelian varieties (ppavs) of dimension g, and denote by J : Mg → Ag the Torelli
morphism. The Schottky problem is to characterize the locus of Jacobians Jg, which is defined to
be the closure of J(Mg) in Ag.

The classical Schottky problem, studied by Riemann and Schottky, is to write down the
defining equations for Jg. More precisely, recall that theta constants with characteristics define

an embedding Th : Ag(4, 8) ↪→ P2g−1(2g+1)−1 of the level cover of Ag (see Section 2 for details),
and the classical Schottky problem is to determine the defining ideal IJg of Th(Jg(4, 8)) ⊂
Th(Ag(4, 8)). The weak Schottky problem is the problem of characterizing the locus of Jacobians
up to extra irreducible components. Classically, this means finding an ideal Ig of polynomials
in theta constants such that the zero locus of Ig within Th(Ag(4, 8)) contains Th(Jg(4, 8)) as an
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irreducible component.

The Schottky problem is non-trivial for g > 4, and Schottky’s original equation solves the clas-
sical Schottky problem in genus 4, as discussed above. Despite many approaches to the Schottky
problem having been developed, a solution to the classical Schottky problem and its weak version
have remained elusive for any genus g > 5.

The Schottky–Jung proportionalities (reviewed in Section 3) relate theta constants of a ge-
nus g Jacobian to the theta constants of its Prym which is a (g − 1)-dimensional ppav. More
precisely, denote byRg the moduli space of connected unramified double covers of smooth genus g
curves, thought of as pairs consisting of a curve C ∈ Mg and a non-zero 2-torsion point η on
the Jacobian of C. The Prym construction is the map Pr : Rg → Ag−1, and the Schottky–Jung
proportionalities relate the theta constants of Pr(C, η) and of C.

Let IAg denote the defining ideal of Th(Ag(4, 8)) ⊂ P2g−1(2g+1)−1. Applying the Schottky–Jung

proportionalities to each theta constant appearing in a polynomial P ∈ IAg−1 yields an element

SJη(P ) ∈ IJg , which we will call the corresponding Schottky–Jung identity. The big Schottky

locus is the locus within Th(Ag(4, 8)) defined by the equations SJη(P ) for all P ∈ IAg−1, for one
fixed η, while the small Schottky locus is the locus defined by such equations for all possible η.
Van Geemen [vGe84] and Donagi [Don87a] showed that the small and the big Schottky loci,
respectively, give weak solutions to the Schottky problem, while in [Don87b], Donagi showed that
already in genus 5, the big Schottky locus contains an extra irreducible component containing
the locus of intermediate Jacobians of cubic threefolds. In the unpublished preprint [Sie13], it is
shown that in genus 5, the small Schottky locus is in fact equal to the Jacobian locus.

Note, however, that for g > 3, the ideal IAg of relations among the theta constants of a gen-
eral ppav is not known—it is conjectured that it is generated by Riemann’s quartic relations
(see [FS19] for details), but no approaches to proving this are available. Thus for any g > 5, the
results of Van Geemen and Donagi cannot be made explicit, as one cannot write down a set of
generators of IAg−1. Our main theorem is thus the first known explicit weak solution to the clas-
sical Schottky problem. After our paper appeared on the arXiv, our equations were investigated
numerically in genus 5 by Agostini and Chua [AC19].

Our equations Sjk arise by applying the Schottky–Jung proportionalities to certain quar-
tic identities in theta constants. We note, however, that while the usually applied case of the
Schottky–Jung proportionalities is for the 2-torsion point η0 := [ 0 0 ... 0

1 0 ... 0 ], it turns out (see Re-
mark 5.2) that for our methods, we need to use the 2-torsion point ηg := [ 0 ... 01 ... 1 ]. The polyno-
mials Sjk arise by applying the Schottky–Jung proportionalities for ηg to the quartic identity in
theta constants given in the following proposition.

Proposition 1.2. For any g > 3, let R34 be the following quartic polynomial in theta constants,
all evaluated at some period matrix τ :

R34 :=
∑

ε∈(Z/2Z)g−3

(
θ [ 0 0 0 ε

0 0 0 0 ] θ [ 0 1 1 ε
1 0 0 0 ] θ [ 1 0 0 ε

0 0 1 0 ] θ [ 1 1 1 ε
1 0 1 0 ]

− θ [ 0 1 0 ε
0 0 0 0 ] θ [ 0 0 1 ε

1 0 0 0 ] θ [ 1 1 0 ε
0 0 1 0 ] θ [ 1 0 1 ε

1 0 1 0 ]

+ θ [ 0 0 0 ε
0 1 1 0 ] θ [ 0 1 1 ε

1 1 1 0 ] θ [ 1 0 0 ε
0 1 0 0 ] θ [ 1 1 1 ε

1 1 0 0 ]
)
.

(1.1)

Let Rjk be obtained by permuting columns 2 and j−1 and columns 3 and k−1 in the expression
of R34. Then each Rjk vanishes identically in τ ; that is, Rjk ∈ IAg .

This proposition is an immediate corollary of the generalized Riemann relations stated
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in [Fay79]. See Remark 5.3 for an explanation of why the classical Riemann quartic relation
cannot be used instead of R34 for our argument.

The Schottky–Jung proportionalities for ηg are given explicitly by (3.4), and since ηg is
invariant under any permutation of columns (and this is one reason for our choice of ηg rather
than η0), we obtain Lemma 3.1, the statement that Sjk = SJηg(Rjk) for any 3 6 j < k 6 g.
As a corollary, we thus obtain an explicit proof of the main result of Donagi’s paper [Don87a],
which implies the main result of Van Geemen’s paper [vGe84].

Corollary 1.3. The big Schottky locus gives a weak solution to the Schottky problem; that is,
the common zero locus of SJηg(R), for all R ∈ IAg−1, contains Jg as an irreducible component.

(Of course we have in fact proven that it is enough to take Riemann’s quartic relations, as
a subset of IAg−1, and among those, to only take those that imply all Rjk).

We prove our main theorem, Theorem 1.1, by expanding Sjk near the locus of diagonal
period matrices and showing that the lowest-degree terms of the expansions give a collection of
what are called Poincaré relations. These are infinitesimal (that is, up to terms of higher order)
relations satisfied by period matrices of Jacobians that are close to being diagonal. The only
such relation in genus 4 was proven by Poincaré [Poi95]. Poincaré states in [Poi95, End of § 11,
pp. 298–299] that his relation generalizes to arbitrary genus. Our work gives a complete proof of
Poincaré relations for arbitrary Riemann surfaces of arbitrary genus. A different proof is given by
Fay [Fay73, Example 3.4, p. 45]. Rauch in [RF74, p. 228] asks whether, in general, one can find
Schottky(–Jung) identities that imply Poincaré relations, and, in particular, our work answers
this question in the affirmative. By analyzing these lowest-order terms of Sjk, we then show
that in a neighborhood of a generic diagonal period matrix, these equations are functionally
independent, and thus that the common zero locus of all Sjk is (3g − 3)-dimensional, which
implies that it contains the Jacobian locus as an irreducible component.

The structure of the text is as follows. In Section 2, we fix the notation and review and extend
the results of Fay [Fay79] and the third author [Sal85] on the linear span of Riemann’s quartic
relations. We also show that the identity R34 among theta constants holds. In Section 3, we
recall the Schottky–Jung proportionalities and give the explicit formula (3.4) for them for the
2-torsion point ηg. In Section 4, we briefly recall the well-known expansion of theta constants
near the locus of diagonal period matrices. In Section 5, we recall Poincaré’s notion of “infinites-
imal” relations for periods of Riemann surfaces near diagonal matrices and prove Theorem 5.1,
proving the generalization of Poincaré’s relations to arbitrary genus. The proof is by looking at
the lowest-order terms of the expansions of our Sjk. Finally, in Section 6, we combine all of these
ingredients to prove that the Sjk are locally functionally independent near Dg, which implies our
main theorem, Theorem 1.1.

2. Riemann’s quartic relations and their linear combinations

In this section, we fix the notation for moduli spaces of curves, abelian varieties, and their covers.
We then recall the theta constants, their properties, and relations among them; for the details
on all of this, we refer to [Igu72] and [RF74].

We denote by Hg := {τ ∈ Matg×g(C) : τ t = τ ; Im τ > 0} the Siegel upper half-space.
The quotient Ag := Hg/Sp(2g,Z) is the moduli space of complex principally polarized abelian
varieties (ppavs).

For any even `, let Γg(`) ⊂ Sp(2g,Z) be the normal subgroup that is the kernel of the map

361



H.M. Farkas, S. Grushevsky and R. Salvati Manni

to Sp(2g,Z/`Z), and let Γg(`, 2`) be the subgroup of Γg(`) consisting of matrices such that
the diagonals of AtB and CtD

(
where γ ∈ Sp(2g,Z) is written in block form γ =

(
A B
C D

))
are congruent to zero modulo 2`. The level covers of moduli of ppavs are then the quotients
Ag(`) := Hg/Γg(`) and Ag(`, 2`) := Hg/Γg(`, 2`) by these level subgroups.

Given ε, δ ∈ Zg, the theta function with characteristics [ εδ ] is defined as

θ [ εδ ] (τ, z) :=
∑
n∈Zg

exp
(
πi(n+ ε/2)t (τ(n+ ε/2) + z + δ)

)
.

The theta constant is the evaluation of the theta function at z = 0. We will be mostly concerned
with theta constants and will write simply θ [ εδ ] for such, if the variable τ is understood, and z is
set to be equal to zero. We will always write the z-variable when dealing with theta functions. The
theta constants satisfy the identity θ

[
ε+2a
δ+2b

]
(τ, 0) = (−1)ε

tbθ [ εδ ] (τ, 0) for any a, b ∈ Zg, and thus
(up to sign) it is often convenient to work with characteristics lying in (Z/2Z)2g. However, we
will follow [Fay73] in working with characteristics in Z2g, which accounts for some sign differences
between our formulas and those in the literature. By an abuse of notation, we will write ε, δ as
row vectors, but they will be treated as column vectors, as will be all vectors used in calculations.
We call ε the top and δ the bottom characteristic, and we say (g)-characteristic when we want
to emphasize the dimension in which we are working. A characteristic is called even or odd
depending on whether e([ εδ ]) := εt · δ is even or odd, correspondingly. All theta constants with
odd characteristics vanish identically in τ .

Notation 2.1. For convenience, we denote by Kg = (Z/2Z)2g the set of characteristics, denote
by K+

g ,K
−
g ⊂ Kg the sets of even and odd characteristics, respectively, and let k±g := 2g−1(2g±1)

be the cardinalities of the sets K±g .

We define the action of Sp(2g,Z) on characteristics via

γ ◦ [ εδ ] :=
(
D −C
−B A

)
[ εδ ] +

[
diag(CDt)

diag(ABt)

]
;

the theta constants then satisfy the following transformation formula (see [Igu72]):

θ [γ ◦ [ εδ ]] (γ ◦ τ) = κ(γ)
√

det(Cτ +D)θ [ εδ ] (τ)

· exp
(
(−πi/4)εtDtBε− 2δCtBε+ δtCtAδ − 2(Dεt − Cδt) diag

(
ABt

))
,

where κ is some eighth root of unity independent of the characteristic [ εδ ]. It moreover turns out
that κ(γ) = 1 for any γ ∈ Γg(4, 8), and thus each theta constant is a modular form with respect
to Γg(4, 8), which is to say that

θ [ εδ ] (γ ◦ τ) =
√

det(Cτ +D)θ [ εδ ] (τ)

for any γ ∈ Γg(4, 8) (where the square root can in fact be chosen globally). The map sending
a ppav to the set of all even theta constants then defines an embedding

Th : Ag(4, 8) ↪→ P2g−1(2g+1)−1 .

The classical, and still unsolved, question of determining all relations among theta constants
is the question of determining the defining ideal IAg of Th(Ag(4, 8)) ⊂ P2g−1(2g+1)−1. The only
known relations among theta constants are Riemann’s quartic relations. To write them, recall
the Weil pairing of two characteristics m =

[ ε1
δ1

]
and n =

[ ε2
δ2

]
defined by

e(m,n) := (−1)ε
t
1·δ2−εt2·δ1 .
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We recall from [Fay79] the following special case of (the generalized) Riemann’s theta formula.
Let A ⊂ Kg be a subgroup of order 2g−m, and let B be the orthogonal group with respect to the
symplectic form, that is, B := {m ∈ Kg : e(m,n) = 1 for alln ∈ A}. Then the following identity
holds:

2m
∑

[ εδ ]∈A

e([ εδ ])(−1)δ
t(α+σ)θ [ εδ ] θ

[ ε+α
δ+β

]
θ
[ ε+σ
δ+µ

]
θ
[ ε+α+σ
δ+β+µ

]
=
∑

[ εδ ]∈B

e([ εδ ])(−1)δ
t(α+σ)θ [ εδ ] θ

[ ε+α
δ+β

]
θ
[ ε+σ
δ+µ

]
θ
[ ε+α+σ
δ+β+µ

]
.

(2.1)

Proof of Proposition 1.2. To prove that R34 lies in IAg , we simply apply (2.1) for

A :=
{

[ 0 0 0 ε
0 0 0 0 ] for all ε ∈ (Z/2Z)g−3

}
,

[ αβ ] = [ 0 1 1 0 ... 0
1 0 0 0 ... 0 ] , [ σµ ] = [ 1 0 0 0 ... 0

0 0 1 0 ... 0 ] .

Let V0 be the 2-dimensional subspace of Kg spanned by [ αβ ] and [ σµ ], and set V1 := V0 +
[ 0 1 0 0... 0
0 0 0 0... 0 ], V2 := V0 + [ 0 0 0 0... 0

0 1 1 0... 0 ], and V = V0 ∪ V1 ∪ V2. Unless all theta constants appearing
in the monomial in the sum in the right-hand side of (2.1) are even, such a summand vanishes.
Thus the only non-vanishing summands are those when [ εδ ] ∈ A+ V ; that is, [ εδ ] can be written
as the sum of a characteristic lying in A and a characteristic lying in V . Moreover, the summands
in the right-hand-side are the same for all [ εδ ] ∈ Vi +m, for m ∈ A fixed.

This gives, up to a factor 4, precisely the expression for R34 given by formula (1.1), and
thus R34 lies in IAg . Furthermore, each Rjk is obtained from R34 by permuting some columns of
the characteristics. This permutation can of course be obtained by the action of some element γ
of the symplectic group, and since IAg is invariant under Sp(2g,Z), it follows that also Rjk =

γ ◦R34 ∈ IAg .

As an example (and to highlight how sign conventions differ depending on whether one writes
characteristics as elements of Z or of Z/2Z), consider the case of genus g = 3. Equation (2.1)
then reads

8θ [ 0 0 0
0 0 0 ]θ [ 0 1 1

1 0 0 ] θ [ 1 0 0
0 0 1 ] θ [ 1 1 1

1 0 1 ]

= 4θ [ 0 0 0
0 0 0 ] θ [ 0 1 1

1 0 0 ] θ [ 1 0 0
0 0 1 ] θ [ 1 1 1

1 0 1 ] + 4θ [ 0 1 0
0 0 0 ] θ [ 0 2 1

1 0 0 ] θ [ 1 1 0
0 0 1 ] θ [ 1 2 1

1 0 1 ]

+ 4θ [ 0 0 0
0 1 1 ] θ [ 0 1 1

1 1 1 ] θ [ 1 0 0
0 1 2 ] θ [ 1 1 1

1 1 2 ] .

Converting to characteristics in Z/2Z, this gives the classical form of Riemann’s quartic addition
theorem, see [vGe98],

θ [ 0 0 0
0 0 0 ]θ [ 0 1 1

1 0 0 ] θ [ 1 0 0
0 0 1 ] θ [ 1 1 1

1 0 1 ]

= θ [ 0 1 0
0 0 0 ] θ [ 0 0 1

1 0 0 ] θ [ 1 1 0
0 0 1 ] θ [ 1 0 1

1 0 1 ]− θ [ 0 0 0
0 1 1 ] θ [ 0 1 1

1 1 1 ] θ [ 1 0 0
0 1 0 ] θ [ 1 1 1

1 1 0 ] .
(2.2)

Remark 2.2. This genus 3 case of Riemann’s quartic addition theorem can be considered as an
alternative starting point for our constructions, using only Riemann’s quartic addition theorem.

Consider the square matrix M(g) of size 22g whose entries are the Weil pairings of all pairs
of characteristics m, n ∈ Kg, which we write as

M(g) :=

(
M+(g) N(g)
N(g)t M−(g)

)
,
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where the set of characteristics is ordered in such a way that the k+g even characteristics in the
set K+

g appear before the k−g odd ones. Recall that by [Sal85], all quartic identities in theta
constants are related to the eigenvectors of eigenvalue −2g−1 of the matrix M+(g).

It turns out that there is a simple procedure, which we call the doubling principle, that
constructs these eigenvectors recursively from the eigenvectors of eigenvalue −2g−2 of the matrix
M+(g − 1). In fact, this −2g−1-eigenspace of M+(g) is equal to the direct sum of vector spaces
U1 ⊕ U2 ⊕ U3 ⊕ U4, where

– U1 and U2 are spanned by the vectors of the form

u1 := (X,X, 0, 0)t and u2 := (X, 0, X, 0)t ,

respectively, for X any −2g−2-eigenvector of M+(g − 1);

– U3 is spanned by the vectors of the form u3 := (X, 0, 0, Y )t, for
(
X
Y

)
any −2g−1-eigenvector

of M(g − 1); and

– U4 is spanned by the vectors of the form u4 := (X,−X,−X, 0)t, for X any 2g−1-eigenvector
of M+(g − 1).

It then turns out that the quartic relation R34 in any genus can be obtained by repeatedly
applying this doubling principle starting from to (2.2) in genus 3, which gives an alternative
proof of Proposition 1.2.

3. The Schottky–Jung proportionalities

We denote byMg(4, 8) the fiber product ofMg and Ag(4, 8) over Ag under the Torelli map and
the forgetful morphism. By an abuse of notation, we also denote by J : Mg(4, 8)→ Ag(4, 8) the
lift of the Torelli map.

The Schottky–Jung proportionalities relate the theta constants of the Jacobian and of the
Prym. They were discovered in [SJ09], rigorously proven to hold in [Far70, FR70], and recast
algebraically by Mumford in [Mum74]. See the surveys [Don88, Bea89] for the details of the
Schottky–Jung approach and [Far12] for a survey on Pryms. The Schottky–Jung proportionalities
for an arbitrary 2-torsion point η, as a relation between modular forms, is described explicitly
in [vGe98].

Denote by Rg the moduli space of pairs (C, η), where C ∈Mg and η ∈ J(C)[2]\{0} is a non-
zero 2-torsion point on the Jacobian. Such a point η defines an unramified connected double
cover C̃ → C, and the Prym Pr(C, η) is then defined to be the connected component of the
kernel of the map J(C̃) → J(C). The Prym turns out to have a natural principal polarization,
so that the construction defines a morphism Pr : Rg → Ag−1. For the 2-torsion point

η0 := [ 0 0 ... 0
1 0 ... 0 ] , (3.1)

the Schottky–Jung proportionalities are the equalities

θ2 [ εδ ] (Pr(C, η0)) = c θ
[
0 ε
0 δ

]
(J(C))θ

[
0 ε
1 δ

]
(J(C)) , (3.2)

which hold for some non-zero constant c independent of [ εδ ].

For our purposes, the combinatorics is such that we will need the explicit form of the Schottky–
Jung proportionalities for the 2-torsion point

ηg := [ 0 0 ... 0
1 1 ... 1 ] . (3.3)

364



An explicit solution to the weak Schottky problem

In [Far89], the case of Schottky–Jung proportionalities for η′ = [ 0 0 0 ... 0
1 1 0 ... 0 ] was studied explicitly,

and it turns out that additional signs depending on [ εδ ] appear. We will not be able to track
the signs anyway, and only the characteristics appearing in the proportionality will play a role.
The Schottky–Jung proportionalities for arbitrary η, as relations between modular forms, are
described explicitly by Van Geemen in [vGe98], as we now quickly recall.

Since Sp(2g,Z/2Z) acts transitively on J(C)[2] \ {0}, acting on the Schottky–Jung propor-
tionalities (3.2) for η0 by an element of the symplectic group that sends η0 to η, one obtains
the general case of the Schottky–Jung proportionalities. For a given η, one has an isomor-
phism j : Pr(C, η)[2] → V/η, where Pr(C, η)[2] is the set of 2-torsion points of the Prym, and
V = η⊥ ⊂ Kg is the set of all v such that the symplectic pairing e(η, v) is 0. Then for any
[ εδ ] ∈ Pr(C, η)[2], the characteristics appearing in the right-hand-side of Schottky–Jung propor-
tionalities for η would be j ([ εδ ]) and η + j ([ εδ ]).

Note that the proportionalities depend on the choice of j; as this was never explained in
the literature, we make this precise. A choice of a basis of J

(
C̃
)
[2] gives the lifting (denoted

by π∗ by Mumford) Pr(C, η)[2] → J
(
C̃
)
[2], and j is then obtained by composing this with the

projection to J(C)[2]. Thus any choice of j can arise; the standard choice for η0 is to embed
(Z/2Z)2g−2 into Kg as the characteristics with first column equal to [ 00 ].

For our choice of ηg, we will choose j to be

j
([

ε1 ... εg−1

δ1 ... δg−1

])
:=
[
ε1+...+εg−1 ε1 ... εg−1

0 δ1 ... δg−1

]
.

Then the Schottky–Jung proportionalities take the explicit form

θ2 [ εδ ] (Pr(C, ηg)) = ±c θ
[∑

εi ε1 ... εg−1

0 δ1 ... δg−1

]
(J(C)) · θ

[∑
εi ε1 ... εg−1

1 1+δ1 ... 1+δg−1

]
(J(C)) , (3.4)

which we will use from now on—where the sign depends on [ εδ ].

The classical approach to the Schottky problem is as follows. Given any equation P ∈ IAg−1,
note that P is satisfied by the theta constants of P (C, η) for any (C, η) ∈ Rg. Replacing in
the polynomial P each theta constant of Pr(C, η) with the square root of the product of the
two corresponding theta constants of J(C) given by the Schottky–Jung proportionalities gives
a polynomial in the square roots of genus g theta constants of J(C). Since the square roots cannot
be chosen globally, to make this a well-defined relation, we take the product of the results of such
substitutions for all possible choices of the values of square roots of the monomials involved—
except choosing one square root of one monomial to be given (or otherwise one obtains each factor
twice, once with plus and once with minus sign). We denote this product by SJη(P ) and call it
the Schottky–Jung identity corresponding to P and η. It is then a polynomial in genus g theta
constants, of degree equal to the degree of P times 2 raised to the power equal to the number of
monomials in P minus 1, and Schottky–Jung proportionalities imply that SJη(P ) ∈ IJg .

The simplest non-trivial case of this is for g = 4: the genus 3 Riemann’s quartic relation
involves three monomials and has the form r1 − r2 + r3 = 0, where each ri is a product of
four genus 3 theta constants. Applying the Schottky–Jung proportionalities gives

√
R1−

√
R2−√

R3 = 0, where each Ri is a product of eight theta constants evaluated at τ ∈ J(C). To obtain
a polynomial in theta constants, one needs to take the product

(√
R1 +

√
R2 +

√
R3

)(√
R1 −√

R2 +
√
R3

)(√
R1 +

√
R2 −

√
R3

)(√
R1 −

√
R2 −

√
R3

)
, which is equal to

SJη(r1 − r2 + r3) = R2
1 +R3

2 +R2
3 − 2R1R2 − 2R1R3 − 2R2R3 = 0 , (3.5)

which is a degree 16 polynomial in theta constants of the genus 4 Jacobian J(C). This equation
was discovered by Schottky and was rigorously proven by Igusa [Igu81] and Freitag [Fre83] to
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generate IJ4 , that is, to be the unique defining equation for Th(J4) ⊂ Th(A4).

In our case, applying Schottky–Jung proportionalities for ηg to Rjk gives the following.

Lemma 3.1. For any 3 6 j < k 6 g, the identity Sjk = SJηg(Rjk) holds.

Proof. Indeed, applying the Schottky–Jung proportionalities (3.4) to R34, one obtains an ex-
pression in square roots of theta constants that is one of the factors in S34, and then taking the
product over all possible choices of square roots gives exactly the product given by S34, so that
S34 = SJηg(R34). Since the columns number 3, . . . , g of ηg are all equal, permuting columns 3
and j and columns 4 and k gives the desired equality for all j and k.

4. Expansion of theta constants near the diagonal

The locus Jg contains the locus of ppavs that are products of g elliptic curves. Explicitly, we
think of this locus as the image in Ag of the locus Dg ⊂ Hg consisting of diagonal period
matrices Dg := {τ = diag(t1, t2, . . . , tg)}. The proof of Theorem 1.1 will consist of showing that
the Sjk are locally functionally independent near Dg, by computing the lowest-order term of
their expansions. We thus recall the expansion of theta constants near the diagonal, which was
used by Rauch [Rau71] in his genus 4 computations.

First recall that the theta constant of a diagonal period matrix decomposes as a product:

θ [ εδ ] (diag(t1, t2, . . . , tg)) = θ
[ ε1
δ1

]
(t1) · . . . · θ

[
εg
δg

]
(tg) .

Recall further for any j < k the heat equation

∂θ [ εδ ]

∂τjk
=

1

2πi

∂2θ [ εδ ]

∂zjzk
.

We then evaluate for any j < k the partial derivative

∂θ [ εδ ]

∂τjk
|τ=diag(t1,t2,...,tg) =

1

2πi
θ
[ ε1
δ1

]
(t1) · . . . · θ

[
εj−1

δj−1

]
(tj−1)

·
∂θ
[
εj
δj

]
(tj , z)

∂z
|z=0 · θ

[
εj+1

δj+1

]
(tj+1) · . . . · θ

[
εk−1

δk−1

]
(tk−1)

·
∂θ
[ εk
δk

]
(tk, z)

∂z
|z=0 · θ

[
εk+1

δk+1

]
(tk+1) · . . . · θ

[
εg
δg

]
(tg) .

Since all genus 1 theta functions are even except that with characteristic [ 11 ], this partial deriva-

tive vanishes unless
[
εj
δj

]
=
[ εk
δk

]
= [ 11 ].

Thus, expanding theta constants in Taylor series in τjk near Dg, for t1, . . . , tg fixed, we see
that the constant and linear terms are

θ [ εδ ] (τ) = θ
[ ε1
δ1

]
(t1) · . . . · θ

[
εg
δg

]
(tg)

+
1

2πi

∑
j<k,

[ εj
δj

]
=
[ εk
δk

]
=[ 11 ]

τjk ·
∂θ [ 11 ] (tj , z)

∂z
|z=0 ·

∂θ [ 11 ] (tk, z)

∂z
|z=0 ·

∏
m 6=j,k

θ
[ εm
δm

]
(tm) , (4.1)

and the full Taylor series expansion includes further monomials in τjk that are of total degree 2
or higher. Note that if no column

[ εm
δm

]
is equal to [ 11 ], then the Taylor series has a non-zero

constant term and zero linear term. If precisely two different columns
[
εj
δj

]
and

[ εk
δk

]
are equal
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to [ 11 ], then the Taylor series has zero constant term, and the linear term is a multiple of τjk.
Finally, if more than two columns are equal to [ 11 ], then both the constant and linear terms of
the Taylor series are zero, and in fact the lowest-order term has degree equal to half the number
of columns equal to [ 11 ].

Furthermore, by Jacobi’s triple product identity in genus 1

∂θ [ 11 ] (t, z)

∂z
|z=0 = −πθ [ 00 ] (t)θ [ 01 ] (t)θ [ 10 ] (t) , (4.2)

the linear term can be written in terms of theta constants of tj and tk.

5. Poincaré relations

The Poincaré relation in genus 4 was discovered by Poincaré [Poi95]; it is an infinitesimal rela-
tion for period matrices of Jacobians near Dg—Poincaré calls it an “approximate identity.”
Rather than thinking of it as being the lowest-order terms of a suitable power series expansion,
Poincaré derived it from something he called a “translation surface.” Poincaré then stated that
his proof in genus 4 could be easily generalized to higher genus but gave no details. Garabe-
dian [Gar51] proved the Poincaré relations for some special Riemann surfaces, in arbitrary
genus.

Rauch in [Rau71] reproved the original Poincaré relation in genus 4 by expanding a suitable
genus 4 Schottky–Jung identity near D4, and in [RF74, Appendix 2] asked whether Poincaré
relations for any genus could be obtained in a similar way. While Fay [Fay73] proved the Poincaré
relation in any genus, we give a new direct proof in the spirit of Rauch, obtaining it by expan-
ding Sjk (see Remark 5.3 for a discussion of why using Riemann’s quartic relations instead of
Rjk would not work).

The Poincaré relations are the following equations for the off-diagonal elements of the period
matrix, for all i < j < k < l:

(τijτjkτklτli)
1/2 ± (τikτklτljτji)

1/2 ± (τilτljτjkτki)
1/2 = O

(
ε3
)
. (5.1)

Note that the Poincaré relations do not depend on the diagonal entries tm of the period matrix,
which is a priori surprising.

Similarly to the case of Schottky–Jung proportionalities, the signs of the square roots in the
Poincaré relation may not be chosen globally, and to get a well-defined polynomial equation in
the entries of the period matrix, one multiplies the relations (5.1) for all four possible choices of
square roots—this was explained by Igusa [Igu82, § 1.5, p. 167]. As in the derivation of (3.5), if
we denote the three terms in the Poincaré relation by

√
P1,
√
P2,
√
P3, the resulting equation

that is polynomial in the entries of the period matrix has the form

P 2
1 + P 2

2 + P 2
3 − 2P1P2 − 2P1P3 − 2P2P3 = O

(
ε9
)
. (5.2)

We prove the Poincaré relations by expanding the factors of Sjk near Dg.

Theorem 5.1. Let C be any curve in Mg sufficiently close to a union of g elliptic curves. Then
after an appropriate choice of A and B cycles, the period matrix τ of J(C) satisfies all Poincaré
relations (5.1).

In genus 4 there is a unique Poincaré relation, for the quadruple (ijkl) = (1234). We first
present a streamlined version of Rauch’s computation in [Rau71] deriving it from a Schottky–
Jung identity.
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Proof of Theorem 5.1 in genus 4. Applying the Schottky–Jung proportionalities for η4, given
by (3.4), to relation (2.2) gives the identity

0 = s34 :=(
θ [ 0 0 0 0

0 0 0 0 ] θ [ 0 0 0 0
1 1 1 1 ] θ [ 0 0 1 1

0 1 0 0 ] θ [ 0 0 1 1
1 0 1 1 ] θ [ 1 1 0 0

0 0 0 1 ] θ [ 1 1 0 0
1 1 1 0 ] θ [ 1 1 1 1

0 1 0 1 ] θ [ 1 1 1 1
1 0 1 0 ]

)1/2
±
(
θ [ 1 0 1 0

0 0 0 0 ] θ [ 1 0 1 0
1 1 1 1 ] θ [ 1 0 0 1

0 1 0 0 ] θ [ 1 0 0 1
1 0 1 1 ] θ [ 0 1 1 0

0 0 0 1 ] θ [ 0 1 1 0
1 1 1 0 ] θ [ 0 1 0 1

0 1 0 1 ] θ [ 0 1 0 1
1 0 1 0 ]

)1/2
±
(
θ [ 0 0 0 0

0 0 1 1 ] θ [ 0 0 0 0
1 1 0 0 ] θ [ 0 0 1 1

0 1 1 1 ] θ [ 0 0 1 1
1 0 0 0 ] θ [ 1 1 0 0

0 0 1 0 ] θ [ 1 1 0 0
1 1 0 1 ] θ [ 1 1 1 1

0 1 1 0 ] θ [ 1 1 1 1
1 0 0 1 ]

)1/2
.

Denoting by RR1, RR2, RR3 the three degree 8 monomials in theta constants appearing here,
we now use the expansion (4.1) for each theta constant involved in s34, computing up to linear
terms in τab, for all tm fixed. Note that for each monomial RRi, four of the theta characteristics
involved have all columns being even 1-characteristics, and the remaining four theta character-
istics have precisely two columns equal to [ 11 ]. As discussed in the previous section, for those
four theta constants where all columns are even, the lowest-degree term of the expansion is the
constant term, while for the remaining four theta constants, the lowest-degree term is linear
and equal to a multiple of τab, with columns

[ εa
δa

]
=
[ εb
δb

]
= [ 11 ]. For example, for RR1 in the

sixth characteristic involved, we get the term with τ12; in the seventh characteristic, the term
with τ24; in the fourth, τ34; and in the eighth, τ13. We thus compute the lowest-degree term of
the expansion of RR1 near D4 to be the product of these four linear terms and the four constant
terms from the expansion of the other theta constants. By checking that the number of times
in each product RRi that each column

[ εm
δm

]
is equal to each of the even 1-characteristics is equal

to two, this gives for the lowest-degree term

RR1 = (2πi)−4τ12τ24τ34τ13

·
4∏

m=1

(
θ [ 00 ] (tm)θ [ 01 ] (tm)θ [ 10 ] (tm)

)2 4∏
m=1

(
∂θ [ 11 ] (tm, z)

∂z
|z=0

)2

.

The lowest-order terms of RR2 and RR3 are similar. They have exactly the same factor in theta
constants and derivatives, while the entries of the period matrix that appear are

τ13τ23τ24τ14

from the second, sixth, seventh, and fourth theta constants appearing in the product RR2, and
similarly

τ14τ34τ12τ23

for RR3. Using Jacobi’s triple product identity (4.2), we see that the overall theta factor in each
of these is simply equal to the product

c :=

4∏
m=1

∏
[ εδ ]∈K+

1

θ4 [ εδ ] (tm) ,

which is non-zero for any t1, t2, t3, t4 in the upper half-plane. Up to this common factor, the square
root of the lowest-degree term of the expansion of each RRi is then equal to the corresponding
summand in the Poincaré relation (5.1) for the quadruple (1234). Thus, altogether, we have
computed the lowest-order term of the expansion

s34 = c
(
± (τ34τ12τ24τ13)

1/2 ± (τ13τ14τ23τ24)
1/2 ± (τ12τ14τ23τ34)

1/2
)

+O
(
ε3
)
.

Now recall that in genus 4, the identity S34 is obtained as a product of four factors of the form s34,
with different choices of signs. The expansion of each such factor near the diagonal is as above,
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with suitable choices of signs, and thus the expansion of the product of the four factors gives
exactly the Poincaré relation in its polynomial form (5.2).

Remark 5.2. Many other choices of 3-characteristics for the genus 3 Riemann’s quartic relation,
instead of (2.2), and different choices of η would also yield a Schottky–Jung identity that would
work in the above proof. One just needs to make sure that in each resulting RRi, precisely four
theta characteristics have all columns even and the remaining four characteristics have precisely
two columns equal to [ 11 ]. For generalizing to higher genus, to be able to deal with the small
Schottky locus rather than the big Schottky, we need to use the same 2-torsion point η for all
proportionalities, and thus in our approach the 3rd, 4th, . . . , gth columns of η should all be
equal, so that permuting them would leave η invariant. The computationally simplest choice of
such a 2-torsion point could be [ 000...0110...0 ], but using a computer, we checked that for all possible
Riemann’s quartic relations in genus 3, applying the Schottky–Jung proportionalities for the 2-
torsion point [ 00001100 ] to them cannot give, in genus 4, a Schottky–Jung identity where the columns
of RR1, RR2, RR3 satisfy this necessary combinatorial property. Thus our choice of ηg is the
simplest possible.

We now generalize this computation to arbitrary genus; note that this of course uses the
specifics of our choice of quartic identities Rjk and of the corresponding Schottky–Jung identi-
ties Sjk.

Proof of Theorem 5.1 for arbitrary genus. The proof is again by computing the lowest-order
terms of the appropriate expansions and crucially noticing that the cases when some of the
ε5, . . . , εg are equal to 1 lead to higher-order terms, as some of the theta constants involved in

s34 then have more [ 11 ] columns. Recall that S34 is the product of 23·2
g−4−1 terms of the form

s34 :=
∑

ε∈(Z/2Z)g−4

(
aε

(
θ
[
E 0 0 0 ε
0 0 0 0 0

]
θ
[
E 0 0 0 ε
1 1 1 1 1

]
θ
[
E 0 1 1 ε
0 1 0 0 0

]
θ
[
E 0 1 1 ε
1 0 1 1 1

]
· θ
[
1+E 1 0 0 ε
0 0 0 1 0

]
θ
[
1+E 1 0 0 ε
1 1 1 0 1

]
θ
[
1+E 1 1 1 ε
0 1 0 1 0

]
θ
[
1+E 1 1 1 ε
1 0 1 0 1

] )1/2
+ bε

(
θ
[
1+E 0 1 0 ε
0 0 0 0 0

]
θ
[
1+E 0 1 0 ε
1 1 1 1 1

]
θ
[
1+E 0 0 1 ε
0 1 0 0 0

]
θ
[
1+E 0 0 1 ε
1 0 1 1 1

]
· θ
[
E 1 1 0 ε
0 0 0 1 0

]
θ
[
E 1 1 0 ε
1 1 1 0 1

]
θ
[
E 1 0 1 ε
0 1 0 1 0

]
θ
[
E 1 0 1 ε
1 0 1 0 1

] )1/2
+ cε

(
θ
[
E 0 0 0 ε
0 0 1 1 0

]
θ
[
E 0 0 0 ε
1 1 0 0 1

]
θ
[
E 0 1 1 ε
0 1 1 1 0

]
θ
[
E 0 1 1 ε
1 0 0 0 1

]
· θ
[
1+E 1 0 0 ε
0 0 1 0 0

]
θ
[
1+E 1 0 0 ε
1 1 0 1 1

]
θ
[
1+E 1 1 1 ε
0 1 1 0 0

]
θ
[
1+E 1 1 1 ε
1 0 0 1 1

] )1/2)
,

for different choices of the signs aε, bε, cε. If ε = 0, then for all theta constants involved in
the three corresponding summands in s34, in columns 5, . . . , g only characteristics [ 00 ] and [ 01 ]
appear. Thus the lowest-order term for the expansion near Dg of each theta constant involved
is simply equal to the lowest term of the expansion of the genus 4 theta constant with the first
four columns as characteristics, times the suitable product of theta constants of t5, . . . , tg. Since
in each of the three summands, each of the columns 5, . . . , g takes each of the values [ 00 ] and [ 01 ]
exactly four times, the lowest-order term of the expansion near Dg of each of the three terms
with ε = 0 is equal to the expansion near D4 of the corresponding term in genus 4, times a factor
of
∏g
m=5 θ

2 [ 00 ] (tm)θ2 [ 01 ] (tm)—which is the same for these three terms.

If any of the ε5, . . . , εg are equal to 1, then in each of the three summands appearing in
the expression for s34 for such ε, four of the theta characteristics—those that have 1 on the
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bottom—will have extra columns equal to [ 11 ]. Thus the lowest-order term for the expansion of
such a summand near Dg would be of higher order, as explained after formula (4.1).

Hence, in the expansion of s34 near Dg, the only terms of degree 4 in τ
1/2
ab arise from the

case ε5 = · · · = εg = 0, and they are equal to the expansion of the expression for s34 in
genus 4, times

∏g
m=5 θ

2 [ 00 ] (tm)θ2 [ 01 ] (tm). Thus, the lowest-order term of the expansion near Dg
of S34—which is a product of 23·2

g−4−1 terms of the form s34, with different choices of signs—is
equal to the lowest-order term of the expansion of S34 in genus 4, taken to the power 23·2

g−4−3

(corresponding to the choices of signs aε, bε, cε for all ε 6= 0, which do not change the lowest-
order term of s34), times a power of

∏g
m=5 θ [ 00 ] (tm)θ [ 01 ] (tm). Since this product of genus 1

theta constants is never zero, the vanishing of the lowest-order term of the expansion near Dg
of S34 implies the vanishing of the power of the lowest-order term that appears in the Poincaré
relation for (1234). Thus the Poincaré relation for the quadruple (1234) holds, up to terms of
higher order. By interchanging the columns (1234) and (ijkl) of the characteristics involved, we
see that the correspondingly permuted Schottky–Jung identity implies the Poincaré identity for
any given quadruple (ijkl).

Remark 5.3. The proof above shows why applying the Schottky–Jung proportionalities for ηg
to Riemann’s quartic relations directly would not work. Indeed, if one were to take the genus 3
Riemann’s quartic relation (2.2) and extend the genus 3 characteristics [ αβ ] = [ 011100 ] and [ σµ ] =
[ 100001 ] to genus g − 1 simply by zero characteristics (or in fact in any other way), then instead
of R34, where only the sum over top genus (g − 4)-characteristics ε is taken, we would have
a quartic identity where the sum over all [ εδ ] ∈ Kg−4 is taken. Then the lowest-degree terms of
the expansion of s34 near the diagonal would arise if no column

[ εm
δm

]
or
[ εm
δm+1

]
is equal to [ 11 ];

thus, the lowest-degree terms would arise from the cases when all
[ εm
δm

]
are equal to [ 00 ] or [ 01 ].

But then for two monomials appearing in s34, where all columns are the same, except say

for
[
εg
δg

]
= [ 00 ] in one monomial versus

[
εg
δg

]
= [ 01 ] in the other, the lowest-degree term of the

expansion is exactly the same. Indeed, these two lowest-degree terms give the same expression
in τab, for 1 6 a < b 6 4, times the same product of theta constants in variables t5, . . . , tg−1, but
also times the same factor of θ2 [ 00 ] (tg)θ

2 [ 01 ] (tg) in both cases—as in each case both of these
characteristics appear four times under the square root. However, as the signs of the individual
square roots of degree 8 monomials cannot be determined, it could be that these two lowest-
degree terms simply cancel. Thus, it could be that the desired lowest-degree term of s34 would
cancel out, and the argument above would fail. Using Fay’s (generalized) Riemann theta formula,
or equivalently the doubling trick (see Remark 2.2), to obtain R34 allows us to overcome this
crucial difficulty.

For arbitrary genus g, there are
(
g
4

)
Poincaré relations. In particular, already for g = 5

only three out of the five Poincaré relations can be locally independent for dimension reasons.
Following Rauch’s ideas [RF74, p. 228] for g = 5, one can exhibit for any g > 4 a collection of

1
2(g − 3)(g − 2) = 1

2g(g + 1)− (3g − 3) = dimAg − dimJg .

Poincaré relations that are locally functionally independent.

Proposition 5.4. For any g > 4, the (g − 3)(g − 2)/2 Poincaré relations (5.1) corresponding
to the quadruples of the form (12jk) for all 3 6 j < k 6 g are functionally independent in
a neighborhood of a generic τ ∈ Dg.

In particular, the codimension of the locus in Ag determined by these Poincaré relations is
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locally equal to (g − 3)(g − 2)/2 near such τ , and the dimension at τ of the locus of period
matrices satisfying these Poincaré relations is equal to 3g − 3.

While it is possible to give a direct proof of this statement by showing that, locally, given
t1, . . . , tg, τ12, τ13, τ23, . . . , τ1g, τ2g, all the τab can be determined from this set of Poincaré relations,
this proposition follows from the proof of local functional independence of the corresponding Sjk,
given in the next section.

6. Schottky–Jung and Poincaré: Proof of the main theorem

In this section, we will prove the main theorem, Theorem 1.1, by showing that the lowest-order
terms of the expansion of Sjk near Dg give a collection of functionally independent relations.

Proof of Theorem 1.1. We first consider the genus 4 case. In this case, we only have one identity
S34, and Lemma 3.1 yields S34 = SJη4(R34). The full Taylor series expansion of S34 in the vari-
ables τjk, near the point τ = diag(t1, t2, t3, t4) ∈ Dg, for all tm fixed, is a series such that
its lowest-degree term has degree 8 in the τjk. By the computations in Section 5, this lowest-
degree term is equal to a non-zero multiple of the symmetrization (5.2) of the Poincaré relation.
Thus, the whole series is not identically zero, and consequently its zero locus is of codimen-
sion 1 in Th(Ag(4, 8))—hence of dimension 9. Since the zero locus of S34 contains the irreducible
9-dimensional locus J4, it follows that J4 must be an irreducible component of this zero locus.

For arbitrary genus g, by the proof of Theorem 5.1 we know that the lowest-order terms
of the expansions of Sjk near Dg are non-zero multiples of powers of the Poincaré relations for
quadruples (12jk). To prove that the Sjk are functionally independent near a generic point
of Dg, we can follow the idea of the argument given in [RF74, p. 227ff] (which is possible
now that we have found Schottky–Jung identities whose expansions give Poincaré relations,
and now that we have handled the issue of signs and ascertained suitable non-vanishing cor-
rectly).

Consider the Jacobian matrix of derivatives of the Sjk with respect to the variables τab
with 3 6 a < b 6 g, evaluated very close to a generic point of Dg, that is, for τii = ti
generic, for all 1 6 i 6 g, and for 0 < |τab| < ε � 1, for any 1 6 i < j 6 g. To compute
∂S34/∂τab for 3 6 a < b 6 g, note that the lowest-degree term is always zero except for the
case of ∂S34/∂τ34. Since each Sjk is obtained from S34 by permuting the columns, it follows
that to lowest order, the only non-zero partial derivative is ∂Sjk/∂τjk. Thus, the Jacobian ma-
trix is diagonal, plus terms of higher order in the off-diagonal entries τab of the period matrix.
Since we have assumed that all |τab| < ε, the determinant of this Jacobian matrix is equal
to the Jacobian of the lowest-order diagonal matrix, plus some O(ε). Since the determinant
of the diagonal matrix is non-zero, for sufficiently small ε, it thus follows that the Jacobian
determinant det(∂Sjk/∂τab) is non-zero, and thus that the equations Sjk are functionally inde-
pendent.
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