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Euler-symmetric projective varieties

Baohua Fu and Jun-Muk Hwang

Abstract

Euler-symmetric projective varieties are nondegenerate projective varieties admitting
many C×-actions of Euler type. They are quasi-homogeneous and uniquely determined
by their fundamental forms at a general point. We show that Euler-symmetric projec-
tive varieties can be classified by symbol systems, a class of algebraic objects modeled
on the systems of fundamental forms at general points of projective varieties. We study
relations between the algebraic properties of symbol systems and the geometric prop-
erties of Euler-symmetric projective varieties. We also describe the relation between
Euler-symmetric projective varieties of dimension n and equivariant compactifications
of the vector group Gn

a .

1. Introduction

In [FH18], the authors introduced the notion of quadratically symmetric varieties in order to
link the study of special birational transformations to the prolongations of linear Lie algebras.
A quadratically symmetric variety is quasi-homogeneous, and it is homogeneous if and only if it is
one of the Hermitian symmetric spaces of rank 2. Thus we may say that quadratically symmetric
varieties are quasi-homogeneous generalizations of Hermitian symmetric spaces of rank 2.

The goal of this article is to introduce Euler-symmetric projective varieties, which are quasi-
homogeneous generalizations of Hermitian symmetric spaces of arbitrary ranks. Euler-symmetric
projective varieties are nondegenerate projective varieties admitting many C×-actions of Euler
type (Definition 2.1).

We show that any Euler-symmetric projective variety is uniquely determined by its fundamen-
tal forms at a general point (Proposition 2.7). By Cartan’s theorem (Theorem 3.3), the collection
of these fundamental forms satisfies the prolongation property. To make this more systematic,
we introduce the notion of a symbol system, formalizing the prolongation property. For any
symbol system F, we construct an Euler-symmetric projective variety M(F) whose fundamental
forms at general points are isomorphic to F (Theorem 3.7). This reduces the classification of
Euler-symmetric projective varieties to that of symbol systems.

The relation between the algebraic properties of a symbol system and the geometric properties
of the associated Euler-symmetric projective variety is very intriguing. A key question is which
symbol systems give rise to nonsingular Euler-symmetric projective varieties. We show that
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for a nonsingular Euler-symmetric projective variety, the base locus of the symbol system is
nonsingular (Proposition 4.4).

The most important geometric property of Euler-symmetric projective varieties is that they
are equivariant compactifications of vector groups. Conversely, we show that an n-dimensional
prime Fano manifold of Picard number 1 is Euler symmetric if and only if it is an equivariant
compactification of Gn

a (Corollary 5.6).

Our results show that the interaction between the algebra of a symbol system F and the
geometry of the Euler-symmetric projective variety M(F) is worth investigating. Among other
things, this will give new insights into fundamental forms of projective varieties. We mention
that we have touched on only a small number of issues in this article: there remain a wide range
of questions to be explored in this interaction.

2. Euler-symmetric projective varieties and systems of fundamental forms

Definition 2.1. Let Z ⊂ PV be a projective variety. For a nonsingular point x ∈ Z, a C×-action
on Z coming from a multiplicative subgroup of GL(V ) is said to be of Euler type at x if x is an
isolated fixed point of the induced action on Z and the isotropic action on the tangent space TxZ
is by scalar multiplication (that is, the induced action on PTxZ is trivial). We say that Z ⊂ PV
is Euler symmetric if for a general point x ∈ Z, there exists a C×-action on Z of Euler type at x.

The example below shows that there are at least as many nonsingular Euler-symmetric pro-
jective varieties as nonsingular projective varieties.

Example 2.2. Let S ⊂ Pn−1 ⊂ Pn be a nonsingular algebraic subset in a hyperplane of Pn. For
each point x ∈ Pn \ Pn−1, the scalar multiplication on the affine space Pn \ Pn−1 regarded as
a vector space with the origin at x can be extended to a C×-action

Ax : C× × Pn −→ Pn

which fixes every point of the hyperplane Pn−1. Let β : BlS(Pn) → Pn be the blowup of Pn
along S, and let E be the exceptional divisor. For suitable positive integers a and b, the line
bundle L := O(−aE)⊗ β∗OPn(b) is very ample. The action Ax induces an action on the image

Z ⊂ PH0
(
BlS
(
Pn
)
, L
)∗

of the projective embedding, which is of Euler type at x ∈ Z. Thus Z is an Euler-symmetric
projective variety.

We will give more examples of Euler-symmetric projective varieties in the next section.

Proposition 2.3. An Euler-symmetric projective variety Z ⊂ PV is quasi-homogeneous; that
is, the linear automorphism group Aut(Z) ⊂ PGL(V ) acts on Z with a dense open orbit.

Proof. Let G ⊂ PGL(V ) be the identity component of the group of projective automorphisms
of Z. We need to show that G has an open orbit on Z. By the general structure of an algebraic
group action, there exists a G-stable Zariski-open subset Zo ⊂ Z such that for any x ∈ Zo, the
intersection of the orbit G ·x and Zo is a closed subset in Zo. For a general x ∈ Zo, let Ax ⊂ G be
a multiplicative subgroup inducing a C×-action of Euler type at x. From the Bia lynicki-Birula
decomposition theorem for C×-action [Bia73], there exists an open neighborhood U ⊂ Zo of x
with holomorphic coordinates z1, . . . , zn, for n := dimZ, on U such that the orbits of Ax are
radial lines through x = (z1 = · · · = zn = 0) in these coordinates. Thus for any point y ∈ U \{x},
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Euler-symmetric projective varieties

the closure of the orbit Ax · y ⊂ G · y contains x. Since the G-orbit of y is closed in Zo, we see
that x ∈ G · y, implying y ∈ G · x. Thus G · x contains an open subset in Z.

To describe Euler-symmetric projective varieties explicitly, it is convenient to use fundamental
forms, the definition of which we recall below (see [IL03, Section 3.5] or [LM03, Section 2.1]).

Definition 2.4. Let x ∈ Z ⊂ PV be a nonsingular point of a nondegenerate projective variety.
Let L be the line bundle on Z given by the restriction of the hyperplane line bundle on PV . For
each nonnegative integer k, let mk

x,Z be the kth power of the maximal ideal mx,Z . For a section

s ∈ H0(Z,L), let jkx(s) be the k-jet of s at x such that j0x(s) = sx ∈ Lx. We have a descending
filtration of the dual space V ∗ ⊂ H0(Z,L) by

V ∗ ∩Ker
(
jkx
)
⊂ V ∗ ∩Ker

(
jk−1x

)
.

The induced homomorphism(
V ∗ ∩Ker

(
jk−1x

))
/
(
V ∗ ∩Ker

(
jkx
))
−→ Lx ⊗ Symk T ∗xZ

is injective. For each k > 2, the subspace F kx ⊂ Symk T ∗xZ defined by the image of this homomor-
phism is called the kth fundamental form of Z at x. For convenience, set F 0

x = Sym0 T ∗xZ = C
and F 1

x = Sym1 T ∗xZ = T ∗xZ. The collection of subspaces

Fx := ⊕k>0F
k
x ⊂ ⊕k>0 Symk T ∗xZ

is called the system of fundamental forms of Z at x.

It is straightforward to translate this definition of fundamental forms into the language of
inhomogeneous coordinates, as follows.

Lemma 2.5. Let x ∈ Z ⊂ PV be a nonsingular point of a nondegenerate projective variety. We
can choose

(a) positive integers 1 = m1 < m2 < · · · < mr and

n1 = n = dimZ, n2, . . . , nr satisfying dimPV = n1 + · · ·+ nr ;

(b) an inhomogeneous coordinate system(
z
(1)
1 , . . . , z(1)n1

, z
(2)
1 , . . . , z(2)n2

, . . . , z
(r)
1 , . . . , z(r)nr

)
on PV such that

(b1) x =
(
z
(i)
j = 0, 1 6 i 6 r, 1 6 j 6 ni

)
;

(b2) the embedded tangent space TxZ of Z at x is given by TxZ =
(
z
(i)
j = 0, 2 6 i 6 r, 1 6

j 6 ni
)
;

(c) holomorphic functions

hij(z1, . . . , zn) for 2 6 i 6 r , 1 6 j 6 ni ,

in the variables z1 := z
(1)
1 , . . . , zn := z

(1)
n defined near the origin of TxZ such that

(c1) the germ of Z at x is defined by the equations

z
(i)
j = hij(z1, . . . , zn) for 2 6 i 6 r , 1 6 j 6 ni ;

(c2) for each i with 2 6 i 6 r, the lowest-order terms of hij , for 1 6 j 6 ni, are ni linearly
independent homogeneous polynomials of degree mi in the variables z1, . . . , zn.
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Then for each 2 6 i 6 r, the collection of homogeneous polynomials of degree mi arising as the
lowest-order terms of hij for 1 6 j 6 ni is exactly the mith fundamental form Fmi

x (and F kx = 0
for k 6∈ {0, 1,m1, . . . ,mr}).

Definition 2.6. Let Z1, Z2 ⊂ PV be two projective varieties of equal dimension. Let x1 ∈ Z1

and x2 ∈ Z2 be nonsingular points. We say that the systems of fundamental forms Fx1 and Fx2

are isomorphic if there exists a linear isomorphism ϕ : T ∗x1Z1 −→ T ∗x2Z2 such that the induced
isomorphism

⊕k>0 Symk T ∗x1Z1 → ⊕k>0 Symk T ∗x2Z2

sends Fx1 isomorphically to Fx2 .

Proposition 2.7. Let Z1 and Z2 be two Euler-symmetric projective varieties in PV of equal
dimension. Let x1 ∈ Z1 and x2 ∈ Z2 be general points. If Fx1 and Fx2 are isomorphic in the
sense of Definition 2.6, then Z1 and Z2 are isomorphic by a projective transformation on PV .

Proof. If there exists a C×-action on a nondegenerate variety Z ⊂ PV which is of Euler type
at a nonsingular point x ∈ Z, the induced action on ⊕k>0 Symk T ∗xZ preserves the subspaces
V ∗ ∩ Ker

(
jkx
)

and Fx in Definition 2.4. Thus in Lemma 2.5, we can choose the inhomogeneous

coordinates z
(i)
j to be eigenfunctions of the C×-action such that an element s ∈ C× acts by

z
(i)
j 7→ sdijz

(i)
j for some integer dij . For the germ of Z near x to be preserved under this C×-action,

the holomorphic function hij in Lemma 2.5(c) must be a homogeneous polynomial of degree mi

(that is, all higher-order terms vanish). Thus such a Z is determined by the isomorphism type
of the system of fundamental forms at x, up to the action of GL(V ).

3. Euler-symmetric projective variety determined by a symbol system

Definition 3.1. Let W be a vector space. For w ∈ W , the contraction homomorphism ιw :
Symk+1W ∗ → SymkW ∗ sends ϕ ∈ Symk+1W ∗ to ιwϕ ∈ SymkW ∗ defined by

ιwϕ(w1, . . . , wk) = ϕ(w,w1, . . . , wk)

for any w1, . . . , wk ∈ W . By convention, we define ιw
(

Sym0W ∗
)

= 0. For a subspace F ⊂
SymkW ∗ of symmetric k-linear forms on W , define its prolongation prolong(F ) ⊂ Symk+1W ∗

as the subspace consisting of symmetric (k + 1)-linear forms ϕ on W satisfying ιwϕ ∈ F for any
w ∈W ; that is,

prolong(F ) :=
⋂
w∈W

ι−1w (F ) .

Definition 3.2. Let W be a vector space. Fix a natural number r. A subspace

F = ⊕k>0F
k ⊂ ⊕k>0 SymkW ∗

with F 0 = C = Sym0W ∗, F 1 = W ∗, F r 6= 0, and F r+i = 0 for all i > 1 is called a symbol system
of rank r if F k+1 ⊂ prolong

(
F k
)

for each 1 6 k 6 r or, equivalently, if ιwF ⊂ F for any w ∈W .

Natural examples of symbol systems are provided by the following classical result due to
Cartan ([LM03, Section 2.1.3, p. 68] or [IL03, Exercise 3.5.10]).

Theorem 3.3. Let Z ⊂ PV be a nondegenerate subvariety, and let x ∈ Z be a general point.
Then the system of fundamental forms Fx = ⊕k>0F

k
x is a symbol system of rank r for some

natural number r > 1. In particular, we have ni > 1 and mi = i for all 1 6 i 6 r in Lemma 2.5.
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Remark 3.4. Lemma 2.5 shows that there is essentially no restriction on fundamental forms
at nonsingular points of projective varieties: any collection of subspaces F k ⊂ SymkW ∗, for
2 6 k 6 r, can be realized as a system of fundamental forms at some nonsingular point of some
projective variety. On the other hand, Theorem 3.3 says that the system of fundamental forms
at a general point of a projective variety cannot be arbitrary: it has to be a symbol system. Is
there any other restriction? Theorem 3.7 below shows that there is no other restriction.

Lemma 3.5. Let F be a symbol system as in Definition 3.2. For an element w ∈ W , the jth
composition ιjw := ιw ◦ · · · ◦ ιw sends F k to F k−j for each k, where we set F−i = 0 if i > 1. Then
for each positive integer j and u, v ∈W ,

ιjv+u =

j∑
l=0

(
j

l

)
ιlv ◦ ιj−lu .

Proof. For any ϕ ∈ F k and v, u ∈W , we have

ιjv+u(ϕ) = ϕ
(
v + u, . . . , v + u︸ ︷︷ ︸

j

, . . .
)

=

j∑
l=0

(
j

l

)
ϕ
(
v, . . . , v︸ ︷︷ ︸

l

, u, . . . , u︸ ︷︷ ︸
j−l

, . . .
)
,

which implies the desired equality.

Definition 3.6. In Lemma 3.5, the restriction of ιkw to F k determines an element in
(
F k
)∗

, which

is just the map ϕ 7→ ϕ(w, . . . , w). By abuse of notation, we will just denote it by ιkw ∈
(
F k
)∗

if
no confusion arises. Define a rational map

φF : P(C⊕W ) 99K P
(
C⊕W ⊕

(
F 2
)∗ ⊕ · · · ⊕ (F r)∗)

[t : w] 7−→
[
tr : tr−1w : tr−2ι2w : · · · : tιr−1w : ιrw

]
.

Write VF := C ⊕ W ⊕
(
F 2
)∗ ⊕ · · · ⊕ (F r)∗. We will denote the proper image of the rational

map φF by M(F) ⊂ PVF.

Theorem 3.7. In Definition 3.6, let o = [1 : 0 : · · · : 0] ∈M(F) be the point φF([t = 1 : w = 0]).

(i) The natural action of the vector group W on P(C⊕W ) can be extended to an action of W
on PVF preserving M(F) such that the orbit of o is an open subset biregular to W .

(ii) The C×-action on W with weight 1 induces a C×-action on M(F) of Euler type at o,
making M(F) Euler-symmetric.

(iii) The system of fundamental forms of M(F) ⊂ PVF at o is isomorphic to the symbol system F.

Conversely, any Euler-symmetric projective variety is of the formM(F) for some symbol system F
on a vector space W .

Proof. Viewing an element fk−j ∈
(
F k−j

)∗
, with k > j > 0, as a linear map F k−j → C, we

define the composition fk−j ◦ ιjw as an element in
(
F k
)∗

. Using this, we define an action of W

on PVF as follows. For v ∈W and z =
[
t : w : f2 : · · · : f r

]
∈ PVF with fk ∈

(
F k
)∗

, define

gv · z :=
[
t : w + tv : gzv · f2 : · · · : gzv · f r

]
,

where for each 2 6 k 6 r,

gzv · fk :=
k∑
l=2

(
k

l

)
f l ◦ ιk−lv + kιw ◦ ιk−1v + tιkv .
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We have g0 · z = z for all z ∈ PVF.

We claim gv+u · z = gu · (gv · z) for all u, v ∈W . By definition,

gu · (gv · z) = gu ·
[
t : w + tv : · · · : gzv · fk : · · ·

]
=
[
t : w + tv + tu : · · · : g(gv ·z)u ·

(
gzv · fk

)
: · · ·

]
,

where

g(gv ·z)u ·
(
gzv · fk

)
=

k∑
j=2

(
k

j

)( j∑
l=2

(
j

l

)
f l ◦ ιj−lv + jιw ◦ ιj−1v + tιjv

)
◦ ιk−ju + kιw+tv ◦ ιk−1u + tιku .

By Lemma 3.5, this can be simplified to

k∑
j=2

j∑
l=2

(
k

j

)(
j

l

)
f l ◦ ιj−lv ◦ ιk−ju +

k∑
j=2

(
k

j

)
(jιw ◦ ιj−1v ◦ ιk−ju + tιjv ◦ ιk−ju ) + kιw+tv ◦ ιk−1u + tιku

=

k∑
j=2

j∑
l=2

(
k

j

)(
j

l

)
f l ◦ ιj−lv ◦ ιk−ju + k

k−1∑
j=0

(
k − 1

j

)
ιw ◦ ιjv ◦ ιk−1−ju + t

k∑
i=0

(
k

i

)
ιiv ◦ ιk−iu

=
k∑
j=2

j∑
l=2

(
k

j

)(
j

l

)
f l ◦ ιj−lv ◦ ιk−ju + kιw ◦ ιk−1v+u + tιkv+u

=
k∑
l=2

f l ◦

(
k∑
j=l

(
k

j

)(
j

l

)
ιj−lv ◦ ιk−ju

)
+ kιw ◦ ιk−1v+u + tιkv+u

=
k∑
l=2

f l ◦

(
k−l∑
i=0

(
k

l

)(
k − l
i

)
ιiv ◦ ιk−l−iu

)
+ kιw ◦ ιk−1v+u + tιkv+u

=
k∑
l=2

(
k

l

)
f l ◦ ιk−lv+u + kιw ◦ ιk−1v+u + tιkv+u

= gzu+v · fk .

This proves the claim, which verifies that v 7→ gv is an action of W on PVF.

Now, we show that this action of W preserves M(F). Take [t : w] ∈ P(C ⊕W ) general and
v ∈W , then

gv · φF([t : w]) = gv ·
([
tr : tr−1w : tr−2ι2w : · · · : tr−kιkw : · · · : tιr−1w : ιrw

])
=
[
tr : tr−1(w + tv) : · · · : gφF([t:w])v ·

(
tr−kιkw

)
: · · ·

]
,

where

gφF([t:w])v ·
(
tr−kιkw

)
=

k∑
l=2

(
k

l

)
tr−lιlw ◦ ιk−lv + kιtr−1w ◦ ιk−1v + trιkv .

By Lemma 3.5, this is equal to tr−kιkw+tv, yielding

gv · φF([t : w]) =
[
tr : tr−1(w + tv) : · · · : tr−kιkw+tv : · · ·

]
= φF([t : w + tv]) .

This implies that the action of W on PVF preserves M(F) and φF is W -equivariant. Note that φF
maps W ⊂ P(C⊕W ) biregularly to an open subset of M(F). This completes the proof of part (i).

Consider the C×-action on P(C ⊕ W ) given by λ · [t : w] = [t : λw]. This action induces
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a C×-action on PVF by

λ ·
[
t : w : f2 : · · · : f r

]
=
[
t : λw : λ2f2 : · · · : λrf r

]
.

It follows that λ · φF([t : w]) = φF(λ · [t : w]); hence, M(F) is C×-invariant. This C×-action
has an isolated fixed point at o, and it acts on ToM(F) as the scalar multiplication. Thus it is
a C×-action of Euler type at o. Now, we can use the W -action to translate this C×-action to any
point in this open orbit; hence, M(F) is Euler symmetric, proving part (ii).

On an open subset, the variety M(F) is the graph of the map w 7→
(
ι2w, . . . , ι

r
w

)
. By Lem-

ma 2.5, this shows that the system of fundamental forms of M(F) ⊂ PVF is isomorphic to the
symbol system F, proving part (iii).

Finally, for an Euler-symmetric projective variety Z ⊂ PV , let F be the symbol system iso-
morphic to the system of fundamental forms of Z at a general point. Then Z ⊂ PV is isomorphic
to M(F) ⊂ PVF by Proposition 2.7.

Definition 3.8. An Euler-symmetric projective variety Z ⊂ PV has rank r if its (r + 1)st
fundamental form at a general point is zero. Equivalently, the Euler-symmetric projective va-
riety M(F) associated with a symbol system F has rank r if the symbol system F has rank r.

Example 3.9. A symbol system of rank 2 is just a subspace of Sym2W ∗. In this case, our M(F)
is reduced to the varieties constructed in [Lan94, Section 3]. Euler-symmetric projective varieties
of rank 2 are exactly quadratically symmetric varieties in [FH18]. A complete classification of
nonsingular Euler-symmetric varieties of rank 2 is given in [FH18, Theorem 7.8].

Example 3.10. For a nonzero homogeneous polynomial P ∈ SymrW ∗ of degree r, we can define
the symbol system FP of rank r by setting F r = 〈P 〉 and

F r−j = 〈ιw1 ◦ · · · ◦ ιwjP, w1, . . . , wj ∈W 〉

for all 1 6 j 6 r− 2. When r = 3 and P is nondegenerate in a suitable sense, the variety M(FP )
is exactly the projective Legendrian variety studied in [LM07, Section 4.3].

Example 3.11. An Euler-symmetric projective curve of rank r is the rational normal curve in Pr.

Example 3.12. By Theorem 3.7, a nonsingular Euler-symmetric projective surface is biregular to
successive blowups of P2 or a Hirzebruch surface Fn along fixed points of the G2

a-action. Their
classification as projective surfaces does not seem straightforward.

Example 3.13. A rational homogeneous projective variety is Euler symmetric if and only if it
is Hermitian symmetric. In fact, if G/P is Euler symmetric, then by Theorem 3.7, it is an
equivariant compactification of a vector group; hence, it is Hermitian symmetric by [Arz11].
Conversely, under projective embeddings equivariant with respect to their automorphism groups,
all Hermitian symmetric spaces are Euler symmetric.

Example 3.14. A nondegenerate hypersurface is Euler symmetric if and only if it is a nonde-
generate hyperquadric. In fact, if M(F) ⊂ P(VF) is a hypersurface, then F is of rank 2 and
F 2 = 〈Q〉. If we write the coordinates of PVF as [z0 : z1 : · · · : zn : u], then M(F) is the hyper-
quadric z0u = Q(z1, . . . , zn). Conversely, if Z ⊂ PV is a nondegenerate hyperquadric, then up
to a change of coordinates, Z is given by the equation z0u = Q(z1, . . . , zn). It is then exactly
the M(F) with F of rank 2 and F 2 = 〈Q〉.
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4. Base locus of a symbol system

By Theorem 3.7, there is a natural 1-to-1 correspondence between symbol systems and Euler-
symmetric projective varieties. It is interesting to investigate how the algebraic properties of
a symbol system are reflected in the geometric properties of the corresponding Euler-symmetric
projective variety, and vice versa. In this section, we look at this problem through the base locus
of a symbol system and rational curves on the Euler-symmetric projective variety.

Definition 4.1. For a symbol system F = ⊕k>0F
k of rank r, define the projective algebraic

subset Bs
(
F k
)
⊂ PW to be the affine cone in W{

w ∈W |ϕ(w, . . . , w) = 0 for all ϕ ∈ F k
}
.

By the definition of a symbol system, we have the inclusion Bs
(
F k
)
⊂ Bs

(
F k+1

)
for each k ∈ N.

The order of the symbol system F is the largest natural number m such that Bs
(
Fm
)

= ∅. As
Bs
(
F 1
)

= Bs(W ∗) = ∅ and Bs
(
F r+1

)
= PW , the order is less than of equal to the rank r of

the symbol system. The base locus of F is the nonempty projective algebraic subset Bs(F) :=
Bs
(
Fm+1

)
in PW , where m is the order of F.

Proposition 4.2. If the order of F is equal to the rank r of F, then the normalization of M(F)
is a projective space. If, furthermore, M(F) is nonsingular, then M(F) is a biregular projection
of the rth Veronese variety.

Proof. Note that the birational map φF : P(C ⊕W ) 99K M(F) in Definition 3.6 has base locus
Bs
(
F r
)
. Our assumption says that Bs

(
F r
)

= ∅. Thus φF is a birational morphism, which is
finite over its image because it contracts no curves on P(C ⊕W ). This implies that φF is the
normalization map. If M(F) is nonsingular, then φF is an isomorphism. Note that M(F) ⊂ P(VF)
is the linear projection from the rth Veronese embedding P(C⊕W )→ P(Symr(C⊕W )), which
is biregular as φF is an isomorphism.

Proposition 4.3. Let Ao ⊂ GL(VF) be a multiplicative subgroup corresponding to a C×-action
on M(F) of Euler type at o := [1 : 0 : · · · : 0] ∈ M(F), from Theorem 3.7(ii). In terms of the
natural identification of ToM(F) and W from Definition 3.6 (uniquely determined up to a scalar
multiple), we have the following:

(i) If the Ao-stable curve on M(F) through o in the direction of a nonzero vector w ∈ W has
degree at most k, then w ∈ Bs

(
F k+1

)
.

(ii) Let m be the order of F. Then for any nonzero vector w belonging to Bs
(
Fm+1

)
, the

Ao-stable curve on M(F) through o in the direction of w is a rational normal curve of
degree m.

It follows that the rank of F is the maximal degree of Ao-stable curves through o and that the
order of F is the minimal degree of Ao-stable curves through o.

Proof. From Definition 3.6 and Theorem 3.7(ii), the Ao-stable curve in the direction of a nonzero
vector w ∈W is the closure of the curve[

1 : λw : λ2ι2w : · · · : λrιrw
]
, λ ∈ C× .

Both part (i) and part (ii) follow immediately from the above expression.

Proposition 4.4. If M(F) is nonsingular, then the base locus Bs(F) is nonsingular.
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Proof. Let Ao ⊂ GL(VF) be as in Proposition 4.3. Let Rk be the set of all rational curves of
degree k through o on M(F). Assume Rk−1 = ∅ and Rk 6= ∅. Then Rk is a complete variety, and
Ao acts on each irreducible component of Rk with nonempty fixed points. From Proposition 4.3,
the order of F is k, and a general member of each irreducible component of Rk is a rational
normal curve of degree k.

Since members of Rk are rational curves of minimal degree through o on the nonsingular
projective variety M(F), a general member C of each irreducible component of Rk has normal
bundle of type O(1)p ⊕Oq for some nonnegative integers p and q (for example, [HM98, Propo-
sition 6]). We claim that C is Ao-stable. Otherwise, we have a nontrivial family of members Ct,
for t ∈ Ao, of Rk. From the type of the normal bundle, the tangent directions of curves Ct at o
are distinct. This is impossible because Ao acts trivially on PToM(F). This proves the claim.

Since C is a general member of Rk, the claim implies that all members of Rk are Ao-stable.
From Bia lynicki-Birula’s structure theory [Bia73] of C×-actions on nonsingular projective vari-
eties and the fact that members of Rk are exactly Ao-stable curves of minimal degree through o,
we see that the set of the tangent directions to members of Rk is nonsingular, being biregular
to some components of the fixed point set of Ao-action on M(F). By Proposition 4.3, this set is
exactly Bs(F).

Definition 4.5. A symbol system F of rank r and of order 1 is saturated if

H0(PW, IBs(F) ⊗O(2)) = F 2 and F k+1 = prolong
(
F k
)

for all k > 2.

Proposition 4.6. Let F be a saturated symbol system. If the Picard group of M(F) is discrete
(for example, if M(F) is normal), then the embedding M(F) ⊂ PVF is linearly normal.

Proof. Let L be the hyperplane line bundle of PVF restricted to M(F). Let Ṽ be the dual space
of H0(M(F), L) and j : M(F) ⊂ PṼ be the linearly normal embedding. Since the Picard group is
discrete, the connected automorphism group Auto(M(F)) acts on PṼ and a C×-action of Euler
type at a general point x ∈M(F) ⊂ PVF induces a C×-action of Euler type for the embedding j.
It follows that the image j(M(F)) ⊂ PṼ is an Euler-symmetric variety. Let F̃ =

(
F̃ k ⊂ SymkW ∗

)
be the associated symbol system. By Proposition 4.3, we have the equality Bs

(
F̃
)

= Bs(F). The
saturatedness gives the inclusion

F̃ 2 ⊂ H0(PW, IBs(F) ⊗O(2)) = F 2

and successive inclusions

F̃ k+1 ⊂ prolong
(
F̃ k
)
⊂ prolong

(
F k
)

= F k+1 .

It follows that dim Ṽ 6 dimVF, which implies VF = Ṽ . This shows that M(F) ⊂ PVF is linearly
normal.

It remains to show that if M(F) is normal, then Pic(M(F)) is discrete. Let S = Sing(M(F)),
which is of codimension at least 2. Let U = M(F) \ S be the smooth locus, which contains an
open subset U0 isomorphic to W . For n = dimW , the Chow group CHn−1(U \ U0) is discrete
because it is generated by the irreducible components of U \ U0 that have dimension n − 1. By
the localization exact sequence of Chow groups

CHn−1(U \ U0)→ CHn−1(U) ' Pic(U)→ CHn−1(U0) ' Pic(U0) = 0 ,

we see that Pic(U) is discrete. As M(F) is normal, the Picard group Pic(M(F)) is identified
with Cartier divisor classes on M(F); hence, it is a subgroup of the (Weil) divisor class group
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Cl(M(F)). As S has codimension at least 2, we have Cl(M(F)) = Cl(U) = Pic(U), which is
discrete, proving the claim.

Example 4.7. The minimal projective embedding of an irreducible Hermitian symmetric space
(also called a minuscule variety) other than projective space is given by a saturated symbol
system (see [LM03, Theorem 3.1 and Corollary 3.6]).

Remark 4.8. Is the converse of Proposition 4.6 true under some geometric conditions on M(F)?
Recall that a prime Fano manifold is a nonsingular projective subvariety X ⊂ PN covered by
lines such that Pic(X) ' Z〈OX(1)〉. The projective subvarieties in Example 4.7 are examples of
prime Fano manifolds. A natural question is: If M(F) ⊂ PVF is a linearly normal prime Fano
manifold, is F saturated? The following example from [PR13] is not a prime Fano manifold.

Example 4.9. Let W be a vector space of dimension n with coordinates x1, . . . , xn. Consider the
symbol system F defined by

F 2 =
〈
x21, x1x2, . . . , x1xn

〉
and F 3 =

〈
x31
〉
.

The base locus is the hyperplane {x1 = 0} in PW ; hence, H0(PW, IBs(F) ⊗O(2)) = F 2. But F
is not saturated because

x31, x
2
1x2, . . . , x

2
1xn ∈ prolong

(
F 2
)
.

The associated Euler-symmetric variety M(F) is a rational normal scroll [PR13, Theorem 5.2],
which is linearly normal.

5. Equivariant compactifications of vector groups

By Theorem 3.7, every Euler-symmetric projective variety Z is an equivariant compactification
of a vector group; that is, there exists an action of the vector group W , where dimW = dimZ,
on Z with an open orbit. Is the converse also true? In [HT99, Section 4.1], it is pointed out
that there exists an equivariant compactification of G1

a, a singular curve, which does not admit
G1
a-equivariant projective embeddings. By [Baz13], there are many singular cubic hypersurfaces

which are equivariant compactifications of vector groups, but by Example 3.14, they are not
Euler symmetric. Thus it seems reasonable to exclude singular varieties. We propose the following
conjecture.

Conjecture 5.1. Let X be a Fano manifold of Picard number 1 which is an equivariant com-
pactification of a vector group. Then X can be realized as an Euler-symmetric projective variety
under a suitable projective embedding.

In this section, we show that the conjecture holds under one technical assumption, formulated
in terms of varieties of minimal rational tangents (VMRT for short).

Definition 5.2. Let X be a uniruled projective manifold. An irreducible component K of the
space of rational curves on X is called a minimal rational component if the subscheme Kx of K
parameterizing curves passing through a general point x ∈ X is nonempty and proper. Curves
parameterized by K will be called minimal rational curves. Let ρ : U → K be the universal
family and µ : U → X the evaluation map. The tangent map τ : U 99K PT (X) is defined by
τ(u) =

[
Tµ(u)

(
µ
(
ρ−1ρ(u)

))]
∈ PTµ(u)(X). The closure C ⊂ PT (X) of its image is the VMRT-

structure onX. The natural projection C → X is a proper surjective morphism, and a general fiber
Cx ⊂ PTx(X) is called the VMRT at the point x ∈ X. The VMRT-structure C is locally flat if there
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exist an analytical open subset U of X with an open immersion φ : U → Cn, where n = dimX,
and a projective subvariety Y ⊂ Pn−1 with dimY = dim Cx such that φ∗ : PT (U) → PT (Cn)
maps C|U into the trivial fiber subbundle Cn × Y of the trivial projective bundle PT (Cn) =
Cn × Pn−1.

The concept of VMRT is useful to us via the Cartan–Fubini type extension theorem [HM01,
Theorem 1.2]. We will quote a simpler version, [FH12, Theorem 6.8].

Theorem 5.3. Let X1 and X2 be two Fano manifolds of Picard number 1, different from pro-
jective spaces. Let K1 and K2 be families of minimal rational curves on X1 and X2, respectively.
Assume that for a general point x ∈ X1, the VMRT Cx ⊂ PTx(X1) is irreducible and nonsin-
gular. Let U1 ⊂ X1 and U2 ⊂ X2 be connected analytical open subsets. Suppose that there
exists a biholomorphic map ϕ : U1 → U2 such that for a general point x ∈ U1, the differen-
tial dϕx : PTx(U1) → PTϕ(x)(U2) sends Cx isomorphically to Cϕ(x). Then there exists a biregular
morphism Φ: X1 → X2 such that ϕ = Φ|U1 .

Now, we study some basic properties of equivariant compactifications of vector groups of
Picard number 1.

Proposition 5.4. LetX be a Fano manifold of Picard number 1 which is an equivariant compact-
ification of the vector group W with an open orbit Xo ⊂ X. Let K and C be as in Definition 5.2.
Assuming that the VMRT Cx at a point x ∈ Xo is nonsingular, we have the following:

(i) The VMRT-structure C is locally flat.

(ii) The VMRT Cx ⊂ PTxX at a general point x ∈ X is nondegenerate and irreducible.

(iii) The C×-action on the vector space W by scalar multiplication induces a C×-action on X.

(iv) A member of Kx, for x ∈ Xo, is the closure of the image of a 1-dimensional subspace in W .

(v) Let D ⊂ X be the complement of the open orbit Xo. Then D is an irreducible divisor which
is an ample generator of Pic(X). If C ⊂ X is a minimal rational curve, then D · C = 1.

(vi) The map φ|D| : X 99K PH0(X,D)∗ is birational onto its image; it sends a general member
of K on X to a line in PH0(X,D)∗.

Proof. (i) The W -action on PTX preserves the VMRT-structure C ⊂ PTX. Thus the W -action
on Xo trivializes C|Xo as a subbundle of PTXo ∼= PTW .

(ii) By [FH14, Proposition 2.2], the VMRT Cx is irreducible. If Cx ⊂ PTxX is degenerate,
then the distribution spanned by the VMRT on Xo is integrable since C is locally flat. This
contradicts [HM98, Proposition 13].

(iii) The induced C×-action on Xo preserves C|Xo ⊂ PTXo because C|Xo corresponds to
a trivial subbundle of PTW by statement (i). By the assumption that Cx is nonsingular and
statement (ii), we can apply Theorem 5.3 to conclude that this C×-action extends to a C×-
action on X.

(iv) As we have seen in the proof of Proposition 4.4, a member of Kx, for x ∈ Xo, is stable
under the C×-action of statement (iii). Thus it is the closure of the image of a 1-dimensional
subspace in W .

(v) As X has Picard number 1, the divisor D is irreducible, and it freely generates Pic(X) by
[HT99, Theorem 2.5]. Take a codimension 1 linear subspace Cn−1 ⊂W , and let H be its closure
in X. The intersection H ∩D has codimension 2 in X. Thus a general minimal rational curve C
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on X intersects H in H ∩Xo (for example, by [HM01, Lemma 1.1(3)]). By statement (iv), we
conclude that H · C = 1. This implies that H generates Pic(X) and D · C = 1.

(vi) From the proof of statement (v), the closure of the image in Xo of any vector subspace
Cn−1 ⊂W is linearly equivalent to D. Thus φ|D| gives an embedding from Xo to PH0(X,D)∗.

Theorem 5.5. Let X be a Fano manifold of Picard number 1 which is an equivariant compact-
ification of a vector group and whose VMRT at a general point is nonsingular. Let D ⊂ X be as
in Proposition 5.4(v), and let m be the minimal number such that mD is very ample. Then the
embedding X ⊂ PH0(X,mD) realizes X as an Euler-symmetric projective variety whose system
of fundamental forms has order m.

Proof. By the proof of Proposition 5.4(iii), for a general point x ∈ X, there exists a C×-action
on X ⊂ PH0(X,mD)∗ of Euler type at x. Thus the embedded variety is Euler symmetric. By
Proposition 5.4(v), the minimal degree of C×-orbits is m. By Proposition 4.3, the system of
fundamental forms has order m.

Recall (Remark 4.8) that a prime Fano manifold X is a nonsingular projective variety X with
Pic(X) ∼= ZL for a very ample line bundle L such that X is covered by rational curves of degree 1
with respect to L. It is well known that in this case the VMRT of lines through a general point
is nonsingular; see, for example, [FH12, Proposition 3.2]. Thus we have the following corollary.

Corollary 5.6. If a prime Fano manifold X is an equivariant compactification of the vector
group, then the embedding X ⊂ PH0(X,L)∗ is Euler symmetric of order 1.

On the basis of Theorem 5.5, we propose the following, which would imply Conjecture 5.1.

Conjecture 5.7. Let X be a Fano manifold of Picard number 1 which is an equivariant com-
pactification of a vector group. Then for some choice of K, the VMRT Cx at a general point
x ∈ X is nonsingular.
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