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Derived invariants arising from the Albanese map

Federico Caucci and Giuseppe Pareschi

ABSTRACT

Let ax: X — AlbX be the Albanese map of a smooth complex projective variety.
Roughly speaking, in this note we prove that for all i > 0 and a € Pic’ X, the coho-
mology ranks h*(Alb X, ax,wx ® P,) are derived invariants. This proves conjectures
of Popa and Lombardi-Popa—including the derived invariance of the Hodge num-
bers h%J—in the case of varieties of maximal Albanese dimension and a weaker version
of them for arbitrary varieties. Finally, we provide an application to the derived invari-
ance of certain irregular fibrations.

1. Introduction

This paper is about derived invariants of smooth complex projective varieties (henceforth called
varieties) arising from the Albanese morphism

ax: X - Alb X.

For example, a fundamental result of Popa and Schnell shows that the dimension of the Albanese
variety Alb X, that is, h° (Q}(), is a derived invariant [PS11].

Roughly speaking, in this note we prove that for all 4+ > 0 and for all & € Pic’ X, the
cohomology ranks

RY(AIb X, ax,wx @ Pp)

are derived invariants. This settles in the affirmative (a strengthened version of) a conjecture
of Lombardi and Popa [LP15, Conjecture 11]—proved by Lombardi for i = 0 and partially for
i =1 (see [Lom14])—in the case of varieties of maximal Albanese dimension and proves a weaker
version of it for arbitrary varieties. (Recall that X is said to have maximal Albanese dimension
if dimax(X) = dim X.) For varieties of maximal Albanese dimension, this implies the derived
invariance of the Hodge numbers h%/ for all j > 0 and of all canonical cohomological support
loci, proving in this case another conjecture of Popa. In this direction, previous results in low
dimension were obtained by Popa, Lombardi and Abuaf [Pop13, Lom14, LP15, Abul7].

Turning to precise statements, for a variety X, let us denote by D(X) its bounded derived
category of coherent sheaves. Let Y be another variety, and let

¢: D(X) = D(Y)

be an exact equivalence. As shown by Rouquier [Roull], see also [PS11], the equivalence ¢

Received 11 November 2014, accepted in final form 26 November 2018.

2010 Mathematics Subject Classification 14F05 (primary), 14F17, 14E05, 14D06 (secondary).

Keywords: derived categories, cohomological support loci, Hodge numbers, fibrations.

This journal is © Foundation Compositio Mathematica 2019. This article is distributed with Open Access under
the terms of the Creative Commons Attribution Non-Commercial License, which permits non-commercial reuse,
distribution, and reproduction in any medium, provided that the original work is properly cited. For commercial
re-use, please contact the Foundation Compositio Mathematica.


http://algebraicgeometry.nl
http://www.ams.org/msc/
http://algebraicgeometry.nl
http://creativecommons.org/licenses/by-nc/3.0/
http://algebraicgeometry.nl

DERIVED INVARIANTS ARISING FROM THE ALBANESE MAP

induces an isomorphism of algebraic groups

7: Aut’ X x Pic? X — Aut’Y x Pic’ Y. (1.1)
We choose normalized Poincaré line bundles so that to a closed point o € Pic® X (respectively,
B € Pic’Y) corresponds the line bundle P, on X (respectively, Pg on Y). Essential for our
arguments is a result of Lombardi, from which it follows that if h*(Alb X, ax,wx ® P,) > 0 for

some i > 0, then P(idy, P,) is of the form (idy, P3) for a g € Pic’ Y. If this is the case, we will
abusively write § = @(a).

THEOREM 1.1. Let ¢ € N. In the above notation, hi(Ale, ax.wx @ P,) > 0 if and only if
R{(AIbY, ay ,wy ® Pp(ay) > 0. If this is the case,

h'(Alb X, ax,wx ® Pa) = h'(AbY, ay,wy ® Ppy)) -

It is expected that derived-equivalent varieties have the same Hodge numbers. As a conse-
quence of the invariance of the cohomological ranks of the sheaves ax,.wx, it follows that this
holds true for the h%J of varieties of maximal Albanese dimension.

COROLLARY 1.2. Let X and Y be smooth complex projective varieties with equivalent derived
categories. Then, for all i € N,

RY(Alb X, ax,wx) = h'(AIbY, ay ,wy).
In particular, if X is of maximal Albanese dimension, then for all j > 0, we have

hY%(X) = K% (Y).

Notice that in the maximal Albanese dimension case, Rlax,wx = 0 for i > 0 (Grauert—
Riemenschneider vanishing theorem) and therefore h*(X,wyx) = h*(Alb X, ax,wx). This proves
the last part of the corollary.

Given a coherent sheaf F on a smooth projective variety X, its cohomological support loci
are the following algebraic subvarieties of Pic’ X:

VX, F)={aePi® X |W(X,F@P,) =1} .

For r = 1, we simply set V!(X, F) = V{(X, F). Again, by the Grauert-Riemenschneider vanish-
ing theorem and the projection formula, it follows that V(X,wy) = V/(Alb X, ax,wx) in the
maximal Albanese dimension case.

It has been conjectured by Popa [Pop13] that all loci V¥(X,wy) are derived invariants of
smooth complex projective varieties. This conjecture has been verified by Lombardi and Popa,
only for the components containing the origin of Pic? X, unconditionally on the Albanese dimen-
sion for ¢ = 0,1,dim X — 1,dim X (see [Lom14, LP15]) and in dimension 3 (see [Lom14]), and
for varieties of maximal Albanese dimension in dimension 4 (see [LP15]). The following corollary
fully proves Popa’s conjecture for varieties of maximal Albanese dimension and, in general, the
analogous statement for the loci V,!(Alb X, ax,wx).

COROLLARY 1.3. Let X and Y be varieties with equivalent derived categories. For all i,r € N, the
Rouquier isomorphism induces an isomorphism between V! (Alb X, ax ,wx) and V! (AlbY, ay ,wy).

In particular, if X is of maximal Albanese dimension, then for every choice of i,r € N, the
cohomological support loci V;!(X,wx) and V}(Y,wy) are isomorphic.

The method of proof of Theorem 1.1 makes use of many essential results concerning the ge-
ometry of irregular varieties based on generic vanishing theory: generic vanishing theorems, the
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relation between the loci V° (X , w_@?) and the litaka fibration, the Chen—Jiang decomposition,
linearity theorems and their relation—via the Bernstein—Gel’fand—Gel’fand correspondence—
with the Castelnuovo-Mumford regularity of suitable cohomology modules. This material is
briefly reviewed in Sections 2 and 3. The starting point of the argument are the results and
constructions of Lombardi [Lom14], who proves, in particular, the case ¢ = 0 of Theorem 1.1.
Roughly, our method derives Theorem 1.1 from the case i = 0 by means of the derived in-
variance of the Hochschild multiplicative structure, combined with the result of Lazarsfeld,
Popa and Schnell on the cohomology modules H*(Alb X, ax,wx ® P,) over the exterior algebra
A*HY(Alb X, Oapp x).

Next, we turn to some applications of Theorem 1.1 and especially of Corollary 1.3. It is known
by the seminal work of Green and Lazarsfeld [GL91] that the positive-dimensional components
of the loci V*(X,wx) are related to the presence of irregular fibrations, that is, morphisms with
connected fibres onto lower-dimensional normal projective varieties, which we call the bases of
the fibrations, whose smooth models have maximal Albanese dimension. Therefore, as sought
by Popa [Pop13] and in the spirit of previous work of Lombardi and Popa [Lom14, LP15] (and
especially [Lom18]), the part of Corollary 1.3 concerning varieties of maximal Albanese dimen-
sion implies the derived invariance of the presence or absence of certain irregular fibrations and,
moreover, the invariance of the set itself of such fibrations. This imposes striking restrictions to
the geometry and topology of the Fourier—-Mukai partners. An example of this is Theorem 1.4
concerning irregular fibrations of minimal base dimension on varieties of maximal Albanese di-
mension. We remark that it is likely that a more thorough analysis of the information provided
by Theorem 1.1 can lead to more complete results.

Turning to details, let us recall some notions appearing in the statement of Theorem 1.4. In
the first place, we recall that x(wz) > 0 for a variety Z of maximal Albanese dimension (see
Section 2). An irregular fibration

g: X —S

is said to be x-positive if x(wg/) > 0 for a smooth model S" of S (hence for all of them). This
implies, in particular, that S’ is of general type. One might see y-positive fibrations as the higher-
dimensional analogue of fibrations onto curves of genus at least 2, which were classically studied
by Castelnuovo and de Franchis [Cas05, dFr05]. Unconditionally on the Albanese dimension,
Lombardi proved the invariance of the equivalence classes of the set of fibrations over curves of
genus at least 2 (see [Lom18]). For varieties of maximal Albanese dimension, we note that as a
consequence of Orlov’s theorem on the derived invariance of the canonical ring, the equivalence
classes of all x-positive irregular fibrations are derived invariant (Proposition 4.7 below).

On the other hand, even in the case of varieties of maximal Albanese dimension, it is unclear
what happens for non—y-positive fibrations, especially when the base is birational to an abelian
variety. Theorem 1.4 gives a positive result about the derived invariance of the equivalence classes
of a certain type of irregular fibrations which are not necessarily y-positive and include certain
fibrations onto abelian varieties. In order to state the result, let us denote by Pic’(g) the kernel
of the restriction of Pic’ X to a general fibre of g. It is well known that Pic’(g) is an extension of
g* Pic S by a finite subgroup of Pic’ X/g* Pic" S; hence, it may be disconnected. (For fibrations g
onto curves, the subvariety Pic’(g) is completely described in the work of Beauville [Bea92].) We
call cohomologically detectable all irregular fibrations g: X — S except those such that S is
birational to an abelian variety B with Pic’(g) = ¢* Pic® B, and we denote by b(X) the minimal
base dimension (namely dim S) of such fibrations (if there are no cohomologically detectable
fibrations, we declare that b(X) = 0). The explanation for such terminology is in Remark 4.6.
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DERIVED INVARIANTS ARISING FROM THE ALBANESE MAP

Here, it suffices to say that by the Green—Lazarsfeld linearity theorem, “most” irregular fibrations
are induced by positive-dimensional components of the various loci V(X ,wy). For irregular
fibrations g whose base is birational to an abelian variety and for which Pic’(g) is connected,
either this does not happen, or it happens in a non-standard way.

THEOREM 1.4. Let X and Y be d-dimensional derived-equivalent varieties of maximal Albanese
dimension. Then b(X) = b(Y') =: b. Moreover there is a base-preserving bijection of the sets
of the equivalence classes of cohomologically detectable irregular fibrations of X and Y of base
dimension equal to b. Such a bijection takes x-positive fibrations to x-positive fibrations.

Theorem 1.4 is proved by considering a special class of components of the loci V¥(X,wy),
studied by the second author in [Par17], whose relation with the corresponding fibration (via the
theorem of Green and Lazarsfeld) is somewhat standard. We first show a fact of independent
interest (Lemma 4.5), namely that these “standard” components are translates of abelian sub-
varieties for which there is a natural bijective correspondence with the set of equivalence classes
of another type of fibrations, called weakly-x-positive, containing the y-positive ones. However,
in general there is no easy way to distinguish the standard components from the non-standard
ones. In the second part of the proof of Theorem 1.4, we show that this can be done in the locus
yd-bX )(X ,wx ), and in this case, the weakly-x-positive fibrations coincide with the cohomolog-
ically detectable ones. In this way, Theorem 1.4 follows from Corollary 1.3.

Finally, we remark that Theorem 1.1 also provides some information about the derived invari-
ance of fibrations of varieties of arbitrary Albanese dimension. In fact, a well-known argument
using Kollar decomposition shows that positive-dimensional irreducible components of the loci
Vi(Alb X, ax.wx) form a subset of the set of the irreducible components of the loci V' (X, wx)
for some r’ > r. Hence, via the Green—Lazarsfeld theorem, they correspond to some irregular
fibrations. However, at present it is not clear to us how to describe them.

We will work over C. All varieties appearing in this paper are assumed to be projective.
A variety without further specification is a smooth complex projective variety. Normal variety
means normal projective variety. An Albanese morphism means a universal morphism from
a fixed variety X to abelian varieties. We will call such a morphism the Albanese morphism or
also the Albanese map of X, and we will denote it by ax: X — Alb X.

2. Preliminary material on generic vanishing, Chen—Jiang decomposition and
O-regularity of the canonical module

In this section, we recall material used further on; we refer to the appropriate sections of papers
such as [Parl2, HPS18, PS13, PPS17, Parl7] for more thorough surveys. For a morphism of
abelian varieties m: A — B, we will denote the dual morphism by

7: Pic? B> Pic’ A.
Generic vanishing. Let A be an abelian variety. A coherent sheaf G is said to be a generic
vanishing sheaf, or GV-sheaf for short, if
codimp; .0 AVi(A, G)=i foralli>0.
The sheaf G is said to be M-regular if

codimp; 0 4V (A,G) > i foralli>0.
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Remark 2.1. If G is GV, then x(G) > 0 and x(G) > 0 if and only if VO(A4,G) = Pic? A.

We have the following well-known non-vanishing results (see, for example, [Hac04, Corol-
lary 3.2] for part (a) and [Parl2, Lemma 1.12] for parts (b) and (c))

PROPOSITION 2.2. Let G be a non-zero coherent sheaf on an abelian variety A.
(a) If G is GV, then V?*1(A,G) C Vi(A,G) for all i > 0.

(b) IfG is GV, then V°(A, G) # 0.

(¢) If G is M-regular, then V°(A, G) = Pic® A.

Chen—Jiang decomposition. This concept was introduced by Chen and Jiang [CJ18, Theo-
rem 1.1]. The following theorem was proved in [PPS17]. In this paper, we will use only the case
7 =0.

THEOREM 2.3 (Chen—Jiang decomposition). Let a: X — A be a morphism from a variety to an
abelian variety, and let j > 0. Then the sheaf R?a.wx decomposes canonically as

Rlawy = @W;k}-z ® P, ,
;

where the m;: A — B; are quotients of abelian varieties with connected fibres, the F; are M-
regular sheaves on B; and the a; are torsion points of Pic® A.

Note that in the above decomposition, we can arrange that 7; ( Pic? Bi) —q; # ?r\k(Pico Bk) —
oy for i # k. With this normalization, the decomposition is canonical up to permutation of the
summands.

Remark 2.4. Theorem 2.3 has the following consequences:

(1) For all j > 0, the sheaf Riaswyx is a GV-sheaf on A (Hacon [Hac04]). This is because, by
the projection formula, the pullback of a GV-sheaf via a morphism of abelian varieties is still GV.

(2) VO (A, Rja*wX) =, (fr}(PicO Bi) — ai). This equality again follows from the projection
formula:

HY(B;, F; ® P3) if a = 7(8)—a; with Bem;(Pic® B;) ,

HO(A, 7} F; @ P, ® Py) = {0 (2.1)

otherwise.
This, together with Proposition 2.2(c), shows that the locus V°(A, R/a.wx) is the union of
translates of the abelian subvarieties 7; ( Pic® Bi) of Pic® A by points of finite order.!

(3) Keeping the notation of Theorem 2.3, let ¢(i) = dim A — dim B;. Again from the projection
formula, combined with Proposition 2.2(c), it follows that the support of Vc(i)(A,W;‘ Fi ® Py,)
is equal to the support of V9(A, i Fi ® P,,), namely 7?1-(Pic0 BZ-) — «;. This implies a result
originally due to Ein-Lazarsfeld [EL97]: the irreducible components of the locus V°(A, R/ a.wx)
of codimension ¢ > 0 are also components of the locus V¢(A, Ria.wx).

Remark 2.5. Theorem 2.3 and its consequences hold more generally for the sheaves R a,(wy ®
P,), where « is a torsion point of Pic® X. This is because wx ® P, is a direct summand of f,w %

for a suitable étale cover f: X = X.

1By a theorem of Green-Lazarsfeld and Simpson, this is actually true, and of fundamental importance, for all loci
Vi(A, R’ aswx) for all 4, j and r; see Section 4.
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DERIVED INVARIANTS ARISING FROM THE ALBANESE MAP

Strong linearity and Castelnuovo—Mumford regularity. The relation between the theo-
ry of generic vanishing and the Bernstein—Gel’fand—Gel’fand correspondence was pointed out in
the paper [LP10] and further developed in [LPS11] and [PS13].

For a sheaf G on an abelian variety A, let us consider its cohomology module

H*(A,G) =P H'(A,G), (2.2)

which is a graded module over the exterior algebra A*H!'(A,0,). For such a graded module,
there is the notion of Castelnuovo-Mumford regularity. In particular, reg(H*(A,G)) = 0 if and
only if it is generated in degree 0 and it has a linear graded free resolution. We will use the case
j = 0 of the following theorem of Lazarsfeld, Popa and Schnell [LPS11, Theorem 2.1].

THEOREM 2.6 (Lazarsfeld-Popa—Schnell). Let a: X — A be a morphism from a variety X to an
abelian variety A. Let a € Pic® X be a torsion point, and let 8 € Pic® A. Then, for all j > 0,

reg(H* (A, Rla,(wx ® Pa) ® P3)) =0.

Note that this theorem is stated in [LPS11] in a more restrictive setting, namely only for
Riax,wx, where ay denotes the Albanese morphism of X. However, the proof of the result
goes through without any changes. The point here is that the Green—Lazarsfeld theorem about
computing the higher direct images of the Poincaré bundle by means of the derivative com-
plex [GL91, §3] holds in the neighbourhood of every point in Pic’ 4, so that the machinery
in [LP10] and [LPS11] applies.

3. Proof of Theorem 1.1

Preliminaries: Two results of Lombardi. Again, for sake of brevity, we will state only
those results strictly needed for our arguments, referring to the paper [Lom14] for the complete
story. Let ¢: D(X) — D(Y) be an exact equivalence and

7: Aut’ X x Pic’ X — Aut’Y x Pic’Y

its Rouquier isomorphism. The following result [Lom14, Proposition 3.1] will be fundamental for
our arguments.

THEOREM 3.1. Let m be an integer, and assume h°(X,w? ® P,) > 0. Then ¢(idx, Py) is of the
form (idy, Pg) for B € Pic’ Y. If this is the case, we will abusively write

B=¢a). (3.1)

Let us denote by 6: X — X x X the diagonal morphism. Again, following Lombardi [Lom14],
for fixed m € Z and a € Pic® X, we consider the twisted (generalized) Hochschild homology®

HH(X,a) = @ Extf,  , (0.0x,6.(wg @ Pa)) . (3.2)
k

It is a graded module over the Hochschild cohomology algebra
HH*(X) = @ Extf,,  , (6.0x,6.0x).
k

2As already mentioned, Lombardi’s setting is more general. Here, we are stating only what is necessary for our
purposes.
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The following is a classical result of Orlov and Caldararu [Orl03, Cal03], generalized by Lombardi
to the twisted case [Lom14, Theorem 1.1].

THEOREM 3.2. In the above notation, let m € Z and a € Pic® X be such that h° (X, w;”}@Pa) > 0.
Then the derived equivalence ¢ induces a canonical graded-algebra isomorphism

®*: HH*(X) —» HH*(Y)
and, using notation (3.1), a compatible graded-module isomorphism
on HHM(X, o) » HH(Y, () - (3.3)
In particular, in degree 0, HHJ*(X,a) = H*(X,w ® P,); hence, we have the isomorphism
% HY (X, wR @ Pa) = H(Y,w? ® Pya)) - (3.4)
Going back to the Rouquier isomorphism, it follows that for all m € Z and r > 1,
P({idx} x V(X w¥)) = {idy} x V7 (V,w}) . (3.5)
For m = 1, we will suppress, as is customary, the index 1 in (3.2) and in (3.3).
Preliminaries: The litaka fibration of irregular varieties. Assume that the Kodaira

dimension of X is non-negative. Then the loci V° (X , w?) are tightly connected with the litaka
fibration of X.

After a birational modification of X, we can assume that the Iitaka fibration of X is a
morphism X — Zx with Zx smooth. There is the commutative diagram

X Y AbX

e

Ty —2X Alb Zy

where af, is a surjective morphism of abelian varieties with connected fibres [HPS18, Lem-
ma 1.11(a)]. We will use the following results of Chen-Hacon and Hacon-Popa-Schnell.

THEOREM 3.3. (a) ([HPS18, Theorem 11.2(b)]) For m > 2, the irreducible components of the
locus VO (X,w') are translates of ayy, ( Pic” Zx) by torsion points of Pic® X

(b) ([CHO1b, Lemma 2.2], see also [HPS18, (2) after Lemma 11.1]) The irreducible compo-
nents of the locus V°(X,wy) are translates of abelian subvarieties of the abelian subvariety
ary (Pic? Zx) by torsion points of Pic’ X.

Proof of Theorem 1.1. Let a € Pic? X and i > 0 be such that
RY(Alb X, ax,wx @ Py) > 0. (3.6)

Step 1: The Kodaira dimensions of X and Y are non-negative.

Proof. Indeed, by (3.6), we have V*(Alb X, ay,wx) # 0. Therefore, VO(Alb X, ax,wx) # 0 by
Proposition 2.2(a). By Remark 2.4(2), this yields that V?(Alb X, ax,wx) = V?(X,wy) contains
some points a of Pic® X of finite order, say k. This implies that we have h° (X (wx ® Pa)k) =
ho (X , w];() > 0. Therefore, k(X) > 0. Since the Kodaira dimension is a derived invariant, the
same holds for Y. O
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We have natural embeddings
HY(Zx,0z,) C H(X,0x) C HH'(X) = Ext}, (6.0x,6.0x).
The same holds for Y.

Step 2: The second step is the following.

LEMMA 3.4. We have the identity ®'HY(Zx,0z,) = H(Zy,0z,).

Proof. This follows at once from the above results. Indeed, combining Theorem 3.3(a) and (3.5),
we get that

?(ary (Pic” Zx)) = ayy (Pic® Zy) . (3.7)
On the other hand, it is well known that the isomorphism ®!, that is,?

Extl, x(0.0x,6.0x) —2 > Extl, 1 (6.0y, 5.0y)

- |-

H(Tx)® H'(Ox) H(Ty)® H' (Oy),

is the first-order version of the Rouquier isomorphism (see, for example, [Huy06, discussion after
Proposition 9.45, p. 218]). Therefore, Step 2 follows from (3.7). O

Next, we note that, by Theorem 3.3(b), we can gather those irreducible components of
VO(X,wx) = VP(Alb X, ax,wx) which are contained in the same translate of ay, (Pic’ Zx).
Hence, using Remark 2.4(2), we can gather the corresponding sheaves appearing in the Chen—
Jiang decomposition of ax,wx, yielding another canonical decomposition

rx
ax,Wwx = @(GFX’HXJ) X PX,(Sj (3.8)
j=1
defined by the following properties:

The Hx ; are GV-sheaves on Alb Zx (in fact, the direct sum of some pullbacks of M-
regular sheaves from quotient abelian varieties appearing in the Chen—Jiang decomposition
of ax,wx). The §; are torsion points of PicOX, and rx is the number of translates in

Pic® X of the abelian subvariety afy (Pic0 Z X) containing at least one component of the
locus VO(Alb X, ax,wx).

The same sort of decomposition holds for ay ,wy:

Ty
ay.wy = P (af, Hyk) © Pra,
k=1
We claim that rx = ry := r and, up to reordering, for all j =1,...,r,

P(VY(X,wx) N (apy (Pic® Zx) — §;)) = VO(Y,wy) N (azy (Pic® Zy) — ;) -

In fact, each component of V°(X, wx) (which is a translate of an abelian subvariety ay, (Pic’ Zx))
is contained in a unique translate of ay, ( Pic® Z X). The same happens on Y. From (3.7) and

3The spectral sequence abutting to Ext’ . x(6.O0x,8.Ox) degenerates; see [Swa96, Corollary 2.6].
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Lombardi’s theorem (3.5), it follows that the algebraic group isomorphism @ sends such a trans-
late of ayy (Pic” Zx) to the corresponding translate of ay, (Pic® Zy ) in Pic’ Y. This proves what
we claimed.

Since two different translates have empty intersection, we have that

(x) fori >0 and for a fized o € Pic® X, in the decomposition

rX
Hi(ax*wx ® Py) = @Hi((a}X,HXJ) ® P5j+a) )
j=1

at most one summand is non-zero.

For ¢ = 0, this holds by the definition of the above decomposition, and for ¢ > 0, it follows
as above from Proposition 2.2(a). Moreover, from the projection formula and the fact that the
quotient Alb X — Alb Zx has connected fibres, it follows that

HY(AbX, (a7, Hocs) © P )
B {HO(AIb Zx,Hx,;® By) if §; + a = ayy () with n € Pic® Zx

) (3.9)
0, otherwise.

The same holds for Y. This, combined with (3.4) proves the following,.

Step 3: Keeping the above notation, let « € VO(Alb X, ax,wx) and n € Pic® Zx be such
that ay, (n) = o+ 0. Then

Doy, HO(Ab Zx, Hy j @ Py) = HO(Alb Zy, Hy,; @ Py(yy) ,

where, via a slight abuse of language, we denote by p(n) € Pic® Zy the element v € Pic® Zy such
that, by (3.7), we have ay, (v) = @(az, (1)).

Next, we recall that for all a € Pic® X, the local-to-global spectral sequence computing each
graded component HH,; (X, «) degenerates [Swa96, Corollary 2.6]. It follows that the canonical
map from H(X,wx ® P,) to HH;(X,a) is an embedding. Moreover, for a € V?(Alb X, ax.wx)
and 7 € Pic® Zx such that afy (n) = a+6;, we have the following chain of canonical embeddings
of vector spaces:

H'(AbZx, Hx;®P)) = H'(Ab X, ax,wx ® P) — H' (X,wx ® Py) = HH;(X,a) (3.10)

(and the same things holds for Y).* The first inclusion follows from (3.8) via the projection
formula, and the second one follows from Kollar’s theorem on the degeneration of the Leray
spectral sequence of the canonical bundle [Kol86b], once again combined with the projection
formula.

Step 4: Let a € VO(Alb X, ax,wx) and n € Pic® Zx be such that asy (n) = a+ ;. Then, for
all v >0,

Ol 5, H'(AIb Zx, Hx j @ By) = H'(Alb Zy, Hy,j @ Pyy)) -

Proof. 1t is here that we use the multiplicative structure and the Bernstein—Gel’ fand—Gel’fand

“In the second space, P, denotes a line bundle on Alb X, while in the third space, P, denotes a line bundle on X,
that is, strictly speaking, the pullback, via the Albanese map, of the previous P,.
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correspondence. We have the following morphisms of graded algebras:
NHYZx,07,) = NHY(X,0x) = H(X,0x) — HH*(X).

Therefore, the Hochschild cohomology HH, (X, «) is a graded module also on all the graded
algebras appearing above. The similar result holds for HH, (Y, 3). From Step 2, it follows that

(x%) the graded-module isomorphism ®,: HH,(X,a) = HH,(Y,%(a)) of Theorem 3.2 is com-
patible with the isomorphism N*(®1): A*HY(Oz,) = A*HY(Og,).

The inclusions (3.10) fit into inclusions of graded modules over the exterior algebra A*H1(Ogz,):
H*(Alb Zx, Hx; ® Py) <= H*(AIb X, ax.wx @ Po) = H (X, wx ® Py) = HH,(X, ).
For a € VO(Alb X, ax,wx) and 1 € Pic® Zx such that ayy (1) = a + §;, let us denote by
H*(Alb Zx,Hx; ® P,)
the graded A*H'(Oy, )-submodule of HH, (X, «) generated by H(Alb Zx,Hx ; ® P,). Clearly,

H*(Alb Zx,Hx; ® P,) C H*(Alb Zx, Hx ; © P,) (3.11)
(in fact, the first is a submodule of the second). By Step 3 and (xx), it follows that
Os o H* (Alb Zx, Hy ; @ Py) = H*(Alb Zy, Hy,; @ Py(y) - (3.12)

By the projection formula on the decomposition (3.8), it follows that the sheaf Hx ;& P, is a direct
summand of the sheaf ay, (aX*wX ® ng) ® P,. Therefore, the module H* ( AlbZx, Hx; ® Pn)
is a direct summand of the module H*(Alb Zx, a5y, (aX*wX ® P(;;) ® Pn), which is O-regular
by Theorem 2.6, hence, in particular, generated in degree 0. Hence, the module H* ( Alb Zx,
Hx, j®Pn) is generated in degree 0 as well, and we have equality in (3.11). By the same reasoning,
the same thing happens for Y. Hence, Step 4 follows from (3.12). O

Step 5: Conclusion of the proof. Let ¢ = dim Alb X = dim AlbY" (theorem of Popa—Schnell,
[PS11]), and let ¢’ = dim Alb Zx = dim Alb Zy (Step 2). Note that since the quotient map ay,
has connected fibres, R*a #x+OAm x is a trivial bundle of rank (q_kq/). Therefore, for n € Pic® Zx
such that ar(n) = a + d;, we have

!

R(Ab X, ax.wx ® Py) = @ W' F(Alb Zx, RFay,  (ax.wx) @ Py))

Q
[}

e
Il
o

~

Q
Q

Wk (ALb Zy, M ; @ ) o)

x>
[e=]

where the first equality is the Kolldr decomposition (plus the projection formula) with respect
to the morphism af, applied to the sheaf ax,wx [Kol86b, Theorem 3.4] and the second equal-
ity follows from (x) and the projection formula. The same formula holds for Y. Consequently,
Theorem 1.1 follows from Step 4 applied to the last quantity.

4. Application to irregular fibrations: Theorem 1.4

Fibrations: Terminology. Let X be a variety. A fibration of X is an algebraic fibre space
g: X — S, where S is a normal variety, called the base of the fibration. If a non-singular
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model of S (hence all of them) has maximal Albanese dimension, such a fibration is said to be
irreqular. A non-singular representative of a fibration of X is a fibration ¢': X’ — S’ with both
X’ and S’ smooth, equipped with birational morphisms p: X’ — X and ¢: S’ — S such that
gop = qog. Two fibrations of X are equivalent if there is a fibration X’ — S’ which is a
birational representative for both of them.

Let g be a fibration of X. We denote by Pic(g) the kernel of the restriction map from
Pic’ X to the Pic” of a general fibre. Notice that if ¢/ is any non-singular representative of g,
then Pic’(g) = Pic’(¢'); therefore, Pic’(g) depends only on the equivalence class of g. The
group Pic%(g) is an extension of ¢g* Pic® S by a finite subgroup I' of Pic® X/g* Pic® S (see, for
example, [Par17]); hence, it is disconnected unless ' = 0.

DEFINITION 4.1. Let g: X — S be an irregular fibration of X, and let us set ¢ = dim X —dim S.

(a) The fibration g is cohomologically non-detectable if S birational to an abelian variety and
Pic%(g) is connected, and cohomologically detectable otherwise.

(b) The fibration g is weakly-x-positive if there is a point o € Pic® X such that for a non-singular
representative ¢’: X’ — S’ (hence for all of them, see Remark 4.2 below),

X(R'gl(wx' ® Pa)) > 0. (4.1)

Note that an a € Pic® X as in the definition must belong to Pic%(g). Therefore, one can
always assume that « is a torsion point.

(c) The fibration g is x-positive if for a non-singular representative ¢’ as above (hence for all of
them), y(wg/) > 0.

Note that since wgr = Riglwx (see [Kol86a, Proposition 7.6]), a y-positive irregular fibration
is weakly-y-positive.

Remark 4.2. We keep the notation of Definition 4.1. From Hacon’s generic vanishing (see Re-
mark 2.4(1)) and an étale covering trick, it follows that R(ag o ¢')«(wxs ® P,) is a GV-sheaf on
Alb S’. On the other hand, since ag/ is generically finite, by the combination of Kollar’s vanish-
ing and decomposition [Kol86b, Theorem 3.4], we have RFag,R"g' (wx: ® Py) =0 for all k > 0
and h > 0, hence R'(ag o ¢')s(wx’ @ Po) = ag R'g.(wx @ Py). Therefore, keeping in mind
Remark 2.1, we see that condition (4.1) is equivalent to the condition

VO(S', Rigl(wx ® P,)) = Pic? S’

This in turn implies that condition (4.1) does not depend on the non-singular representative.

Preliminaries: The linearity theorem of Green and Lazarsfeld. The relation between
the loci V(X,wy) and irregular fibrations follows from the fundamental theorem of Green and
Lazarsfeld recalled below, with an addition of Simpson.

THEOREM 4.3 ([GLI1, Sim93)). Every irreducible component W of the loci V{(X,wx) is a linear
subvariety, that is, a translate of an abelian subvariety T C Pic® X by a torsion point. More
precisely, let 7: AlbX — B := Pic’ T be the dual quotient. This defines the composed map
f: X—B

X Y AbX

\ lﬂ (4.2)

B.
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Then there is a torsion® element o € Pic® X such that
W =7 (Pic" B) + a. (4.3)
Moreover,
dim X —dim f(X) > 1. (4.4)

Taking the Stein factorization of the map f, one gets a fibration g: X — S, where S is
a normal projective variety of maximal Albanese dimension, and a finite morphism a: S — B
such that a o g = f. Therefore, in our terminology, g is an irregular fibration of X. We will
refer to it as the fibration of X induced by the component W of V(X,wx), or also the fibration
of X induced by the abelian subvariety T of Pic® X parallel to the component W. In [Parl?,
Lemma 5.1], the following is shown, in particular.

PROPOSITION 4.4. The above abelian variety B is the Albanese variety of any non-singular model
of S" of S, and the morphism a composed with the desingularization S’ — S is an Albanese
morphism of . In particular, W = 7(Pic" ) + a.

In conclusion, for a non-singular representative ¢’: X’ — S’ of the induced fibration, we have
the commutative diagram

axr
X'=——=X—ZAbX
ig’ J{g\ lw (4.5)
§'——=85—>AbS.
aS/

Preliminaries: Standard components and (weakly-)x-positive irregular fibrations.
We will suppose henceforth that X has mazximal Albanese dimension. An irreducible compo-
nent W of V¥(X,wy) is said to be standard (see [Par17]) if there is equality in (4.4), that is,

dimX —dim S =1+.

The relation between standard components and their induced fibrations is almost canonical. This
is the content of the following lemma, inspired by [Lom18, Theorem 16]. In the statement, we
consider the following sets:

— A(X): the set of abelian subvarieties T of the abelian variety Pic’ X such that some of their
translates are standard components of V*(X,wy) for some index i (clearly, this can happen
for only one index i, denoted by (7)),

— G(X): the set of equivalence classes of weakly-y-positive irregular fibrations of X.

LeEMMA 4.5. The function o: A(X) — G(X) taking an abelian subvariety to the class of its
induced fibration (see the above paragraph) is a bijection. Moreover,

(a) the function o takes those abelian subvarieties which are themselves (standard) components
of V'(X,wx) to equivalence classes of x-positive fibrations;

(b) the base dimension of o(T) is < dimT'.

5This is due to Simpson.
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Proof. First, we need to prove that if T' € A(X), then its induced fibration g: X — S is weakly-
x-positive. Let i = i(T), and let W be a component verifying (4.3), with 7" = Pic’ B = Pic" &’
(see Proposition 4.4 and (4.5). By the definition of the standard component, dim X — dim S = i.
Thanks to the Kollar vanishing theorem [Kol86a, Theorem 2.1] and decomposition [Kol86b,
Theorem 3.1], for a non-singular representative ¢’: X’ — S’ of the fibration g, one has

Vi(X/7wX’ & P—a) = U %\(Vi_j(S/?Rjgi(wX’ & P—a))) ) (46)
7=0

where o € Pic X is the torsion point appearing in (4.3). Again by the Hacon generic vanishing
theorem (Remark 2.4(1)) and an étale covering trick, codimp;.0 o V7 (S, Rig,(wx: ® P_g) >
1 — j. Since, as we see using also Proposition 4.4, the left-hand side must contain %(Pico B) =
ﬁ(PicO S"), we have

%% (5, Rig (wx ® P_y)) = Pic’ &', (4.7)
that is, by Remark 4.2,

X(Rigi(wX/ (4 P_a)) > 0.

This proves the desired assertion. By the same steps in the reverse order, one proves that if
g: X — S is a weakly-y-positive irregular fibration such that dim X — dim S = 4, then (the
equivalence class of) g induces standard components W in V¢(X,wy) as follows. Assume that
—a € Pic%(g) is such that y(R'g.(wx' ® a’y P_s)) > 0. Then

#(Pic” ') +a = F(VO(S, Ry (wx @ P-a))) + @

is a standard component of V(X,wx). It is clear that the two constructions above are inverse
to each other. Properties (a) and (b) are clear. O

Remark 4.6 (Cohomologically non-detectable fibrations). The above argument with the Kollar
decomposition also proves that a cohomologically non-detectable irregular fibration g: X — §
cannot be induced by a component W of V¥(X,wyx) of dimension at least dim X — i. Indeed,
for such a fibration, we have V0(S’ ws) = {0} because S is birational to an abelian variety.
Therefore, since Pic%(g) = ¢’* Pic” §’, equality (4.7) cannot hold. Since we know that (4.7) holds
as soon as dim X —dim S = i, it follows that dim X —dim S < 4; that is, a component W inducing
such a fibration is non-standard. Moreover, since dim Alb S’ = dim S, for such a component,

dimW < dim X —i. (4.8)

This explains the terminology cohomologically non-detectable irreqular fibration: either such a
fibration is not induced by any component of V*(X,wx) for some ¢ (as for example the projections
of a product of elliptic curves), or such a component is non-standard.

At the opposite end, y-positive fibrations are the easiest to detect. The following proposition
shows that equivalence classes of x-positive fibrations are derived invariants.

PROPOSITION 4.7. Let X and Y be varieties of maximal Albanese dimension with equivalent
derived categories. Then there is a base-preserving bijection between the sets of equivalence
classes of x-positive irregular fibrations of X and of Y.

Proof. By Lemma 4.5, all x-positive fibrations on a variety X of maximal Albanese dimension
are induced by abelian subvarieties which are (standard) components of V*(X,wx) for some i.
By Proposition 2.2(a), such components are contained in V°(X,wy), hence in @(Pico Z X)
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(Theorem 3.3(b)). Therefore yx-positive fibrations, as all fibrations induced by components of
Vi(X,wx) for some i, factor, up to equivalence, through the Iitaka fibration fx: X — Zx. But,
by Orlov’s theorem, a derived equivalence ¢: D(X) — D(Y) induces an isomorphism of the
canonical rings. Hence, the bases of the litaka fibrations Zx and Zy are birational. As we are

considering equivalence classes of fibration, we can assume Zx = Zy := Z. Therefore, the sets
of equivalence classes of x-positive irregular fibrations of X and Y are both naturally bijective
with the set of equivalence classes x-positive fibrations of Z. O

Proof of Theorem 1.4. Let us recall that b(X) denotes the minimal base dimension of the
cohomologically detectable irregular fibrations of X.

Step 1. Assume b(X) > 0.

(1) An irregular fibration g of base dimension equal to b(X) is cohomologically detectable if
and only if it is weakly-y-positive. Moreover it is y-positive if and only if its base is not birational
to an abelian variety.

(2) Conversely, every irreducible component W of V4—*(X)(X wx) such that dim W > b(X)
is standard. If this is the case, the abelian subvariety parallel to W is also a component of
V4=v(X) (X, wy) if and only if the corresponding fibration (via Lemma 4.5) is y-positive.

The argument for Step 1 is well known to the experts (see, for example, [Parl2, proof of
Lemma 4.2]). We start with the following.

CrLAM 4.8. Let g: X — S be a cohomologically detectable irregular fibration such that dim X —
dim S = i. Then, keeping the notation above, for at least one o € Pico(g), the locus

VO(S', Rg,(wx' ® Pa)) (4.9)
is positive-dimensional.

Proof. We first observe that if o belongs to a component of Pic’(g) different from the neutral
one, then the locus (4.9) is positive-dimensional. In fact, it must be non-empty thanks to Propo-
sition 2.2(b), and if it was 0-dimensional, this would induce via Remark 2.4(3) a (0-dimensional)
component of the locus V45") (Rig! (wxs ® Py). This would imply that dim S’ = ¢(5’) and, via the
ever-present Kolldr decomposition as in (4.6), this would induce some elements different from {0}
in the locus V¢(X,wx), which is impossible.

Therefore we are left with the case when Pic’(g) is connected and V°(S’, w%) is O-dimensional
(recall that R'g’.wx' = wgs). But this, by a theorem of Ein-Lazarsfeld [CHO1a, Theorem 1.8], is
equivalent to the fact that S’ is birational to an abelian variety; that is, the fibration would be
non-detectable. O

We now turn to Step 1(1). Let g: X — S be a cohomologically detectable fibration with
dim S = b(X). We claim that if it is not weakly-y-positive, then there is another cohomolog-
ically detectable fibration of lower base dimension factoring (up to equivalence) through g, in
contradiction with the definition of b(X). Let a € Pic’(g) be as in Claim 4.8. Then, again by
Remark 2.4(3), the irreducible components of (4.9) of codimension ¢, with 0 < ¢ < ¢(S”), are also
irreducible components of V¢(S’, Rig\.(wx: ® P,)), where i = d — dim S. Via the Kollar decom-
position, they induce positive-dimensional components of the locus V*¢(wx). Via the linearity
theorem and Remark 4.6, such a component induces another cohomologically detectable irregular
fibration of X, say h, with d —dimh(X) > i+c¢ = d—dim S+ c. Hence dim h(X) < dim S —¢, as
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asserted. This proves the direct implication of the first equivalence of (1). The other implication is
clear. Passing to the second equivalence, the direct implication is clear. Conversely, let us suppose
that the base is non-birational to an abelian variety. Then, by the theorem of Ein—Lazarsfeld as
above, V(S wg) is positive-dimensional. If it was strictly contained in Pic’ S, then, as above,
its components would induce a cohomologically detectable fibration A of smaller base dimension,
against the definition of b(X). This completes the proof of part (1).

Passing to Step 1(2), let W be a positive-dimensional component of V4=%X)(X wy) such
that dim W > b(X). The statement to prove is that the induced fibration g has base dimension
equal to b(X). If the base dimension was less than b(X), then, by the definition of the inte-
ger b(X), the fibration g would be cohomologically non-detectable. This means that the base
would be birational to an abelian variety of dimension less than b(X), and therefore, by (4.3),
the component W would have dimension less than b(X). The last assertion follows from the
second equivalence of part (1) via Lemma 4.5. This concludes the proof of Step 1.

Step 2: Conclusion of the proof of Theorem 1.4.

CrLAM 4.9. We have b(X) > 0 if and only if dim Vi (X,wx) > d — i for some 0 < i < d. If
b(X) > 0, then d — b(X) is the maximal index i with 0 < i < d such that diim V*(X,wx) > d —i.

Proof. Concerning the first equivalence, if b(X) > 0, then by Step 1(1), there is a weakly-x-
positive fibration g of base dimension b(X), and therefore, by Lemma 4.5, there is a component
of VA(X)(X,wyx) of dimension at least b(X). The other implication follows from Remark 4.6.
The last assertion follows by the same reasoning. O

Now, let X and Y be derived-equivalent varieties. By Claim 4.9, the integers b(X) and b(Y)
are respectively determined by the dimensions of the various loci V#(X,wx) and V(Y,wy).
Therefore, Corollary 1.3 yields that b(X) = b(Y') := b. From Step 1, cohomologically detectable
fibrations of base dimension equal to b are weakly-x-positive, and their equivalence classes cor-
respond to all components of V4 =2(X, wx) of dimension at least b, and such components are
standard. Therefore, by Lemma 4.5, they are in a 1-1 correspondence with the corresponding
subset of abelian subvarieties of Pic’ X. The same holds for Y. Therefore, by Corollary 1.3, the
Rouquier isomorphism induces a bijection between the sets of equivalence classes of cohomolog-
ically detectable fibrations of base dimension b on X and on Y.

It remains to prove that there is a bijection preserving, up to equivalence, the bases of the
fibrations.® To begin, we note that the above-constructed bijection is base preserving on the
subset of fibrations whose bases are birational to abelian varieties. Indeed, Step 1 shows that
they correspond to components of Vd*b(X ,wx) of dimension at least b such that their parallel
abelian varieties, namely ¢’* Pic? S’, are not components of V?°(X, wx). The same holds for Y.
The Rouquier isomorphism sends isomorphically such components of Vd*b(X ,wx ) to components
of V4=0(Y,wy), say h'"* Pic’ R/, with the same property. Both S’ and R’ are birational to abelian
varieties, and their Picard tori are isomorphic. Therefore, S’ is birational to R’. Concerning
the remaining fibrations, namely those whose bases are not birational to abelian varieties, by
Step 1(1) they are x-positive. Therefore, Proposition 4.7 applies. (Here we are not claiming that
this bijection coincides with the one constructed above, namely the one induced by the Rouquier

50ur notion of equivalence of fibrations is weaker than Lombardi’s notion of isomorphism of irrational pen-
cils [Lom18]. However, as in Lombardi’s paper, it can be proved that the bijection of Theorem 1.4 is base preserv-
ing not only up to equivalence but also up to isomorphism of the bases of the Stein factorizations of the maps f
of (4.5).
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isomorphism. However, this is true, but the proof of this fact requires some tools beyond those
used in this paper.)
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