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The Mumford–Tate conjecture for

products of abelian varieties

Johan Commelin

Abstract

Let X be a smooth projective variety over a finitely generated field K of characteristic 0,
and fix an embedding K ⊂ C. The Mumford–Tate conjecture is a precise way of saying
that a certain extra structure on the `-adic étale cohomology groups of X (namely,
a Galois representation) and a certain extra structure on the singular cohomology
groups of X (namely, a Hodge structure) convey the same information.

The main result of this paper says that if A1 and A2 are abelian varieties (or abelian
motives) over K and the Mumford–Tate conjecture holds for both A1 and A2, then it
holds for A1 ×A2. These results do not depend on the embedding K ⊂ C.

1. Introduction

1.1. Let A be an abelian variety over a finitely generated field K ⊂ C. Denote by K̄ the
algebraic closure of K in C. If ` is a prime number, we write H1

`(A) for the `-adic cohomology
group H1

ét(AK̄ ,Q`). Similarly, we write H1
B(A) for the singular cohomology group H1

sing(A(C),Q).
There is a natural isomorphism H1

`(A) ≅ H1
B(A)⊗Q` of vector spaces.

The vector space H1
`(A) carries a Galois representation ρ` ∶ Gal(K̄/K) → GL(H1

`(A)), while

H1
B(A) carries a Hodge structure. This Hodge structure may be described by a representation

ρ ∶ GB(A)→ GL(H1
B(A)), where GB(A) is the Mumford–Tate group of A (see Section 3).

Write G`(A) for the Zariski closure of the image of ρ` and G○
`(A) for the identity component

of G`(A). The Mumford–Tate conjecture expresses the expectation that the comparison isomor-
phism H1

`(A) ≅ H1
B(A)⊗Q` identifies G○

`(A) with GB(A)⊗Q`. This conjecture is still wide open.

1.2. Main theorem. The goal of this article is to prove Theorem 10.5:

Let A1 and A2 be two abelian varieties over a finitely generated field K ⊂ C. If the
Mumford–Tate conjecture is true for A1 and A2, then it is true for A1 ×A2.

In fact, in Theorem 10.3, we prove the more general statement that the full subcategory of
abelian motives over K consisting of motives for which the Mumford–Tate conjecture holds is a
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MTC for products of abelian varieties

subcategory that is closed under direct sums, tensor products, duals, and direct summands.

Remark 1.3. (1) Observe that the conclusion of the theorem is not a formal consequence of
the assumption: Suppose that G′ is a group, with two representations ρ1 ∶ G′ → GL(V1) and
ρ2 ∶ G′ → GL(V2). Let G1 and G2 be the images of ρ1 and ρ2, respectively. Write ρ for ρ1 ⊕ ρ2,
and let G be the image of ρ. Then G is a subgroup of G1 ×G2, and the projection of G onto
G1 (or G2) is surjective. However, G ⊂ G1 ×G2 may be anything, ranging from the diagonal (for
example, if V1 ≅ V2) to the full product (for example, if G1 /≅ G2 and both groups are simple).

In the context of the main theorem, we have

G○
`(A1 ×A2) ⊂ G○

`(A1) ×G○
`(A2) ≅ (GB(A1) ×GB(A2))⊗Q` ⊃ GB(A1 ×A2)⊗Q` ,

and there is no a priori formal reason why G○
`(A1 × A2) and GB(A1 × A2) ⊗Q` should be the

same subgroup.

(2) The situation above is exactly the setup where Goursat’s lemma applies: we have two
groups G1 and G2 and a subgroup G′ ⊂ G1 × G2 such that the projections πi ∶ G → Gi are
surjective (i = 1,2). Let N1 be the kernel of π2 and N2 the kernel of π1. Goursat’s lemma is the
observation that one may identify Ni with a normal subgroup of Gi, and the image of G′ in
G1/N1 ×G2/N2 is the graph of an isomorphism G1/N1 → G2/N2.

This lemma is also true in the context of algebraic groups, a fact that we will need later on.
We leave the proofs of these statements as an exercise to the reader.

Remark 1.4. This paper extends work of Lombardo [Lom16] and Vasiu [Vas08]. The latter ref-
erence contains a result similar to Theorem 10.5, although it has to exclude the case where A1

or A2 has a Mumford–Tate group with a simple factor of type DH
4 . Its proof is long and very

technical, and I do not claim to grasp the details. Vasiu’s global strategy is similar to the one
employed below, and the reason that we can now prove the stronger claim is mostly due to the
results of [Com17] (building on [Kis17]).

1.5. Strategy of the proof

(1) As a first step, we linearise the category of abelian varieties into so-called abelian motives
(in the sense of André [And96b] or motives for absolute Hodge cycles). We obtain a semisimple
Tannakian category, allowing us to apply the toolkit of the representation theory of reductive
linear groups.

(2) From work of several people (notably Piatetski-Shapiro, Deligne, André, and Faltings) we
know that for any abelian motive M , the group G○

`(M) is reductive, and we have an inclusion
G○
`(M) ⊂ GB(M)⊗Q`.

(3) We then prove that the connected component of the centre of G○
`(A) is isomorphic to

the connected component of the centre of GB(A) ⊗ Q`. For this we employ cm motives (see
Section 4.16) and reduce the claim to the Mumford–Tate conjecture for cm abelian varieties,
which is known by work of Pohlmann [Poh68]. (This result is proven in [Vas08, Theorem 1.3.1]
and [UY13, Corollary 2.11] using different methods.)

(4) The next step consists of replacing the abelian variety Ai (i = 1,2) with the motive Mi

that corresponds—via the Tannakian formalism—to the adjoint representation of GB(Ai)ad. It
suffices to prove the Mumford–Tate conjecture for M1 ⊕M2.

(5) By general considerations, we may assume that M1 and M2 are irreducible motives. In
particular, the Mumford–Tate groups GB(M1) and GB(M2) are Q-simple adjoint groups. In
addition, we assume G○

`(M1 ⊕M2) ⊊ G○
`(M1) ×G○

`(M2).
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(6) We use Goursat’s lemma (see Remark 1.3(ii)) and results from [Com17] to show that for
all prime numbers `, we have H`(M1) ≅ H`(M2). From this, we deduce that there is a canonical
isomorphism End(M1) ≅ End(M2).
(7) The remainder of the proof consists in applying to M1 and M2 a construction of Deligne

that is reminiscent of the Kuga–Satake construction for K3 surfaces. As a result, we acquire two
abelian varieties Ã1 and Ã2, and our job is to show that the isomorphism H`(M1) ≅ H`(M2) lifts
to an isomorphism H1

`(Ã1) ≅ H1
`(Ã2).

(8) Once that is done, we apply Faltings’s theorem to deduce that Ã1 and Ã2 are isogenous
abelian varieties. This in turn implies GB(Ã1) ≅ GB(Ã2). In particular, GB(M1⊕M2) ⊂ GB(M1)×
GB(M2) is the diagonal; hence, G○

`(M1 ⊕M2) ≅ GB(M1 ⊕M2)⊗Q`, and we are done.

Notation 1.6. For any field K, we denote the absolute Galois group Gal(K̄/K) by ΓK .

2. Hyperadjoint objects in Tannakian categories

In representation theory, the adjoint representation is very important. Via the Tannakian for-
malism, we port adjoint representations to Tannakian categories. (For a good overview of the
Tannakian formalism, see [Bre94]. For details, we refer to [Del90] and [DMOS82].)

This leads to the definition of hyperadjoint objects in Tannakian categories. We study some of
their properties in Lemma 2.11. This section ties into the proof of the main theorem because we
will replace an abelian variety A with the motive that corresponds to the adjoint representation
of the motivic Galois group of A. (See also the strategy in Section 1.5.)

2.1. Let Q be a field of characteristic 0, and let T be a Q-linear symmetric monoidal category.
Let R be a Q-algebra, and denote the category of finitely generated projective R-modules by
ProjR. An R-valued fibre functor of T is a Q-linear monoidal functor T → ProjR that is faithful
and exact. We denote the groupoid of fibre functors T → ProjR by Fib(T )R.

2.2. Let Q be a field of characteristic 0. A Tannakian category over Q is a Q-linear rigid
abelian symmetric monoidal category with an isomorphism Q

∼→ End(1) such that for every
object V ∈ T , the following equivalent conditions hold: (1) there exists an integer n such that

⋀n V = 0; or (2) dim(V ) is an integer. (See [Del90, § 1.2 and théorème 7.1].) The exterior power

⋀n V is defined in the usual way in terms of ⊗n V and antisymmetrisation. The dimension of V
is defined as the trace of the identity morphism on V ; in other words, dim(V ) is the composition

of the natural morphisms δ (unit) and ev (counit): 1
δÐ→ V ⋆ ⊗ V evÐ→ 1. Théorème 7.1 of [Del90]

shows that the two conditions listed above are equivalent to the existence of a Q-algebra R and
a fibre functor T → ProjR, respectively.

2.3. Throughout the rest of this section, T will denote a Tannakian category over a field Q
of characteristic 0. For a Q-algebra R, recall that Fib(T )R is the groupoid of fibre functors
T → ProjR. It turns out that Fib(T ) is an algebraic stack over Q. In fact, if α ∶ Q → R is
a Q-algebra and ω ∶ T → ProjR is a fibre functor, then the stack α∗ Fib(T ) is isomorphic to
BG = [Spec(R)/G], where G is the affine group scheme Aut⊗(ω) over R. This observation
(together with the fact that such fibre functors exist) makes Fib(T ) into a gerbe.

A representation of Fib(T ) is a cartesian functor Fib(T )→ Proj, in other words, a collection
of functors Fib(T )R → ProjR that is functorial in R. The category of representations of Fib(T )
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is denoted by Rep(Fib(T )), and the evaluation functor T → Rep(Fib(T )), given by V ↦ (ω ↦
ω(V )), is an equivalence. This is one half of the statement of Tannaka duality. The other half
is the converse statement: if G is an affine gerbe over Q, then G is naturally isomorphic to
Fib(Rep(G)).

Definition 2.4. Assume that T is finitely generated (hence generated by one object). The adjoint
object in T is the object (well-defined up to isomorphism) that corresponds to the collection of
functors Fib(T )R → ProjR given by ω ↦ Lie (Aut⊗(ω)) via the Tannakian formalism described
above. Observe that since T is finitely generated, the group scheme Aut⊗(ω) is of finite type,
and therefore Lie (Aut⊗(ω)) is finitely generated.

Notation 2.5. If V is an object of T , then V ad denotes the adjoint object of the Tannakian
subcategory ⟨V ⟩⊗ ⊂ T generated by V .

2.6. If V is an object in T , inductively define a sequence of objects by V (0) = V and V (i+1) =
(V (i))ad

for i ∈ Z≥0. Observe that for i ≥ 1, the object V (i+1) is a quotient of V (i), and therefore

dimV (i+1) ≤ dimV (i). Since V is finite-dimensional, this sequence stabilises at an object V (∞).

Definition 2.7. Retain the notation of the preceding paragraph. We call the object V (∞) the
hyperadjoint object associated with V , and we denote it by V ha. We say that an object V ∈ T is
hyperadjoint if V ≅ V ha (or, equivalently, if V ≅ V ad).

Remark 2.8. The constructions V ↝ V ad and V ↝ V ha are not functorial. They do not in
general commute with tensor functors between Tannakian categories. Also, the constructions are
not in general compatible with direct sums. Note that the definitions are such that if V ≠ 0 is
a hyperadjoint object in T , then V ⊕ V is not hyperadjoint. Caveat emptor!

On a more positive note, the following remark explains that in this paper, these constructions
are very manageable. Lemma 2.11 also lists some natural properties of these constructions.

Remark 2.9. In this paper, we always have V ha = V (2) for all objects that are of interest to
us. The reason for this is that all the objects we encounter live in Tannakian (sub)categories
that are semisimple, and therefore the associated groups (or gerbes) are reductive. Now suppose
that G is a reductive group, with a faithful representation V ∈ Rep(G). After the first step,
we have the object V (1) = V ad = Lie(G). Since G is reductive, we have a short exact sequence
0 → Z(G) → G → Gad → 0, and Lie(G) = Lie(Z(G)) ⊕ Lie (Gad). Observe that Lie(Z(G)) is

isomorphic to a number of copies of the trivial representation of G, and therefore Gad is the
group associated with V (1). We conclude that V (2) = Lie (Gad), which is a faithful representation

of Gad, and therefore V ha = V (2).

Remark 2.10. I do not know of an intrinsic way to define adjoint and hyperadjoint objects in
a finitely generated Tannakian category. Given the universal nature of the adjoint representation,
I expect that it is possible to give a definition without using the Tannakian formalism to pass
to algebraic groups or gerbes. Such a definition might also lead to intrinsic proofs of several
properties, such as those in the following lemma.

Lemma 2.11. Let V be an object of T and W an object of ⟨V ⟩⊗.

(i) We have W ad ∈ ⟨V ad⟩⊗ and W ha ∈ ⟨V ha⟩⊗.

(ii) If V is a direct sum of hyperadjoint objects, then ⟨V ⟩⊗ is semisimple.
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(iii) If V is a direct sum of hyperadjoint objects, and in addition W is hyperadjoint, then W is
a direct summand of V .

Suppose V = V1 ⊕ V2 with V1, V2 ∈ T .

(iv) The adjoint object V ad is a subobject of V ad
1 ⊕ V ad

2 , and in particular an object of ⟨V ad
1 ⊕

V ad
2 ⟩⊗.

(v) For all i ∈ Z≥0, we have V (i+1) ∈ ⟨(V (i)
1 ⊕ V (i)

2 )ad⟩⊗ ⊂ ⟨V (i+1)
1 ⊕ V (i+1)

2 ⟩⊗.

(vi) The object V ha is a direct summand of V ha
1 ⊕ V ha

2 .

Proof. We give the proof under the assumption that there is a fibre functor ω ∈ Fib(T )Q. Let G
be the group Aut⊗(ω∣⟨V ⟩⊗), and denote the group Aut⊗(ω∣⟨W ⟩⊗) by H. By assumption, there is
a surjective map G↠H.

(i) Since G and H are groups over the field Q of characteristic 0, the map G ↠ H induces
a surjection Lie(G)↠ Lie(H). This proves the first claim; the second follows by induction.

(ii) If V is hyperadjoint, then G is semisimple and thus reductive. The general case—where V is
a direct sum of hyperadjoint objects—follows from Goursat’s lemma in the context of algebraic
groups (see Remark 1.3(ii)).

(iii) Both G and H are adjoint semisimple, and H is a quotient of G. Thus H is a factor of G.

Let Gi be the group Aut⊗(ω∣⟨Vi⟩⊗). There is a natural map G ↪ G1 ×G2, and its composition
with the projection onto G1 or G2 is surjective.

(iv) There is a natural map Lie(G)↪ Lie(G1)⊕ Lie(G2).
(v) Inductively apply points (i) and (iv).

(vi) Apply points (v) and (iii).

3. Fractional Hodge structures

Following [Del79], we use the notion of fractional Hodge structures. We also define the slightly
more general notion of a fractional pre-Hodge structure. This section does not contain anything
original but only introduces these concepts because they will prove useful in understanding
Deligne’s construction (Section 8).

Definition 3.1. Let R ⊂ R be a subring (typically Z, Q, or R). A fractional pre-Hodge structure
over R consists of a free R-module V of finite rank and a decomposition V ⊗ C ≅ ⊕p,q∈Q V

p,q

over C such that V p,q = V q,p.

We denote the category of fractional pre-Hodge structures over R by FpHSR.

3.2. Let V be a fractional pre-Hodge structure over a ring R ⊂ R. For p, q ∈ Q, we denote
the dimension of V p,q by hp,q(V ). We say that V is pure of weight n ∈ Q if hp,q(V ) ≠ 0 implies
p+q = n. A fractional Hodge structure is a fractional pre-Hodge structure that is the direct sum of
pure fractional pre-Hodge structures. A pre-Hodge structure V (without the adjective fractional)
is a fractional pre-Hodge structure for which hp,q(V ) ≠ 0 implies p, q ∈ Z. If V is both a fractional
Hodge structure and a pre-Hodge structure, then V is a Hodge structure in the classical sense of
the word.
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3.3. Let S denote the Deligne torus ResC/RGm. Recall that a Hodge structure over R is com-
pletely described by a representation h ∶ S → GL(V )R, as follows: for z ∈ S(C) and v ∈ V p,q, we
put h(z) ⋅ v = z−pz̄−qv. Composing h with the map x ↦ xk ∶ S → S amounts to relabeling V p,q

as V kp,kq.

Put S̃ = limN S, where N is ordered by divisibility and for m ∣n, we take the transition map
S→ S given by x↦ xn/m. Then S̃ is a pro-algebraic group scheme, and the category of fractional
pre-Hodge structures over R is equivalent to Rep(S̃).

Definition 3.4. Let V be a fractional pre-Hodge structure over a ring R ⊂ R. The Mumford–Tate
group of V is the smallest algebraic subgroup GB(V ) ⊂ GL(V ) over R such that h ∶ S̃→ GL(V )R
factors through GB(V )R ⊂ GL(V )R.

Alternatively, let ω ∶ FpHSR → ProjR be the forgetful functor. Then ω is a fibre functor, and
GB(V ) = Aut⊗(ω∣⟨V ⟩⊗).

3.5. Let V be a pre-Hodge structure over a ring R ⊂ R. Recall that this pre-Hodge structure
is described by a morphism h ∶ S → GB(V )R. Denote by µ0 the cocharacter Gm,C → SC given
by z ↦ (z,1) on C-valued points. The composite morphism µh = hC ○ µ0 is called the Hodge
cocharacter of V . If there is no cause for confusion, we will write µ for µh.

Lemma 3.6. Let V be a fractional pre-Hodge structure over Q. The Mumford–Tate group of V
is a torus if and only if V is a free module of rank 1 over a commutative semisimple algebra
E ⊂ EndFpHSQ(V ).

Proof. Assume that GB(V ) is a torus. Let T ⊂ GL(V ) be a maximal torus containing GB(V ).
Then E = EndVectQ(V )T ⊂ EndVectQ(V )GB(V ) = EndFpHSQ(V ) is a commutative semisimple alge-
bra, and V has rank 1 over E.

Conversely, suppose that V is free of rank 1 over some commutative semisimple algebra
E ⊂ EndFpHSQ(V ). Then GB(V ) ⊂ ResE/QGm = ResE/Q GLE(V ) is a torus.

Definition 3.7. A fractional pre-Hodge structure V over a ring R ⊂ R is called of cm type (or
a fractional cm pre-Hodge structure) if the Mumford–Tate group GB(V ) is a torus.

Lemma 3.8. The full subcategory of FpHSQ consisting of (classical) cm Hodge structures over Q
is a Tannakian subcategory generated by Hodge structures of the form H1

B(A), where A is
a complex abelian variety of cm type.

Proof. See [And92, § 2].

4. Abelian motives

To give ourselves access to the strength and flexibility of representation theory, we linearise the
category of abelian varieties, yielding a category of so-called abelian motives. As a consequence
of work of Deligne and André, this category is very tractable (see Theorem 4.13).

4.1. The category of (pure) motives developed by André [And96b] is very suitable for the
problems at hand. Alternatively, we could use motives for absolute Hodge cycles; this would not
influence the statements of results or proofs. In the next subsection, we recall André’s definition.
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4.2. Let K be a subfield of C, and let X be a smooth projective variety over K. A class γ
in H2i

B (X) is called a motivated cycle of degree i if there exists an auxiliary smooth projective
variety Y over K such that γ is of the form π∗(α∪⋆β), where π ∶ X ×Y →X is the projection, α
and β are algebraic cycle classes in H∗

B(X × Y ), and ⋆β is the image of β under the Hodge star
operation. (Alternatively, one may use the Lefschetz star operation; see [And96b, § 1].)

Every algebraic cycle is motivated, and under the Lefschetz standard conjecture, the converse
holds as well. The set of motivated cycles naturally forms a graded Q-algebra. The category of
motives over K, denoted by MotK , consists of objects (X,p,m), where X is a smooth projective
variety over K, p is an idempotent motivated cycle on X ×X, and m is an integer. A morphism
(X,p,m) → (Y, q, n) is a motivated cycle γ of degree n −m on Y ×X such that qγp = γ. We
denote the object (X,∆,0), where ∆ is the class of the diagonal in X×X, by H(X). The Künneth
projectors πi are motivated cycles, and we denote the object (X,πi,0) by Hi(X). Observe that
H(X) = ⊕iH

i(X). This gives contravariant functors H( ) and Hi( ) from the category of
smooth projective varieties over K to MotK .

Theorem 4.3. The category MotK is Tannakian over Q, semisimple, graded, and polarised.
Every classical cohomology theory of smooth projective varieties over K factors via MotK .

Proof. See [And96b, théorème 0.4].

4.4. As Theorem 4.3 indicates, the category of motives that we use is designed to have reali-
sation functors for all the classical cohomology theories. For each prime number `, we obtain an
`-adic realisation functor H` ∶ MotK → RepQ`(ΓK) to `-adic Galois representations of K, and we
obtain a Betti-realisation functor HB ∶ MotK → HSQ to the category of Hodge structures over Q.
There is a natural isomorphism H`( ) ≅ HB( )⊗Q` of functors from MotK to Q`-vector spaces.

Definition 4.5. Let K be a subfield of C. The motivic Galois group G(MotK) is the pro-
algebraic affine group scheme Aut⊗(HB) over Q associated with MotK via the Tannakian for-
malism. If M is a motive over K, then we denote the affine group scheme associated with
⟨M⟩⊗ ⊂ MotK by G(M); it is the image of G(MotK) in GL(HB(M)).

4.6. If K ⊂ L is an extension of subfields of C, then there is a natural functor MotK →MotL.
If K and L are algebraically closed, this functor is fully faithful. If L is algebraic over K, there
is a short exact sequence 1 → G(MotL) → G(MotK) → Gal(L/K) → 1. (Via the Tannakian
formalism, the Galois group Gal(L/K) corresponds to the subcategory of MotK generated by
the objects H(Spec(K ′)), where K ′ is an intermediate field K ⊂K ′ ⊂ L.)

It is not known whether G(MotK̄) is connected.

Notation 4.7. Let M be a motive over a field K ⊂ C. We denote the Zariski closure of the image
of the Galois representation ΓK → GL(H`(M)) by G`(M), and we write G○

`(M) for the identity
component of G`(M). We denote the Mumford–Tate group of the Hodge structure HB(M) by
GB(M). The realisation functors induce natural injective morphisms G`(M)→ G(M)Q` (via the
comparison isomorphism) and GB(M)→ G(M).

Remark 4.8. In certain situations, it is expected that the natural morphisms mentioned above
are isomorphisms. Let us make this more precise. Let M be a motive over a field K ⊂ C. Assume
that K is finitely generated. The Tate conjecture predicts that invariants of G`(M) (in tensor
powers of H`(M)) are algebraic and, in particular, motivated. Suppose that G`(M) is reductive,
so that it is determined by the invariant subspace in the tensor algebra on H`(M). If the invariants
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of G`(M) and G(M)Q` agree, then the two groups are isomorphic. (In fact, we do not need to
assume that G`(M) is reductive, by the result of [Moo19].)

Now assume K = C. The Hodge conjecture predicts that invariants of GB(M) in the tensor
algebra on HB(M) are algebraic and thus motivated. We already know that GB(M) is reduc-
tive, and hence the Hodge conjecture predicts that GB(M) ↪ G(M) is an isomorphism. See
Theorem 4.13 for an example of a class of motives where we know “Hodge = motivated”.

The Tate and Hodge conjectures are naturally complemented by a third conjecture: the
Mumford–Tate conjecture, that we state below. We leave it to the reader to verify that if any
two of the three conjectures hold (for all motives), then so does the third.

Conjecture 4.9. Let M be a motive over a finitely generated field K ⊂ C. Fix a prime number `.
The Mumford–Tate conjecture MTC`(M) for M is the statement that under the comparison
isomorphism H`(M) ≅ HB(M)⊗Q`, we have

G○
`(M) ≅ GB(M)⊗Q` .

We write MTC(M) for the conjecture ∀ ` ∶ MTC`(M).

Remark 4.10. (1) Let M be a motive over a field K ⊂ C. By definition, there is a smooth
projective variety X such that M ∈ ⟨H(X)⟩⊗. By work of Serre [Ser81], there is a finite extension
L/K such that G`(H(XL)) is connected for all `. Since M ∈ ⟨H(X)⟩⊗, there is a quotient map
G`(H(XL))↠ G`(ML), and therefore G`(ML) is connected for all `.

(2) If L/K is a finitely generated extension field, then there is an isomorphism G○
`(ML) ≅ G○

`(M)
(see [Moo17b, Proposition 1.3]). Therefore, the Mumford–Tate conjecture for M is equivalent to
the Mumford–Tate conjecture for ML. In particular, when trying to prove this conjecture for M ,
we may always assume that G`(M) is connected for all prime numbers `.

Definition 4.11. (i) An Artin motive over a field K ⊂ C is an object in the Tannakian subcat-
egory of MotK generated by motives of the form H(Spec(L)), where L is a finite field extension
of K.

(ii) An abelian motive over K is an object in the Tannakian subcategory of MotK generated
by Artin motives and motives of the form H(A), where A is an abelian variety over K.

Remark 4.12. In practice, we can ignore Artin motives in this paper. The Mumford–Tate con-
jecture is trivially true for them: if M is an Artin motive, then both GB(M) and G○

`(M) are
trivial. (Note that G`(M) can be a non-trivial finite group.)

If M is an arbitrary abelian motive, then there are always a finite field extension L/K and an
abelian variety A/L such that ML ∈ ⟨A⟩⊗ ⊂ MotL. By Remark 4.10(ii), we know that MTC(M) is
equivalent to MTC(ML), and therefore we may restrict our attention to motives in the Tannakian
subcategory generated by abelian varieties over K.

Theorem 4.13. Consider the category of motives over C. The restriction of the Hodge realisation
functor HB( ) to the subcategory of abelian motives is a full functor.

Proof. See [And96b, théorème 0.6.2].

Remark 4.14. (1) Let M be an abelian motive over a field K ⊂ C. A corollary of Theorem 4.13 is
that GB(M) is the identity component of G(M). In particular, we obtain the inclusion G○

`(M) ⊂
GB(M)⊗Q`.
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(2) Let A be an abelian variety over K, and assume that K is finitely generated. Then G○
`(A)

is a reductive group by [Fal83, § 5, Satz 3]. (See also [Fal84] for the case where K is not a number

field.) Suppose M ∈ ⟨H1(A)⟩⊗. Then there is a surjection G○
`(A) ↠ G○

`(M). Hence G○
`(M) is

reductive for every abelian motive M .

(3) We also know that EndG○`(A) (H1
`(A)) ≅ EndGB(A) (H1

B(A))Q` , by [Fal83, § 5, Satz 4] (see

also [Fal84]). Now observe that G○
`(A) embeds into EndVect (H1

`(A)), and by the definition of the

centre, we have Z(G○
`(A)) = G○

`(A)∩EndG○`(A) (H1
`(A)), where the intersection takes place inside

EndVect (H1
`(A)). Similarly, we have Z(GB(A))Q` = GB(A)Q` ∩ EndGB(A) (H1

B(A))Q` . With the

two preceding points in mind, we conclude that Z(G○
`(A)) ⊂ Z(GB(A))Q` .

Lemma 4.15. Let M be an abelian motive over a finitely generated field K ⊂ C. Fix a prime
number `. Under the comparison isomorphism H`(M) = HB(M) ⊗Q`, we have an inclusion of
centres Z(G○

`(M)) ⊂ Z(GB(M))Q` .

Proof. After replacing K with a finite field extension L/K, there is an abelian variety A/L such
that ML ∈ ⟨H1(A)⟩⊗ (see Remark 4.12). By Remark 4.10(ii), we have G○

`(ML) = G○
`(M), and

hence we may and do assume L =K. Now we have a commutative diagram

Z(G○
`(A)) G○

`(A) G○
`(M)

Z(GB(A))Q` GB(A)Q` GB(M)Q` ,

a b c

where b and c exist by Theorem 4.13 (see Remark 4.14(i)) and a exists by Remark 4.14(iii).
(Note: we do not claim that the rows are exact.)

Since G○
`(A) and G○

`(M) are reductive (see Remark 4.14(ii)), the image of Z(G○
`(A)) by the

quotient map to G○
`(M) is exactly Z(G○

`(M)). Similarly, the image of Z(GB(A))Q` in GB(M)Q`
is Z(GB(M))Q` . The result follows from the commutativity of the above diagram.

4.16. Let M be a motive over a field K ⊂ C. In this article, we say that M is of cm type (or
a cm motive) if the identity component G○(M) of the motivic Galois group G(M) is a torus.
The full subcategory of MotK consisting of abelian cm motives is a Tannakian subcategory
generated by Artin motives and motives of the form H1(A), where A is a cm abelian variety
over K (cf. Lemma 3.8).

Lemma 4.17. Let M be an abelian cm motive over a finitely generated field K ⊂ C. Then the
Mumford–Tate conjecture is true for M .

Proof. After we replace K with a finite field extension L/K, there is a cm abelian variety A/L
such that ML ∈ ⟨H1(A)⟩⊗ (see Remark 4.12). By [Poh68], the Mumford–Tate conjecture is true
for A, and thus MTC(M) is true by Remark 4.10(ii).

Lemma 4.18. Let M be an abelian motive over a finitely generated field K ⊂ C. Fix a prime
number `. Under the comparison isomorphism H`(M) = HB(M) ⊗Q`, we have an inclusion of
centres Z(G○

`(M)) ⊂ Z(GB(M))⊗Q`, and Z(G○
`(M))○ = Z(GB(M))○ ⊗Q`.

Proof. (This result is proven in [Vas08, Theorem 1.3.1] and [UY13, Corollary 2.11] using different
methods.) The first claim is Lemma 4.15. Therefore, it suffices to show that the composition of
the natural maps G○

`(M)↪ GB(M)Q` ↠ GB(M)ab
Q` is surjective.
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Let N be a faithful representation of GB(M)ab. By Theorem 4.13 and the Tannakian forma-
lism, we may view N as a complex motive. Note that N is an abelian cm motive, by construction.
After replacing K by a finitely generated extension—which is harmless by Remark 4.10(ii)—we
may assume that N is defined over K. Since the Mumford–Tate conjecture holds for cm motives
(Lemma 4.17), we find G○

`(N) = GB(N)Q` = GB(M)ab
Q` . To complete the proof, we remark that

G○
`(N) is exactly the image of G○

`(M) under the composite map of the preceding paragraph.

Proposition 4.19. Let M be an abelian motive over a finitely generated field K ⊂ C. Fix a prime
number `. Then MTC`(M) is equivalent to MTC`(Mha), where Mha is the hyperadjoint object
associated with M ∈ MotK ; see Definition 2.7.

Proof. Consider the commutative diagram

0 Z(G○
`(M)) G○

`(M) G○
`(Mha) 0

0 Z(GB(M))⊗Q` GB(M)⊗Q` GB(Mha)⊗Q` 0 ,

a b c

where the inclusions b and c exist by Theorem 4.13 (see Remark 4.14(i)) and a exists by
Lemma 4.15. Moreover, a is an isomorphism on identity components, by Lemma 4.18. The
bottom row is exact by the definition of hyperadjoint objects (Definition 2.7) and Theorem 4.13.

Certainly, if b is an isomorphism, then c is also an isomorphism. Conversely, if c is an iso-
morphism, then dim G○

`(M) = dim GB(M). Since b is an inclusion of connected linear groups, it
must be an isomorphism.

5. Quasi-compatible systems of Galois representations

In general, it is expected that the `-adic realisations H`(M) of a motive M over a finitely
generated field K of characteristic 0 form a compatible system of Galois representations in the
sense of Serre.

The main theorem of [Com17] shows that if M is an abelian motive, a slightly weaker result
is true; this is good enough for our purposes. The weaker condition is called quasi-compatibility
and in this section, we recall the necessary definitions and results.

5.1. Let κ be a finite field with q elements. We denote by Fκ ∈ Γκ the geometric Frobenius
automorphism, that is, the inverse of x↦ xq.

Definition 5.2. Let K be a number field. Let v be a finite place of K, and let Kv denote the
completion of K at v. Let K̄v be an algebraic closure of Kv, and let κ̄/κ be the extension of
residue fields corresponding to K̄v/Kv. The inertia group, denoted by Iv, is the kernel of the
natural surjection ΓKv ↠ Γκ. The inverse image of Fκ in ΓKv is called the Frobenius coset of v.
An element α ∈ ΓK is called a Frobenius element with respect to v if there exists an embedding
K̄ ↪ K̄v such that α is the restriction of an element of the Frobenius coset of v.

Definition 5.3. Let K be a finitely generated field. A model of K is an integral scheme X of
finite type over Spec(Z) together with an isomorphism between K and the function field of X.

Remark 5.4. If K is a number field and R ⊂ K is an order, then Spec(R) is naturally a model
of K. The only model of a number field K that is normal and proper over Spec(Z) is Spec(OK).
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Definition 5.5. Let K be a finitely generated field, and let X be a model of K. We denote
the set of closed points of X by Xcl. Let x ∈ Xcl be a closed point, let Kx be the function field
of the Henselisation of X at x, and let κ(x) be the residue field at x. We denote the kernel
of ΓKx ↠ Γκ(x) by Ix. Every embedding K̄ ↪ K̄x induces an inclusion ΓKx ↪ ΓK . Like in
Definition 5.2, the inverse image of Fκ(x) in ΓKx is called the Frobenius coset of x. An element
α ∈ ΓK is called a Frobenius element with respect to x if there exists an embedding K̄ ↪ K̄x such
that α is the restriction of an element of the Frobenius coset of x.

Definition 5.6. Let K be a field, let E be a number field, and let λ be a finite place of E.
A λ-adic Galois representation of K is a representation of ΓK on a finite-dimensional Eλ-vector
space V that is continuous for the λ-adic topology. We denote by Gλ(V ) ⊂ GL(V ) the algebraic
group over Eλ that is the Zariski closure of the image of ΓK under this representation. The
identity component of Gλ(V ) is denoted by G○

λ(V ).

Definition 5.7. Let K be a field, let E be a number field, and let λ be a finite place of E. Let ρ
be a λ-adic Galois representation of K. Let X be a model of K, and let x ∈Xcl be a closed point.
We say that ρ is unramified at x if there is an embedding K̄ ↪ K̄x for which ρ(Ix) = {1}, where Ix
is the kernel of the projection ΓKx ↠ Γκ(x), as in Definition 5.5. (Remark: If this condition is
satisfied by one embedding, then it is satisfied by all embeddings.)

Notation 5.8. Let K, X, x, E, λ, and ρ be as in Definition 5.7, and assume that K is a finitely
generated field. Let Fx be a Frobenius element with respect to x. Assume that ρ is unramified
at x, so that the element Fx,ρ = ρ(Fx) is well defined up to conjugation. For n ∈ Z, we write
Px,ρ,n(t) for the characteristic polynomial of Fnx,ρ. Note that Px,ρ,n(t) does not depend on the
choice of Fx since conjugate endomorphisms have the same characteristic polynomial.

Definition 5.9. Let K, X, x, E, λ, and ρ be as in Definition 5.7, and assume that K is a finitely
generated field. The representation ρ is said to be E-rational at x if ρ is unramified at x and
Px,ρ,n(t) ∈ E[t] for some n ≥ 1.

Definition 5.10. Let K be a finitely generated field. Let E be a number field, and let λ1 and λ2

be two finite places of E. For i = 1,2, let ρi be a λi-adic Galois representation of K.

(i) Let X be a model of K, and let x ∈ Xcl be a closed point. Then ρ1 and ρ2 are said to be
quasi-compatible at x if ρ1 and ρ2 are both E-rational at x and if there is an integer n such
that Px,ρ1,n(t) = Px,ρ2,n(t) as polynomials in E[t].

(ii) Let X be a model of K. The representations ρ1 and ρ2 are quasi-compatible with respect
to X if there is a non-empty open subset U ⊂ X such that ρ1 and ρ2 are quasi-compatible
at x for all x ∈ U cl.

(iii) The representations ρ1 and ρ2 are quasi-compatible if they are quasi-compatible with respect
to every model of K.

Definition 5.11. Let K be a field. By a system of Galois representations of K, we mean a triple
(E,Λ, (ρλ)λ∈Λ), where E is a number field, Λ is a set of finite places of E, and ρλ (for λ ∈ Λ) is
a λ-adic Galois representation of K.

Definition 5.12. Let K be a finitely generated field. Let ρΛ = (E,Λ, (ρλ)λ∈Λ) be a system of
Galois representations of K.

(i) Let X be a model of K. The system ρΛ is quasi-compatible with respect to X if for all
λ1, λ2 ∈ Λ, the representations ρλ1 and ρλ2 are quasi-compatible with respect to X.
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(ii) The system ρΛ is called quasi-compatible if for all λ1, λ2 ∈ Λ, the representations ρλ1 and ρλ2
are quasi-compatible.

Theorem 5.13. Let K be a finitely generated field of characteristic 0. Let M be an abelian
motive over K. Let E be a subfield of End(M), and let Λ be the set of finite places of E. Then
the system HΛ(M) is a quasi-compatible system of representations.

Proof. See [Com17, Theorem 5.1].

Proposition 5.14. Let K be a finitely generated field. Let E be a number field, and let λ
be a finite place of E. Let ρ1 and ρ2 be λ-adic Galois representations of K. If ρ1 and ρ2 are
semisimple, quasi-compatible, and Gλ(ρ1 ⊕ ρ2) is connected, then ρ1 ≅ ρ2.

Proof. See [Com17, Proposition 6.3].

Proposition 5.15. Let K be a finitely generated field. Let E be a number field, and let Λ be the
set of finite places of E whose residue characteristic is different from char(K). Let L be the set
of prime numbers different from char(K). Let ρΛ be a quasi-compatible system of representations
of K. Let ρL be the quasi-compatible system of representations obtained from ρΛ by restricting
to Q ⊂ E; in other words, ρ` =⊕λ∣` ρλ. Assume that G`(ρ`) is connected for all ` ∈ L . Fix λ0 ∈ Λ.
Define the field E′ ⊂ E to be the subfield of E generated by elements e ∈ E that satisfy the
following condition:

There exist a modelX ofK, a point x ∈Xcl, and an integer n ≥ 1, such that Px,ρλ0 ,n(t) ∈
E[t] and e is a coefficient of Px,ρλ0 ,n(t).

Let ` be a prime number that splits completely in E/Q. If EndΓK ,Q`(ρ`) ≅ E ⊗Q`, then E = E′.

Proof. We restrict our attention to a finite subset of Λ, namely Λ0 = {λ0}∪ {λ ∣ `}. Let U ⊂X be
a non-empty open subset such that for all λ1, λ2 ∈ Λ0, the representations ρλ1 and ρλ2 are quasi-
compatible at all x ∈ U cl. For each x ∈ U cl, let nx be an integer such that Px(t) = Px,ρλ,nx(t) ∈ E[t]
does not depend on λ ∈ Λ0.

Let λ′ be a place of E′ above `. Let λ1 and λ2 be two places of E that lie above λ′. We view
ρλ1 and ρλ2 as λ′-adic Galois representation. Since ` splits completely in E/Q, the inclusions
Q` ⊂ E′

λ′ ⊂ Eλi are isomorphisms. By the definition of E′, we have Px(t) ∈ E′[t]. Therefore,
ρλ1 and ρλ2 are quasi-compatible λ′-adic Galois representations; hence, they are isomorphic
by Proposition 5.14. Let ρλ′ be the λ′-adic Galois representation ⊕λ∣λ′ ρλ. We conclude that
EndΓK ,E

′

λ′
(ρλ′) ≅ Mat[E∶E′](E′

λ′), which implies [E ∶ E′] = 1.

6. Deligne–Dynkin diagrams

In order to streamline the discussion of Deligne’s construction (Section 8) and the proof of the
main theorem in the final two sections, in this section, we attempt to axiomatise parts of [Del79]
(notably § 1.3 and § 2.3).

We introduce Deligne–Dynkin diagrams: they are Dynkin diagrams with an extra structure
that capture important information about hyperadjoint abelian motives. The main result of this
section is Proposition 6.23, a local-global result for irreducible symplectic populated Deligne–
Dynkin diagrams over Q.

Definition 6.1. Let ∆ be a connected Dynkin diagram, and let ∆+ = ∆⊔ {α0} be the extended
(or affine) Dynkin diagram associated with ∆. (See Figure 1.) A node of ∆ is special if it is
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A+
1 : A+

n (n ≥ 2):

B+
n: C+

n:

D+
n: E+

6 :

E+
7 :

E+
8 :

F+
4 :

G+
2 :

Figure 1. Extended Dynkin diagrams. The “extending” node α0 is depicted by a grey node .

contained in the Aut(∆+) orbit of α0. See Section 6.9 for diagrams that depict which nodes are
special.

Example 6.2. If ∆ is a connected Dynkin diagram of type An, then all nodes of ∆ are special. If
∆ is of type Dn, then all extremal nodes are special. If ∆ is of type E8, F4, or G2, then ∆ has
no special nodes.

Definition 6.3. A Deligne–Dynkin diagram over a field Q is a pair (∆, µ), where ∆ is a Dynkin
diagram equipped with an action of ΓQ and µ is a subset of the special nodes of the connected
components of ∆ meeting each connected component in at most 1 node. (Note that µ is not
required to be ΓQ-stable.) The Deligne–Dynkin diagram (∆, µ) is called irreducible if π0(∆) is
irreducible as a ΓQ-set, and (∆, µ) is populated if µ meets every irreducible component of (∆, µ).

Remark 6.4. There is a risk of confusing terminology: a connected component of ∆ or (∆, µ)
will always mean a connected component of the Dynkin diagram ∆ disregarding the ΓQ-action,
whereas an irreducible component (∆′, µ′) ⊂ (∆, µ) is an irreducible ΓQ-subset ∆′ of connected
components of ∆ with µ′ = ∆′ ∩ µ.

6.5. The reason we study Deligne–Dynkin diagrams is that we may naturally attach such a
diagram to any hyperadjoint abelian motive M over a field K ⊂ C. These assumptions on M imply
that the linear algebraic group GB(M) over Q is an adjoint group. Let ∆ be the Dynkin diagram
of GB(M), and note that ∆ is naturally equipped with an action of ΓQ. Let µ ∶ Gm → GB(M)C be
the Hodge cocharacter of the Hodge structure HB(M) (see Section 3.5). This cocharacter may be
identified with a subset of nodes µ ⊂ ∆. Since M is hyperadjoint and abelian, the computation in
[Del79, § 1.2.5] shows that the nodes in µ are special and (∆, µ) is a populated Deligne–Dynkin
diagram over Q. We call it the Deligne–Dynkin diagram of M .
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6.6. We recall the definition of the opposition involution on a Dynkin diagram. Let (R,Φ) be
an irreducible root system, and let ∆ ⊂ Φ be a choice of positive simple roots. Then ∆ may be
identified with the vertices of the Dynkin diagram of (R,Φ). Let W be the Weyl group of (R,Φ),
and let w0 be the longest element of the Weyl group (with respect to ∆). Then w0(∆) = −∆,
and −w0 defines an element τ of Aut(∆): the opposition involution. It is non-trivial if and only
if ∆ has type Ak with k ≠ 1, Dk with k odd, or E6. In these cases, τ is the unique non-trivial
automorphism of ∆. In particular, the opposition involution depends only on the type of ∆.

For non-connected Dynkin diagrams, the opposition involution is defined componentwise.

Definition 6.7. Let ∆ be a connected Dynkin diagram with opposition involution τ , and let
α ∈ ∆ be a special node. A node ω ∈ ∆ is called α-symplectic if ⟨α,ω + τ(ω)⟩ = 1.

Remark 6.8. The reasoning behind this terminology is best understood in terms of Deligne’s
construction (Section 8, see also [Del79, § 1.3]): the α-symplectic nodes of ∆ correspond precisely
to the highest weights of certain symplectic representations.

6.9. Table 1.3.9 of [Del79] lists the isomorphism classes of connected Dynkin diagrams equipped
with a special node α. In other words, these are the irreducible populated Deligne–Dynkin dia-
grams over an algebraically closed field Q = Q̄. (Compared to [Del79, Table 1.3.9], we have added
a diagram An that depicts a special case of diagram Ap+q+1, for reasons of clarity. See also [Mil13,
§ 10, in particular footnote 34].)

Ap+q−1:
q/(p + q) pq/(p + q) p/(p + q)

An:
n/(n + 1) 1/(n + 1)

Bl:
1 1 1/2

Cl:
1/2 l/2

DR
l :

1 1
1/2

1/2

DH
k+2:

1/2 k/2
k/4

k/4 + 1/2

E6:
2/3 4/3 2

1
5/3 4/3

E7:
1 2 3

3/2
5/2 4/2 3/2

Legend (and comparison with [Del79]):

a node (bar in [Del79])

the special node α (circled node in [Del79])

an α-symplectic node (underlined node in
[Del79]); see Definition 6.7

The number next to a node ω is ⟨α,ω⟩, where
the special node α and the node ω are identified
with the appropriate (co)characters.

In diagram Ap+q−1 it is the pth node that is
special. If this special node is extremal, then all
nodes are symplectic (diagram An); otherwise,
only the extremal nodes are symplectic. The di-
agram DH

k+2 is required to satisfy k + 2 ≥ 5.
The diagrams of types E6 and E7 do not have

symplectic nodes. The diagrams of types E8, F4,
and G2 do not occur: they do not have special
nodes.

As explained in Example 6.2, if the Dynkin diagram has type Dn, then all extremal nodes
are special. This leads to two different isomorphism classes, listed in the table above, that are
labelled with DR

n and DH
n . The reader who has never seen these labels before should not worry

about the meaning of the superscripts ( )R and ( )H; the curious reader is referred to [Del79,
remarque 1.3.10(ii)].
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Definition 6.10. Let (∆, µ) be a Deligne–Dynkin diagram over a field Q. The subset of µ-
symplectic nodes attached to (∆, µ) is the maximal ΓQ-stable subset S ⊂ ∆ satisfying the follow-
ing condition: For every special node α ∈ µ ⊂ ∆, let ∆α denote the connected component of ∆
that contains α. Then S ∩∆α consists of only α-symplectic nodes of ∆α. (See also Section 6.9.)

Definition 6.11. A Deligne–Dynkin diagram (∆, µ) over Q is symplectic if its subset of µ-
symplectic nodes has non-empty intersection with every irreducible component of (∆, µ).

Theorem 6.12. If M is a hyperadjoint abelian motive over a field K ⊂ C, then the Deligne–
Dynkin diagram (∆, µ) associated with M is symplectic.

Proof. Since (∆, µ) depends only on HB(M), we assume K = C. Because A is an abelian motive,
there is a complex abelian variety such that M ∈ ⟨H1(A)⟩⊗, and thus a quotient map GB(A)↠
GB(M). Hence, there is a map G̃B(M)→ GB(A)der, where G̃B(M) denotes the simply connected
cover of GB(M). The representation GB(A)→ GL(H1

B(A)) is symplectic, and thus its restriction

to G̃B(M) is symplectic. In [Del79, §§ 1.3 and 2.3.7], Deligne shows that this means that (∆, µ)
is symplectic.

Example 6.13. We will now look in some detail at Deligne–Dynkin diagrams whose underlying
Dynkin diagrams have connected components of type D4. Let (∆, µ) be such a Deligne–Dynkin
diagram over some field Q, and assume that it is irreducible. Recall that this means that we have

– a diagram ∆ consisting of a number of copies of D4,

– an action of ΓQ on ∆ that is transitive on the set π0(∆) of connected components,

– a subset µ ⊂ ∆ of the extremal nodes (cf. Example 6.2) such that µ meets every connected
component of ∆ in at most 1 node.

Several properties of (∆, µ) depend on how the action of ΓQ and the subset µ ⊂ ∆ play together.
Let µ̄ denote the closure of µ under the action of ΓQ; then d = degπ0(∆)(µ̄) takes values in
{0,1,2,3}.

The cases d = 0 and d = 3 are somewhat degenerate. To see this, let S ⊂ ∆ be the subset of
µ-symplectic nodes. If d = 0, then µ = ∅ and S = ∆; in this case, (∆, µ) is not populated. On
the other hand, if (∆, µ) is populated, then Section 6.9 shows that S is contained in the set V
of extremal nodes of ∆. In fact, we have V = µ̄ ⊔ S by the maximality of S. Hence, if d = 3,
then S = ∅ and (∆, µ) is not symplectic. Theorem 6.12 and Section 6.5 explain why we are not
interested in these degenerate cases.

If d = 1, then deg(S) = 2, and we say that (∆, µ) has type DR
4 . If d = 2, then deg(S) = 1, and

we say that (∆, µ) has type DH
4 . We will not say more about these diagrams in this example,

apart from mentioning that the distinction between diagrams of types DR
4 and DH

4 will play
an important role in the proofs in the remainder of this section (notably the proof of Proposi-
tion 6.23).

6.14. The type of (∆, µ). Let (∆, µ) be an irreducible populated Deligne–Dynkin diagram
over Q. If (∆, µ) is symplectic, then the type of its connected components is classical: An, Bn, Cn,
or Dn. Conversely, if the connected components of ∆ are of type An , Bn, or Cn, then (∆, µ) is
symplectic. In this case, the type of (∆, µ) is An, Bn, or Cn, respectively. The case where the
connected components of ∆ are of type Dn requires more attention.

Assume that the connected components of ∆ are of type Dn with n ≥ 5. For every special
node α ∈ µ ⊂ ∆, let ∆α be the connected component of ∆ that contains α. The pair (∆α, α) is of
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type DR
n or DH

n according to the diagrams listed in Section 6.9. One readily verifies that (∆, µ)
is symplectic if and only if one of the following conditions holds:

– For every special node α, the pair (∆α, α) is of type DR
n .

– For every special node α, the pair (∆α, α) is of type DH
n .

We say that (∆, µ) is of type DR
n (respectively, DH

n ) if the former (respectively, the latter) condition
holds.

Finally, if the connected components of ∆ have type D4, then the type of (∆, µ) was explained
in Example 6.13, as follows: Let µ̄ ⊂ ∆ be the ΓQ-closure of µ, and write d = degπ0(∆)(µ̄). Recall

that d ∈ {1,2,3}, and if d = 3, then (∆, µ) is not symplectic. We say that (∆, µ) has type DR
4

(respectively, DH
4 ) if d = 1 (respectively, d = 2).

We conclude with two observations:

– The definitions of types DR
n and DH

n distinguish between the cases n = 4 and n ≥ 5, but these
cases unify in the following way: if (∆, µ) is of type DR

n (respectively, DH
n ), then the subset

of µ-symplectic nodes of ∆ has degree 2 (respectively, 1) over π0(∆).
– An irreducible symplectic populated Deligne–Dynkin diagram has one of the following types:

An (n ≥ 1), Bn (n ≥ 2), Cn (n ≥ 3), DR
n (n ≥ 4), or DH

n (n ≥ 4); all these types occur.

Remark 6.15. Let Q′/Q be a field extension, and let (∆, µ) be a Deligne–Dynkin diagram over Q.
By restricting the Galois action, one obtains a Deligne–Dynkin diagram (∆, µ)Q′ over Q′. We
make the following observations:

(i) If (∆, µ) is irreducible or populated, then this need not be true for (∆, µ)Q′ . (Of course,
(∆, µ)Q′ will have irreducible components that are populated.)

(ii) Related to the preceding point: the subset of µ-symplectic nodes of (∆, µ)Q′ may be strictly
larger than the subset of µ-symplectic nodes of (∆, µ).

(iii) If (∆, µ) is irreducible of type DH
4 , then (∆, µ)Q′ may have irreducible components of

type DR
4 . On the other hand, if (∆, µ) is populated and symplectic but not of type DH

4 ,
then every irreducible component of (∆, µ)Q′ that is populated must have the same type as
(∆, µ).

Lemma 6.16. Let (∆, µ) be an irreducible symplectic populated Deligne–Dynkin diagram over Q.
Then there exist a prime number ` and an irreducible component of (∆, µ)Q` that has the same
type as (∆, µ).

Proof. By what was said in Remark 6.15(iii), this is trivial unless (∆, µ) has type DH
4 . In that

case, let α ∈ µ be a special node, and let ∆α be the connected component of ∆ that contains α.
By assumption, the subset of µ-symplectic nodes of (∆, µ) meets ∆α in exactly one node s. Label
the remaining extremal node of ∆α with β, so that {α,β, s} is the set of extremal nodes of ∆α.
Note that µ̄ ∩ ∆α = {α,β}. Since (∆, µ) has type DH

4 , there exist a special node α′ ∈ µ and an
element g ∈ ΓQ such that gα′ = β. By Chebotarev’s density theorem, we may assume g ∈ ΓQ` for
some prime number `. Let ∆′ be the ΓQ`-closure of ∆α, and take µ′ = ∆′ ∩ µ. Then (∆′, µ′) has
type DH

4 .

6.17. An isomorphism of Deligne–Dynkin diagrams φ ∶ (∆1, µ1) → (∆2, µ2) over a field Q is a
ΓQ-equivariant isomorphism φ ∶ ∆1 → ∆2 that maps µ1 onto µ2. We denote the set of isomor-

phisms from (∆1, µ1) to (∆2, µ2) by Isom ((∆1, µ1), (∆2, µ2))
ΓQ .
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Observe that there is a natural map Isom ((∆1, µ1), (∆2, µ2))
ΓQ → Isom (π0(∆1), π0(∆2))

ΓQ .

If f ∈ Isom (π0(∆1), π0(∆2))
ΓQ , then we write Isomf ((∆1, µ1), (∆2, µ2))

ΓQ for the set of φ ∈
Isom ((∆1, µ1), (∆2, µ2))

ΓQ such that π0(φ) = f .

Lemma 6.18. Let (∆, µ) be an irreducible symplectic populated Deligne–Dynkin diagram over Q.
Let τ denote the opposition involution on ∆. Then

# Autid(∆, µ)ΓQ =
⎧⎪⎪⎨⎪⎪⎩

1 if (∆, µ) has type A1, Bn, Cn, DH
n , or An and µ is not fixed by τ ,

2 if (∆, µ) has type DR
n , or An (n ≥ 2) and µ is fixed by τ .

Proof. If ∆ has only one connected component, then the result may be deduced from the tables in
Section 6.9. If ∆ has multiple components, then the result follows from the fact that a non-trivial
element of Autid(∆, µ)ΓQ must act non-trivially on every connected component of ∆.

Lemma 6.19. Let (∆, µ) be an irreducible symplectic populated Deligne–Dynkin diagram over Q.
Then there exists an irreducible component (∆λ, µλ) of (∆, µ)Q` such that the natural map
Autid(∆, µ)ΓQ → Autid(∆λ, µλ)ΓQ is an isomorphism.

Proof. This follows immediately from Lemmas 6.16 and 6.18.

Remark 6.20. As explained at the beginning of this section, our aim is a local-global result for
irreducible symplectic populated Deligne–Dynkin diagrams over Q (Proposition 6.23). Now recall
that a quadratic extension F of a number field E is completely determined by the set of primes
of E that split in F . This fact inspires the following notation.

6.21. Let (∆, µ) be an irreducible symplectic populated Deligne–Dynkin diagram over Q.
The action of ΓQ on ∆ is determined by the action on a ΓQ-closed subset U(∆, µ) of ∆ with
degπ0(∆)(U(∆, µ)) ∈ {1,2}. Indeed, let S be the subset of µ-symplectic nodes of (∆, µ).

– If (∆, µ) has type An, we let U(∆, µ) be the set of extremal nodes in ∆, which has degree 1
if n = 1 and degree 2 otherwise. (Observe that this set is equal to S unless all nodes in µ
are extremal, cf. Section 6.9.)

– If (∆, µ) has type Bn, we take U(∆, µ) = S, which has degree 1.

– If (∆, µ) has type Cn, we take U(∆, µ) = µ̄, which has degree 1.

– If (∆, µ) has type DR
n , we take U(∆, µ) = S, which has degree 2.

– If (∆, µ) has type DH
n , we take U(∆, µ) = µ̄, which has degree 1 or 2.

6.22. Let E be a number field, and let (∆1, µ1) and (∆2, µ2) be two irreducible symplectic
populated Deligne–Dynkin diagrams over Q such that π0(∆1) and π0(∆2) are both isomorphic
to Hom(E, Q̄) as ΓQ-sets. Fix ΓQ-equivariant isomorphisms π0(∆1) ≅ Hom(E, Q̄) ≅ π0(∆2),
and write f for the composite map π0(∆1) → π0(∆2). Suppose that there is an isomorphism

φ ∈ Isomf ((∆1, µ1), (∆2, µ2))
ΓQ .

We restrict the Galois action to ΓQ` for some prime number `. The irreducible components
of (∆1, µ1)Q` are in a natural way indexed by the places λ of E that lie above `, so that
(∆1, µ1)Q` = ⊔λ ∣ `(∆1, µ1)λ. In a similar manner, the maps f` and φ` are the disjoint union
of local components fλ and φλ. We will use this notation below.

Proposition 6.23. Let E be a number field, and let (∆1, µ1) and (∆2, µ2) be two irreducible
symplectic populated Deligne–Dynkin diagrams over Q such that π0(∆1) and π0(∆2) are both
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isomorphic to Hom(E, Q̄) as ΓQ-sets. Fix ΓQ-equivariant isomorphisms π0(∆1) ≅ Hom(E, Q̄) ≅
π0(∆2), and write f for the composite map π0(∆1) → π0(∆2). Suppose that for each prime

number `, there is an element ψ` ∈ Isomf ((∆1, µ1)Q` , (∆2, µ2)Q`)
ΓQ` . Then there exist an iso-

morphism φ ∈ Isomf ((∆1, µ1), (∆2, µ2))
ΓQ and a finite place λ of E such that φλ = ψλ.

6.24. Unfortunately, the proof of this proposition is rather long and technical. We will first
look at some easy cases that give a good idea of the strategy. After that, the remaining cases are
dealt with. The proof concludes in Section 6.28.

Note that it suffices to prove the existence of φ; the second claim will follow automatically
from Lemma 6.19. First of all, observe that (∆1, µ1) and (∆2, µ2) have the same type, by Re-
mark 6.15(iii) and Lemma 6.16. If this type is Bn or Cn, then the topology of the diagrams and
the map f ∶ π0(∆1)→ π0(∆2) determine a unique ΓQ-equivariant map φ ∈ Isomf(∆1,∆2)ΓQ . This
map φ sends µ1 to µ2 because it does so locally.

6.25. The other types require more bookkeeping, although the strategy remains the same. We
begin by proving that there is an element φ ∈ Isomf(∆1,∆2)ΓQ , that may or may not map µ1

to µ2. By Section 6.21, a ΓQ-equivariant isomorphism U(∆1, µ1)→ U(∆2, µ2) lying above f will
extend to a ΓQ-equivariant isomorphism ∆1 → ∆2. Since the degree of U(∆i, µi) over π0(∆i)
is at most 2, the existence of a global isomorphism U(∆1, µ1) → U(∆2, µ2) will follow from
Chebotarev’s density theorem if we prove that these sets are locally isomorphic (cf. Remark 6.20).

– If (∆1, µ1) and (∆2, µ2) have type An, or DR
n with n ≥ 5, then the topology of the diagrams

forces that ψ`(U(∆1, µ1)) equals U(∆2, µ2) for all prime numbers `.

– Now assume that (∆1, µ1) and (∆2, µ2) have type DR
4 or DH

4 . Let λ be a finite place of E.
There are two possibilities: either the extremal nodes of (∆1, µ1)λ and (∆2, µ2)λ form two
orbits under the action of ΓQ` , or the extremal nodes form three orbits. For both possibilities,
it is clear that U(∆1, µ1)λ is isomorphic to U(∆2, µ2)λ.

– Finally, assume that (∆1, µ1) and (∆2, µ2) have type DH
n with n ≥ 5. Recall that the subset

U(∆i, µi) = µ̄i has degree 1 or 2. If these degrees are equal for i = 1,2, then we are done.
Now suppose that the degree of µ̄1 is 2. Let {α,β} ⊂ µ̄1 be two nodes that lie in the
same connected component of ∆1. Without loss of generality, we may assume α ∈ µ1. By
Chebotarev’s density theorem, there exist a prime number ` and a g ∈ ΓQ` such that gα = β.
By assumption, we have ψ`(α) ∈ µ2 and ψ`(β) = gψ`(α) ∈ µ̄2. We conclude that µ̄1 and µ̄2

have the same degree.

We have now proven that there exists a ΓQ-equivariant isomorphism φ ∶ ∆1 → ∆2 lying over f .
It remains to prove that we can choose φ in such a way that it maps µ1 to µ2.

6.26. At the beginning of this proof, we already dealt with the cases where (∆1, µ1) and
(∆2, µ2) have type Bn or Cn. We continue with some other easy cases, where the topology of the
diagrams forces φ(µ1) = µ2. This happens

– if (∆1, µ1) and (∆2, µ2) are of type A1, or DR
n with n ≥ 5;

– if the type is DR
4 , since φ maps U(∆1, µ1) = S1 to U(∆2, µ2) = S2 by construction; and

– if the type is An with n ≥ 2, and µ1 (and thus µ2) is fixed by the opposition involution.

The remaining cases require a bit more work: so far we have not needed to change our choice
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of φ, but with the remaining cases, this might be necessary.

6.27. First consider the case DH
4 . Recall that µ̄i has degree 2. Thus there is a unique non-trivial

ΓQ-equivariant involution τi ∈ Autid(∆i) such that τi(µ̄i) = µ̄i. Observe that φ ○ τ1 = τ2 ○ φ. Let
α ∈ µ1 be a special node. We may assume φ(α) ∈ µ2 by replacing φ with τ2 ○ φ if necessary.

We claim that φ(µ1) = µ2. Indeed, let α′ ∈ µ1 be a special node. Recall from Example 6.13
that deg(µ̄i) = 2. Now there are two cases: either α and α′ are in the same ΓQ-orbit, or they are
in different orbits. Assume that α and α′ are in the same orbit. The proof of this case contains
the essential idea that will also be applied in all the remaining cases: There exists a g ∈ ΓQ such
that gα = α′. By Chebotarev’s density theorem, we may assume g ∈ ΓQ` for some prime number `.
Since φ(α) ∈ µ2, we have φ(α) = ψ`(α), and we compute

φ(α′) = φ(gα) = gφ(α) = gψ`(α) = ψ`(gα) = ψ`(α′) ∈ µ2 .

Now suppose that α and α′ are in different orbits. Let ∆α and ∆α′ be the connected components
of ∆ that contain α and α′, respectively. Let s and s′ be the µ-symplectic nodes in ∆α and ∆α′ ,
respectively. Finally, let β ∈ ∆α and β′ ∈ ∆α′ be such that {α,β, s} is the set of extremal nodes
of ∆α and {α′, β′, s′} is the set of extremal nodes of ∆α′ . There exists a g ∈ ΓQ such that gα = β′.
By Chebotarev’s density theorem, we may assume g ∈ ΓQ` for some prime number `. Let λ ∣ ` be
the finite place of E that corresponds to the ΓQ`-closure of ∆α.

By construction, φ maps U(∆1, µ1) = µ̄1 to U(∆2, µ2) = µ̄2. On the other hand, we have
ψλ(µ̄1,λ) = µ̄2,λ by assumption; thus φ(s) = φλ(s). Since φ(α) ∈ µ2, we have φ(α) = ψλ(α), and
therefore φ(β) = ψλ(β). We compute φ(α′) = φ(gβ) = gφ(β) = gψλ(β) = ψλ(gβ) = ψλ(α′) ∈ µ2.
This finishes the proof in the case DH

4 .

6.28. Finally, suppose that the type is DH
n with n ≥ 5, or the type is An and µi is not fixed

by the opposition involution. The proof is similar to that in the case DH
4 . There is a unique

non-trivial ΓQ-equivariant involution τi ∈ Autid(∆i). Once again, we have φ ○ τ1 = τ2 ○ φ. Let
α ∈ µ1 be a special node that is not fixed under τ1. We may assume φ(α) ∈ µ2 by replacing φ
with τ2 ○ φ if necessary.

As before, we claim that φ(µ1) = µ2. Indeed, suppose that α′ ∈ µ1 is a special node, and let ∆α′

be the component of ∆1 containing α′. There exists a g ∈ ΓQ such that gα ∈ ∆α′ . By Chebotarev’s
density theorem, we may assume g ∈ ΓQ` for some prime number `. Now we argue as follows:
Let (∆1, µ1)λ (respectively, (∆2, µ2)λ) be the irreducible component of (∆1, µ1)Q` (respectively,
(∆2, µ2)Q`) that contains α (respectively, φ(α)). Since φ(α) ∈ µ2, we have φ(α) = ψ`(α) and
therefore φλ = ψλ. This implies φ(α′) ∈ µ2 by a computation similar to the one above. This
completes the proof of Proposition 6.23.

Remark 6.29. In Proposition 6.23, the hypothesis that ψ` exists for each prime number ` may
be weakened to the condition that ψ` exists for a set of prime numbers with Dirichlet density 1.
This weaker condition is sufficient to apply Chebotarev’s density theorem in Section 6.25.

7. Deligne–Dynkin diagrams and p-adic Hodge theory

Let M be a hyperadjoint abelian motive over a finitely generated field K ⊂ C, and let (∆, µ)
be the Deligne–Dynkin diagram of M . In this short section, we apply p-adic Hodge theory to
determine the subset µ ⊂ ∆ from the p-adic realisation Hp(M).
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Theorem 7.1. Let M be a motive over a p-adic field Kv. Let Cv be the completion of an algebraic
closure of Kv, and for i ∈ Z, write Cv(i) for Cv ⊗Qp Qp(i) with the diagonal action of ΓKv . Then
there is a functorial isomorphism of Cv-vector spaces

Hp(M)⊗Qp Cv ≅⊕
i∈Z

griHdR(M)⊗Kv Cv(−i)

that is compatible with the action of ΓKv .

Proof. If M = Hn(X) for some smooth projective variety X over Kv, then this result is [Fal88,
Theorem 4.1]. Since the cited theorem shows that the comparison isomorphism is an isomorphism
of Weil cohomology theories, one deduces that the isomorphism is compatible with motivated
cycles. This implies that the result is true for a general motive M .

Corollary 7.2. Let BHT,v denote the graded ring ⊕i∈ZCv(i), and let FHT,v be the field of
fractions of BHT,v. Then there is a functorial isomorphism of graded FHT,v-vector spaces

(Hp(M)⊗Qp BHT,v)⊗BHT,v
FHT,v ≅ gr HdR(M)⊗Kv FHT,v

that is compatible with the action of ΓKv . (The grading on the left-hand-side comes from the
grading on BHT,v.)

7.3. Let M be a motive over a finitely generated field K ⊂ C, and choose an embedding of K
into a p-adic field Kv. Let Cv, Cv(i), BHT,v, and FHT,v be as above. The choices K ⊂ Kv ⊂ Cv
determine a grading on Hp(M)⊗Qp FHT,v. This grading induces a cocharacter µHT of Gp(M)⊗Qp
FHT,v ⊂ G(M)⊗Q FHT,v that is called the Hodge–Tate cocharacter. If M is abelian, then we may
view µHT as a cocharacter of GB(M)⊗Q FHT,v since G○

p(M) ⊂ GB(M)⊗QQp = G(M)○⊗QQp by
Theorem 4.13.

Lemma 7.4. Let M be a hyperadjoint abelian motive over a finitely generated field K ⊂ C, and
choose an embedding of K into a p-adic field Kv. Let Cv, Cv(i), BHT,v, and FHT,v be as above.
Then the GB(M)-conjugacy class of µHT ∈ X∗(GB(M)⊗QFHT,v) and the GB(M)-conjugacy class
of the Hodge cocharacter µ ∈ X∗(GB(M)⊗Q C) both correspond to the same GB(M)-conjugacy
class of cocharacters in X∗(GB(M)⊗Q Q̄). In particular, if (∆, µ) is the Deligne–Dynkin diagram
of M , then µHT determines the subset µ ⊂ ∆.

Proof. By the Tannakian formalism, the two cocharacters µHT and µ correspond to two tensor
functors, namely the realisation functors

Hp ⊗ FHT,v ∶ ⟨M⟩⊗ → grVectFHT,v
,

N ↦ Hp(N)⊗Qp FHT,v ,
and

HB ⊗C ∶ ⟨M⟩⊗ → grVectC ,

N ↦ HB(N)⊗Q C .

There is also another tensor functor

gr HdR ∶ ⟨M⟩⊗ → grVectK ,

N ↦ gr HdR(N)

that maps a motive to the associated graded vector space of its algebraic de Rham realisation.
Write UK for the forgetful functor grVectK → VectK . If G(M)/K denotes the algebraic group
Aut⊗(UK ○ gr HdR) that corresponds to ⟨M⟩⊗ via the fibre functor UK ○ gr HdR, then gr HdR

corresponds to a cocharacter µdR ∈ X∗(G(M)).
The comparison theorem between the Betti realisation and the algebraic de Rham realisation

gives a natural transformation HB ⊗ C → gr HdR ⊗ C. This yields an injective homomorphism
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of complex algebraic groups GB(M) ⊗Q C ↪ G(M) ⊗K C that maps µ to µdR. On the other
hand, p-adic Hodge theory compares the p-adic étale realisation with the algebraic de Rham
realisation and gives a natural transformation Hp ⊗ FHT,v → gr HdR ⊗ FHT,v. This yields an
injection GB(M)⊗Q FHT,v ↪ G(M)⊗K FHT,v that maps µHT to µdR.

The proof concludes by an application of the following remark: Let Q̄ ⊂ Q̄′ be an extension
of algebraically closed fields of characteristic 0, and let G be an algebraic group over Q̄. Then
the natural map X∗(G) → X∗(GQ̄′) obtained by base change induces a bijection between the
conjugacy classes of cocharacters of G and the conjugacy classes of cocharacters of GQ̄′ . Indeed,
let T ⊂ B ⊂ G be a choice of a maximal torus T and a Borel subgroup B, and let Fund(T,B) ⊂
X∗(T ) denote the fundamental chamber. Every conjugacy class of cocharacters of G has a unique
representative in Fund(T,B), and so we find a chain of isomorphisms

X∗(G)/G ≅ Fund(T,B) ≅ Fund(TQ̄′ ,BQ̄′) ≅ X∗(GQ̄′)/GQ̄′ .

This finishes the proof of the lemma.

8. Deligne’s construction

Let M be an irreducible hyperadjoint abelian motive over C. Proposition 2.3.10 of [Del79] pro-
vides a recipe to construct a complex abelian variety A (up to isogeny) such that M ≅ H1(A)ha.
Deligne uses the language of Shimura data and Hodge theory. We recall this construction using
the terminology of abelian motives and Deligne–Dynkin diagrams.

8.1. Preparations. Let M be an irreducible hyperadjoint abelian motive over C, and let (∆, µ)
be the Deligne–Dynkin diagram associated with M . Since M is hyperadjoint, the group G(M) is
adjoint, and because M is irreducible, it is of the form ResE/Q G, where E is a number field
and G is an absolutely simple adjoint group over E. This number field E is a totally real
field (see the discussion in [Del79, § 2.3.4(a)]). We have E = End(M), once again because M
is hyperadjoint—and therefore corresponds to the adjoint representation of G(M) under the
Tannakian formalism. Note that Hom(E, Q̄) ≅ π0(∆) as ΓQ-sets. We also recall that (∆, µ) is
symplectic (Theorem 6.12). Let S be the subset of µ-symplectic nodes of (∆, µ).

Write G for the Q-simple adjoint group GB(M), and let G̃ be the simply connected cover
of G. For s ∈ S, let V (s) be the representation of G̃C whose highest weight corresponds to s.
Since S is closed under the action of ΓQ, there exists a representation V of G̃ over Q such that
VC ≅⊕s∈S V (s)⊕n for suitable n.

8.2. Choices. Now we fix three choices:

(1) Choose a totally imaginary quadratic extension F /E.

(2) Choose a partial cm type Φ for F relative to (∆, µ): a subset Φ ⊂ Hom(F,C) = Hom(F, Q̄)
that maps 1-to-1 onto the complement of the image of µ in Hom(E, Q̄) = π0(∆).

(3) Choose a representation V of G̃ as above.

8.3. The Hodge cocharacter h ∶ S→ GR lifts to a map h̃ ∶ S̃→ G̃R, endowing V with a fractional
Hodge structure. The Hodge decomposition of V may be read off from the diagrams in Section 6.9:
If s ∈ S lies in a component of ∆ that does not meet µ, then the type of V (s) is {(0,0)}. If s lies in
a component of ∆ that contains a special node α ∈ µ, then the type of V (s) is {(r,−r), (r−1,1−r)},
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where r = ⟨s,α⟩ is the number that is written next to the node s in the appropriate diagram
in Section 6.9.

8.4. Let FS denote the étale E-algebra such that Hom(FS , Q̄) ≅ S as ΓQ-sets. Observe that the
fractional Hodge structure V is canonically an FS-module: the algebra FS acts on V (s) via the
embedding FS ↪ Q̄ ⊂ C that corresponds to s ∈ S.

We endow FS with a fractional pre-Hodge structure: the component C{s} of FS ⊗Q C ≅ CS is
placed in bi-degree (0,0) if s lies in a component of ∆ that does not meet µ, and C{s} is placed
in bi-degree (1 − r, r) if s lies in a component that does meet µ, where r is the rational number
from the preceding paragraph.

In a similar fashion, we endow the cm field F with a fractional pre-Hodge structure: the
component Cφ of F ⊗C ≅ CHom(F,C) is placed in bi-degree

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1,0) if φ ∈ Φ ,

(0,1) if φ̄ ∈ Φ ,

(0,0) otherwise .

8.5. Write WF for F ⊗E FS , and observe that F ⊗E FS is a fractional Hodge structure of
weight 1. Note that WF is of cm type since both F and FS are of cm type. Put V ′ =WF ⊗FS V .
A computation shows that V ′ is a Hodge structure of type {(1,0), (0,1)}. It turns out that V ′ is
a polarisable Hodge structure (see [Del79, corollaire 2.3.3] for details). Thus there is a complex
abelian variety A (well-defined up to isogeny) such that H1

B(A) ≅ V ′. Since WF is of cm type,
we find that GB(V ′)ad = G, and therefore H1(A)ha =M .

8.6. Write T for the torus GB(A)ab = GB(V ′)ab. Choose a faithful representation N of T ; by
the Tannakian formalism and Theorem 4.13, we may view N as an abelian cm motive over C.

Since GB(WF ) is a torus and G̃ is almost simple, the representation

GB(WF ) × G̃→ GL(V ′) = GL(WF ⊗FS V )

has finite kernel. In other words, the natural map GB(WF )× G̃→ GB(A) is an isogeny, and so is
the natural map GB(WF )→ T . We will need this fact in Section 9.8.

9. The main proposition

In this section, we prove the main technical result of this paper. Its proof uses results of the
preceding three sections.

Proposition 9.1. Let M1 and M2 be two geometrically irreducible hyperadjoint abelian motives
over a finitely generated fieldK ⊂ C. Assume that MTC(M1) and MTC(M2) are true, and assume
that G`(M1 ⊕M2) is connected for all prime numbers `. If there exists a prime number ` such
that G`(M1 ⊕M2) ⊊ G`(M1) ×G`(M2), then HB(M1) ≅ HB(M2) as Hodge structures.

9.2. The proof of this proposition will take the remainder of this section. Roughly speaking,
the strategy is as follows:

(1) First we prove that End(M1) = End(M2).
(2) Next we show that H`(M1) ≅ H`(M2) for all primes `.
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(3) We use this (and Proposition 6.23) to show that M1 and M2 have isomorphic Deligne–
Dynkin diagrams over Q.

(4) After that we run Deligne’s construction (Section 8) on the motives Mi; this leaves us with
two complex abelian varieties A1 and A2 such that Mi,C = H1(Ai)ha.

(5) We replace K with a finitely generated extension such that A1 and A2 are defined over K.

(6) By carefully tracing the `-adic counterpart of the construction, we show that A1 and A2

have isomorphic `-adic Tate modules.

(7) Finally, we apply Faltings’s results to deduce that A1 and A2 are isogenous abelian varieties,
which implies HB(M1) ≅ HB(M2).

Sadly, however, this strategy is slightly too optimistic. It is not possible to work with the entire
`-adic Galois representations: we will have to focus our attention on a suitable summand. This
makes the proof quite technical.

9.3. We first make some observations about M1 and M2. For i ∈ {1,2}, write Ei for End(Mi),
and write Λi for the set of finite places of Ei. Observe that HΛi(Mi) is a quasi-compatible system
of representations, by Theorem 5.13.

For a prime number `, let Λi,` denote the set of places λ ∈ Λi that lie above `. Recall that
GB(M) = ResEi/Q(Gi) for some absolutely simple adjoint group Gi over Ei. Since MTC(Mi)
holds and Weil restriction of scalars commutes with base change, we find that

G○
`(Mi) = GB(M)⊗Q Q` = ∏

λ∈Λi,`

ResEi,λ/Q`(Gi ⊗Ei Ei,λ) .

In particular, we have G`(Hλ(Mi)) = ResEi,λ/Q`(Gi⊗E,iEi,λ) for every λ ∈ Λi,`. If we write Gλ(Mi)
for Gλ(Hλ(Mi)), then the above computation implies that Gλ(Mi) is equal to Gi ⊗Ei Ei,λ, an
absolutely simple adjoint group over Ei,λ.

Let ` be a prime number such that G`(M1⊕M2) ⊊ G`(M1)×G`(M2). By Goursat’s lemma (see
Remark 1.3(ii)), this implies that there are places λ1 ∈ Λ1,` and λ2 ∈ Λ2,` such that the projection
of G`(M1⊕M2) in ResE1,λ1

/Q` Gλ1(M1)×ResE2,λ2
/Q` Gλ2(M2) is the graph of an isomorphism of

algebraic groups over Q`. The derivative of this isomorphism at the identity element is a Q`-linear
isomorphism ψ ∶ Hλ1(M1) → Hλ2(M2) of Galois representations of K. (Recall that Hλi(Mi) is
the adjoint representation Lie(ResEi,λi/Q`

Gλi(Mi)).)
Note that ψ induces an isomorphism f ∶ EndQ`(Hλ1(M1))ΓK → EndQ`(Hλ2(M2))ΓK . Since

these endomorphism algebras are commutative, the isomorphism f does not depend on ψ. By
Proposition 5.15, we recover λi ∶ Ei ↪ Ei,λi = EndQ`(Hλi(Mi))ΓK as the subfield generated by
coefficients of characteristic polynomials of Frobenius elements acting Ei,λi-linearly on Hλi(Mi).
Because ψ commutes with the action of these Frobenius elements, the map f restricts to a canon-
ical isomorphism f ∶ E1 → E2 that identifies λ1 with λ2. Write E for E1 = E2, and write λ for
λ1 = λ2. We conclude that Hλ(M1) ≅ Hλ(M2) as λ-adic Galois representations.

Write Λ for the set of finite places of E. We assumed that G`(M1 ⊕M2) is connected for all
prime numbers `. Because Hλ(M1) and Hλ(M2) are semisimple and quasi-compatible, Proposi-
tion 5.14 shows that HΛ(M1) and HΛ(M2) are isomorphic quasi-compatible systems of represen-
tations. We have now completed the first two steps of the strategy outlined in Section 9.2.

9.4. For i = 1,2, let (∆i, µi) be the Deligne–Dynkin diagram associated with Mi as in Sec-
tion 6.5. Let f ∶ π0(∆1) → π0(∆2) be the map that is defined by the canonical identifications
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π0(∆i) ≅ Hom(E, Q̄) of ΓQ-sets. Since HΛ(M1) and HΛ(M2) are isomorphic as E-linear quasi-
compatible systems of representations, we get local isomorphisms ψ` ∈ Isomf(∆1,Q` ,∆2,Q`)

ΓQ` .
By Lemma 7.4, we have ψ`(µ1) = µ2 for all `. Thus we may apply Proposition 6.23 to obtain an

isomorphism φ ∈ Isomf ((∆1, µ1), (∆2, µ2))
ΓQ such that φλ = ψλ for some finite place λ of E.

9.5. Let Si be the subset of µi-symplectic nodes of (∆i, µi). We will now apply Deligne’s
construction (see Section 8) to the motives M1 and M2. To do so, we have to make three choices,
as in Section 8.2: (1) choose a totally imaginary quadratic extension F /E; then (2) endow it

with a partial cm type relative to (∆1, µ1)
φ= (∆2, µ2); finally, (3) choose the representations V1

and V2 in such a way that they have the same dimension.

Let FSi be an étale E-algebra such that Hom(FSi , Q̄) ≅ Si, and write WF,i for F⊗EFSi . Recall
from Section 8.5 that WF,i carries a fractional Hodge structure of weight 1 that is of cm type. The
construction produces two complex abelian varieties A1 and A2 such that HB(Ai) =WF,i⊗FSi Vi
and Mi,C = H1(Ai)ha. Replace K with a finitely generated extension of K such that A1 and A2

are defined over K. We are now ready for the two final steps in Section 9.2.

9.6. Let λ be a finite place of E such that ψλ = φλ, and let ` be the residue characteristic of λ.
Observe that E acts on Mi, Vi, WF,i, and Ai. We have the following diagram:

(WFi ⊗E Eλ)∗

Gλ(Ai)(Eλ) GL(Hλ(Ai))(Eλ)

ΓK G̃λ(Mi)(Eλ)

Gλ(Mi)(Eλ) GL(Hλ(Mi))(Eλ) .

ρ̃i,λ

ρi,λ

If we temporarily forget the dashed arrow ρ̃i,λ, then we can identify the two diagrams for i = 1
and i = 2 to obtain a diagram

W ∗
F,λ

G′
λ(Eλ) GL(H′

λ)(Eλ)

ΓK G̃λ(Eλ)

Gλ(Eλ) GL(Hλ)(Eλ) .ρλ

These identifications are justified as follows:

– In Section 9.3, we showed that there is an isomorphism Hλ(M1) → Hλ(M2) of λ-adic Ga-
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lois representations identifying Gλ(M1) with Gλ(M2) and ρ1,λ with ρ2,λ. We may also

canonically identify G̃λ(M1) and G̃λ(M2). Call the resulting objects Hλ, Gλ, ρλ, and G̃λ,
respectively.

– This isomorphism also gives an isomorphism of Deligne–Dynkin diagrams ψλ ∶ (∆1, µ1)λ →
(∆2, µ2)λ over Q`. In Section 9.4, we showed that ψλ extends to an isomorphism of Deligne–
Dynkin diagrams φ ∶ (∆1, µ1)→ (∆2, µ2) over Q.

– This allows us to identify the E-algebras WF,1 and WF,2. Call the resulting algebra WF and
write WF,λ for WF ⊗E Eλ.

– By Deligne’s construction, we can identify Hλ(A1) with Hλ(A2) as representations of G̃λ

with an action of WF,λ. Call this representation H′
λ.

– Finally, Gλ(Ai) is the Zariski closure of the image of W ∗
F,λ and G̃λ in GL(Hλ(Ai)). Thus,

we may identify Gλ(A1) with Gλ(A2); call the resulting group G′
λ.

The dashed arrows ρ̃1,λ and ρ̃2,λ in the original diagrams can be identified with maps ΓK →
G′
λ(Q`) that lift ρλ. It is our goal to show that they are identical.

9.7. To show that ρ̃1,λ and ρ̃2,λ are identical, we employ the following strategy: Recall that
G′
λ is a finite cover of (G′

λ)ad × (G′
λ)ab. Since ρ̃1,λ and ρ̃2,λ lift the map ρλ, we know that their

composition with the canonical quotient map G′
λ → (G′

λ)ad is independent of i = 1,2. If we also
show that their composition with the canonical quotient map G′

λ → (G′
λ)ab is independent of

i = 1,2, then we can show that ρ̃1,λ and ρ̃2,λ are identical, at least after replacing K with a finite
field extension of K. In executing this strategy, we carry out a minor variation.

9.8. Recall from Section 8.6 that for i = 1,2, the natural map pi ∶ GB(WF ) → GB(Ai)ab is an
isogeny. Therefore, there exists a torus T together with isogenies qi ∶ GB(Ai)ab → T such that
q1 ○ p1 = q2 ○ p2. Let N be a faithful representation of T . Since N is a representation of GB(WF ),
we may canonically view N as a fractional pre-Hodge structure, via the Tannakian formalism.
However, since N is a representation of GB(Ai), we know that N is a (classical) Hodge structure,
and this Hodge structure is independent of i because q1 ○p1 = q2 ○p2. Note that N is a cm Hodge
structure, by definition. Finally, by Theorem 4.13, we view N as a complex cm motive.

Replace K with a finitely generated extension of K such that the motive N is defined over K.
Observe that the composite map

ΓK
ρ̃i,`Ð→ G`(Ai)(Q`)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
GB(Ai)(Q`)

Ð→ G`(Ai)ab(Q`)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

GB(Ai)ab(Q`)

qi,`Ð→ G`(N)(Q`)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

T (Q`)

defines the Galois representation on H`(N) and therefore is independent of i = 1,2.

Recall that we have quotient maps G`(Ai)↠ ResEλ/Q` Gλ(Ai) = ResEλ/Q` G′
λ, and therefore

G`(Ai)ab ↠ (ResEλ/Q` G′
λ)ab. We claim that there exists a finite quotient (ResEλ/Q` G′

λ)ab ↠ T ′

such that the composite map

ΓK
ρ̃i,`Ð→ (ResE/λ/Q` G′

λ)(Q`)Ð→ (ResEλ/Q` G′
λ)

ab(Q`)Ð→ T ′(Q`)

is independent of i = 1,2. Indeed, one may construct T ′ as follows: Let Ki be the kernel of the
isogeny qi,` ∶ G`(Ai)ab ↠ G`(N), and let K ′

i denote its image under the quotient map G`(Ai)ab ↠
(ResEλ/Q` G′

λ)ab. Then K ′
1 ⋅K ′

2 is a finite subgroup of (ResEλ/Q` G′
λ)ab, and we define T ′ as the

quotient. By construction, there is a map G`(N)(Q`)→ T ′(Q`), and the claim follows.
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9.9. We are almost done. Write πab for the map G′
λ(Eλ) = (ResEλ/Q` G′

λ)(Q`)→ T ′(Q`) and πad

for the map G′
λ(Eλ) → (G′

λ)ad(Eλ) = Gλ(Eλ). We have now proven that the compositions
πab ○ ρ̃i,λ and πad ○ ρ̃i,λ do not depend on i = 1,2.

Recall that T ′ is a quotient of (ResEλ/Q` G
′)ab by a finite group. Hence, the group α =

ker(πad)∩ker(πab) is a finite abelian subgroup of the centre of G′
λ(Eλ). Define ξ ∶ ΓK → G′

λ(Eλ)
via ξ(g) = ρ̃1,λ(g) ⋅ ρ̃2,λ(g)−1. This map ξ takes values in α and is a homomorphism since α is
contained in the centre of G′

λ(Eλ). We conclude that after we replace K with a finite extension,
the homomorphisms ρ1,λ and ρ2,λ are the same. This means that Hλ(A1) and Hλ(A2) are iso-
morphic as λ-adic Galois representations. Another application of Proposition 5.14 shows that
HΛ(A1) and HΛ(A2) are isomorphic E-rational quasi-compatible systems of representations. In
particular, H`(A1) and H`(A2) are isomorphic Galois representations. Finally, Faltings’s theorem
([Fal83, § 5, Korollar 2], see also [Fal84]) implies that A1 and A2 are isogenous abelian varieties.
Since Mi = H(Ai)ha, we conclude that HB(M1) and HB(M2) are isomorphic Hodge structures.
This completes the proof of Proposition 9.1.

10. The main theorem

Lemma 10.1. Let K be a field of characteristic 0. For i = 1, . . . , n, let Gi be a simple linear
algebraic group over K. Let G be a subgroup of G1 × ⋯ ×Gn such that G surjects onto Gi for
1 ≤ i ≤ n and G surjects onto Gi ×Gj for 1 ≤ i < j ≤ n. Then G = G1 ×⋯ ×Gn.

Proof. It suffices to prove the analogous statement for Lie algebras. This is precisely the lemma
in Step 3 of [Rib76, Proof of Theorem 4.4.10, pp. 790–791].

Lemma 10.2. Let K ⊂ C be a finitely generated field. Let Mi, with i ∈ I, be a finite collection of
irreducible hyperadjoint abelian motives over K. Write M = ⊕Mi. If MTC(Mi) is true for all
i ∈ I, then MTC(M) is true.

Proof. By replacingK with a finite extension, we may and do assume that G`(M) is connected for
all prime numbers ` and, in addition, that Mi is geometrically irreducible for all i ∈ I. We also may
and do assume that for i, j ∈ I, we have Mi ≅Mj if and only if i = j. Recall that there is a natural
injection G`(M) ↪ ∏i∈I G`(Mi), and the image projects surjectively onto the factors G`(Mi).
Since G`(M) is connected, so is G`(Mi⊕Mj) for all i, j ∈ I. By Proposition 9.1, we know that if
i, j ∈ I are two different indices, then G`(Mi ⊕Mj) ≅ G`(Mi) ×G`(Mj); in other words, G`(M)
surjects onto G`(Mi) ×G`(Mj). By Lemma 10.1, we conclude that G`(M) ≅∏i∈I G`(Mi).

Theorem 10.3. Fix a finitely generated field K ⊂ C. Let MK ⊂ MotK be the full subcategory
of abelian motives for which the Mumford–Tate conjecture is true. Then the category MK is
a Tannakian subcategory of MotK .

Proof. The category MotK is semisimple, so subquotients are direct summands. It is clear that
the subcategoryMK is closed under duals, tensor powers, and direct summands. Let M1 and M2

be two objects inMK . We need to show that M1⊕M2 and M1⊗M2 are objects inMK . Observe
that M1 ⊗M2 is a direct summand of (M1 ⊕M2)⊗2. Thus we are done if we show that the
Mumford–Tate conjecture is true for M = M1 ⊕M2. By Proposition 4.19, it suffices to prove
MTC(Mha). Decompose Mha = ⊕i∈IM

′
i into a sum of irreducible motives. Note that for every

i ∈ I, the motive M ′
i is hyperadjoint, and MTC(M ′

i) holds since the irreducible motive M ′
i is

a summand of Mha
1 or Mha

2 by Lemma 2.11(vi). Now the result follows from Lemma 10.2.
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Remark 10.4. We give a short and incomplete list of examples of varieties for which it is known
that their motives are objects of the category MK of Theorem 10.3 (see [Moo17a] for a recent
overview of the state of the art):

(i) geometrically simple abelian varieties of prime dimension [Tan84]

(ii) abelian varieties of dimension g with trivial endomorphism ring over K̄ such that 2g is
neither a kth power for some odd k > 1 nor of the form (2k

k
) for some odd k > 1 (see [Pin98,

Theorem 5.14])

(iii) K3 surfaces [Tan91, Tan95]

(iv) cubic fourfolds [And96a, Theorem 1.6.1]

We remind the reader that the Mumford–Tate conjecture for an abelian fourfold A with trivial
endomorphism ring is still an open problem.

Theorem 10.5. Let K be a finitely generated subfield of C. Let Ai, for i ∈ I, be a finite collection
of abelian varieties over K, and write A = ∏i∈I Ai. Assume that MTC(Ai) is true for all i ∈ I.
Then MTC(A) is also true.

Proof. This is an immediate consequence of Theorem 10.3.
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