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Genus-one mirror symmetry in the
Landau—Ginzburg model

Shuai Guo and Dustin Ross

ABSTRACT

We prove an explicit formula for the genus-one Fan—Jarvis—Ruan—Witten invariants as-
sociated with the quintic threefold, verifying the genus-one mirror conjecture of Huang,
Klemm, and Quackenbush. The proof involves two steps. The first step uses localization
on auxiliary moduli spaces to compare the usual Fan—Jarvis—Ruan—Witten invariants
with a semisimple theory of twisted invariants. The second step uses the genus-one
formula for semisimple cohomological field theories to compute the twisted invariants
explicitly.

1. Introduction

This paper studies the genus-one Fan—Jarvis-Ruan—Witten invariants associated with the quintic
threefold, which encode the degree of the fifth power of the Witten class on moduli spaces of
5-spin curves. Let Fj(7) be the restriction of the genus-one Fan—Jarvis—Ruan—Witten potential
to the small state space, where 7(t) = I1(t)/Ip(t) is the mirror map determined by genus-zero
mirror symmetry. Our main theorem is the following.

MAIN RESULT. We have Fi(7) = log (Io(t)‘31/3(1 - (t/5)5)_1/127’(t)‘1/2>,
This theorem settles the genus-one mirror conjecture of Huang—Klemm—-Quackenbush [HKQ09].

1.1 Context and motivation

In the seminal paper [Wit93], Witten proposed studying phase transitions in the gauged linear
sigma model. In general, phase transitions relate different phases of sigma models associated
with certain geometries, a special case of which is the Landau—Ginzburg/Calabi—Yau correspon-
dence. Mathematically, the Landau—Ginzburg/Calabi—Yau correspondence can be interpreted as
an equivalence between the Gromov—Witten invariants of a degree-d hypersurface in projective
space (the Calabi—Yau side) and the associated Fan—Jarvis-Ruan-Witten invariants, defined by
certain intersection numbers in the moduli spaces of d-spin curves (the Landau—Ginzburg side).

Of particular interest is the case of the Fermat quintic threefold. The genus-zero Gromov—
Witten invariants of the quintic were first computed by Givental [Giv98b] and Lian—Liu—Yau
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[LLY97], wherein they verified the celebrated genus-zero mirror theorem of Candelas—de la Ossa—
Green—Parkes [CdIOGP91]. A decade later, the genus-zero Fan—Jarvis—Ruan—Witten invariants
were computed by Chiodo-Ruan [CR10], in which they verified an analogous genus-zero mirror
theorem at the Landau—Ginzburg limit of the B-model moduli space. By continuing analyti-
cally along a path in the B-model moduli space, Chiodo and Ruan compared the two genus-zero
mirror formulas and provided a mathematically precise statement of the genus-zero Landau—
Ginzburg/Calabi—Yau correspondence. Following ideas of Givental [Giv04], they formulated their
result in terms of an explicit symplectic transformation U between two infinite-dimensional sym-
plectic vector spaces associated with the respective theories.

An important aspect of the symplectic formulation of Chiodo and Ruan is that it provided
a hint at how to formulate a higher-genus correspondence purely in terms of genus-zero data. More
specifically, Chiodo and Ruan conjectured that the all-genus Gromov—Witten partition function
is obtained from the all-genus Fan—Jarvis—Ruan—Witten partition function by the action of the
geometric quantization of U. If true, the higher-genus correspondence gives an explicit formula for
higher-genus Gromov—Witten invariants in terms of Fan—Jarvis—Ruan—Witten invariants. Until
now, however, there has not been any evidence for the higher-genus correspondence.

Shortly before Chiodo and Ruan formulated the Landau—Ginzburg/Calabi—Yau correspon-
dence, the genus-one Gromov—Witten invariants of the quintic were computed by Zinger [Zin09],
verifying the genus-one mirror conjecture of Bershadsky—Cecotti-Ooguri—Vafa [BCOV94]. It was
also conjectured by Huang—Klemm—-Quackenbush [HKQO09] that an analogous genus-one formula
holds for the Fan—Jarvis—Ruan—Witten invariants.

The main result of this paper verifies the genus-one mirror symmetry formula conjectured
by Huang, Klemm, and Quackenbush. In the sequel to this paper [GR17], we use the genus-one
mirror formulas contained here and in Zinger’s work [Zin09] to prove the genus-one specialization
of Chiodo and Ruan’s higher-genus Landau—Ginzburg/Calabi—Yau correspondence. This provides
the first evidence for the validity of the higher-genus quantization conjecture.

1.2 Precise statements of results

Let ﬂ;/; denote the moduli space of stable 5-spin curves with n orbifold marked points hav-
ing multiplicities m = (mq,...,my,). More precisely, a point in ﬂ;/nib parametrizes a tuple

(Ca q1,---,4n, L; ﬁ), where

— (Cyq1,...,qn) is a stable orbifold curve with s orbifold structure at all marks and nodes;

— L is an orbifold line bundle on C' and the ps-representation L|,, is multiplication by e2mimi/5,

— R L®5 We,log is an isomorphism.

In the introduction, we take m; € {1,...,4}, though we also consider the case m; = 5 in the
main body of the paper.

Associated with the Fermat quintic polynomial in five variables, there are a corresponding
moduli space of 5-spin curves with fields and a relative two-term obstruction theory over ﬂ;/ﬁn
given by R, L%, where L is the universal line bundle and 7 is the projection from the universal
curve. This relative obstruction theory can be used to equip the moduli space with two different
“virtual fundamental classes.” On the one hand, we have the fifth power of the Witten class
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(cf. [PVO1, Chi06, FJR13, CLL15])!, which we denote by

[Mwﬁ} :
On the other hand, we can make the relative obstruction theory equivariant with respect to
S = (C*)® by letting the five factors of S scale the five different copies of £. By capping the usual
fundamental class against the inverse equivariant Euler class of the two-term obstruction theory

(this makes sense because the equivariant Euler class is multiplicative and invertible), we obtain
an equivariant class, which we denote by

[Mg,m} ?
where A = (A1,...,As) denotes the equivariant parameters.
Let ¢, where k = 0,. .., 3, be formal symbols. We have two types of correlators corresponding

to the two virtual classes: for x = w or A, define

<¢ 5 ¢an>* (_1)3739+n721 m; / o o (L.1)
mlfl mnfl = 50—2 - N 1 " .

gm g 1/5

° [#s'm]

where the 1); are the cotangent line classes on the coarse curve. The w-correlators are typi-
cally called (narrow) Fan—Jarvis—Ruan—Witten (FJRW) invariants, due to their development
in full generality by Fan—Jarvis—Ruan [FJR13], while the A-correlators are a particular type of
tunsted 5-spin invariants. The sign convention is simply to maintain consistency with the original
definitions of Fan—Jarvis-Ruan [FJR13].2

The correlators (1.1) can be used to define cohomological field theories (CohFTs). Our pri-
mary interest in this work is to study the (genus-one part of the) FJRW CohFT associated with
the Witten class. However, the twisted CohF'T has the distinct advantage of generic semisimplic-
ity, which, by results of Dubrovin—-Zhang [DZ98], Givental [Giv98a], and Teleman [Tel12], implies
that the higher-genus invariants can be reconstructed from the genus-zero invariants. With this
motivation in mind, the current paper contains two distinct parts: the first part provides a genus-
one comparison between the FJRW and twisted correlators, while the second part uses semisimple
reconstruction to provide an explicit computation of the genus-one twisted correlators. Together,
they imply the genus-one mirror symmetry theorem for FJRW invariants.

1.2.1 Part one: A comparison result. In genus-zero, the relationship between FJRW and
twisted correlators is simple. Namely, the FJRW correlators can be obtained from the twisted
correlators by specializing to A = 0. The explanation for this is not difficult: in genus zero, one
of the terms in the two-term obstruction theory vanishes. Thus, the complex represents a vector
bundle, and the Euler class of that vector bundle is the Witten class.

In higher genera, the obstruction theory is an honest two-term complex, and we can no
longer take such a non-equivariant limit. However, in genus one, the situation is not so bad. The
genus-one FJRW invariants are completely determined by the correlators

<¢1 T ¢1>‘1V,n )

!The Witten class, here, is the cosection localized construction of Chang-Li-Li [CLL15], which differs from that
of Fan—Jarvis—-Ruan [FJR13] by a sign (fl)hO(L@s)fhl(L@s).

*In [FJR13], the factor 52972 in (1.1) is 597 . We choose to alter this factor in order to make the correlators more
consistent with the Gromov-Witten invariants of the quintic 3-fold.
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where all orbifold points have multiplicity two. A key fact about the underlying moduli spaces

ﬂi/ (527__.72) is that the locus where the obstruction theory fails to be a vector bundle is a sublocus
of rational tails. Therefore, if we can find a way to eliminate rational tails, the obstruction
complex will again represent a vector bundle whose Fuler class is the Witten class.

Following ideas of Ciocan-Fontanine-Kim [CK17, CK14, CK16] and Ross-Ruan [RR17], we

know that a reasonable way to eliminate rational tails in this setting is through “wall-crossing”
——1/5,¢

techniques. More specifically, let M ) be the moduli space of 5-spin curves with ¢ additional

indistinguishable weight-e¢ points of type ¢i. In other words, a point in ﬂ;/jﬁﬁs

a tuple (C,q1,...,qn, L, D, k), where

parametrizes

— (Cyq1,...,qy) is an orbifold curve with us orbifold structure at all marks and nodes;

— D is an effective divisor on C, disjoint from the nodes and marks, with |D| = § and such
that deg, (D) < 1/e for all x € C

the tuple (C,qi,...,qn, D) is e-stable; that is, wc g @ O(eD) is ample;

— L is an orbifold line bundle on C, and the p5-representation L|,, is multiplication by g2mimi/5.

— Kt L% 2 weog @ O(—D) is an isomorphism.

—1/5,0

When € = 0o, we simply recover ﬂ;/ 7% We denote by M =" the limit as € tends to zero.

In regards to the earlier discussion, a key observation at this point is that rational tails are
completely disallowed in ﬂ;(@%o, as can easily be seen by the e-stability condition. As before,

there are two types of virtual fundamental classes for x = w or A, and we define correlators

(_1)3—39+”—5—Z¢ m; /
[

a an \ %€ e a Qn
<¢m1_1¢ L Oma 1 >g,n|5 T 5292 Ml/s,ﬁ]* e

g,m|8

In order to state our genus-one wall-crossing formulas explicitly, we recall the FJRW I-
function:?

I(t,z) =2 g T *%2)°¢. (1.2)
a=0 0<k<(a+1)/5
(k)=((a+1)/5)

Let 7 = I 1(t)/Iy(t) denote the mirror map, where the series Iy(t) and I;(t) are defined by

considering the expansion of I(t, z) as a Laurent series in z7!:

I(t,2) = Io(t)zdo + L (t) g1 + O(271) .

The following result provides a precise way in which we can “remove rational tails” in both
the FJRW and the twisted setting.

THEOREM 1.1 (Genus-one wall-crossing). For x = w or A\, we have

S (o)) = loa(To(1) (o)1 + D01 ()70

n>1 " 6>1

The proof of this theorem is obtained by manipulating certain localization relations that have
appeared in recent work of Chang—Li-Li-Liu [CLLL16]. Since the correlators in the final term of
Theorem 1.1 are defined over moduli spaces of genus-one 5-spin curves without marks or rational

3We warn the reader that this I-function differs from the one in [CR10] by a factor of ¢.
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tails, the obstruction complex represents a bundle, and it follows that
w,0 A0
<_>1,0|5 - <_>1,0|5 :
From this observation, we obtain the following comparison between the FJRW correlators and
the twisted correlators.

THEOREM 1.2 (Genus-one comparison of FJRW and twisted 5-spin invariants). At e = oo, we
have
Z l <(Td) )n>w,oo _ Z i <( T\ \,00 1 In(t W,00 A,00
DI = 30— (e S + log(To(®) (90w} — (Govn) 1) -

n! !
n>1 n>1

1.2.2 Part two: Ezxplicit computations. Having obtained a comparison between the genus-
one FJRW and twisted 5-spin invariants, our task is then to compute the twisted invariants
explicitly. By applying the Givental-Teleman formula for semisimple CohFTs [Giv01, Tel12] and
computing the genus-zero data explicitly, we obtain the following formula.

THEOREM 1.3 (Computation of genus-one twisted 5-spin invariants). The genus-one twisted
5-spin invariants are given by

> % (T61)™)7re = log (Io(t)(5/24)—2(1 _ (t/5)5)_1/127’(t)—1/2) '
n>1

In order to use Theorem 1.2 to obtain a formula for the genus-one FJRW invariants, we
require the following simple computation.

LEMMA 1.4. The genus-one one-point invariants are given by
W, 200 A, 5
(o)1 = Y and (poy1)1)° = 24
Combining Theorems 1.2 and 1.3 with Lemma 1.4, we obtain the following mirror formula.

THEOREM 1.5 (Genus-one FJRW mirror theorem). We have the following explicit expression for
the genus-one FJRW invariants:

S e = los (o) (1~ (1/5)°) Y2 (1)7112)

n>1
Remark 1.6. While the wall-crossing result in Theorem 1.1 is conceptually appealing and of
independent interest, we note that the ¢ = 0 theory is not essential to the proof of the main
result of this paper, which is Theorem 1.5. Rather, the wall-crossing formula can simply be
viewed as a convenient way to package the combinatorics of certain power series of rational tails
that appear in the localization computations.

In addition, while the twisted invariants are a necessary part of our proof, we expect that
there is a way to circumvent the use of the twisted invariants and derive Theorem 1.5 directly
from the localization relations obtained from the moduli spaces of dual-extended 5-spin curves.
One benefit of our approach using twisted invariants is that the analysis of the twisted invariants
that we carry out in this paper is also necessary for the arguments in the sequel [GR17].

1.3 Plan of the paper

In Section 2, we study moduli spaces of dual-extended 5-spin curves. These moduli spaces contain
the moduli spaces of 5-spin curves as special fixed loci of a natural C*-action. By using localiza-
tion, following Chang-Li-Li-Liu [CLLL16], we write down relations that determine all genus-one
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FJRW and twisted 5-spin invariants. In Sections 3 through 5, we analyze the localization relations
to prove Theorem 1.2.

In Section 6, we review relevant notions of cohomological field theories and the genus-one
formula for a generically semisimple CohFT, which we prove in the appendix by applying Tele-
man’s reconstruction theorem. In Section 7, we complete the proof of Theorem 1.5 by making
the relevant genus-zero computations that appear in the genus-one formula.

1.4 Further directions

This work builds the potential for several new directions in regards to the Landau—Ginzburg/Ca-
labi-Yau correspondence. Most notably, we use Theorem 1.5 in the sequel [GR17] to prove
the genus-one version of the Chiodo-Ruan formulation of the LG/CY correspondence [CR10].
Namely, we prove that the quantization of the genus-zero symplectic transformation computed
in [CR10] identifies the genus-one FJRW potential with the genus-one Gromov-Witten (GW)
potential. This provides the first nontrivial evidence for the higher-genus conjecture.

The techniques developed in this paper for studying the localization relations on the master
space can also be applied in higher genus. Of course, the higher-genus situation is more compli-
cated for several reasons. We plan to devote future study to the higher-genus relations and what
they say about higher-genus mirror formulas in both FJRW and GW theory.

2. Dual-extended 5-spin curves and localization

In this section, we review the definitions of auxiliary moduli spaces that contain the moduli
spaces of e-stable 5-spin curves (with fields) as special fixed loci of a natural C*-action. These
auxiliary moduli spaces are special cases of the so-called “master space,” which was introduced
independently by Fan-Jarvis-Ruan [FJR18] and Chang-Li-Li-Liu [CLLL15]. We describe two
“virtual fundamental classes” on these moduli spaces: one recovering the Witten class on the
special fixed loci of 5-spin curves, and the other recovering the twisted virtual class. We also
describe the virtual localization formula for these auxiliary moduli spaces, following the detailed
computations of Chang-Li-Li-Liu [CLLL16], and we outline how the structure of the localization
formula leads to a proof of Theorem 1.1.

2.1 Target geometry

The moduli spaces that we study in this paper are special cases of those underlying the gauged
linear sigma model (GLSM). Developed in full generality and detail by Fan—Jarvis—Ruan [FJR18],
the GLSM is a generalization of Gromov—Witten theory for certain target spaces presented as
geometric invariant theory (GIT) quotients. Here, we consider the GIT quotient

X :=[CT)C*],
where C* acts on the coordinates by
¢ (x1,...,25,p,u) = (cxl, . CT5, 00D, cilu) ,
and GIT stability is chosen with respect to the negative linearization. It is not hard to see that,
with these choices,
X = Tot(Op(s,1y(—1/5)%°),

where P(5, 1) is the weighted projective line with homogeneous coordinates (p, u). It will be useful
in what follows to set some notation regarding the equivariant geometry of X. There are two
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primary settings that we investigate, corresponding to the two virtual classes. Since many of our
main arguments in the two cases are parallel, we abuse the notation slightly by using the same
symbols in each case.

2.1.1 Case 1: T-equivariant geometry. We first consider an action of the torus T = C*

defined by
t-(x1,...,z5,p,u) = (x1,...,25,p,tu).
The T-fixed loci of X consist of the subspace
Xo = {(p,u) = (1,0)} = [C°/ps]
and the point
Xo :={(z1,...,25,p,u) = (0,...,0,0,1)} = pt.
The localized T-equivariant Chen—Ruan cohomology HéR,T(X ,C) has a fixed-point basis

o ,Q Q
¢07¢17"'7¢47¢<>7

where the superscript © corresponds to the cohomology of X¢ and the superscript <> corresponds
to the cohomology of X . The subscripts index the twisted sectors of the inertia stack ZX, shifted
by one; that is, (bff is the untwisted sector, while <Z>(? is the first twisted sector, and so on. Let «
be the T-equivariant parameter: H;(pt) = Q[a]. Then the equivariant cohomology is a module
over Q[a]. We denote the equivariant cohomology by H*V := H(*ijT(X ,C) and its restrictions

to the fixed loci by HY'" and H®"V. For a class ¢ € HXV, we denote its restrictions to the fixed
loci by ¢¥ and 9.

2.1.2 Case 2: (S x T)-equivariant geometry. Here, we consider the additional action of the
torus S = (C*)® defined by

($1y-..,85) - (x1,...,25,p,u) = (S121,...,S525, D, U) .
The (S x T)-fixed loci of X consist of two points:
XQ? = {.’El, cee 7$57pvu) = (07 o 70a 170)} = [pt/MS] )
Xo :=={z1,...,25,p,u) =(0,...,0,0,1)} = pt.
As in the T-equivariant case, the localized (S x T)-equivariant Chen—Ruan cohomology
H{g sy7(X, C) has a fixed-point basis
NS

Let Ai,..., s be the S-equivariant parameters: H&(pt) = Q[A1,...,As]. Then the equivariant
cohomology is a module over Q[a, A1,...,A5]. We denote the (S x T)-equivariant cohomology
by HXA .= HERSMT(X, C) and its restrictions to the fixed loci by HY* and H®X. For a class

@ € HX?, we denote its restrictions to the fixed loci by ¢¥ and .

2.2 Moduli spaces
We now describe the GLSM moduli spaces associated with the GIT quotient X = [C7// C*].

DEFINITION 2.1. A dual-extended 5-spin curve (with five fields) is a tuple (C,q1,...,qn,L,0)
where
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— (C,q1,-..,qn) is a quasi-stable orbifold curve with possible us orbifold structure at the
marks and nodes;

— L is a representable orbifold line bundle on C; and
— o= (x1,...,x5,p,u) is a section:
cel(L¥ @ L @uoig® L) . (2.1)

Two triples (C, L, o) and (C’, L', 0’) are equivalent if there exist isomorphisms f: (C,q1,...,q,) —
(C'qq,...,q,) and ¢: L — f*L’ such that poo = f*o’. Let m := (mq,...,m,) record the mul-
tiplicities of L at the marked points (that is, the ps-representation L, is multiplication by
exp(2mv/—1m;/5), where m; € {1,...,5}). We impose the additional condition that z;(g;) = 0
for all 4, j (this is automatic for all j with m; # 5).

For any € > 0, we define a triple (C, L, o) to be e-stable if (L*E’ ® (,uc,log)6 ® W log 1 ample
and the locus of base points {g € C: (p(q),u(q)) = (0,0)} is finite, disjoint from the marked and
singular points on C', and such that each base point ¢ has bounded order of vanishing:

ordg(p,u) < 1/e.

Let Mg”:ﬁ(X ,d) denote the moduli space parametrizing e-stable dual-extended spin curves up
to isomorphism, where d := deg (L™!) > 0. We write ﬂ:ﬁ(X ,d) for the disjoint union over all
possible multiplicity vectors m of length n.

Remark 2.2. The notation ﬂ;’;(X ,d) is reminiscent of the notation for moduli spaces of stable
quasi-maps. In fact, the only difference between M:”;(X ,d) and the moduli space of e-stable

quasi-maps to X is the wc jog appearing in the sixth factor of (2.1). The w in the superscript of
the notation is meant to denote this twist. Also in analogy with e-stable quasi-maps, there are
natural evaluation maps

evy: M:}’:L(X, d) — X.
The existence of the evaluation maps follows from the fact that wy, is trivial upon restricting to
the marked points.
Remark 2.3. When u = 0, the section p is equivalent to an isomorphism

ki L = W( log & O(—D) ,

where D is the divisor of zeros of p. When € = oo, the divisor D is empty, and we recover ﬂ;/ ,%
On the other hand, when € = 0, we recover ﬂ;/ ;Lﬁ D" Thus, we see the moduli spaces of e-stable
5-spin curves naturally appearing inside M;’;(X ,d).

In this paper, we only consider the extreme cases e =0 (0 < e < 1) and € = 0o (¢ > 0). The
arguments we provide could be generalized to arbitrary e, though we do not pursue that here.

Remark 2.4. The moduli spaces of dual-extended 5-spin curves can be viewed as a special case of
moduli spaces that were previously introduced in the literature by Chang-Li-Li-Liu [CLLL15]
(for € = 00) and by Fan-Jarvis—Ruan [FJR18, Example 4.2.23] (for ¢ = 0). Both groups of the
aforementioned researchers studied moduli spaces of curves equipped with two line bundles L
and N and a section

(x1,...,25,p,21,22) € F(L@E’@L*s@wlog@L@N@N) )
where the basepoints

ge{ri=-=15=21=0}U{z1 =20 =0} U{p =20 =0}
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are required to be a discrete set (possibly empty). In the special case deg(N) = deg(L~1) > 0, we
claim that z; is a nowhere-vanishing section which trivializes L ® N, recovering our definition of
dual-extended 5-spin curves. To prove this claim, first notice that there cannot exist an irreducible
component C’ C C for which deg((L®N)|¢r) < 0. If such a component exists, then z1|c = 0 and
the discreteness of basepoints implies that both deg(L|¢s) and deg(N|cr) must be nonnegative,
giving a contradiction. Thus, deg(L ® N) = 0 on every component, implying that z; is constant
and deg(N) = deg(L~') on every component of C. To rule out the case z; = 0, notice that
this would imply that both deg(L) and deg(NN) are nonnegative on every component, and, since
deg(L ® N) = 0 on every component, the only way this could happen is if they both have degree
zero on every component, contradicting the assumption deg(L~!) > 0.

It is not hard to check that the stability condition given above in the definition of dual-
extended 5-spin curves simultaneously generalizes the special cases of the stability conditions
in [CLLL15] and [FJR18].

We have the following important result due to Fan—Jarvis—Ruan for ¢ = 0 and Chang—Li—Li—
Liu for € = oo.

THEOREM 2.5 ([FJR18, CLLL15]). For ¢ = 0,00, the moduli spaces of dual-extended 5-spin
curves M;’;(X ,d) are separated, Deligne—Mumford stacks, locally of finite type.

Proof. As mentioned above, when ¢ = 0, the moduli space M;%(X ,d) is a special case of

Example 4.2.23 in [FJR18]. Thus, the required properties of the moduli space follow from The-
orems 6.2.3 and 6.3.1 in [FJR18].

When ¢ = oo, M‘;%O (X,d) is obtained from the moduli space of mixed-spin P-fields of
[CLLL15] by specializing the degree parameters to dg = 0 and do, = d. Thus, the required
properties follow from Theorem 1.1 in [CLLL15]. O

2.3 Virtual classes
We next describe two virtual classes on M:;}’%(X ,d) that specialize to the Witten class and the

twisted virtual class on the 5-spin loci described in Remark 2.3.

2.3.1 Case 1: The Witten class. In order to define the Witten class on ﬂ;’%(}(, d), one
requires a cosection of the obstruction sheaf. The cosection is defined by way of the following
additional input.

DEFINITION 2.6. The quintic super-potential is defined by W = p(m? 4+ xg) The degeneracy
locus, denoted by CM;’,%(X ,d) C ﬂ;’%(X ,d), consists of all dual-extended 5-spin curves such
that o maps fiber-wise to the critical points of W

The following important result is due to Fan—Jarvis—Ruan for ¢ = 0 and Chang-Li-Li-Liu
for € = oco.

THEOREM 2.7 ([FJR18, CLLL15]). For e = 0,00 and d > 0, the degeneracy locus CMg (X, d)
is proper.

Proof. This is a special case of Theorem 1.1.1 in [FJR18] when e =0 and Theorem 1.1 in [CLLL15]
when € = oo. O
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The cosection localization technique of Kiem-Li [KL13] provides a virtual class on the proper
critical locus.

THEOREM 2.8 ([KL13]). There exists a cosection localized virtual cycle
[ My (X, d)]" € Huiraim (CM 7(X, ), Q) , (2.2)
where

4
Virdimzl—g+d+n—zgmi. (2.3)

,€

2.3.2 Case 2: The twisted class. To define an equivariant virtual class on ﬂ;n (X,d), con-
sider the S-action on ﬂ‘;; (X, d) defined by post-composing the section o with the S-action on X.

The fixed locus ﬂ;’;(X ,d)S consists of all sections o where z; = 0 for all i. The virtual normal
bundle of this fixed locus is the restriction of R, L(—Y5)®3, where £ is the universal line bundle

over the universal curve, Y5 is the divisor of marked points with m; = 5, and 7 is the projection
from the universal curve to M;’:L(X ,d).

DEFINITION 2.9. The S-equivariant twisted virtual class is defined by

[(Moe(X,d)] o= [Mos(X,d)°]™ negt (RmL(—55)%5)
where the two pieces on the right-hand side are defined by the S-fixed and the S-moving parts of
the obstruction theory. In particular, [ﬂ;’fﬁ(X , d)s] v

perfect obstruction theory on ﬂ;’:ﬁ(X ,d)S given by R, (£_5 ® Wr log P E‘l). After inverting
the equivariant parameters, the twisted virtual class is an equivariant homology class in

H§irdim (ﬂ;i‘l (X7 d)Sa Q) ’

is the virtual cycle induced by the relative

where virdim is defined in (2.3).

Remark 2.10. We will ultimately be interested in studying the specialization \; = £\, where
¢ = e2m/5_ We will point out below where this specialization is required.

2.4 T-action and equivariant correlators
The spaces ﬂ;’,%(X ,d) and ﬂ;’:ﬁ(X ,d)° admit a T-action, for T := C*, by scaling the last
coordinate of the section o:

t-(x1,...,z5,p,u) = (x1,...,T5,Dp,tu).

Since the obstruction theory and the cosection are equivariant with respect to the T-action, there
is an equivariant cosection localized virtual cycle

[ M5 (X, )] € Hi i (CM 5 (X, d),Q) .

Similarly, there is a canonical lift of the S-equivariant twisted virtual class to the T-equivariant
setting

AAY A S AAY S
[Ma(X,d)]" € Higi, (Mg (X, d), Q).
For + = w or A and classes ¢; in the m;th twisted sector of HX* we define two types of
T-equivariant correlators:
T i iy | ()0t ev(pnit . (24)
01 R A W — evi(p1 ceevi(p ", 2.
n gn|d 52g—2 [ﬂ:’:ﬁ(X,d)]* 1 n\¥n)¥n
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By results of Graber-Pandharipande [GP99] in the case * = A and Chang-Kiem-Li [CKL17] in
the case x = w, these equivariant correlators can be computed by virtual localization. Virtual
localization on the moduli spaces of dual-extended 5-spin curves is the primary tool used in the
proof of Theorem 1.1.

2.5 Virtual localization

We now describe explicitly how to compute the equivariant correlators (2.4) by restricting to the
T-fixed loci.

The T-fixed loci in either ./\/l (X, d) or ./\/l (X, d)S can be encoded by decorated bipartite
graphs I". We denote the vertlces edges, and 1egs of such a graph I by V, F, and L, respec-
tively. The legs are labeled by the set {1,...,n}, and we let V"= Q U<} denote the bipartite
decomposition of the vertices. The decorations and the corresponding fixed loci are described as
follows:

— The type-Q vertices v correspond to maximal connected components C, of C where u = 0,
and the type-{ vertices correspond to maximal connected components where p = 0.
— The legs adjacent to v, denoted by L,, record which of the marked points lie on C,.

— The edges correspond to irreducible rational components C, on which z; = 0 for all 4,
and the isomorphism class of (C, o) is fixed by the T-action; that is, we can write o =
(0, 0,0,0,0, 2%, yb) for a choice of homogeneous coordinates [x,y] on C..

— Each vertex v is labeled with a genus g, and a degree d, recording the genus of C), and the
degree of L~! restricted to C,, with one exception: if v € © and C,, is a smooth, unmarked
point of C, then d, := 1/5.

— BEach edge e is labeled with a degree d., which encodes the degree of L™! restricted to C.,,
with one exception: if v € Q is adjacent to e and C,, is a smooth, unmarked point of C.,
then d, := deg (L]ael) —1/5.

The decorations must satisfy some constraints. In particular, we have the following

— genus constraint: Y g, + b1(I') = g,
— degree constraint: Y i dy + Y cpde =d,
— integrality condition: for all vertices v € ¢ with adjacent edges F, and adjacent legs L,
dy+ Y de+ Z — €Z.
eck, i€Ly
In addition, when e = 0, the stability condition disallows vertices v with 2g, — 2 4 val(v) < —1.

Let A. denote the set of decorated graphs encoding such T-fixed loci. For x = w or A, the
virtual localization formula computes the equivariant correlator (2.4) as a graph sum of the form

Z ]Au H Contr?™*(v) H Contr*(e) . (2.5)
reA

veV ecF
vEe®

Below, we collect the contributions of the vertices and edges to the graph sum (2.5). First,
we introduce additional notation for the vertex contributions. We define the following correlators
for the type-Q vertices:

(¢0 g0 )T (=15 P9 Yt
m1—1 mp—1 g,n|d 529—2 [71/5’6 ]@,* 6']1‘(R7T*£_1) )

Mg,m|5d+2g—2+n
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where
——1/5,¢
ﬂ1/576 Q% HZH*Z m; <Mg,rm5d+2g72+n> , A=W,
g,m|5d+2g9—2+n € s M1/5,5 )
2n—y m; \7 gmlbd+2g—2+n ) X

is the restriction of the virtual class to the moduli space of the vertex component C,,.

Similarly, we define type-<{ correlators

y —1)5-59-d T qhdn
<¢<>wa1 . ¢<>wan>;>7;lld . ( ) / 1

52072 Ji3e 0" en(Rmu(L75 @ wiog))

where ﬂ;nw is the Hassett space of weighted stable curves with n usual marked points and
d indistinguishable weight-¢ marked points forming a divisor D, where £ is the universal line
bundle that restricts on fibers to O(—D), and where

T AAC€ _
}O,* H272g74n74d (Mg,n|d) y K==W,

M
g.nld SxT A€
H2—29—4n—4d (Mg,n|d> , k=A

is the restriction of the virtual class to the moduli space of the vertex component C,,.

Define

LEMMA 2.11 (see [CLLL16] for € = 00). The localization contributions in (2.5) can be computed
by the following formulas:

e T o)
' —(a/de) =1 ’

i€ELy eckE,

ContrY*(v) = <

gu,val(v)|dy

O %€
& ¢<>
T < H<a/de>_¢> ,

’[ELU EEE’U

Contr?*(v) = <
gu,val(v)|dy
o [losicac (K(a/de) + A1) --- (k(e/de) + As)
Contr?(e) = ) =tde) ,
5de  (5d.)! (a/de)®® I pskcae (k(ar/de) — )
k)y=(de

and
Contr™ (e) = Contr*(e)|y—o -

In order to account for vertex contributions where the underlying moduli spaces do not exist,
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possibly causing wc, 10 O, the following conventions are made:

< G5d; -1 G5dy—1 >Q7’A’E s 5(—a/di - a/d2)_l, di ¢ 7,
—ajdi — ¥ —ajdy — TR 5 (A A/ (—)) ((—a/dy — afds) ", di€Z,

0,20
< 1 ><>)\76'_5(Oé+)\1)"'(04+/\N) <Oé+04>_1
Oé/dl Oé/dz 02‘0 o « d1 dQ ’
<¢@wa ¢5d 1 >Q7)\76 — W d Z'{5(a/d)a7 d¢Za
m 0200 (m+1)/5+de B(Al"-)\s/(—a))(a/d)a, deZ,
QA€
o NGRS R P
(o000 ¢>m . (~a/d)",
Qe
¢ ’ 25
<—a;)d : > = Ousrden gy
0,10

< ><> _ 2
af/d—1p 0,1]0 . d -

Notice that the first convention is a consequence of the third, and the second is a consequence of
the fourth. In all of the unstable cases, the type-w invariant is obtained from the type-\ invariant
by setting A = 0.

Remark 2.12. For x = w and € = 00, these localization contributions are a special case of results
of Chang-Li-Li-Liu in [CLLL16, Section 4]. The computations in the ¥ = A and/or € = 0 case
are similar.

2.6 Outline of the proof of Theorem 1.1

Consider the genus-one dual-extended 5-spin moduli spaces ﬂ‘f’e (X,d), where n = 0 and d > 0.
In this case, virdim = d > 0, and we have the following vanishing:

d WE 0 d >\e
0=> Q%-) Vo = V] 1> %~ )0 (2.6)
d>0 d>0

Computing the correlators in (2.6) by virtual localization, we see that the vanishing provides
relations among the fixed loci. These relations are the key to proving Theorem 1.1.

More specifically, since the e = 0 stability condition disallows rational tails, there are only
three types of graphs that appear in Ag:
AOO: graphs consisting of a single vertex v € Q labeled with g, = 1 and d,, = d,
Ag : graphs consisting of a single vertex v € { labeled with g, = 1 and d,, = d,
AE: bivalent loops with each vertex v labeled with g, = 0.

For any graph I' € A, there is a unique graph I'g € Ay that is obtained from I'" by “con-
tracting the tails.” More specifically, to obtain I'g from I', we carry out the following procedure:

1. Identify the unique genus-one vertex or the unique loop in I', call this subgraph I'y. As
undecorated graphs, we set I'g =1I';.

2. For each vertex vg € I'g and corresponding vertex vy € I'1, set gy, := g, -

3. For each edge eg € I'g and corresponding edge e; € I'y, set dg, := d.,.
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4. For each vertex vy € I'g and corresponding vertex vy € I'1, set dy, := d,, + deg(T'y, ), where
Iy, is the (possibly disconnected) graph consisting of the components of I \ I'; that attach
to I'; at vy, and deg(T'y, ) is the sum of the degrees on all edges and vertices of I'y, .
To indicate the relationship between I' and I'g, we write I' — I'g.
From (2.6), we obtain relations

0= g Contrs (T') + E Contrs (T') + E Contr} (T") (2.7)
IeAoo oo Iehoo
ey rToeAd r—roeAl

and
0= > Contrj(I)+ > Contrj(I)+ > Contrj(T). (2.8)
reAy reAy reAf
In the x = X case, we are implicitly restricting to the Al-coefficient. Define the graph sum
differences

A® = Z Contro (I') — Z Contro(I") .

reAss TeAg
I'—TIo EAB

By (2.7) and (2.8), we have AY = —A® — AP, We prove the following two propositions in
Sections 3 and 4, respectively.

PROPOSITION 2.13. There is an € = /oo correspondence of contributions from loop-type graphs:
AP =0.

PROPOSITION 2.14. There is an ¢

= 0/o00 correspondence of contributions from graphs with
a type- vertex of genus one: AV = 0.

Propositions 2.13 and 2.14 imply that there is an € = 0/0c0 correspondence of contributions
from graphs with a type-Q vertex of genus one: AY = 0. Since the type-Q vertices encode 5-
spin correlators, this is very close to the statement of Theorem 1.1. The final step in our proof
of Theorem 1.1, proved in Section 5 by manipulating generating series, draws out the precise
connection between the two statements.

PROPOSITION 2.15. The correspondence AY = 0 implies Theorem 1.1.

3. Proof of Proposition 2.13

In this section, we study equivariant intersection numbers on the genus-zero moduli spaces of
dual-extended 5-spin curves ME;’:L(X ,d). We prove various € = 0/0co comparisons between genus-
zero correlators, and we use these to deduce the loop-type correspondence of Proposition 2.13.

3.1 Genus-zero generating series

Our goal in this section is to study the genus-zero equivariant correlators defined in (2.4). Our
computations require formal generating series of these correlators, but first we introduce the
relevant I-functions, which will suitably account for the unstable terms in the generating series.

DEFINITION 3.1. The type-(V,\) I-function is defined by
Qlat1)/s 11 osk<(atlyo (kz+ A1) - (kz + A5)

I@,A 2) = 2 k)=((a+1)/5) Q )
(Q7 ) 20 zaa! H 0<k<(a+1)/5 (kz — Ot) ¢a
az (k)=((a+1)/5)
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The type-(, A\) I-function is defined by

19N, 2) _ZZQa O kz+a+ M) (kz+a+ Xs)

¢
2% 2 (k2 + 5a) ¢

a=0
The type-(X, A) I-function is defined by
INQ.2) = 192(Q.2) + I9NQ, 2).
For x = w, the type-(V, w), type-({, w), and type-(X, w) I-functions are defined by setting \; = 0

in the above expressions. We also define

I.7*(Q7 Z) Y €= 07

I**(Q,2) = {I.’*(Q,Z) mod Q2/5, € =00,

where the latter case simply omits all but the Q° and Q'/° terms.

We now define the J-functions, which are the generating series of equivariant correlators that
are required for our genus-zero comparisons.

DEFINITION 3.2. For ¢ = O, {, or X, the corresponding type-A J-function is defined by

d o \e
J")‘(t(z), Q7 Z)e — I.’)\(Q7 Z)e + t(_Z) + Z % <t(1/))nz fz/}>0 +1|d SDV 7
n,d,p "

where

HM[Q)E. =X,
t(z) € {H.,A[[Ql/iz]] S

@ runs over a basis of H**, and dual vectors are defined on basis elements by

165 0, =0, m#4,
(dn)" =< (—a/(5A1--X5)) o5 e=0, m=4,
(a/(5la+ M) (a+X5)))¢0, o=
We set
TV (t(2),Q,2) == TN (t(2), Q, 2)5,=0

Remark 3.3. The fact that J**(¢(z),Q, 2)¢ has a well-defined value at \; = 0 is a standard
computation (see, for example, [CR10, Section 4.1]) and is special to the fact that we are working
with genus-zero invariants, where the Witten class is an Euler class of a vector bundle.

Remark 3.4. There is a subtle but very important convention regarding the formal expansions
of the J-functions. In particular, we expand JX*(#(2), Q, 2)¢ as a Laurent series in z~! over the
base ring H**((Q'/%)), while we expand both JY*(t(2),Q, 2)¢ and J®*(t(z),Q, 2)¢ as Laurent
series in z. We can safely carry out the latter expansion because the 1-classes are nilpotent on
the type-© and type-{ moduli spaces.

3.2 Genus-zero correspondences

Here, we collect some € = 0/oco correspondences for the genus-zero correlators. Since similar
genus-zero correspondences have appeared recently in various places in the literature, for example
[Brol4, CCIT15, RR17, CR18], we keep the current discussion brief.
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PROPOSITION 3.5. For @ = Q or {, expand I**(Q, z) as a power series in z and write
I7(Q,2) = I""(Q, 2)4 + I**(Q,2)®° + O(=71).
Then
T (1(2) 4 1@y =), @, 2) = T (1(2),Q, ) (31)

Proof. This proposition follows from arguments analogous to those developed by Ross—Ruan
in [RR17], which we now outline. We prove it in the case * = A, from which the x = w case
follows upon setting A; = 0.

Step one. We first modify (3.1) in the case « = Q in order to introduce new formal variables
that are more geometrically meaningful. Write ¢(z) = ka t?dﬁzk . We make the following
modification: multiply both sides of (3.1) by Q~'/%, then rewrite both sides in terms of ¢ = Q'/°
and ' = QY 5t2”. After these modifications, (3.1) becomes the equality

JOA (t(z) + fo“\(q, —2)4,4, z)oo = jv’)‘(t(z), q, z)o, (3.2)

where the power of q in the J-function tracks the number of weight-e points on the underlying
moduli space mcl),/iflbd n_1- When e = &, the power of @ already tracks the number of light

points, so we simply set @) = q and t; = t; to obtain the ¢ = { analog of (3.2).

Step two. We have the following recursion.

LEMMA 3.6. With the pairing (—, —) defined via the dual basis introduced in Definition 3.2, the
Laurent series

0 CION € 0 CION €
ZJ ¢ —J*\t - .
(7" 820,20 g 4.0, (33
is regular at z = 0 for all m, for e = 0 or oo, and for ¢ = Q or .

Proof. This lemma is proved exactly as in the proof of Lemma 2.1 in Ross—Ruan [RR17]. More
specifically, we begin by considering graph spaces, where we parametrize a rational component
in the underlying moduli spaces. The graph spaces have a natural C*-action by scaling the
parametrized component. When we compute equivariant correlators on the graph spaces by
virtual localization with respect to the C*-action, the vertex terms in the localization formula
encode the same correlators that are encoded by the big J-functions, leading to the localization
expression (3.3), where z is the equivariant parameter. In particular, the I-functions IO and 102
can be computed as certain equivariant residues on the graph spaces. The fact that (3.3) is regular
at z = 0 follows from the fact that the equivariant correlators are well-defined equivariant classes
before localizing. O

Step three. We have the following characterization.

LEMMA 3.7. Suppose that F(t,q,z) = F(q,2)+ + t(2) + F(t,q, 2) is a Laurent series in z over
the base ring H**[[q]] such that all terms of F(t,q,2) € O(z~!) are at least quadratic in the
variables (t,q), and the Laurent series

0 0
<aqF(t, q,2), @F(t, q, —z)) (3.4)

is regular at z = 0 for all m. Then F(t,q, z) is uniquely determined by F(q, z)+ and F(t,0, z).
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Proof. The proof of this lemma follows that of Lemma 2.2 in Ross-Ruan [RR17]. More specifi-
cally, we write

f% andkm k¢m’

7>0

where t7 := H(t}")”fn Our goal is to show that the coefficients f g 1 n are completely determined
from F'(q,2)+, fi,0km, and (3.4). To do so, we proceed by lexicographic induction on (d, |7, k)
where |7i| := > n]". Suppose d > 0; we know fi g . for all (&', ||, k") < (d, 7|, k), and we
want to compute fz qx.m- We consider the relation

) 0 tigd—1
0 <6q (taqu)> 8{6” (t7q7 Z)) |: Zk :|

This relation has an initial term equal to d - f7 4% m, and all other terms are determined by the
induction. O

Step four. Our goal is to prove the equality

JMt(z) + 1740, —2)1,9,2)™ = J*M(4(2),q,2)°.
Using Lemma 3.6, one sees that both sides are seen to satisfy the hypotheses of Lemma 3.7.
In particular, the quadratic property follows from the fact that I *2(0, 2); = 0. Moreover, one
checks that both sides agree modulo z~! and both sides agree when q = 0. Thus, Lemma 3.7
implies that the two sides are uniquely determined from the same initial data and are thus equal,
completing the proof of Proposition 3.5. O

PROPOSITION 3.8. For x = w or A, we have

TXH(U(2),Q, 2)° = JH(4(2),Q, )"
(without a change of variables).

Proof. This follows from Proposition 3.5 using “cone-characterization” arguments analogous to
those developed by Coates—Corti-Iritani-Tseng in [CCIT15], following ideas of Brown [Brol4]
(see also Clader—Ross [CR18] for a setting more analogous to the current one). As in the proof of
Proposition 3.5, we content ourselves with outlining the main arguments. We prove it for x = A,
from which the x = w case follows by setting \; = 0.

Step one. Let F = F(t,Q,z) be a Laurent series in z~! over the base ring HX’A((QI/E’))
such that F'(0,0, z) := F(0,Q, z)g=o exists and is regular at z = 0. For @ = Q or {, let F'* denote
the restriction of F' to H"A((Ql/s’)), and let F3 denote the coefficient of ¢;,. For d € %N, define
the recursion coefficients by

H O<k<d (k(a/d) + A1) - - (k(a/d) + X5)
RC(d) = =)
S 5} @/ T] ocrca (W(a/d) — a)

Then RC(d) = Contr*(e), where e is an edge in a localization graph of degree d. We have the
following characterization.

LEMMA 3.9. Suppose that F' satisfies the following three properties:

(C1) Each Q-coefficient of F?, is a rational function of z. The coefficient Fy, has poles at
z = 0 and simple poles at z = a//d for all d € %N with 5d = m mod 5. The coefficient
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F< has poles at z = 0 and simple poles at z = —a/d for all d € %N.
(C2) The residues at the simple poles satisfy the following equations:

Resz:a/dF;Z = QdRC(d) ’ F<>|z=a/d
RGSZ:_a/dFO = QdRC(d) ’ F?5d|z:—a/d .
(C3) With coefficients expanded as Laurent series in z, the series F'® is of the form

d e )\, 00
rAQAT 2+ Y % <f<w>“ ® > o

z=v 0,n|d

n,d,p
where f(—z) is polynomial in z.
Then, with coefficients expanded as Laurent series in 2!, the series F is determined uniquely
from the part with nonnegative coefficients of z.
Proof. By grouping the different poles, we can use conditions (C1) and (C2) to write

d CFO
QIRC(d) - F ‘z:a/d_'_o(z—l)’ (3.5)

By =fo()+ Y

bt z—afd
(dy=m
Q'RC(d) - F, |.—_
O po 5dlz=—a/d _1
FO=f <z>+d21:N ol +0(=71), (3.6)
€3

where f(z) and f¢(z) are polynomial in z over the base ring. Expanding these expressions as
Laurent series in z, we use property (C3), along with induction on the formal variables (using the
fact that the second term in the right-hand sides of (3.5) and (3.6) always increases the power
of Q), to prove that the O(z~1) part of F** is determined uniquely by fv (2) and f©(z), proving
the claim. O

Step two. The next lemma allows us to apply Lemma 3.9 in our setting.

LEMMA 3.10. For e = 0 or co and x = w or \, set FX:¢ := JXNt(2),Q, 2)¢. Then FX¢ satisfies
conditions (C1)—(C3) of Lemma 3.9.

Proof. The restrictions of FX€ to the fixed-point basis are given by

Q" (68" \ "
(1@ )9 + (-2 + 5 F (atwy E2)
n! z—1
n,d
By definition, each @-coefficient of the two initial terms is rational in z with the simple poles
described in (C1). To verify the same for the final term, we apply virtual localization, as in
Section 2, to compute the correlators. There are two types of graphs:

0,n|d

I'y: graphs where the last point is on a vertex of valence two,

I'y: graphs where the last point is on a vertex of valence at least three.

It is straightforward from the localization formulas in Section 2 that contributions from graphs
in Ty have the prescribed simple poles (notice that 1 specializes to +«/d on these fixed loci),

while contributions from graphs in T'y are polynomial in z=! (notice that 1 is nilpotent in the
type-Q and type-<{> correlators). This proves condition (C1).
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To verify condition (C2), consider all graphs in I';. Notice that the recursive term RC(d)
is exactly the contribution from the unique edge e that is adjacent to the distinguished vertex
supporting the last marked point. Therefore, the recursion in (C2) is equivalent to removing this
edge from the graph. When € = oo, the terms in [ X’*(Q, 2)* come into play when the opposite
vertex of the removed edge has valence one (this can be checked using the unstable vertex
contributions of Lemma 2.11). When e = 0, each vertex must have valence at least two, and one
needs to verify that IX*(Q, z) satisfies condition (C2), which is a straightforward computation.

To verify condition (C3), consider the restriction F'*. Define

QdRC(d)'Fglz:a/d Q —

o (=2) == t*(=2) + 2der z—a/d P> *=
: QIRO(A) Fo _s4ls=—asd o _

ZdeN z+a/d o7, =9,

where, by condition (C2), the sums record the contribution from graphs in I';. For any graph T,
compute the localization contribution Contr(I') by first computing the contribution from each
subgraph emanating from the distinguished vertex supporting the last marked point (each of
which looks like a graph in I'1). Adding the contributions from each graph in this way leads to
the following equality:

(] (] o Qd ° (p .7>\76
F* =T%(Q2) + f*(=2) + ) —r (/)" o (3.7)

n,d,p n: Z- ’(/} 0,n|d
For € = 0o, equality (3.7) is precisely of the form required by condition (C3). For € = 0, equality
(3.7) is of the form required by condition (C3), after we apply Proposition 3.5. O

Step three. From the definitions, it is apparent that, after expanding as Laurent series in 271,

TXAH(2),Q,2)° = T¥(t(2),Q,2)*  mod 2
By Lemmas 3.9 and 3.10, this is enough to conclude that

TN 1(2),Q,2)° = JYMt(2),Q, 2)™,
finishing the proof of Proposition 3.8. O

3.3 Tail series

In the process of passing from the graph I' € A to I'g € Ag, tails of rational curves with no
marked points are removed. We now define certain tail series that capture the contributions of
those removed tails, and we interpret the tail series explicitly in terms of JX: *(0,Q, )°°

Let G§,,, denote the set of graphs corresponding to T-fixed loci in evy Yo )n MO (X, d)S,
where the umque marked point is on a vertex of valence two, and for any graph G € G ,,, let

A,00

Contr), (G) denote the contribution of the G' to the virtual localization computation of (Dm)y 1

DEFINITION 3.11. For ¢ = Q or <, the tail series are defined by

TNQ2) = Y @dW<¢m> and T*¥(Q, 2) = T*NQ, 2)nm0

dm

)
GEde

Remark 3.12. The psi-class appearing in the definition of the tail series is purely equivariant,
because the vertex supporting the marked point has no moduli.
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We have the following result relating the tail series to J**(0,Q, 2)™.

LEMMA 3.13. For ¢ = Q or { and x = w or A, let JX’*(O,Q,Z)‘X’L denote the restriction of
JX*(0,Q,2)>® to H**. Expanding as a Laurent series in z, write
TXH0,Q,2)®], = J¥(0,Q,2)%|, , + I"*(Q,2)*° +O(71) .
Then
T**(Q.2) = J(0,Q, 2)

o+’

Proof. When we compute J**(0, Q, z)oo‘. by localization (ignoring the initial term I**(Q, z)*°),
two types of graphs appear. The first type are those where the marked point is on a vertex of
valence two; the second type are those where the marked point is on a vertex with valence at
least three. The contributions of the former type, which are regular at z = 0, are exactly those
encoded by T**(Q, z), while the contributions of the latter type have poles at z = 0. O

3.4 Conclusion of Proposition 2.13

In light of the localization computations of Section 2, it is clear that Proposition 2.13 is a con-
sequence of the following identities:

T@’* _n\ V%00 X
Z<¢mlwal By 12 M> = QM (b " St (38)

|
n>0 G 0n+2 4>
O ,%,00
5 104(@ =0\ g
q/)al wag ( ) _ Qd <,¢a1 wa2>(?,2*£ . (39)
n>0 nl 0n+2 4> 2

Moreover, we compute

T**(Q,2) = J5(0,Q,2)%, , (3.10)

= J%(0,Q,2)°|, , (3.11)

— 1@, ) (3.12)

where (3.10) follows from Lemma 3.13, equation (3.11) follows from Proposition 3.8, and (3.12)
follows from the definitions of I**(Q,z)+ and JX’*(O,Q,Z)O‘.’JF. Therefore, equations (3.8)
and (3.9) are special cases of Proposition 3.5, concluding the proof of Proposition 2.13. O

4. Proof of Proposition 2.14

In this section, we prove the e = 0/oc comparison for graphs of type <>, which, after the discussion
of tail series in Section 3, can be stated as the following equality:

o AT O y*,00
S (G et (a1

n!
n>0 Ln d>0

The first step in proving (4.1) is to separate the genus-dependent part from the twisting factor in
the type-<{> correlators. Once the genus-dependent part has been separated, the comparison can
be reduced to a genus-zero statement using arguments first developed in the context of stable
quotients by Marian—Oprea—Pandharipande [MOP11]. The genus-zero statement is proved by
following arguments developed by Ciocan-Fontanine-Kim [CK17] in the context of stable quasi-
maps.
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4.1 Genus dependence of the type-<{> twisting factors
The type-{ correlators in (4.1) can be described as intersection numbers on the moduli spaces
M;n,d of e-stable curves with n usual marked points q1, ..., ¢, and d weight-e points yi, ..., yq4.
Let E=q1+--+¢, and D = y1 +- - - +y4 be the divisors of marked points, leading to universal
divisors £ and D, and set £ = O(—D). The type-{ correlators are obtained by intersecting
psi-classes against

1 _ _

216 ! (R (,C695 &L Wrlog) ) - (4.2)
Remark 4.1. The 1/d! pre-factor occurs here because we are marking the weight-e points in this
discussion, whereas we considered them to be indistinguishable in the discussion of Section 2.
Notationally, we have

€ — €
Mg nja = MgnalSa-
The following lemma separates out the genus-dependent part of the twisting factor (4.2).

LEMMA 4.2. The twisting factor separates into a genus-dependent part and a part that is local
to the divisor D:

e (Rm. (015°))
ex (Rm, (O(20D)|p))

e*_l (Rm (EEBS BLP® wmlog)) = e*_l (Rm (0@5 ® wﬂ))

Proof. This follows from the two exact sequences
0—-0(-D)—0—=0|p—0
and

020w, > 0BD+E)@wr = (OBD+E) @wr) [spre — 0,
along with the facts that D and £ are disjoint, w, ® O(€)|e = O, and

wr ® O(5D)|5p = O(4D) ® (wr ® O(D)) |sp = O(4D)[5p = O(20D)|p . O

4.2 Contraction maps and cotangent calculus
Corresponding to the graph contraction I' — I'g € F(?, there is a contraction map on moduli
spaces
——00 —-—0
pr: My, = My o g—dy+td, »
where the set {1,...,n} enumerates the connected graphs of I' \ I'y and d; denotes the degree

on the ¢th such graph. The map pr simply replaces the marked point ¢; with the d; weight-zero
points that are indexed by the interval [d + -+ 4+ d;—1 + 1,d1 + - - - + d;] and then stabilizes.

Since
b (¢ (B, (07 ) = 65 (R (0% 01,)).
then Lemma 4.2, along with the projection formula, implies that (4.1) would follow from the
equality

1 N , 1 e, (Rme (02
2 m(””*(HTQ’ Q%) [leo “dle, (R(m (0((20’%))17)3)) (4.3)

dy,...,dn %

as an equation in the equivariant cohomology ring

{H%(M(I)’O’Dd) s * =W,
ngT(Ml,O,d) ;K= A
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Both sides of (4.3) can be written as polynomials in psi-classes ﬁj and diagonal classes Dy,
symmetric under the action of Sy. We denote these polynomials by Bd(iﬁj, Dj)> and Bd(zﬂj, Dy)°.
By the cotangent calculus of Marian—Oprea—Pandharipande [MOP11], these polynomials can be
written in a canonical form, which we denote by B, and the canonical forms are also symmetric
under the action of Sy. Our goal is to show not just the cohomological equality (4.3) but the
stronger equality

BS (4, D)™ = BS (43,D;)" (4.4)
as abstract polynomials in the variables ﬁj, Dj.

MarianjOpreafPandharipande argue that any equality of abstract symmetric polynomials in
variables v¢; and D; can be checked by computing certain intersections on genus-zero moduli
spaces ﬂ&ku = ﬂo,k,d/ Sq. To precisely define the intersection numbers we need to check, we
follow the exposition in Ciocan-Fontanine-Kim [CK17]. Fix k > 3,d > 0, and 1 <1 < k — 2.
Let p = (p1,...,m) and 7 = (t1,...,t;) be ordered partitions of d and k — 2, respectively,
with p;,t; > 0. Define the chain-type stratum S(t,p) on M&k‘d to be the closure of the locus
parametrizing curves with [ irreducible components Ry, ..., R; attached in a chain such that

— Ry carries t1 4+ 1 regular marked points and p; weight-zero marked points,

— for i =2,...,1 — 1, the component R; carries t; regular marked points and p; weight-zero
marked points, and

— Ry carries t; + 1 regular marked points and p; weight-zero marked points,

where the regular marked points are distributed in order from R; to R;. The key lemma we need,
which was proved by Marian—Oprea—Pandharipande, is the following.

LEMMA 4.3 ([MOP11, Section 7.6], [CK17, Section 5.6]). The equality of abstract polynomi-
als in (4.4) holds if and only if, for every chain-type stratum S(r,P) and every monomial
w(1, ..., %), we have an equality after integrating:

/ (1, ..,y BY (¥, Dy)™ = / (i, ... ,W)Bdc(dzijJ)O- (4.5)
S(r,P)

S(t,P)

To prove (4.5) for all chain-type strata, and thus finish the proof of Proposition 2.14, we
proceed by induction on [. Back-tracking through the definitions and results of Section 3, we see
that the base case [ = 1 is precisely encoded by the ¢ = { case of Proposition 3.5. When [ > 1,
we simply break the chain-type strata at the first node and denote the two resulting chain-type
strata by S; and Ss. Set d; = p; and do = d — dy. Then it is not hard to see that for ¢ = 0 or oo,
we have splittings

Bg(lﬁj,DJ)e = Bg (@Zj,DJ)GBg; (flﬁj’DJ)e
and

M(wlv cee 71/}k) = Hl(wla e 7¢t1+1):u’2(wt1+25 e 7¢n) )

and we can write

| nB§ (D) = [ mBE (55:00)" [ 1B (45, D0)"
S(r,P) S1

Sa

Therefore, the equality of the integrals can be reduced to an equality on chain-type strata with
smaller [, completing the induction step. This finishes the proof of Proposition 2.14.
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5. Proof of Proposition 2.15

Propositions 2.13 and 2.14 together imply the following correspondence between the type-O
correlators:

Q n/5 VA 07*)00 d @,*,O
Z ol (T7H(Q,=4)") Lnld=—n/5 — Z QU o » (5.1)
n>0 d>0

where, when x = A, we only consider the coefficient of A’ on each side. Now we manipulate both
sides of (5.1) to show that it implies the statement of Theorem 1.1.

5.1 Right-hand side
The correlators on the right-hand side of (5.1) are defined by
-1 -1

- . €T (RTF*£ ) .

(M 5i5a]
Since dim [Mi/(iSOd] = 0, the twisting factor can only contribute the purely equivariant leading
term:

efl (RTr*[,_l) =(—a) 4.,

where + - -- denotes terms that are not purely equivariant. Therefore, setting t = (—a~1Q)
it follows from the definitions that the right-hand side of (5.1) simplifies:

YU =Dt (5.2)

d>0 d>0

1/5
)

which is equal to the final term in the right-hand side of Theorem 1.1.

5.2 Left-hand side

It is left to recover the rest of the terms in Theorem 1.1 from the left-hand side of (5.1). We sim-
plify the left-hand side by making several observations. When x = )\, we require the specialization
i = €\ from Remark 2.10.

First, recall from (3.10)—(3.12) that
TQ’*(Q7 z) = IQ’*(Q’ z)+

For x = A or w, respectively, we compute directly from the definitions the qb(? -coefficients of

IQ?’*(Q, Z)+Z

(a+1)/5 2)? >
v o ) Qzaa! Hﬁ(;i?ki _+03 | - O(2) + O(N°)
* z = r :
T9%(Q, 2)[¢y] Q@5 ], (k2)?
Z Tt = O(z),

| a>0,5]a n

= ((a+1)/5). This

where the products are taken over the k£ with 0 < k < (a+1)/5 and (k)
(5.1), it appears either

means that every time we see gbg? in the correlator in the left-hand side of
with a 1 class or a factor of A’. Next, notice that

dim [Ml/g)oo} =2n — Zml .
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Since an appearance of a psi-class takes up one dimension and the appearance of a factor of A\’
effectively takes up five dimensions (recall, here, that we are only considering the A\’-coefficient in
the left-hand side of (5.1)), we see by purely dimensional reasons that the only possible insertions
in the left-hand side of (5.1) appear as coefficients of qﬁg v and gb?. We compute directly the
coefficients of these insertions in the tail series:

TQQ’*(Q, —2) [%@Z)\O] _ —a*1Q1/5Io((—a*1Q)1/5) +a’1Q1/5

and

_ _1,\1/5
T94(Q,=2)[67] = (=) QY1 ((=a7'Q)""),
where Iy(t) and I;(t) were defined in the introduction.
Lastly, notice that when all insertions are of type ¢0©¢ and gb?, by the same dimension count
above, the twisting factor can only contribute the purely equivariant term
e%l(RTr*ﬁ—l) = (—a)m @Oz

where n,, denotes the number of points of multiplicity m.

Putting these three observations together and setting ¢t = (—a‘lQ)l/ % as before, we see that
the left-hand side of (5.1) simplifies to

—n/5 4,00 1 4,00
> QT<T@’*(Q, — = A= To()dow + L(B)or]")7 . (5.3)
n>0 ’ n>0 "

Finally, we rewrite the right-hand side (5.3) as follows:

Z %Q(l — Io(t))pop + I (t) 1] :Zo

n>0
1 *,00
= Z n71'<[(1 — Io(t))pot]™ )1, (5.4)
n1>0 ’
1 *,00
3 (0= To@)eod] (L (061]™) 17 - (5.5)

The FJRW and twisted correlators satisfy the dilaton equation
<¢m1wa1 U ¢mn1/}an ¢0w>;:20+1 = (29 - 2 + n) <¢m11/}a1 e ¢mn¢an>‘;zgo
whenever 2g —2+n > 0. Applying the dilaton equation, we see that the sum in (5.4) is equal to

“log(ho(®) [,

M)
Also applying the dilaton equation to (5.5) and then using the identity

ni+ng —1 ni 1 . 1
Z( - )“‘IO“” BETEEAD) RS RO

n12>0

we see that the sum in (5.5) simplifies to

> ((18a))

n>1

This completes the proof of Theorem 1.1. O
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6. Twisted invariants and the genus-one formula

Now that we have completed the proof of the comparison formula in Theorem 1.2, we turn
towards proving the explicit formula for the genus-one twisted invariants given in Theorem 1.3.
In this section, we recall a formula that computes the genus-one twisted correlators purely in
terms of certain genus-zero data. This formula is originally due to Dubrovin-Zhang [DZ98] and
Givental [Giv98a]. In Section 7, we compute the relevant genus-zero data explicitly in order to
deduce Theorem 1.3 from the genus-one formula.

6.1 The CohFT and Frobenius manifold

In order to state the genus-one formula, we first need to introduce the twisted invariants and the
requisite genus-zero data. Recall from [CR10] that twisted 5-spin invariants can be extended to
the untwisted sector by the following formula:

(71)3—39-1—71—2 m; / o "

n\A
<¢m1—1¢a1 o '¢mn—1¢a >g,n T 529—2 ml/s]X 1 n

g,mm

1 “ .
= p29—2 /[M1/5] e prea(m),

g,m

where

5
ex(m) == exp (Z Z skichi (— RTF*C(E5)))

i=1 k>0
with

—In(\;), k=0,
Sk, = k
(k=N k>0,
and Y5 is the universal divisor of marked points with trivial twisting. We further specialize
the formal parameters \; by setting A\; = £\ with & := e2™/%, Notice that this choice of the
parameters ); induces the vanishing s;, := ). s5; = 0 unless 5|k. By the orbifold Riemann-Roch
theorem,

—rk(ROm.L(~%5)) + rk(R'm, L(—35)) = 3 —3—n+>.m; |

)
where we always take m; € {1,...,5}. It follows that the characteristic class ¢y can be written
in the following form:
ex(m)=---+ )\_5cd+5 +cq + )\5Cd_5 + )\locd_lo + -

where d = 3g — 3 —n+ > m;. When g = 0, the complex —Rm,L(—X5) is supported in degree
—1, where it is the vector bundle (Rlﬂ'*ﬁ(—zg)))v. Thus, in genus zero, we have

ex(m) =cg+ Neg_s+ - - . (6.1)

For a formal parameter 7 (which we later take to be the mirror map 7(¢)), we define the
shifted twisted invariants in the small phase space by

K
({Dmy—19™ -+ Py 1)) = Y % (G 10™ -+ Py 10 P1 - D1) )

k>0

We now describe the CohFT and the underlying Frobenius manifold corresponding to the
shifted twisted invariants. For the basic definitions of CohFTs, we suggest the discussion in
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Pandharipande-Pixton-Zvonkine [PPZ15], while for Frobenius manifolds, we direct the reader
to Givental [Giv98a] and Lee-Pandharipande [LP04].

The CohFT associated with the shifted twisted theory is based on the vector space generated
by ¢o, ..., ¢4, with unit ¢g, and is defined by

k
(St Smm1) = Y 2o (pr)a (e (1, 2F))

k

where pj: M /(m oky = /\/l /ﬂ — M, is the forgetful map that forgets the last k marked
points, the hne bundle, and the orbifold structure. The genus-zero part of this CohFT determines
a generically semisimple Frobenius manifold, described by the following structures.

6.1.1 The inner product. The inner product of the Frobenius manifold is defined by the
following equation:

1(Sas $1) = {{ba D6 0))p5 = (Pa B P0)p 5 »

where the second equality follows from the fact that the genus-zero primary invariants vanish if
m; = 1 for some i and n > 3. We use ¢® to denote the dual of ¢, under this inner product.

6.1.2 The quantum product. The quantum product in the small phase space, denoted by e,
is defined by the equation

(a0 b1, Pe) = ((Pa B Pe)) 3 -

As we will see in Section 7, the quantum product is semisimple for generic 7.

6.1.3 The canonical coordinates. Since the quantum product is generically semisimple, we
can find an idempotent basis {eq: o = 0,...,4}; that is, e, o, eg = 0y, geq. Let u = {u®} be the
canonical coordinates, defined by the equation

D eadu® =) ¢idr' = grdr,

and normalized such that u“(7 = 0) = 0. We define the normalized basis by
€q i= A})/Qea with A, = n(ea,ea)*l,

which is an orthonormal basis with respect to the inner product. Let ¥ denote the transition
matrix between the bases ¢; and é,, which, by orthogonality, we can write as

\Ijaj:(éa7¢j)7 jaa:071727374'
Remark 6.1. Our conventions follow those of Lee—Pandharipande [LP04], which are slightly dif-

ferent than those of the original work of Givental [Giv98a]. In particular, our W is Givental’s U1

6.1.4 The fundamental solution. The quantum product can be used to define the quan-
tum differential equation on the Frobenius manifold (see Givental [Giv98a] or Lee-Pandhari-
pande [LP04] for details). The following important result of Givental describes a nice set of
fundamental solutions to the quantum differential equation.

THEOREM 6.2 (Givental [Giv98al). There exist fundamental solution matrices of the form

U R(u, z)eV/*
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where U = diag(u®,...,u*) and R(u,z) = (1 + Ri(u)z + Ra(u)z® + ---) satisfies the unitary

condition R(u, z) R(u, —z)* = 1. Moreover, such an R(u, z) is unique up to right-multiplication by

a unitary matrix of the form exp (Zk>0 a2k+122k+1), where a, = diag(a?, ..., a}) are constants.

We call the matrix R(u, z) appearing in Theorem 6.2 an R-matriz for the Frobenius manifold.

Remark 6.3. If the Frobenius manifold has an Euler vector field, then a canonical R-matrix can
be determined uniquely by imposing that it is homogeneous. However, since there does not exist
a Euler vector field in our case, we will need to normalize the R-matrix by hand.

6.2 The genus-one formula

We use the following genus-one formula to derive Theorem 1.3. This formula was proved in
the conformal case by Dubrovin—Zhang [DZ98] and in the torus-equivariant GW setting by
Givental [Giv98al. In general, the formula follows from the Givental-Teleman reconstruction
theorem [Tell2], as we show in the appendix.

THEOREM 6.4 (Dubrovin—Zhang [DZ98], Givental [Giv98a], Teleman [Tell12]). There exists a ca-
nonical choice of R-matrix, which we denote by R*, satisfying the conditions of Theorem 6.2,
such that the genus-one potential F{ (1) := (<—>){‘70 is given by

1 1
aF =Y <48dlog A+ Q(Rf)mdua) | (6.2)
[}
Remark 6.5. Ensuring that equation (6.2) holds at 7 = 0 allows us to normalize the ambiguous

constant factor of Theorem 6.2.

Remark 6.6. Theorem 6.4 requires the semisimplicity of the quantum product for a generic choice
of 7. We verify this property in the next section.

Applying Theorem 6.4, we can prove Theorem 1.3 by computing A, and (R})ae explicitly.
We carry out these computations in the next section.

7. Genus-zero computations

In this section, we provide explicit computations of the Frobenius manifold data introduced in
Section 6.

7.1 The inner product

The inner product is determined by the following lemma.

LEMMA 7.1. In the basis {¢;},

5\°

Proof. This follows immediately from the definitions. O
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7.2 The quantum product

The following proposition determines the quantum product in terms of two to-be-determined
coefficients f and g.

PROPOSITION 7.2. The quantum product takes on the form
1 Ng

(bO.T: 1 ’ (Z)I.T: f ’

1 g

where f,g € Q|[r]] are monic. Moreover, by the associativity of the quantum product, we can
write

2
¢2-T¢2=%¢4, ¢2-T¢3=A5“’7-¢o, ¢2-T¢4=A5%¢1,

2
¢3°r¢3=)\597'¢17 P30 p1=MNg b2, (s b=\ 3.

Proof. The quantum product is defined by the structure constants

k
M(a o 68, 0c) = ((a 60 005 = D 77 (B B e b1+ 6150

k>0
By (6.1), the correlators vanish unless

—1/5

k:dim/\/lo’(aﬂ,bﬂ,cﬂgk):d—5s:a+b+c+k—3—53

for some nonnegative integer s. This happens when the characteristic class contributes A\>*cg_s,

to the integration.
If a = 0, then the only possibilities are

s=0,b+c=3 and s=1,b=c=4.

The corresponding correlators are determined by the pairing, and they give the desired form of
the matrix ¢ge..

If a = 1, then the only possibilities are
s=0,{b,c} ={0,2}; s=0,b=c=1; and s=1,{bc}={3,4}.

The first case is determined by the pairing and gives the desired form for ¢ e, ¢g and ¢; e ¢o.
The rest of the matrix ¢;e; is then determined by the following correlators:

1 A V] N
[= 5<<¢1 ¢1 ¢1))o3 and  g:= ?«(/51 ®3 D4))0.3 - o

In order to explicitly compute f and g, we still require some more work. Start by defining
the small I-function for the twisted invariants:

t® _
I)\(ta z) = ZZ 2aq) H (/\5 + (kz)5)¢a = ZIk(t)Z k+1¢k ’
a=0 " o<k<(at1)/5 k>0
(k)=((a+1)/5)

Notice that I*(t,2)g,=a=0 = I(t,2), where the latter is the FJRW I-function defined in the
introduction. Moreover, the definitions of Iy(t) and I1(t) here agree with those given in the

287



S. Guo AND D. Ross

introduction. Also, tI*(, z) is annihilated by the Picard-Fuchs operator

() () - (o)

For 7 = I1(t)/Io(t), as in the introduction, the genus-zero mirror theorem for the twisted invari-
ants, proved by Chiodo—Ruan [CR10], states that
It 2)

P =1 (72)

where

JNT, 2) = Z¢0+T¢1+Z<< ¢>> =) Je(m)z gy
k=0

Following Zagier—Zinger [ZZ08], for any F(t,z) € Q[[t,27!]], we introduce the Birkhoff fac-

torization operator
d F(t, =)

“at F(t,00)"
If F(t,z) is a state space—valued series, then we set ¢; = 1 in the denominator of (7.3). We
inductively define series I, 4(t) by

MF(t,z) ==

(7.3)

d [ L—14(t
I (t) :=1,(t) and I,4(t) = " <”1‘1()> forg>p>0, (7.4)
t \Ip-1p 1(t)
so that
MP(IMt,2)/2) = Z pptq(t)z Yppyg forp>0. (7.5)
q>0
Example 7.3. We have
dl; dr dl, d d d
hi=——=—, Ls=—-—=— Ipg = —— .
M= g T @ DT gn T B2 g0

The Birkhoff factorization operator provides us with a convenient way to write general points
of Givental’s Lagrangian cone in terms of the I-function. For example, the following result allows
us to compute the twisted S-operator?, defined in terms of the I-function by

SMr,2)* (dr) = dr + ; <<¢k Zcfimw >>:’2 .

LEMMA 7.4. The twisted S-operator in the small phase space is given by
M*(I(t, 2)/2)
T e

S (7, 2)* (1) =

where T = 7(t) is the mirror map.

Proof. Due to the basic properties of the Lagrangian cone L, proved by Givental [Giv04], it
follows that I*(¢, —z) and J*(7, —2) lie in the same tangent space T of £. Moreover, a basis for
the intersection £ N T, over the ring of polynomials in z, is provided by

{ZS)\(T, —z)*(qbk)} . (7.6)

4The superscript # is used to denote that this operator is adjoint to a fundamental solution matrix SA(T, z) of the
quantum differential equation [Giv98a].
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It also follows from the same basic properties of £ that
2MF(IMt, 2)/2)

elLnT.
Iy

Therefore, this quotient can be written as a linear combination of the basis (7.6) with coefficients
taken from the ring of polynomials in z. The lemma follows by observing that

2MF(IMNt, 2)/2)
Iy 1,

= 2+ 20(271)

and
2SMT, 2)* (dr) = 205 + z(’)(z_l) . O
We now use Lemma 7.4 to give explicit formulas for f and g, and thus finish the computation

of the quantum product.

ProprosITION 7.5. For j = 0,1,2,3,4, we have <<¢)1 gbl ¢j>>(>)\,3 = 77(¢i)¢j+l)(Ij+1,j+l/Il,1)' In
particular,

I L

1,1 Iy
Proof. Notice that ({(¢1 ¢; ¢j>>é,3 can be obtained by differentiating the two-point correlator
((¢i ¢j>>()\72. By definition of the S-operator, the z~!-coefficient records these two-point correla-
tors:

i} B I
(i D3))00 = (i, SM(7,2)(05))[z7'] = ?7(<Z>i,¢j+1)%,
J:d

where we have used Lemma 7.4 and equation (7.5) in the final equality. Differentiating both
sides, we obtain

({61 61 &0)s = 1 (61, dy41) (H)

dr IjJ
_ (i, dj11) d (L
Iy dt \ I;;
I. .
=1 (¢Za ¢j+1) % )
11
where the second equality uses Example 7.3 and the final equality uses the recursive defini-
tion (7.4). O

The series I, , satisfy the following important properties.

LEMMA 7.6. Define L := (1 — t5/55)71/5. The following identities hold:
(i) Toolig---Isa = L5
(i) Tsipstp = A pp;
(iii) Ipp = Iy—pa—p for 0 < p < 4.
Proof. The proof closely follows techniques developed in Zagier—Zinger [ZZ08].

Define
ta+1

f)\(t, Z) = ¢4A75 + ZO m H ()\5 + <k2)5)¢a y
az

© 0<k<(at1)/5
(k)=((a+1)/5)
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so that MI(¢,z) = ASI*(t, z) /2. Define
~ d
G(t,z) =T t,z), F(t):=G(t, ), Alt,z):=—(\N2P"G(tz), D:= ta .
It is straightforward to check the following analog of the Picard—Fuchs equation (7.1):

4
[(D/E))E’ —t [ (D -k) ] G=A. (7.8)

k=0
It is also apparent from the definitions of ' and A, along with (7.8), that

4
[(D/5)5 —t [ (- k:)]F =0. (7.9)
k=0

Expanding the product, write

4 5
[(D/5)5 —t [ (D~ k)} => C.(t)D".
r=0

k=0
By writing G = (G/F)F and applying the product rule to (7.8), it is straightforward to show
that

4
d DGV = 24, (7.10)
s=0
where
> r
(1) i r—1—s
c) = > <8+1>C’T(t)D F
r=s+1
and

G(t,z) == 2D(G/F) =t-MG(t, z) .
The initial term in (7.10) vanishes by (7.9). By iterating this process p times, for 1 < p < 5, we
obtain
5—p
> CcP D GP = 2P A, (7.11)
s=0
where the coefficients are defined recursively:

6—p
=3 (], )erDwp et o)
r=s+1

GW)(t,2) = 2D(GPV(t,2)/GPV(t,00)) =t - MPG(t, 2) .

The top coeflicients are easily computed:

eV =csa 5, P =Cstlhy, ..., CF) =Cst'Iyg-- Iss.
Moreover, Cs5 = 1/5% — ¢=>. Thus, for p = 5, equation (7.11) becomes
((t/5)° = 1) oo --- L33 MP(TM(t,2)) = —A°T(t, 2) . (7.12)
Setting z = oo, we obtain ((t/5)° — 1)Ip---Is4 = —1, which proves identity (i). To prove

identity (ii), re-insert identity (i) into (7.12) to obtain

M4(I)‘(t, z)/z) _ P‘(t 2.

Iy4
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Applying zd/dt to both sides proves that M?(I*(t,z)/z) = A°I*(t, z)/z. To prove identity (iii),
we use Proposition 7.5 and the symmetry of the three-point functions:

I
5= ((¢1 b2 P0))p3 = (61 G0 P2))03 = 51‘1”?
I 1 1
BXP L = (01 04 63))s = (61 03 00))5a = T2 = 5N,
Il,l 1-171 1—171
where the final equality uses identity (ii). O

Ezample 7.7 (Yukawa coupling). Set Y := 1 ((¢1 ¢1 $1))§ 3- By Lemma 7.6,
v o 22 _ ITUREEE 73 _ L% (dt\’
- 11’1 o Ig L1 I2 dr ’
which coincides with the well-known result (see, for example, equation (3.65) in [HKQ09]).

7.3 Canonical coordinates

Consider the following normalizations:

3 N —2/5 ¢—1/5 : —4/5 ¢3/5

b0 = ¢o, ¢1=%'¢1, ¢2=%'¢2,
N —6/5 £2/5 N ~3/5 ¢1/5
¢3=%'¢>3, ¢4=%'¢4-

As usual, we compute all indices modulo five. By Proposition 7.2, we have
i r Oj = i -
Hence, the quantum product is semisimple, and we can define a canonical basis by
o = ;Zéigm, a=0,1,2,3,4,

i
so that e, ® eg = dnpeq. Let {u®} be the canonical coordinates, ), eqdu® = ¢1d7, normalized
by the convention that u“(7 = 0) = 0.
LEMMA 7.8. We have du® = &%\ - du, where du = ¢%/° f}/5dr = Ldt.

Proof. This follows from the definition of (;3Z in terms of e, along with Proposition 7.5 and
Lemma 7.6. O

The normalized canonical coordinates are defined by
€ 1= A}J/Qea with A, = n(ea,ea)_l.
LEMMA 7.9. We have
Ao = (3097125 = (€N 15 /L2

Proof. This follows from the definition of e, in terms of ¢;, the computation of 7 in the ¢;-basis,
Proposition 7.5, and Lemma 7.6. 0

The transition matrix between flat coordinates and normalized canonical coordinates is de-

fined by
\Ilaj:n(éaaqu)? jaa2071>27374'
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From the definition of e, in terms of ¢;, we have
Wy = €03y,
where the c¢; are given by

I Iyol
_ \5/2 _ 13/240,0 _ 1/240,041,1
R I R I

Tooli 11 Tooli 11251
1 _ 0,041,142,2 —1 _ 0,041,142243 3
co=c] = A 1/27L3 , 3=c¢y = A 3/2—L4 .
For convenience, we also define ¢4 := A7%/2, so that cj = cgj j for j = 0,...,4. The inverse matrix
of W is given by
o £o(3/2-3)

U, = ch.

We define
dCY = 257(1—3/2)03,—1(10]. — ZfV(J_S/Q)dlog ¢
j=0 j=0
so that
1o 1
(vdw™), == > ey jde; = —dceP. (7.13)
=0

Notice that ¢4 does not contribute to dC7, and dC7° = dC".

7.4 The fundamental solution

In this subsection, we prove the following result.

PROPOSITION 7.10. The diagonal entries of the R}-matrix are given by

1 d /5
(Ri\)aa = 5AET du <4 log(L) — 4log(ly) — log(ILl)) +Cq,

where ) £*Cq = 0.

Proof. Following Givental [Giv98a] (see also Lee-Pandharipande’s book [LP04] for more details),
we can compute the Ri\—matrix in terms of the Frobenius manifold data in two steps. The first
step is to compute the off-diagonal components. By the flatness of the quantum connection,
Givental argues that

vdv! = [dU, RY] .
For a # (3, this equation reads

(wdw™), ;= (du® — du’) (RY) -
By Lemma 7.8 and equation (7.13), we obtain

dceF
RY) ,=———— f : 7.14
The second step is to solve for the diagonal components of Ri\. Givental argues that the
diagonal components of dRi\ satisfy the following equation:

(dRy),., = (du’ — du®)(R1)ap(R1)ga-
8
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By Lemma 7.8 and equation (7.14), we compute

N 1 dCce—PaCh—«
(dRY),, = % 25(£a — €P) u

¥ 1 dCc—7dC
2 2560(1-€)  Adu

Z £i=a)y dlog¢; dlogc; du
, 25A64(1—=¢7) du du

4,j=0,1,--+,
v#0

1 j—i dlogc; dlogc;
_25>\£C“Z<2 5< 5 >> Q. du O

,J

where, in the last step, we have used the identity

k
Z 15_; :2—5<—§> VkeZ.

v=1,2,3,4

Using the fact that

4 3
Zdlogci = Zdlogci = dlog(co .. '63) = 0,
i=0 i=0

we compute

1 j—1 dlogc; dlogc;
dRy), = -5 2d
(7)o 25A§a%:< <5 >> du  du

_ 1 dlogcidlogcjdu.

HAEX ~ du du

Recalling that dlog(c;) = —dlog(cs—;), we have

1 dlogc; dlogc;
dR}),. = — Zd
(A77) o Y 2 du  du ¢

(i.)=(2.1),(3,0)

1 dlogco 2 dlogcs 2
pu— - - . .1
BACO (( du ) +< du du (7.15)

The next lemma manipulates formula (7.15) into the form of Proposition 7.10.

LEMMA 7.11. We have

dlogco 2 dlogcs 2 d? (5
=— | - log(L) — 4log(ly) — log(I . 1
(o) o () = i (Fros(o) — a1os(to) - togrn) (7.16)
Proof. For any function F' of ¢, we use the notation F’ := dF/dt. Recall that
L? L
=2V = and 3= A2
C9 101171 an C3 I()
Using the facts that du = Ldt and tL' = L(L® — 1), we have
d? (L°—1)d a2 5 d? 5(L5 —1)L°
P == — 4 d -—log(l) = ————
du? roa tae M ggeleeld) (tL)2
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From this, we compute that equation (7.16) is equivalent to

5

L°-1 L5—1< Iy 11,1’> N IRID (NP R U IR

+ 10> +5 =
t2 t Iy I Ly Iy Iy? Iy I,

We can rewrite this equality in the following form:

. L5 -1 N L —15(130 ) (I311)" —2(13111) (I} 1) + 210 Io 11 1

12 t IRI 4 314

(7.17)

Since I 1 = (d/dt)(I1/1p), we can rewrite both sides of equation (7.17) as

[Ty — LIY — I + 11

RHS =
Iy — LI

and

LHS =5

L5—1 (1 ' — Illg>
t \t @ TI— LI
Notice that L5 — 1 = #°/(5° — ¢5). Thus, equation (7.17) is equivalent to
(5° =) - & =5t"- &, (7.18)
where
&t (1T~ LY T+ ).
& =IIy— LI)+t (11— LI)).
In order to prove equation (7.18), first recall that, for £ =0,...,4,

k+1)/5- ((k+1)/5+1) - ((k —4)/5+d))°
oy (/540 D’ ik

d=0
Define
Gy e (1/56/5(di = 4/5))° (2/57/5 - (d2 = 3/5))" i1 5,1
1 (5d1)' (5d2 + 1)'
By definition, we have
&= Z Cay.dy - ((5d2 4 1)(5da) (5dy — 1) — (5d1)(5d1 — 1)(5dy — 2)
dy,d2>0
— (5da + 1)(5d2)(5d1) + (5da + 1)(5d1)(5dy — 1))

=~ > Cypa,-5(5dy — 5dy — 1) (5d7 + 5d5 — 3dy — da)
dy,d2>0

and, similarly, = — Zdl,d2>0 Cdl,dg . (5d1 — 5dy — 1)<5d1 + 5dy + 1). Therefore,

b+ d=— Y Cya, 5(5d — 5dy — 1)(5d} +5d3 + 2dy +4dy +1) .
dy,d2>0

For dy,ds > 0, consider two sets of scalars Ag, 4, and By, 4, defined by

1 (dy —4/5)* 1 (dg —3/5)*

A = d B = — .
dds T e T By — 2 NG Pdud 55d, + bdy — 2
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Notice that these scalars satisfy the following two relations:
(5d1)(5d1 — 1)(5d1 — 2)(5d1 —3) , (5dz +1)(5d2)(5d> —1)(5d2 — 2)
(di —4/5)4 d1,d2 (dy — 3/5)* di,dz
= (5dy — bdy — 1)(5d; + 5d3 — 3dy — do)

and
Ady 11,y + Baydp+1 =577 - 5(5d1 — 5da — 1) (5ds + 5d3 + 2d1 + 4ds + 1) .
We obtain
o+ & =— Z 55Cd1,d2 : (Ad1+1,d2 + Bd17d2+1)
dy,d2>0
= - 55( Z Cd1—1,d2Ad1,d2 + Z Cd1,d2—1Bd1,d2>
d1>0,d2>0 d120,d2>0
C —1 -2 —
5 Y dl,dz (5d1)(5dy — 1)(5dy 4);5611 3)(5d1 — )Adl,d2
o0 (dy —4/5)°
Cdl,dg (5d2 + 1)(5d2)(5d2 — 1)(5d2 - 2)(5d2 - 3)B
£ (dy — 3/5)5 41,02
> 5%7°Cq, 4,5(5d1 — 5dy — 1)(5d] + 5d3 — 3dy — dp) = 5°t° - &,
dy,d2>0
proving (7.18) and finishing the proof of the lemma. O

Equation (7.15) and Lemma 7.11 complete the computation of (dR7)ae. In order to finish
the proof of the proposition, we still need to show that )  £*C, = 0. Consider the genus-one
formula of Theorem 6.4:

dF =) < dlog Aq + = (R’\) adua> :

Notice that F}{ = O(7®). Since 7 = O(t), the left-hand side of the genus-one formula vanishes
at t = 0. From Lemma 7.9, we compute that

2L3 ,
dlog A, = F(L Iy — I)L)dt
0

vanishes at ¢ = 0, since both L’ and I} vanish at ¢t = 0. Thus, > (R})aadu® must vanish at
t = 0. From the definition of L, we see that du® = 51/5§O‘ALdt does not vanish at ¢t = 0, so
the vanishing of Za(Ri\)aaduo‘ is equivalent to ) £*C, = 0. This completes the proof of the
proposition. O

7.5 Conclusion of Theorem 1.3

To conclude the proof of Theorem 1.3, we insert the results of Lemmas 7.8 and 7.9 and Propo-
sition 7.10 into the genus-one formula of Theorem 6.4. We have

de:Z( dlog Ag + = (RA) adu“)
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1 Iy 1d 9
= Za: <24d10g <L> + 10du <4 log(L) — 4log(lo) — 10g([171)> du)

-1/
-avs (a0 (8 ™)

where the last equality uses the definition of L and the fact that I 1 = (d/dt)(I1/l). Theorem 1.3
now follows from the observations that F{(7) has vanishing constant term.

7.6 One-point invariants

Here, we verify Lemma 1.4, which is the missing link between Theorem 1.3 and Theorem 1.5.
Specifically, we need to compute

(ot 1 = / 1 (o) (7.19)

1,1

where Q7 , denotes the FJRW CohFT for x = w and the twisted CohFT for x = A. For simple
dimension reasons, the only part of 27 ;(¢o) that contributes to (7.19) is the part supported in

degree zero; that is, the corresponding topological field theory element wil(qf)o). By the axioms
of CohFTs, we have

wi1(60) =D n*Pwh 3 (a0, d0) = D n(e™, ¢a)
a’ﬁ (62

where the sum is over all «, § in the state space. The state space for the twisted CohFT is gener-
ated by {¢o, . .., ¢4} with deg(¢;) = 2i. The state space for the FJRW CohFT is 208-dimensional,
generated by the elements {¢g, ..., d3,71, ..., Y204} Where deg(¢;) = 2¢ and deg(~;) = 3 (see, for
example, Chiodo—Ruan [CR11]). Due to the existence of odd-degree classes, we must be careful
about the pairing. We have

(% pa) = (1)1 (pg, o) = (~1)28Fe).
Thus,

1 X* —200, *=w
o = —wj =— with x*= ’ ’
/ML1 1,1(¢0)”¢1 24W1,1(¢0> 24 w1 X {57 =\

This concludes the proof of Lemma 1.4 and thus proves Theorem 1.5.

Appendix

In this appendix, we present a proof of Theorem 6.4 using the Givental-Teleman reconstruction
theorem. We begin by recalling the reconstruction theorem.

For the shifted CohFT Q7

gn

simply records the degree-zero part of the CohFT:
Wh n (Brma—1, - s Pimn—1) = U (P15 -+ By —1) N H (M) -

Roughly speaking, the reconstruction theorem states that €27 , can be recovered from wg, by
a unique R-matrix action. More specifically, let R = R(z) = R(u,z) be a matrix series as in

Theorem 6.2, and define
T=T(z)=T(u,z):=z(1 - R (u,z)) ¢ = O(z%) ,

there is a corresponding topological field theory wy,, which
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where

R(2) =1/R(z) =1 - Rz + O(2?).
The T-matrix acts on the topological field theory wy, to provide a new CohFT Twy, defined
by the following rule:

Tw;—7n(¢m1—17 ey d)mn—l) = Z %(pk)*w;,n-‘rk (¢m1—17 ey d)mn—l ® T(¢1)7 cee )T(¢k)) )
k>0

where py: MWH_;C — ngn is the forgetful map. The use of ¢; in the arguments of wy,, is an
abuse of notation. It should be interpreted as

w;’n(...,god)f,...,) wgn( ..,gp,...,)wf.
The R-matrix, in turn, acts on the CohFT Twy , to provide a new CohFT RTQY , defined
by

1
RTQyn(Gmy— 1+ 1) = m(]ontr(r‘), (A1)
PEGyn

where Gy, is the set of stable graphs of genus g with n legs, and for each I' € Gy, the
contribution Contr(I") is given by the following construction:

— At each vertex v, we place T, 5 (v)-

— At each leg I, we place R~ (1)), -1

— At each edge e = {v1,v2}, we place V (¢, , e, ), where

n' = RN (w)n 'R (2)

w+z

V(w,z) =

The Givental-Teleman reconstruction theorem states the following.

THEOREM A.l (Teleman [Tell2]). There exists a unique R-matrix satisfying the conditions of
Theorem 6.2 such that Qg ,, = RTwy,,

As in the main body of the paper, we denote the unique R-matrix of Theorem A.1 by R*, and
we denote the corresponding T-matrix by T*. We now use Theorem A.1 to prove the genus-one
formula, which we restate as follows.

PROPOSITION A.2. We have
1, 1
/M1 1 Qf 1(ep) = §(R1)Bﬁ + 18 Z 0,5 log Ay,
3 o

Proof. By Theorem A.1, the integrand on the left-hand side can be computed as R’\T)‘wil(eg).
We proceed by proving several lemmas, from which the proposition follows. For notational sim-
plicity, we drop the A\ and 7 from the superscripts.

LEMMA A.3. We have

1
Qi1(eg) = (R1)55 + — R1¢0, n(Ries, e”) | .
/Ml,l 24 Za:

Proof. To compute 2 ; (eg) = RTwi,1(ep) by the reconstruction theorem, we sum over the stable

graphs in G 1:
Fl = 49.:1 and FQ = FQ .
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The contribution of the first graph is
Contr(T'1) = Twi 1 (R (¥1)eg) = Twii(eg) — Twi1(Rieg)ibr - (A.2)
We first compute the T-action on wy 1:
Twii(—) = wi1(=) + (p1)s« (wi2(—, T1)¥3)

where T1 = R;i¢g. By the axioms of topological field theories, the values w;; and w; 2 can be
computed by pairs-of-pants decompositions, and since (p1)«%3 = 11, we obtain

Twl,l(—) = Z (wo,:s(@a, e, —) + WOA(@ou e”, —3T1)¢1)
(0%

:Z <<<€a'€a 03+Z ea € - ey))03((€7 - — T1>>031p1>
=D (e, =) + (e —- T1>>0,3¢1) ; (A.3)

where we have used the fact that e, o, e* = e in the last equality. Reinserting (A.3) into (A.2),
we obtain the following contribution from the first graph:

Contr(I'1) = 1+ n(Ri¢o, 65)?/)1 - ZU(RN% e*)ir . (A.4)

The contribution of the second graph is

Contr(T's) = Two s (R (¥1)eg, (Y2, ¥3)) [pt] = wo3(es, V (2, 93))[pt] .

The constant term of V (12,13) is the map Ryn~': e, — Rie®, which corresponds to the two-
tensor ), Rie® ® eq. Thus, we compute

Contr(I'y) = Zwog e, Rie, eq) [pt] = n(Rleﬁ,efg)[pt] = (R1)pg[pt] - (A.5)

Combining formulas (A.4) and (A.5), taking into account the automorphism of I'y, and inte-
grating, we have proved the lemma. O

LEMMA A.4. We have
> A, / Q0,4(€ar €ar €ar eg) = n(Rigo, €”) = > n(Rie,e”

Mo,4

Proof. We can compute Qg 4(eq,€q;€aes) = RTwya(eq,€q,€q,€e3) as a sum over the stable

graphs
Iy = Xg:ﬂ and I'g = g=0>—<=0 ,

where there are three graphs of the second type, but we will soon see that they all give the same
contribution.

The contribution of the first graph is
Contr(rl) = TWOA(eoca €a, €a, 65) - 3TW0,4(R1€a7 €ay Ca; eﬁ)wl - TWOA(eou €a; Ca, Rleﬁ)wél
= w0,4(€o<a €a; Ca, 6,6’) + w0,5(T17 €as €as €as eﬁ)"pl
— 3woa(R1easea;ea, €)1 — woal€a, €a, €a, R1€3)14
= 0apla + 0apn(T1, ea)t1 — 3n(Rieq, €)1 — n(eq, Ri€p)ths .
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Integrating, we obtain
/ Contr(I'1) = dapn(Ri¢o, €a) — 3n(Rieq,e3) — n(eaq, Rieg) . (A.6)
Mo,a

The contribution from each of the second type of graph is given by

Contr(I'y) = Zwo 3(€q, €q, €7 )wo 3(Riey, eq, e5)[pt] = n(es, Rieq)[pt] -
Integrating and summing the three graphs, we obtain
3/ Contr(I'2) = 3n(es, Rieq) - (A.7)
Mo 4
Combining equations (A.6) and (A.7), we obtain

/ Q0,4(€as €ar €ares) = Ay (Sapn(Rigo, €*) —n(Rieg, e”)),
Mo,
and the lemma is proved. ]

LEMMA A.5. We have
1 _
/ 9074(66“60[,60”65) = _§au5Aa1 .
Mog

Proof. On the one hand, by the definition of the pairing, we have
A;I = n(eou ea) = / QO,3(¢07 €a, ea) .
Mo,3

On the other hand, since the e, are idempotent, we have

ALY =n(easea) = n(eas o 07 €0) = / Qo,3(eas s €a) -
Mo,z

Differentiating each of these, we obtain

auBA;1 = 2/ QO,3(¢Oa €Ca, au5€a) = 3/ QO,S(eaa €a, auﬁea) + / 90,4(6047 €a €a 65) .
Mo,3 Mo, Mo,4
Using

/ QO,3(¢O; Ca 8u/3€o¢) = 1(ea; au5€a) = / 9073(6()4; Ca, au56a) )
Mo,3 Mo,3

we finish the proof of the lemma. O

Finally, to complete the proof of Proposition A.2, we apply the previous three lemmas se-
quentially:

1
Q11(ep) = (Rl)ﬁb’ + — [ n(Rido, ¢’ n(Ries, e
/MM 24 g
—E(R) —i-lZA/ Qo.a(€q, s €a,€p)
= 9 1)88 24 a Fo.s 0,4\€a €as €y €

_ 1 1
= Rl 55— ZA 0, BAal = = §(R1)5B+@28u510gAa- ]
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