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Syntomic cohomology and p-adic motivic cohomology

Veronika Ertl and Wies lawa Nizio l

Abstract

We prove a mixed characteristic analog of the Beilinson–Lichtenbaum conjecture for
p-adic motivic cohomology. It gives a description, in the stable range, of p-adic mo-
tivic cohomology (defined using algebraic cycles) in terms of differential forms. This
generalizes a result of Geisser from small Tate twists to all twists. We use as a critical
new ingredient the comparison theorem between syntomic complexes and p-adic nearby
cycles proved recently by Colmez and Nizio l.

1. Introduction

For a smooth variety over a field of characteristic 0, the Beilinson–Lichtenbaum conjecture states
that in a certain stable range, the p-adic motivic cohomology is equal to the étale cohomology:

H i
M

(
X,Z/pn(r)

) ∼→ H i
ét

(
X,Z/pn(r)

)
, i 6 r .

Here motivic cohomology is defined as the hypercohomology of Bloch’s cycle complex Z/pn(r)M.
This conjecture follows (see [SV00]) from the Bloch–Kato conjecture that was proved by Voevod-
sky and Rost [Wei09].

For a smooth variety over a field of positive characteristic p, the analog of the Beilinson–
Lichtenbaum conjecture states that, in the same stable range, the p-adic motivic cohomology is
equal to the logarithmic de Rham–Witt cohomology:

H i
M

(
X,Z/pn(r)

) ∼→ H i−r
ét

(
X,WnΩr

X,log

)
.

This was proved by Geisser and Levine [GL00].

The purpose of this note is to prove a mixed characteristic analog of the Beilinson–Lichten-
baum conjecture for p-adic motivic cohomology. Let OK be a complete discrete valuation ring
with fraction field K of characteristic 0 and with perfect residue field k of characteristic p. We
fix a uniformizer $ of K. Let F be the fraction field of the ring of Witt vectors W (k). Let X
be a semistable scheme over OK . A scheme X over OK is called semistable if it is surjective on
SpecOK , regular, and there is a distinguished divisor “at infinity” D∞ which is a strict relative
normal crossing divisor and which together with the special fiber forms a strict normal crossing
divisor. Unless otherwise specified, we will treat X as a log-scheme with the log-structure defined
by the special fiber and the divisor at infinity. We assume that the special fiber X0 of X is smooth.
We show that in the same stable range as above, the p-adic motivic cohomology of Xtr—the open
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Syntomic cohomology and p-adic motivic cohomology

set where the log-structure is trivial—is equal to the (logarithmic) syntomic-étale cohomology
of X. This relates algebraic cycles to differential forms.

For a smooth scheme Y , we set H∗M(Y,Qp(r)) := H∗ holimn RΓ(YZar,Z/p
n(r)M )⊗Q.

Corollary 1.1 (Corollary to Theorem 1.2 below). We have the natural isomorphism

H i
M(Xtr,Qp(r))

∼→ H i
ét(X, E(r))Q , i 6 r ,

where E(·) denotes the syntomic-étale cohomology complex. If X is proper, this yields the natural
isomorphism

H i
M(Xtr,Qp(r))

∼→ H i
ét(X,S(r))Q , i 6 r ,

where S(·) denotes the syntomic cohomology complex.

The rational syntomic cohomology H∗ét(X,S(r))Q above is that defined in [FM87] as the
filtered Frobenius eigenspace of crystalline cohomology. It differs from the one defined in [NN16]
by the absence of a log-structure associated to the special fiber. We show in the appendix that it is
isomorphic to the logarithmic version of the convergent syntomic cohomology defined in [Niz01],
as well as to the rigid syntomic cohomology defined in [Bes00, Gro94].

Corollary 1.1 is a simple consequence of the following theorem, which is the main result of this
paper. See [CN17, Section 2.1.1] for what it means for a field to contain enough roots of unity.
The field F contains enough roots of unity, and for any K, the field K(ζpn), for n > c(K) + 3,
where c(K) is the conductor of K, contains enough roots of unity.

Theorem 1.2. Let r > 0. Let j′∗ : Xtr → X be the natural open immersion. If K has enough
roots of unity, respectively K does not have enough roots of unity, then there exists a constant
N = N(p, d), respectively N = N(p, d, e), depending only on p and the dimension d of X,
respectively only on p, d, and the absolute ramification index e of K, such that for m > N , there
are natural compatible cycle class maps between complexes of sheaves on the Nisnevich site of X
and X0, respectively,

clsyn
r : Rj′∗Z/p

n(r)M → E ′n(r)Nis , clsyn
r : i∗Rj′∗Z/p

n(r)M → S ′n(r)Nis ,

where i : X0 ↪→ X is the special fiber of X. They are compatible with the étale cycle class maps
and are pNr-quasi-isomorphisms; that is, the kernels and cokernels of the maps induced on the
cohomology sheaves are annihilated by pNr.

See Theorem 3.15 for a precise statement concerning the compatibility with the étale cycle
class maps.

The syntomic-étale cohomology E ′n(r) was defined by Fontaine–Messing [FM87] by gluing
syntomic cohomology S ′n(r) on X0 with étale cohomology on the generic fiber via the relative
fundamental exact sequence of p-adic Hodge theory. It is a complex of sheaves on the étale site
of X. We extend this definition to logarithmic schemes (where one replaces syntomic cohomology
with logarithmic syntomic cohomology). The Nisnevich version that appears in the above theorem
is defined by projecting to the Nisnevich site and truncating at r:

E ′n(r)Nis := τ6rRε∗E ′n(r) , S ′n(r)Nis := τ6rRε∗S ′n(r) ,

where ε : Xét → XNis is the natural projection.

The syntomic part of Theorem 1.2 (hence of Corollary 1.1 as well) for twists with r 6 p− 2
(where no constants are needed) was proved by Geisser [Gei04, Theorem 1.3] (his result was
conditional on the Bloch–Kato conjecture, which at the time of the publication of his paper was

101



V. Ertl and W. Nizio l

not a theorem yet). The key ingredient in his proof is the exact sequence of Kurihara [Kur87] that
links syntomic cohomology with p-adic nearby cycles coupled with the Beilinson–Lichtenbaum
conjecture over fields of characteristic 0 and p. Our proof of Theorem 1.2 proceeds in a similar
manner using as the main new ingredient the relation between syntomic complexes and p-adic
nearby cycles proved recently in [CN17].

We will now describe the proof briefly in the case when there is no horizontal log-structure.
First, we show that we have the pNr-distinguished triangle (on the étale site of X0), for a constant
N as in the theorem,

E ′n(r)X → E ′n(r)X× →WnΩr−1
X0,log[−r] , (1.1)

where WnΩr−1
X0,log[−r] denotes the logarithmic de Rham–Witt sheaf and X× denotes the scheme X

with added log-structure coming from the special fiber. The syntomic-étale cohomology E ′n(r)X×
comes equipped with a period map

αr : E ′n(r)X× → Rj∗Z/p
n(r)′XK

,

where j∗ : XK ↪→ X and Z/pn(r)′ = (paa!)−1Z/pn(r) if r = (p − 1)a + b with a, b ∈ Z and
0 6 b < p − 1. Projecting it to the Nisnevich site and truncating at r, we obtain the Nisnevich
syntomic-étale period map

αr : E ′n(r)X×,Nis → τ6rRε∗Rj∗Z/p
n(r)′XK

.

The computations of p-adic nearby cycles via syntomic cohomology from [CN17] imply that
this is a pNr-quasi-isomorphism, for a constant N as in the theorem. Hence, from (1.1), we obtain
the pNr-distinguished triangle

E ′n(r)X,Nis
αr−−→τ6rRj∗τ6rRε∗Z/pn(r)′XK

→ i∗WnΩr−1
X0,log[−r] . (1.2)

Next, we note that the localization sequence in motivic cohomology yields the following
distinguished triangle (on the Nisnevich site of X):

Z/pn(r)M → j∗Z/p
n(r)M → i∗Z/p

n(r − 1)M[−1] .

By the Beilinson–Lichtenbaum conjecture and the computations of Geisser–Levine [GL00] of
motivic cohomology in characteristic p, we have the cycle class map quasi-isomorphisms

Z/pn(r)M
∼→ τ6rRε∗Z/p

n(r)XK
, Z/pn(r)M

∼→WnΩr
X0,log[−r] .

The above triangle becomes

Z/pn(r)M → j∗τ6rRε∗Z/p
n(r)XK

→ i∗WnΩr−1
X0,log[−r] . (1.3)

Since j∗Z/p
n(r)M

∼→ Rj∗Z/p
n(r)M and τ6rZ/p

n(r)M
∼→ Z/pn(r)M, the cycle class map of Theo-

rem 1.2 can now be obtained by comparing sequences (1.2) and (1.3).

Notation and conventions. We assume all the schemes to be locally noetherian. We work
in the category of fine log-schemes.

We will use a shorthand for certain homotopy limits. Namely, if f : C → C ′ is a map in the
differential graded (dg) derived category of abelian groups, we set

[ C
f // C ′ ] := holim(C → C ′ ← 0) .
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We set 
C1

��

f // C2

��
C3

g // C4

 := [[C1
f→ C2]→ [C3

g→ C4]]

for a commutative diagram (the one inside the large bracket) in the dg derived category of abelian
groups.

2. Syntomic cohomology

Let OK be a complete discrete valuation ring with fraction field K of characteristic 0 and with
perfect residue field k of characteristic p. Let $ be a uniformizer of OK ; we will keep it fixed
throughout the paper.1 Let W (k) be the ring of Witt vectors of k with fraction field F (that is,
W (k) = OF ); let e be the ramification index of K over F . Let σ = ϕ be the absolute Frobenius
morphism on W (k). For an OK-scheme X, let X0 denote the special fiber of X, and let Xn denote
the reduction modulo pn ofX. We will denote byOK ,O×K , andO0

K the scheme Spec(OK) with the
trivial, canonical (that is, associated to the closed point), and (N → OK , 1 7→ 0) log-structure,
respectively.

In this section, we will briefly review the definitions of the syntomic and the syntomic-étale
cohomology and their basic properties. For details, we refer the reader to [Tsu99, 2], [Tsu98].

2.1 Syntomic cohomology

For a log-scheme X, we denote by Xsyn the small syntomic site of X. It is built from log-syntomic
morphisms f : Y → Z in the sense of Kato [Kat94, 2.5] (see also [BM02, 6.1]); that is, the mor-
phism f is integral, the underlying morphism of schemes is flat and locally of finite presentation,

and, étale locally on Y , there is a factorization Y
i
↪→W

h→ Z, where h is log-smooth and i is an
exact closed immersion that is transversally regular over Z.

For a log-scheme X log-syntomic over Spec(W (k)), define

Ocr
n (X) = H0

cr(Xn,OXn) , J [r]
n (X) = H0

cr

(
Xn,J [r]

Xn

)
,

where OXn is the structure sheaf of the absolute crystalline site (that is, over Wn(k)) and JXn =

Ker(OXn/Wn(k) → OXn) and J [r]
Xn

is its rth divided power. Set J [r]
Xn

= OXn if r 6 0. We

know [FM87, II.1.3] that the presheaves J [r]
n are sheaves on Xn,syn, flat over Z/pn, and that

J [r]
n+1 ⊗ Z/pn ' J [r]

n . There is a natural functorial isomorphism

H∗
(
Xsyn,J [r]

n

)
' H∗cr

(
Xn,J [r]

Xn

)
that is compatible with the Frobenius morphism. It is easy to see that ϕ(J [r]

n ) ⊂ prOcr
n for

0 6 r 6 p− 1. This fails in general, and we modify J [r]
n :

J 〈r〉n :=
{
x ∈ J [r]

n+s | ϕ(x) ∈ prOcr
n+s

}
/pn for some s > r .

This definition is independent of s. We check that J 〈r〉n is flat over Z/pn and J 〈r〉n+1⊗Z/pn ' J 〈r〉n .

This allows us to define the divided Frobenius morphism ϕr = “ϕ/pr”: J 〈r〉n → Ocr
n .

1This is necessary to fix an embedding of Spec(OK) into a smooth scheme over Zp.
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Set

Sn(r) := Cone
(
J 〈r〉n

1−ϕr−→ Ocr
n

)
[−1] .

Since the sequence

0 −−−−→ Sn(r) −−−−→ J 〈r〉n
1−ϕr−−−−→ Ocr

n −−−−→ 0

is exact, we actually have

Sn(r) := Ker
(
J 〈r〉n

1−ϕr−→ Ocr
n

)
.

In the same way, we can define syntomic sheaves Sn(r) on Xm,syn for m > n. Abusing notation, we
set Sn(r) = i∗Sn(r) for the natural map i : Xm,syn → Xsyn. Since i∗ is exact, H∗(Xm,syn,Sn(r)) =
H∗(Xsyn,Sn(r)). Because of that, we will write Sn(r) for the syntomic sheaves on Xm,syn as well
as on Xsyn. We will also need the “undivided” version of syntomic complexes of sheaves:

S ′n(r) := Cone
(
J [r]
n

pr−ϕ−→ Ocr
n

)
[−1] .

For r, i > 0, we have the long exact sequences

→ H i(Xsyn,Sn(r))→ H i
cr

(
Xn, J

〈r〉
Xn

) 1−ϕr−→ H i
cr(Xn,OXn)→ (2.1)

→ H i(Xsyn,S ′n(r))→ H i
cr

(
Xn, J

[r]
Xn

) pr−ϕ−→ H i
cr(Xn,OXn)→ .

Proposition 2.1 ([CN17, Proposition 3.12]). For X a fine and saturated log-smooth log-scheme
over O×K and 0 6 r 6 p− 2, the natural map of complexes of sheaves on the étale site of X0

τ6rSn(r)→ Sn(r)

is a quasi-isomorphism. For X semistable over OK and r > 0, the natural map of complexes of
sheaves on the étale site of X0

τ6rS ′n(r)→ S ′n(r)

is a pNr-quasi-isomorphism for a universal constant N .

The natural map ω : S ′n(r)→ Sn(r) induced by the maps pr : J [r]
n → J 〈r〉n and Id: Ocr

n → Ocr
n

has kernel and cokernel killed by pr. So does the map τ : Sn(r) → S ′n(r) induced by the maps

Id: J 〈r〉n → J [r]
n and pr : Ocr

n → Ocr
n . We have τω = ωτ = pr.

If it does not cause confusion, we will write Sn(r) and S ′n(r) also for Rε∗Sn(r) and Rε∗S ′n(r),
respectively, where ε : Xn,syn → Xn,ét is the natural projection to the étale site (or sometimes to
the Nisnevich site).

2.1.1 Syntomic cohomology and differential forms. Let X be a syntomic scheme over W (k).
Recall the differential definition [Kat87] of syntomic cohomology. First, assume that we have an
immersion ι : X ↪→ Z over W (k) such that Z is a smooth W (k)-scheme endowed with a compat-
ible system of liftings of the Frobenius morphism {Fn : Zn → Zn}. Let Dn = DXn(Zn) be the
PD-envelope of Xn in Zn (compatible with the canonical PD-structure on pWn(k)) and JDn the

ideal of Xn in Dn. Set J
〈r〉
Dn

:= {a ∈ J [r]
Dn+s
|ϕ(a) ∈ prODn+s}/pn for some s > r. For 0 6 r 6 p−1,

we have J
〈r〉
Dn

= J
[r]
Dn

. This definition is independent of s. Consider the following complexes of
sheaves on Xét:

Sn(r)X,Z := Cone
(
J
〈r−•〉
Dn

⊗ Ω•Zn

1−ϕr−→ ODn ⊗ Ω•Zn

)
[−1] , (2.2)

S′n(r)X,Z := Cone
(
J

[r−•]
Dn

⊗ Ω•Zn

pr−ϕ−−−−→ODn ⊗ Ω•Zn

)
[−1] ,
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where Ω•Zn
:= Ω•Zn/Wn(k) and ϕr is “ϕ/pr” (see [Tsu99, 2.1] for details). The complexes Sn(r)X,Z

and S′n(r)X,Z are, up to canonical quasi-isomorphisms, independent of the choice of ι and {Fn}
(and we will omit the subscript Z from the notation). Again, the natural maps ω : S′n(r)X →
Sn(r)X and τ : Sn(r)X → S′n(r)X have kernels and cokernels annihilated by pr.

In general, immersions as above exist étale locally, and we define Sn(r)X ∈ D+(Xét,Z/p
n)

by gluing the local complexes. We define S′n(r)X in a similar way. There are natural quasi-
isomorphisms Sn(r)X ' Sn(r)X and S′n(r)X ' S ′n(r)X .

Now, let X be a log-syntomic scheme over W (k). Using log-crystalline cohomology, the above
construction of syntomic complexes goes through almost verbatim (see [Tsu99, 2.1] for details)
to yield the logarithmic analogs Sn(r) and S′n(r) on Xét. In this paper, we are often interested in
log-schemes coming from a regular syntomic scheme X over W (k) and a relative simple (that is,
with no self-intersections) normal crossing divisor D on X. In such cases, we will write Sn(r)X(D)
and S′n(r)X(D) for the syntomic complexes and use the Zariski topology instead of the étale one.

2.1.2 Products. We need to discuss products. Assume that we are in the lifted situation (2.2).
Then we have a product structure

∪ : S′n(r)X,Z ⊗ S′n(r′)X,Z → S′n(r + r′)X,Z , r, r′ > 0 ,

defined by the following formulas:

(x, y)⊗ (x′, y′) 7→
(
xx′, (−1)aprxy′ + yϕ(x′)

)
,

(x, y) ∈ S′n(r)aX,Z =
(
J

[r−a]
Dn

⊗ Ωa
Zn

)
⊕
(
ODn ⊗ Ωa−1

Zn

)
,

(x′, y′) ∈ S′n(r′)bX,Z =
(
J

[r′−b]
Dn

⊗ Ωb
Zn

)
⊕
(
ODn ⊗ Ωb−1

Zn

)
.

Globalizing, we obtain the product structure

∪ : S′n(r)X ⊗L S′n(r′)X → S′n(r + r′)X , r, r′ > 0 .

This product is clearly compatible with the crystalline product (via the canonical map S′n(r)X →
J

[r]
Xn

).

Similarly, we have the product structures

∪ : Sn(r)X,Z ⊗ Sn(r′)X,Z → Sn(r + r′)X,Z , r, r′ > 0 ,

defined by the formulas

(x, y)⊗ (x′, y′) 7→
(
xx′, (−1)axy′ + yϕr′(x

′)
)
,

(x, y) ∈ Sn(r)aX,Z =
(
J
〈r−a〉
Dn

⊗ Ωa
Zn

)
⊕
(
ODn ⊗ Ωa−1

Zn

)
,

(x′, y′) ∈ Sn(r′)bX,Z =
(
J
〈r′−b〉
Dn

⊗ Ωb
Zn

)
⊕
(
ODn ⊗ Ωb−1

Zn

)
.

Globalizing, we obtain the product structure

∪ : Sn(r)X ⊗L Sn(r′)X → Sn(r + r′)X , r, r′ > 0 .

This product is also clearly compatible with the crystalline product (via the canonical map

Sn(r)X → J
〈r〉
Xn

).

The above product structures are compatible with the maps ω. On the other hand, the maps τ
are, in general, not compatible with products.
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2.1.3 Symbol maps. Let X be a regular syntomic scheme over W (k) with a divisor D with
relative simple normal crossings. Recall that there are symbol maps defined by Kato and Tsuji
[Tsu99, 2.2](

Mgp
X,n

)⊗r → Hr(S′n(r)X(D)) ,
(
Mgp
X,n+1

)⊗r → Hr(Sn(r)X(D)) , r > 0 , (2.3)

where, for a log-scheme X, its log-structure is denoted by MX . For r = 1, we get the first Chern
class maps (recall that Mgp

X = j∗O∗X\D, where j : X \D ↪→ X is the natural immersion)

csyn
1 : j∗O∗X\D[−1]→ i∗j∗O∗(X\D)n+1

[−1]→ Sn(1)X(D) ,

csyn
1 : j∗O∗X\D[−1]→ i∗j∗O∗(X\D)n

[−1]→ S′n(1)X(D) ,

that are compatible; that is, the following diagram commutes:

j∗O∗X\D[−1]

pcsyn
1

��

csyn
1 // S′n(1)X(D)

ω
ww

Sn(1)X(D) .

In the embedded situation, these classes are defined in the following way. Let Cn be the complex(
1 + JDn →Mgp

Dn

)
' j∗O∗(X\D)n

[−1] 'Mgp
Xn

[−1] .

The Chern class maps

csyn
1 : j∗O∗(X\D)n

[−1]→ S′n(1)X(D) , csyn
1 : j∗O∗(X\D)n+1

[−1]→ Sn(1)X(D)

are defined by the morphisms of complexes

Cn → S′n(1)X,Z , Cn+1 → Sn(1)X,Z

given by the formulas

1 + JDn → (S′n(1)X,Z)0 = JDn , a 7→ log a ,

1 + JDn+1 → (Sn(1)X,Z)0 = JDn , a 7→ log a mod pn

and

Mgp
Dn
→ (S′n(1)X,Z)1 =

(
ODn ⊗ Ω1

Zn

)
⊕ODn , b 7→

(
d log b, log

(
bpϕDn(b)−1

))
,

Mgp
Dn+1

→ (Sn(1)X,Z)1 =
(
ODn ⊗ Ω1

Zn

)
⊕ODn , b 7→

(
d log b mod pn, p−1 log

(
bpϕDn+1(b)−1

))
.

The symbol maps (2.3) for general r are obtained from the case r = 1 using the product structure
on syntomic cohomology.

2.2 Syntomic-étale cohomology

We will now recall the definition and basic properties of syntomic-étale cohomology. The rela-
tionship between syntomic cohomology and syntomic-étale cohomology mirrors the one between
étale nearby cycles and étale cohomology. Let X be a log-scheme, log-syntomic over Spec(W (k)).
We will need the logarithmic version of the syntomic-étale site of Fontaine–Messing [FM87]. We
say that a morphism Z → Y of p-adic formal log-schemes over Spf(W (k)) is (small) log-syntomic
(see [Tsu98] for a precise definition) if every Zn → Yn is (small) log-syntomic. For a formal log-
scheme Z, the syntomic-étale site Zsé is defined by taking as objects morphisms f : Y → Z that
are small log-syntomic and have log-étale generic fiber. This last condition means that, étale
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locally on Y, the morphism f has a factorization Y i→ X g→ Z with X affine, i an exact closed
immersion, and g log-smooth such that the map F ⊗W (k) Γ

(
Y, I/I2

)
→ F ⊗W (k) Γ

(
Y, i∗Ω1

X/Z
)

is an isomorphism, where I is the ideal of OX defining Y. For a log-scheme Z, we also have the
syntomic-étale site Zsé. Here the objects are morphisms U → Z that are small log-syntomic with
the generic fiber UK log-étale over ZK .

Let X̂ be the p-adic completion of X. Let i : Xn,ét → Xét and j : Xtr,K,ét → Xét be the natural
maps. Here Xtr is the open set of X where the log-structure is trivial. We have the following
commutative diagram of maps of topoi:

X̂sé
isé //

ε̂
��

Xsé

ε

��

XK,sé
jséoo

εK

��
X̂ét

iét // Xét XK,ét .
jétoo

First, assume 0 6 r 6 p− 2. Abusively, let Sn(r) denote also the direct image of Sn(r) under the
canonical morphism Xn,syn → X̂sé. By [FM87, III.5], for j′ : Xtr,K,ét → XK,sé, there is a canonical
homomorphism

αr : Sn(r)→ i∗séjsé ∗j
′
∗GZ/pn(r) ,

where G denotes the Godement resolution of a sheaf (or a complex of sheaves). Similarly, for any
r > 0, we get a natural map

α̃r : Sn(r)→ i∗séjsé ∗j
′
∗GZ/pn(r)′ ,

where Z/pn(r)′ = (paa!)−1Z/pn(r) if r = (p − 1)a + b with a, b ∈ Z and 0 6 b < p − 1 [FM87,
III.5]. Composing with the map S ′n(r)→ Sn(r), we get a natural morphism

αr : S ′n(r)→ i∗séjsé ∗j
′
∗GZ/pn(r)′ .

2.2.1 Syntomic complexes and p-adic nearby cycles. For log-schemes over O×K , in a stable
range, syntomic cohomology tends to compute (via the period morphism) p-adic nearby cycles.
We will briefly recall the relevant theorems. For 0 6 r 6 p− 2, there is a natural homomorphism
on the étale site of Xn,

αr : Sn(r)→ i∗Rj∗Z/p
n(r) .

To define it, we apply Rε̂∗ to the map Sn(r) → i∗séRjsé ∗Rj
′
∗Z/p

n(r) induced from the map αr
described above and get

Rε∗Sn(r) = Rε̂∗Sn(r)→ Rε̂∗i
∗
séRjsé ∗Rj

′
∗Z/p

n(r) = i∗étRε∗Rjsé ∗Rj
′
∗Z/p

n(r) = i∗Rj∗Z/p
n(r) .

The first equality follows from the fact that the morphism Xn,syn → X̂sé is exact [FM87, III.4.1].
The second equality was proved in [KM92, 2.5], [Tsu98, 5.2.3]. One checks that αr is compatible
with products.

Theorem 2.2 ([Tsu00, Theorem 5.1]). For i 6 r 6 p − 2 and for a fine and saturated log-
scheme X log-smooth over O×K , the period map

αr : Sn(r)X
∼→ τ6ri

∗Rj∗Z/p
n(r)Xtr . (2.4)

is an isomorphism.

Note that the definition of the period map in [Tsu00] is different from the one in [Tsu98] that
we use here. However, they clearly agree in the derived category.
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Similarly, for any r > 0, we get a natural map

α̃r : Sn(r)→ i∗Rj∗Z/p
n(r)′ .

Composing with the map ω : S ′n(r)→ Sn(r), we get a natural morphism, compatible with prod-
ucts,

αr : S ′n(r)→ i∗Rj∗Z/p
n(r)′ .

Theorem 2.3 ([CN17, Theorem 1.1]). For 0 6 i 6 r and for a semistable scheme X over OK ,
consider the period map

αr : Hi(S ′n(r)X)→ i∗Rij∗Z/p
n(r)′Xtr

. (2.5)

If K has enough roots of unity, then the kernel and cokernel of this map are annihilated by pNr

for a universal constant N depending only on p (and dimX if p = 2). In general, the kernel and
cokernel of this map are annihilated by pNr for an integer N = N(e, p) which depends only on e
and p.

2.2.2 Syntomic-étale cohomology. Recall [FM87, III.4.4], [Tsu98, 5.2.2] that the functor F 7→
(i∗séF , j∗séF , i∗séF → i∗séjsé ∗j

∗
séF) from the category of sheaves on Xsé to the category of triples

(G,H,G → i∗séjsé ∗H), where G andH are sheaves on X̂sé and XK,sé, respectively, is an equivalence
of categories. It follows that we can glue the complexes of sheaves Sn(r) and S ′n(r) and the
complexes of sheaves j′∗GZ/pn(r) and j′∗GZ/pn(r)′ by the maps αr and obtain complexes of
sheaves En(r) and E ′n(r) on Xsé. We have the exact sequences

0→ jsé!j
′
∗GZ/pn(r)→ En(r)→ i∗Sn(r)→ 0 , 0 6 r 6 p− 2 ,

0→ jsé!j
′
∗GZ/pn(r)′ → E ′n(r)→ i∗S ′n(r)→ 0 , r > 0 .

Remark 2.4. The syntomic-étale complexes En(r) that we describe here are the same (in the
derived category) as those defined by Fontaine–Messing in [FM87, 5] in the case when Xtr = X
but differ from those defined by Tsuji in [Tsu98, 5.2] in the general situation. More specifically,
we have

ETn (r) = H0(En(r)) ,

where we write ETn (r) for the syntomic-étale sheaves of Tsuji.

If it does not cause confusion, we will denote by En(r) and E ′n(r) also the derived pushforwards
of En(r) and E ′n(r) to Xét. Note that they are quasi-isomorphic to the complexes obtained by
gluing the complexes of sheaves Sn(r) and S ′n(r) and the complexes of sheaves j′∗GZ/pn(r)′ by
the maps α̃r and αr. Hence, we have the distinguished triangles

jét!Rj
′
∗Z/p

n(r)′ → En(r)→ i∗Sn(r) , jét!Rj
′
∗Z/p

n(r)′ → E ′n(r)→ i∗S ′n(r) , (2.6)

where j′ : Xtr,K → XK , as well as the natural maps

α̃r : En(r)→ Rj∗Z/p
n(r)′ , αr : En(r)′ → Rj∗Z/p

n(r)′

compatible with the maps α̃r and αr. For a > 0, we have the truncated version of the above: the
distinguished triangles

jét!τ6aRj
′
∗Z/p

n(r)′ → τ6aEn(r)→ i∗τ6aSn(r) ,

jét!τ6aRj
′
∗Z/p

n(r)′ → τ6aE ′n(r)→ i∗τ6aS ′n(r) . (2.7)
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2.2.3 Syntomic-étale cohomology and étale cohomology of the generic fiber. For a log-scheme
over O×K , in a stable range, syntomic-étale cohomology tends to compute étale cohomology of
the generic fiber.

Theorem 2.5. Let X be a log-scheme log-smooth over O×K . Let j : Xtr ↪→ X be the natural open
immersion. Then

(i) we have a natural quasi-isomorphism

α̃r : τ6rEn(r) ' τ6rRj∗Z/pn(r) , 0 6 r 6 p− 2 ;

(ii) if X is semistable, there exist a constant N as in Theorem 2.3 and a natural morphism

αr : E ′n(r)→ Rj∗Z/p
n(r)′ , r > 0 ,

such that the induced map on cohomology sheaves in degree q 6 r has kernel and cokernel
annihilated by pNr.

Proof. Assume 0 6 r 6 p − 2. Consider the following commutative diagram of distinguished
triangles:

jét!τ6rRj
′
∗Z/p

n(r) //

o Id
��

τ6rEn(r) //

α̃r

��

i∗Sn(r)

o αr

��
jét!τ6rRj

′
∗Z/p

n(r) // τ6rRj∗Z/p
n(r) // i∗i

∗τ6rRj∗Z/p
n(r) .

The top triangle is distinguished because we have the distinguished triangle from (2.7) and the
natural map τ6rSn(r)

∼→ Sn(r) is a quasi-isomorphism. The map αr is a quasi-isomorphism by
Theorem 2.2. The first part of the theorem follows.

For the second part, consider the following commutative diagram of distinguished triangles:

jét!τ6rRj
′
∗Z/p

n(r)′ //

o Id
��

τ6rE ′n(r) //

αr

��

i∗τ6rS ′n(r)

αr

��
jét!τ6rRj

′
∗Z/p

n(r)′ // τ6rRj∗Z/p
n(r)′ // i∗i

∗τ6rRj∗Z/p
n(r)′ .

By Theorem 2.3, on the level of cohomology, the right period map αr has kernels and cokernels
killed by pNr for a constant N as in the theorem. Hence, the same is true of the left map αr, as
wanted.

Theorem 2.5 implies that the logarithmic syntomic-étale cohomology is close to the logarith-
mic syntomic-étale cohomology of the complement of the divisor at infinity.

Corollary 2.6. Let X be a semistable scheme over OK with a divisor at infinity D∞. We treat
it is as a log-scheme over O×K . Let Y := X \D∞, and let j1 : Y ↪→ X.

(i) We have a natural quasi-isomorphism

α̃r : τ6rEn(r)X
∼→ τ6rRj1∗En(r)Y , 0 6 r 6 p− 2 .

(ii) There exist a constant N as in Theorem 2.3 and a natural morphism

αr : E ′n(r)X → Rj1∗E ′n(r)Y , r > 0 ,

such that the induced map on cohomology sheaves in degree q 6 r has kernel and cokernel
annihilated by pNr.
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Proof. Note that Xtr = YK , and set j2 : YK ↪→ Y . We have j = j1j2. By Theorem 2.5, both
terms in the first claim are quasi-isomorphic to

τ6rRj∗Z/p
n(r)Xtr = τ6rRj1∗τ6rRj2∗Z/p

n(r)YK .

Hence, they are quasi-isomorphic. The second claim of the corollary is proved in the same way.

2.2.4 Nisnevich syntomic-étale cohomology. We will now pass to the Nisnevich topos of X.
Denote the natural projection by ε : Xét → XNis. For r > 0, by applying Rε∗ to the étale period
map above and using that2 Rε∗i

∗ = i∗Rε∗ (cf. [Gei04, 2.2.b]), we obtain a natural map

α̃r : Rε∗Sn(r)→ i∗Rj∗Rε∗Z/p
n(r)′ .

Composing with the map ω : Rε∗S ′n(r)→ Rε∗Sn(r), we get a natural morphism, compatible with
products,

αr : Rε∗S ′n(r)→ i∗Rj∗Rε∗Z/p
n(r)′ .

Write, for simplicity, Sn(r) and S ′n(r) for the derived pushforwards of Sn(r) and S ′n(r) from Xét

to XNis, and likewise for En(r) and E ′n(r). Notice that they are quasi-isomorphic to the complexes
obtained by gluing the complexes of sheaves Sn(r) and S ′n(r) on X0,Nis and the complexes of
sheaves ε∗j

′
∗GZ/pn(r)′ on XK,Nis by the maps α̃r and αr. Hence, we have the distinguished

triangles

jNis!Rj
′
∗Rε∗Z/p

n(r)′ → En(r)→ i∗Sn(r) , jNis!Rj
′
∗Rε∗Z/p

n(r)′ → E ′n(r)→ i∗S ′n(r) , (2.8)

as well as the natural maps

α̃r : En(r)→ Rj∗Rε∗Z/p
n(r)′ , αr : En(r)′ → Rj∗Rε∗Z/p

n(r)′ ,

compatible with the maps α̃r and αr. For a > 0, we have the truncated version of the above: the
distinguished triangles

jNis!τ6aRj
′
∗Rε∗Z/p

n(r)′ → τ6aEn(r)→ i∗τ6aSn(r) ,

jNis!τ6aRj
′
∗Rε∗Z/p

n(r)′ → τ6aE ′n(r)→ i∗τ6aS ′n(r) . (2.9)

Define the following complexes of sheaves on XNis:

Sn(r)Nis := τ6rSn(r) , S ′n(r)Nis := τ6rS ′n(r) ,

En(r)Nis := τ6rEn(r) , E ′n(r)Nis := τ6rE ′n(r) .

Example 2.7. For X = Spec(W (k)), we have

H i(W (k),Sn(r)Nis) =


Z/pn , i = r = 0 ,

Wn(k) , i = 1, r > 1 ,

0 otherwise .

Moreover, the morphism H i(W (k), En(r)Nis)→ H i(W (k),Sn(r)Nis) is an isomorphism.

To see the first claim, note that we have

Sn(0)ét : Wn(k)
1−ϕ−−→Wn(k) , Sn(r)ét : 0→Wn(k) , r > 1 .

It follows that

Sn(0)Nis = Z/pn , Sn(r)ét := Wn(k)[−1] , r > 1 .

2This equality fails for the projection to Zariski topology and is the reason we use Nisnevich topology instead of
Zariski topology.
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For the second claim, use the distinguished triangle (2.9) and the fact that

H i(W (k), jNis!τ6aRj
′
∗Rε∗Z/p

n(r)) = 0 , i > 0 ,

because W (k) is Henselian.

3. Syntomic cohomology and motivic cohomology

3.1 Syntomic cohomology and motivic cohomology

This is the main section of this paper. We will prove Theorem 1.2 from the introduction.

3.1.1 Definition of motivic cohomology. Let X be a smooth scheme over OK . Let Z(r)M

denote the complex of motivic sheaves Z(r)M := X 7→ zr(X, 2r − ∗) in the étale topology of X.
Let Z/pn(r)M := Z(r)M ⊗ Z/pn. Recall how the complex zr(X, ∗) is defined [Blo86]. Denote
by 4n the algebraic n-simplex Spec Z[t0, . . . , tn]/(

∑
ti − 1). Let zr(X, i) be the free abelian

group generated by closed integral subschemes of codimension r of X × 4i meeting all faces
properly. Then zr(X, ∗) is the chain complex thus defined, with boundaries given by pullbacks of
cycles along face maps. This complex is covariant for proper morphisms (with a shift in weight
and degree) and contravariant for flat morphisms.

We know that in the Zariski topology, Hj(XZar,Z/p
n(i)M) = HjΓ(XZar,Z/p

n(r)M) is the
Bloch higher Chow group [Gei04, Theorem 3.2] and that this is also the case for the Nis-
nevich topology [Gei04, Proposition 3.6]. Locally, in the étale topology, when p is invertible,
the étale cycle class map defines a quasi-isomorphism Z/pn(r)M ' Z/pn(r); when X is of
characteristic p, the logarithmic de Rham–Witt cycle class map defines a quasi-isomorphism
Z/pn(r)M 'WnΩr

X,log[−r] (see [GL00]), where, for a log-scheme Y , the right-hand side WnΩ∗Y,log

denotes the sheaf of logarithmic de Rham–Witt differential forms [Lor02]. Moreover, if i : Z ↪→ X
is a closed subscheme of codimension c with open complement j : U ↪→ X, then the exact sequence

0→ i∗Z(r − c)M,Z [−2c]→ Z(r)M,X → j∗Z(r)M,U

forms a distinguished triangle in the derived category of sheaves on X∗, where ∗ denotes the
Zariski or Nisnevich topology. We define the motivic cohomology as

H∗M
(
X,Z/pn(r)

)
:= H∗

(
XZar,Z/p

n(r)M
)

= H∗
(
XNis,Z/p

n(r)M
)
,

H∗M,ét

(
X,Z/pn(r)

)
:= H∗

(
Xét,Z/p

n(r)M
)
.

For a smooth scheme Y over OK , we define its p-adic motivic cohomology as

H∗M(Y,Qp(r)) := H∗
(

holimn RΓ(YZar,Z/p
n(r)M)⊗Q

)
= H∗

(
holimn Γ

(
YZar,Z/p

n(r)M

)
⊗Q

)
.

We define its étale version H∗M,ét(Y,Qp(r)) in an analogous way.

3.1.2 pN -homological algebra. We will need to control denominators. For that purpose, we
introduce a few, very ad hoc, definitions and list a few of properties that we will use.

Definition 3.1. Let N ∈ N. For a morphism f : M → M ′ of abelian sheaves, we say that
f is pN -injective (respectively, pN -surjective) if its kernel (respectively, cokernel) is annihilated
by pN , and we say that f is a pN -isomorphism if it is pN -injective and pN -surjective. A morphism
f : M →M ′ in the derived category is a pN -quasi-isomorphism if its cone has cohomology that
is pN -torsion. In particular, a pN -acyclic complex is a complex whose cohomology groups are
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annihilated by pN . We define a pN -distinguished triangle as a triangle

A
f→ B

g→ C
h→ A[1]

together with a map to a distinguished triangle that is a pN -quasi-isomorphism on each vertex.
It follows that the associated long exact sequence of cohomology sheaves is p2N -acyclic. We note
that if a morphism A → B is a pN -quasi-isomorphism, then the triangle A → B → 0 is pN -
distinguished and, almost vice versa, if the triangle A → B → 0 is pN -distinguished, then the
morphism A→ B is a p3N -quasi-isomorphism.

Now, we recall the following simple lemma.

Lemma 3.2 ([HK94, Lemma 4.18]). Let C be an abelian category, A an object of the derived
category D(C), S a finite subset of Z, mq, q ∈ S, integers, and assume Hq(A) = 0, q /∈ S, and
that Hq(A) is killed by mq for q ∈ S. Then A is killed by

∏
q∈Smq.

We will repeatedly use this lemma. Here is a typical example. Let f : A→B be a pN -quasi-
isomorphism of complexes A and B concentrated in degrees [0,m]. Then there exists a morphism
g : B → A such that gf = pN(m)N , where N(m) is a constant depending only on m; it is unique
up to pN(m)N ; that is, if g1 is another such morphism, then pN(m)Ng = pN(m)Ng1. To see this,
let C be the cone of f . By assumption, H i(C) is pN -torsion. Consider the exact sequence of
Hom-groups in D(C)

Hom(C,A)→ Hom(B,A)
f∗→ Hom(A,A)→ Hom(C[−1], A) .

By Lemma 3.2, we have pN(m)N Hom(C[−1], A) = 0. Hence, there exists a morphism g as above.
Since we also have pN(m)N Hom(C,A) = 0, such a g is pN(m)N -unique. We note that g is a p2N -
quasi-isomorphism. It also follows that g(fg) = gpN(m)N . Using the exact sequence

Hom(C ′[−1], A)→ Hom(A,A)
g∗→ Hom(B,A)→ Hom(C ′, A) ,

where C ′ is the cone of g, we get f(p2N(m)Ng) = p3N(m)N . Hence, if we put h = p2N(m)Ng, we
get fh = p3N(m)N and hf = p3N(m)N .

Remark 3.3. It is clear to us that many of the denominators appearing in this paper can be
improved upon with more careful bookkeeping. In particular, it is likely that the constants N(d)
depending on the dimension of the variety can be replaced by constants N(r).

3.1.3 Cycle class map to syntomic cohomology. We state the following corollary of Theo-
rem 2.5.

Corollary 3.4. Let X be a smooth variety over K. Then there exists a natural syntomic cycle
class map

clsyn
i,r : H i

M(X,Qp(r))→ H i
syn(X,Qp(r)) ,

where the target group is the syntomic cohomology defined in [NN16]. This map is compatible
with the étale cycle class map; that is, the following diagram commutes:

H i
M(X,Qp(r))

clsyn
i,r

��

clét
i,r

((
H i

syn(X,Qp(r))
αNN
i,r // H i

ét(X,Qp(r)) ,
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where αNNi,r is the period map defined in [NN16, 4.2], where it is called ρsyn. Moreover, the cycle
class map clsyn

i,r is an isomorphism for i 6 r.

Proof. For a semistable scheme X over OK , consider the following diagram of sheaves on the
Nisnevich site of X:

E ′n(r)Nis
αr,n // τ6rRj∗τ6rRε∗Z/p

n(r)′

Rj∗Z/p
n(r)′M .

clét
r,n o

OO

clsyn
r,n

ii

The étale cycle class map clét
r,n is a quasi-isomorphism by the Beilinson–Lichtenbaum conjecture

(a corollary [SV00, GL01] of the Bloch–Kato conjecture proved by Voevodsky and Rost [Wei09]),
by the quasi-isomorphism [GL00]

Z/pn(r)M
∼→ τ6rRε∗Z/p

n(r) ,

and by the quasi-isomorphisms

j∗Z/p
n(r)M

∼→ Rj∗Z/p
n(r)M and τ6rRj∗Z/p

n(r)M
∼→ Rj∗Z/p

n(r)M .

The period map αr,n is a pNr-quasi-isomorphism for a constant N as described in Theo-
rem 2.5. We claim that we can define compatible syntomic cycle class maps clsyn

r,n such that

αr,n clsyn
r,n = p2Nr2

clét
r,n. To do this, take the cone Cn of the map hn := (clét

r,n)−1αr,n. It fits into
the distinguished triangle

E ′n(r)Nis
hn−−→Rj∗Z/p

n(r)′M → Cn ,

which yields the exact sequence of Hom-groups (in the derived category)

Hom(Bn, E ′n(r)Nis)
hn−−→Hom(Bn, Bn)→ Hom(Bn, Cn) , (3.1)

where we set Bn := Rj∗Z/p
n(r)′M .

Now, Lemma 3.2 applied to Cn implies that Cn is annihilated by M := pNr
2
. Hence, so is

Hom(Bn, Cn), and the exact sequence (3.1) gives that there exists a map gn : Bn → E ′n(r)Nis

such that hngn = M . We easily see that (Mgn), for n > 1, is a morphism of pro-systems
{Bn} → {E ′n(r)Nis} such that hn(Mgn) = M2 and (Mgn)hn = M2 for n > 1. Set clsyn

r,n := Mgn.

The above syntomic cycle class map clsyn
r,n induces the syntomic class map into syntomic

cohomology

clsyn
r,n : Rj∗Z/p

n(r)M
clsyn

r,n−−→E ′n(r)Nis → S ′n(r)Nis → Rε∗S ′n(r)ét . (3.2)

By construction, it is compatible with the étale cycle class map (via the map αr,n and up to p2Nr).
Its rational version clsyn

r,h h-sheafifies and gives the syntomic cycle class map

clsyn
i,r : H i

M(X,Qp(r))→ H i
syn(X,Qp(r)) , clsyn

i,r := p−(2Nr−1)rclsyn
i,r,h .

For the compatibility with the étale cycle class, it suffices to check that αNNi,r = p−rαi,r, but this
was done by the second author in an upcoming paper.

We will describe how this h-sheafification works. Recall that the syntomic cohomology
H i

syn(X,Qp(r)) is defined by h-sheafifying the (rational) Fontaine–Messing syntomic cohomo-
logy [NN16, 3.3]. More precisely, but simplifying enormously, the site VarK,h of varieties over K
equipped with h-topology has a base consisting of proper semistable schemes Y over OL, with
[L : K] < ∞, such that Ytr → X is an h-map. It follows that to give a sheaf on VarK,h, it
suffices to describe its value on such Y . In particular, for the syntomic sheaf S ′(r)Q defined as
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the h-sheafification of the presheaf sending Y as above to RΓsyn(Y, r)Q, we set H i
syn(X,Qp(r)) :=

H i(Xh,S ′(r)Q). We can also define the h-sheaf Qp(r)M by sending Y to(
holimn Rj∗Z/p

n(r)M (Y )
)
Q

=
(

holimn Z/pn(r)M (Ytr)
)
Q
.

Finally, we can h-sheafify all the other terms in (3.2) to obtain the map

H i
M,h(X,Qp(r)) := H i(Xh,Qp(r)M )→ H i

syn(X,Qp(r)) .

Composing it with the change of topology map H i
M,Nis(X,Qp(r))→ H i

M,h(X,Qp(r)), we get the

cycle class map clsyn
r,h we wanted.

The last claim of the corollary follows from the fact that both αNNi,r and clét
i,r are isomorphisms

for i 6 r by [NN16, Theorem A] and the Beilinson–Lichtenbaum conjecture, respectively.

3.2 Syntomic cohomology and logarithmic de Rham–Witt cohomology

We will show in this section that adding the logarithmic structure at the special fiber changes
the syntomic cohomology by logarithmic de Rham–Witt cohomology, WnΩ∗X0,log. Recall [Lor02]

that in degree q, the latter is defined as the abelian subsheaf3 of WnΩq
X0

generated locally by
the symbols dlogm1 · · · dlogmq for m1, . . . ,mq local sections of Mgp

X0
. We note that if x ∈ OX0 ,

then dlog x = dlog[x] = [x]−1d([x]).

Theorem 3.5. There exists a constant N = N(p, d) or N = N(p, d, e), depending on whether K
has enough roots of unity or not, such that for every m > N and a semistable scheme X over OK
with a smooth special fiber and of dimension d, we have the following natural pmr-distinguished
triangle of sheaves in the étale or Nisnevich topology of X, respectively:

S ′n(r)X → S ′n(r)X×
κm−−→WnΩr−1

X0,log[−r] or S ′n(r)X,Nis → S ′n(r)X×,Nis
κm−−→WnΩr−1

X0,log[−r] .

Here we write X× for the scheme X with added log-structure coming from the special fiber.
These triangles are compatible for different choices of m.

Proof. We will find such a constant N and the triangles corresponding to it. For m > N , we
simply set κm := p(m−N)rκN .

After setting up the local coordinates, we do, as an example, computations in dimension 0,
where it becomes clear how to define the map to logarithmic de Rham–Witt differentials. Then
we lift these computations to higher dimensions and globalize.

Step 1: Choice of local coordinates. To construct the first distinguished triangle, we start
with local computations. Let d be a positive integer satisfying a 6 d. Let

R0
K := OK{X±1

1 , . . . , X±1
a , Xa+1, . . . , Xd}

be the p-adic completion of OK [X±1
1 , . . . , X±1

a , Xa+1, . . . , Xd]. Let R be the p-adic completion
of an étale algebra over R0

K . Let R0
T be the (p, T )-adic completion of W (k)[T,X±1

1 , . . . , X±1
a ,

Xa+1, . . . , Xd]; take the map R0
T → R0

K , T 7→ $, and take the (formally) étale lifting RT
of R to R0

T . Let SR be the p-adically complete PD-envelope of R in RT equipped with the
PD-filtration F rSR. We will write SK := SOK

. We have SR = RT ⊗̂W (k){T}SK with filtration

F rSR := RT ⊗̂W (k){T}F
rSK . Let R0 := W (k){X±1

1 , . . . , X±1
a , Xa+1, . . . , Xd}, and let RT,0 :=

RT /T .

3We will use étale or Nisnevich topology.
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We have the following diagrams of maps (the right diagram is obtained by reducing the rings
modulo T ):

Spf SR

''
Spf R

��

+ �

99

� � // Spf RT

��
Spf R0

K

��

� � // Spf R0
T

��
Spf OK �

� // Spf OF {T} ,

SpecR0

��

� � // Spf RT,0

��
SpecR0

K,0

��

� � // Spf R0

��
Spec k �

� // Spf OF .

(3.3)

Equip R0 with a Frobenius morphism ϕR0 : X±1
i 7→ X±pi . Equip R0

T with a Frobenius morphism
ϕR0

T
compatible with ϕSK

(T 7→ T p) and with ϕR0 , and equip RT with a Frobenius morphism ϕRT

compatible with ϕR0
T

. We will simply write ϕ for the Frobenius morphism if the domain of action
is understood. The natural log-structure on Spf R is given by the special fiber and the divisor
at infinity, Xa+1 · · ·Xd = 0. It is described by the monoid M = Nd−a+1 and the map defined on
the generators by e0 7→ $ and ei 7→ Xi for a+ 1 6 i 6 d.

Set ΩSR
:= SR ⊗RT

ΩRT
. For r ∈ N, we filter the de Rham complex Ω•SR

by subcomplexes

F rΩ•SR
:= F rSR → F r−1SR ⊗RT

ΩRT
→ F r−2SR ⊗RT

Ω2
RT
→ · · · .

We define the syntomic complex of R as

S(R, r) := Cone
(
F rΩ•SR

pr−ϕ−−→Ω•SR

)
[−1] . (3.4)

Set ΩS×R
:= SR ⊗RT

ΩR×T
, where R×T is the ring RT with log-structure induced by T . We define

the log-syntomic complex of R as

S(R×, r) := Cone
(
F rΩ•

S×R

pr−ϕ−−→Ω•
S×R

)
[−1] . (3.5)

For n ∈ N, we define the syntomic and log-syntomic complexes modulo pn as S(R, r)n :=
S(R, r) ⊗Z Z/pn and S(R×, r)n := S(R×, r) ⊗Z Z/pn, respectively. In the case when R̂ is the
p-adic completion of an étale algebra R over OK [X±1

1 , . . . , X±1
d , Xa+1, . . . , Xd], we have

S′n(r)R = S
(
R̂, r

)
n
, S′n(r)R× = S

(
R̂×, r

)
n
,

holimn S
′
n(r)R = S

(
R̂, r

)
, holimn S

′
n(r)R× = S

(
R̂×, r

)
.

We would like to separate the arithmetic and geometric variables. Specifically, we remove
the differentials connected with the variable T by setting ΩS′R

:= SR ⊗R0 ΩR0 . Since ΩW (k)[T ] =
W (k)[T ]dT , we can dispose of this module of differentials by writing df as ∂fdT , and we can
rewrite the above syntomic complex as the following homotopy limit:

S(R, r) =


F rΩ•S′R

∂

��

pr−p•ϕ• // Ω•S′R

∂

��
F r−1Ω•S′R

pr−p•+1T p−1ϕ•// Ω•S′R

 . (3.6)

Here the map ϕ• : Ω•S′R
→ Ω•S′R

sends ω ∈ Ωk
S′R

to (ϕ/pk)(ω). By adding logarithmic differentials
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dT/T along the special fiber, we get the following log-syntomic complex :

S(R×, r) =


F rΩ•S′R

T∂

��

pr−p•ϕ• // Ω•S′R

T∂

��
F r−1Ω•S′R

pr−p•+1ϕ• // Ω•S′R

 . (3.7)

In this language, the natural map S(R, r) → S(R×, r) is given by multiplication by T on the
bottom row.

Step 2: Dimension 0. For R = OK , we obtain the following proposition.

Proposition 3.6. Let n > 1. We have a compatible family of p48-distinguished triangles of
sheaves in the étale topology of Spec k,

S(OK , 1)n → S(O×K , 1)n → Z/pn[−1] .

For r 6= 1, the natural map S(OK , r)n → S(O×K , r)n is a p48r-quasi-isomorphism.

Proof. Using the above homotopy limit presentations, we write down two syntomic complexes

S(OK , r) : F rSK
(∂,pr−ϕ)−−−−→F r−1SK ⊕ SK

−(pr−pT p−1ϕ)+∂−−−−−−→ SK ,

S(O×K , r) : F rSK
(T∂,pr−ϕ)−−−−→F r−1SK ⊕ SK

−(pr−pϕ)+T∂−−−−−−→ SK .

The natural map S(OK , r)→ S(O×K , r) is given by the multiplication by T on F r−1SK and the
last SK .

Let S
[1]
K be the p-adic completion of W (k)[T, T i/p[i/e], i ∈ N]. Elements of S

[1]
K can be written

uniquely in the form
∑

i∈N aiT
i/p[i/e], where ai ∈ W (k) with ai → 0 as i → ∞. They form the

ring of analytic functions over F with integral values on the disk vp(T ) > 1/e. We have SK ⊂ S[1]
K .

The formulas (3.4) and (3.5) make sense with SK replaced by S
[1]
K . We call the resulting complexes

the syntomic complexes of O[1]
K and denote them by S

(
O[1]
K , r

)
and Slog

(
O[1]
K , r

)
, respectively.

The natural maps

S(OK , r)→ S
(
O[1]
K , r

)
, S

(
O×K , r

)
→ Slog

(
O[1]
K , r

)
(3.8)

are p6r-quasi-isomorphisms. In the case of the second map, this is [CN17, Proposition 3.3]. A
simple corollary of [CN17, Lemma 3.2] states that the map ps−ϕ, for s = r, r−1, induces a ps+r-
isomorphism F rΩi

S
[1]
K

/F rΩi
SK
' Ωi

S
[1]
K

/Ωi
SK

. This lemma holds also for the map ps−T p−1ϕ, with

basically the same proof, which implies that the first map in (3.8) is a p6r-quasi-isomorphism as
well.

The residue map resT : Ω1

log,S
[1]
K

→ OF induces the following sequence of complexes:

0→ S
(
O[1]
K , r

)
→ Slog

(
O[1]
K , r

) resT−−→
(
0→ OF

−(pr−pϕ)−−−−−−→ OF
)
→ 0 .

The above sequence is p-exact because F sS
[1]
K = p−sEs S

[1]
K , for E the minimal polynomial of $

over F , which implies that F sΩ1

log,S
[1]
K

/F sΩ1

S
[1]
K

∼= S
[1]
K /TS

[1]
K and S

[1]
K /TS

[1]
K = OF ⊕M , where M

is p-torsion.

Modulo pn, we have OF,n = Wn(k) and the exact sequence in the étale topology of Spec k

0→ Z/pn → OF,n
1−ϕ−−→OF,n → 0 .
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For r = 0, the map pr − pϕ : OF,n → OF,n is an isomorphism since 1−pϕ is invertible. For r > 1,
the map pr−1 − ϕ : OF,n → OF,n is an isomorphism as well since both ϕ and pr−1ϕ−1 − 1 are
invertible. Our proposition is now proved using Section 3.1.2.

Step 3: Local computations in higher dimensions. The computations in the above example
generalize to any ring R.

Lemma 3.7. There exist a constant N = N(p, d) or N = N(p, d, e), depending on whether K
has enough roots of unity or not, and a natural pNr-distinguished triangle in the étale topology
of SpecR0,

S(R, r)n → S(R×, r)n
κN−−→WnΩr−1

R0,log[−r] .

Proof. We claim that the triangle

S(R, r)→ Slog(R, r)
resT−−→

[
Ω•RT,0

pr−p•+1ϕ•−−−−−−→Ω•RT,0

]
[−1] (3.9)

is pNr-distinguished for N as in the theorem. We note that the complex Ω•RT,0
computes the

crystalline cohomology of R0 over W (k). To prove the claim, we can assume r > 0 since it is

clear for r = 0. Set S
[1]
R := RT ⊗̂W (k)[T ]S

[1]
K with the induced Frobenius morphism and filtration.

Define syntomic cohomology complexes S(R[1], r) and Slog(R[1], r) by formulas (3.4) and (3.5),

replacing SR with S
[1]
R . Just as above, in dimension 0, we can pass from the syntomic cohomology

of R to the syntomic cohomology of R[1] via a p6r-quasi-isomorphism. It now suffices to show
that the triangle

S
(
R[1], r

)
→ Slog

(
R[1], r

) resT−−→
[
Ω•RT,0

pr−p•+1ϕ•−−−−−−→Ω•RT,0

]
[−1] (3.10)

is pNr-distinguished for N as in the theorem.

Using the homotopy limit presentations (3.6) and (3.7), we get the exact sequence

0→ S
(
R[1], r

)
→ Slog

(
R[1], r

)
→
[
F rΩ•

S
[1],′
R

/T
pr−p•+1ϕ•−−−−−−→Ω•

S
[1],′
R

/T
]
[−1]→ 0 ,

where Ω
S

[1],′
R

= S
[1]
R ⊗R0 ΩR0 = S

[1]
K ⊗̂W (k){T}RT ⊗R0 ΩR0 . By Section 3.1.2, it suffices to show

that the map

resT :
[
F rΩ•

S
[1],′
R

/T
pr−p•+1ϕ•−−−−−−→Ω•

S
[1],′
R

/T
]
→
[
Ω•RT,0

pr−p•+1ϕ•−−−−−−→Ω•RT,0

]
(3.11)

is a p2-quasi-isomorphism. The complex on the left can be simplified. We have (see the proof of
Proposition 3.6)

F sΩ
S

[1],′
R

/T =
(
F sS

[1]
R /T

)
⊗R0 ΩR0 =

(
F sS

[1]
K /T

)
⊗̂W (k)RT,0 ⊗R0 ΩR0

'
((
Ẽs/ps

)
S

[1]
K

)
/T ⊗̂W (k)RT,0 ⊗R0 ΩR0 ' (OF ⊕M)⊗̂W (k)RT,0 ⊗R0 ΩR0 ,

for a p-torsion module M . Here Ẽ is a twist of E = aeT
e+ · · ·+a1T +a0, the minimal polynomial

of $ over OF . Note that since E is Eisenstein, u = a0p
−1 is a unit. We set Ẽ := u−1E; its constant

coefficient is equal to p. Hence, the residue map

resT : F rΩ•
S

[1],′
R

/T =
(
F rΩ0

S
[1],′
R

/T → F r−1Ω1

S
[1],′
R

/T → F r−2Ω2

S
[1],′
R

/T → · · ·
)

→
(
Ω0
RT,0

d0→ Ω1
RT,0

d1→ Ω2
RT,0

d2→ · · ·
)

is a p-quasi-isomorphism. It follows that the map (3.11) is a p2-quasi-isomorphism, as wanted.
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Set S := RT,0. We claim that there exists a pNr-quasi-isomorphism, for N as in the theorem,
on the étale site of SpecR0,[

Ω•S,n
pr−p•+1ϕ•−−−−−−→Ω•S,n

] ∼←WnΩr−1
R0,log[−r + 1] . (3.12)

Indeed, for r = 0, the complex
[
Ω•S,n

1−p•+1ϕ•−−−−−−→Ω•S,n
]

is acyclic because the map 1 − p•+1 is
invertible. Thus, assume r > 1 and take s = r − 1. Set

HK(S, s)n :=
[
Ω•S,n

ps−p•ϕ•−−−−−−→Ω•S,n
]
.

This complex is p2-quasi-isomorphic to the complex
[
Ω•S,n

pr−p•+1ϕ•−−−−−−→Ω•S,n
]
. Using the global

Frobenius lift on S, we get the following commutative diagram:

Ω•S,n

Φ(ϕ)

��

ps−p•ϕ• // Ω•S,n

Φ(ϕ)
��

WnΩ•R0

ps−p•F //WnΩ•R0
/dV n−1Ω•−1

R0
.

We note here that the de Rham–Witt Frobenius morphism F: Wn+1Ω•R0
→ WnΩ•R0

restricts to
a morphism

F: FilnWn+1Ω•R0
= V nΩ•R0

+ dV nΩ•−1

R0
→ dV n−1Ω•−1

R0
.

Hence F factors as in the above diagram. Moreover, since pdV n−1Ω∗R0
= 0, we get the induced

map pF: WnΩ•R0
→WnΩ•R0

.

The first vertical arrow in the above diagram is a quasi-isomorphism. The second one is a p-
quasi-isomorphism since pdV n−1Ω∗R0

= 0. Hence, the complex HK(S, s)n is p2-quasi-isomorphic

to the complex [WnΩ•R0

ps−p•F−−−−→WnΩ•R0
/dV n−1Ω•−1

R0
]. We list the following properties of the latter

complex:

(1) For t > s, the map 1 − pt−sF: WnΩt
R0
→ WnΩt

R0
is an isomorphism (since 1 − pt−sF is

invertible).

(2) For t < s, the map

ps−t − F: WnΩt
R0
→WnΩt

R0
/dV n−1Ωt−1

R0

is a p-isomorphism. Indeed, for the p-surjectivity it suffices to note that (ps−t − F)(V α) =
ps−tV α− pα for α ∈ WnΩt

R0
/dV n−1Ωt−1

R0
and t 6 s− 1. For the p-injectivity, we note that

if (ps−t − F)(α) = 0 for α ∈ WnΩt
R0

, then V (ps−t − F)(α) = ps−tV α − pα = 0. Hence,

ps−t−1V α = α, which implies pn(s−t−1)V nα = α. Hence, α = 0.

(3) There is an exact sequence

0→WnΩs
R0,log →WnΩs

R0

1−F−−→WnΩs
R0
/dV n−1Ωs−1

R0
→ 0

in the étale topology of SpecR0 [CSS83, Lemma 1.2], [Lor02, Proposition 2.13]. In the
Nisnevich topology it is still exact on the left and in the middle.

Consider the following sequence of complexes on the étale site:

0→WnΩs
R0,log[−s]→WnΩ•R0

ps−p•F−−−−→WnΩ•R0
/dV n−1Ω•−1

R0
→ 0 .

By point (3) above it is ps-exact in degree s. By point (2), it is ps-exact in degrees less than s.
In degrees s+ i > s, it becomes the sequence

0→WnΩs+i
R0

ps−ps+iF−−−−−−→WnΩs+i
R0
/dV n−1Ωs+i−1

R0
→ 0 .
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By point (1), it is ps-exact on the right; by the same point and the fact that pdV n−1Ω∗R0
= 0, it

is also ps-exact on the left. Thus the natural map

WnΩs
R0,log[−s]→

[
WnΩ•R0

ps−p•F−−−−→WnΩ•R0
/dV n−1Ω•−1

R0

]
is a p4s-quasi-isomorphism in the étale topology of SpecR0, as wanted.

We obtain the quasi-isomorphism (3.12) by appealing to Section 3.1.2. Then, using the same
section, we get our lemma.

Step 4: Globalization; the first triangle. The above local computations can be globalized in
the case of the first triangle in the theorem in the following way. We note that we have actually
proved above that we have the following p4s-quasi-isomorphisms of sheaves on the étale site
of X0:

WnΩs
X0,log[−s] β1−−→

[
WnΩ•X0

ps−p•F−−→WnΩ•X0
/dV n−1Ω•−1

X0

] β2←−
[
Acr,n

ps−ϕ−−−−→Acr,n

]
,

where Acr,n is the sheaf (U → X0) 7→ RΓcr(U/Wn(k)). The notation is slightly abusive here,
but we hope that this will not lead to confusion. The second p-quasi-isomorphism follows from
Illusie’s comparison quasi-isomorphism Acr,n

∼→WnΩ•X0
[Ill79, Section II.1]. By Section 3.1.2, for

N = N(d), there exists a pNs-section γ1 of the map β1, that is, a map γ1 such that γ1β1 = pNs

and β1γ1 = pNs. It thus suffices to construct a map

S ′n(r)X× →
[
Acr,n

pr−pϕ−−−−→Acr,n

]
[−1]

and show that the triangle

S ′n(r)X → S ′n(r)X× →
[
Acr,n

pr−pϕ−−−−→Acr,n

]
[−1]

is pNr-distinguished for N as in the theorem.

For this, consider the following two diagrams of compatible coordinate systems (localize on X
if necessary to get X = SpecA):

SpecDT,n

''
SpecAn

��

* 


77

� � // SpecBT,n

��
SpecOK,n

��

� � // SpecOF,n[T ]

ss
SpecOF,n ,

SpecDn

&&
SpecA0

��

* 


77

� � // SpecBn

��
Spec k

��

� � // SpecOF,n

SpecOF,n .

Here BT,n is log-smooth over SpecOF,n[T ], where the latter scheme is equipped with the log-
structure associated to T , and the hooked arrows are exact closed embeddings. The right dia-
gram is obtained by “reducing” the left diagram “modulo T .” It follows that the residue map
resT : ΩB×T,n

→ OBn induces a map resT : Ω•
D×T,n

→ Ω•−1

Dn
(we note that the Frobenius morphism

ϕ on the domain is compatible with pϕ on the target) and that the sequence

0→ Ω•DT,n
→ Ω•

D×T,n

resT−−→Ω•−1

Dn
→ 0 (3.13)

is exact. These constructions glue in the usual way, and we obtain a map resT : J [r]

X×n
→ Acr,n[−1]
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and a sequence of complexes of sheaves on the étale site of X0

J [r]
Xn
→ J [r]

X×n

resT−−→Acr,n[−1] , (3.14)

where we write J [r]
X∗n

for the sheaf (U → Xn) 7→ RΓcr(U,J [r]
X∗n

). Hence, we obtain a sequence

S ′n(r)X → S ′n(r)X×
resT−−→

[
Acr,n

pr−pϕ−−−−→ Acr,n

]
[−1] . (3.15)

It is a pNr-distinguished triangle for N as in the theorem: this can be checked locally, where
we can pass to the more convenient coordinate system from (3.3) and use the computations we
have done in the proof of Proposition 3.6. Define the map κN in our theorem as the composition
γ1β2 resT for a fixed choice of such an N . This concludes the construction of the first distinguished
triangle of our theorem.

Step 5: Symbols and the map κN . Before continuing, we need to understand the relation
between syntomic symbols and the map κN defined above.

Lemma 3.8. (1) For fi ∈ O∗X(X), for 1 6 i 6 r, we have

κN ({f1, . . . , fr}) = 0 , κN ({f1, . . . , fr−1, $}) = pN dlog[f1] · · · dlog[f r−1] ,

where f i is the reduction of fi to O∗X0
.

(2) For fi ∈Mgp
X (X), for 1 6 i 6 r, we have

κN ({f1, . . . , fr}) = 0 , κN ({f1, . . . , fr−1, $}) = pN dlog f1 · · · dlog f r−1 ,

where f i is the reduction of fi to Mgp
X0

.

Proof. It is enough to argue locally, so we will assume that we have the coordinate system
from (3.3). We start with the first point. Choose lifts gi ∈ RT,n of functions fi ∈ Rn for 1 6 i 6 r.
We have

resT ({f1, . . . , fr}) = resT
((

dlog g1, log
(
gp1ϕ(g1)−1

))
∪ · · · ∪

(
dlog gr, log

(
gprϕ(gr)

−1
)))

= 0 .

This proves the first equality of the first point of the lemma.

For the second equality of the same point, first assume r = 2. We have (with an analogous
notation)

resT ({f,$}) = resT
((

dlog g, log
(
gpϕ(g)−1

))
∪ (dlog T, 0)

)
= resT

(
dlog g dlog T, p log

(
gpϕ(g)−1

)
dlog T

)
=
(

dlog g, p log
(
gpϕ(g)−1

))
,

where g is the reduction of g to RT,0,n. Let α : Ω•Dn
→ WnΩ•R0

be the canonical map. Since the

reduction of g to R0 is the same as the reduction f of f , we can write α(g) = [f ]u, u ∈ 1+pWnR0.
We have dlogα(g) = dlog[f ] + dlog u. Set c := gpϕ(g)−1. It follows that

β2((dlog g, c)) = (dlog[f ] + dlog u, α(c)) = (dlog[f ], 0) + (dlog u, α(c)) ,

[β2((dlog g, c))] = [β1(dlog[f ])] .

The last equality of cohomology classes can be seen using the computations in the first part of
the proof of Lemma 3.7, and it finishes our argument.
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For a general r, we compute similarly

resT ({f1, . . . , fr−1, $}) = i∗({g1, . . . , gr−1}) ∪ resT ({$}) = (dlog g1 · · · dlog gr−1, c) ∪ (1, 0)

= (dlog g1 · · · dlog gr−1, c
′) .

Here i : SpecR0 ↪→ SpecRT is the natural map, and the first equality follows from the projection
formula in crystalline cohomology. We define c and c′ by the second and the third equality,
respectively. We get

β2((dlog g1 · · · dlog gr−1, c
′)) = (((dlog[f1] + dlog u1) · · · (dlog[f r−1] + dlog ur−1), α(c′))) ,

[β2((dlog g1 · · · dlog gr−1, c
′))] = [β1(dlog[f1] · · · dlog[f r−1])] ,

as wanted.

For the second point of the lemma, we start with sections fi ∈ Mgp
R and fi = f ′iX

Ni , where
f ′i ∈ R∗ and, for Ni = (mi,a+1, . . . ,mi,d) ∈ Zd−a, we have XNi :=

∏
a+16j6dX

mi,j

j . We get

resT ({f1, . . . , fr}) = resT ((dlog g1, c1) ∪ · · · ∪ (dlog gr, cr)) = 0 .

Computing as above, we get

resT ({f1, . . . , fr−1, $}) = (dlog g1 · · · dlog gr−1, c) .

But dlogα(gi) = dlog([f
′
i]X

Ni) + dlog ui for ui ∈ 1 + pWnR0. Hence

[β2((dlog g1 · · · dlog gr−1, c))] =
[
β1

(
dlog

(
[f
′
1]XN1

)
· · ·
(

dlog
(
[f
′
r−1]XNr−1

)))]
=
[
β1

(
dlog[f1] · · · dlog[f r−1]

)]
,

as wanted.

Step 6: Globalization; the second triangle. To get the second triangle in the theorem, take
the first triangle and push it down to the Nisnevich site. We obtain the pNr-distinguished triangle

Rε∗S ′n(r)X → Rε∗S ′n(r)X×
κN−−→Rε∗WnΩr−1

X0,log[−r] .

Recall that, in the absence of a horizontal log-structure, Kato proved that τ60Rε∗WnΩr−1
X0,log '

WnΩr−1
X0,log [Kat82]. This is also true in our setting: adding one horizontal irreducible divisor at

a time, use Gysin sequences and Kato’s original result. The second triangle in the theorem is
just the truncation τ6r of the above triangle, assuming, of course, that it is a pNr-distinguished
triangle, for N as in the theorem. For that it suffices to check that the map Hr(S ′n(r)X×,Nis)→
WnΩr−1

X0,log is pNr-surjective. But this follows from Lemma 3.8.

Remark 3.9. There is a variant of Theorem 3.5 in which pNr is replaced by a worse error pN

for N = N(p, e, r), but which has a slightly simpler proof. Namely, we can use the following
commutative diagram in which rows are distinguished triangles:

Cone(γ)
∼ // RΓcr(X0/Wn(k))pϕ=pr [−1]

RΓ(Xét,S ′n(r)X×) //

OO

RΓcr(X
×
1 /Wn(k))ϕ=pr can //

resT

OO

RΓcr(X
×
1 /Wn(k))/F r

RΓ(Xét,S ′n(r)X) //

γ

OO

RΓcr(X1/Wn(k))ϕ=pr can //

γ1

OO

RΓcr(X1/Wn(k))/F r .

γ2 o

OO
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The first two columns are clearly distinguished triangles. The map γ2 is a pN -quasi-isomorphism
for N = N(p, e). In fact, we have canonical pN -quasi-isomorphisms

RΓcr(X
×
1 /Wn(k))/F r → RΓcr(X

×
1 /O

×
K,n)/F r ,

RΓcr(X1/Wn(k))/F r → RΓcr(X1/OK,n)/F r .

The first one is proved in the proof of [NN16, Corollary 2.4]; the second one is proved by a non-
logarithmic version of the same argument. It follows that the top horizontal map in the above
diagram is a pN -quasi-isomorphism for N = N(p, e). It now suffices to construct a pN -quasi-
isomorphism, for N = N(r), between the complexes of sheaves WnΩr−1

X0,log[−r + 1] and Apϕ=pr
cr,n ;

this was done in the proof of Theorem 3.5.

Corollary 3.10. Let X be a semistable scheme over OK with a smooth special fiber. There
exist a constant N = N(p, e, d, r) and the following natural family of compatible pm-quasi-
isomorphisms for m > N , where ∗ denotes the étale or Nisnevich topology of X,

γ(m) : S ′n(r)X,∗ ⊕WnΩr−1
X0,log[−r]→ S ′n(r)X×,∗ .

Proof. It suffices to argue in the étale topology. The commutative diagram below shows that there
exists a natural pN(p,e,d,r)-section of the canonical map RΓ(Xét,S ′n(r)X) → RΓ(Xét,S ′n(r)X×),
hence a pN(p,e,d,r)-section of the map S ′n(r)X×,ét →WnΩr−1

X0,log[−r], as wanted:

RΓcr(X
×
1 /Wn(k))ϕ=pr

��

can // RΓcr(X
×
1 /Wn(k))/F r

RΓcr(X
×
1 /SK,n)ϕ=pr

i∗0o
��

p$ // RΓcr(X
×
1 /Wn(k))/F r

RΓcr(X
×
0 /Wn(k)0)ϕ=pr

α1

44

RΓcr(X0/Wn(k))ϕ=pr

o

OO

α2

**
RΓcr(X1/Wn(k))ϕ=pr can //

o i∗
OO

β1

77

RΓcr(X1/Wn(k))/F r .

o β2

OO

Here the map p$ is induced by T 7→ $, the map i∗0 by T 7→ 0. The latter map is a quasi-
isomorphism: this is an immediate consequence of the fact that the Frobenius morphism is
highly topologically nilpotent on the divided power ideal of SK . The map α1 is defined to make
the triangle commute. The map α2 is defined to make the trapezoid pN(p,e,d)-commute: recall
that β2 is a pN(p,e)-quasi-isomorphism, and use Section 3.1.2. The map i∗, where i : X0 ↪→ X1

is the natural closed immersion, is a pN(p,e)-quasi-isomorphism [CN17, proof of Lemma 5.9]. A
diagram chase shows that the bottom triangle pN(p,e,d)-commutes.

Let, for ∗ denoting the étale or the Nisnevich topology,

RΓ(X∗,S(r))Q := holimn RΓ(X∗,Sn(r))⊗Q
∼→ holimn RΓ(X∗,S ′n(r))⊗Q ,

RΓ(X∗, E(r))Q := holimn RΓ(X∗, En(r))⊗Q
∼→ holimn RΓ(X∗, E ′n(r))⊗Q ,

RΓ
(
X∗,WΩr−1

X0,log

)
Q

:= holimn RΓ
(
X∗, i∗WnΩr−1

X0,log

)
.
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In the proof of Theorem 3.5, we have shown that there is a pN(d)r-quasi-isomorphism

WnΩr−1
X0,log[−r + 1]

∼→
[
Acr,n

pr−pϕ−−→Acr,n

]
.

It follows that we have

RΓ
(
X∗,WΩr−1

X0,log

)
Q
' RΓcr(X0/F )ϕ=pr−1

Q [r − 1] ,

where, for a scheme Y over W (k), we set

RΓcr(Y/F ) := RΓcr(Y/W (k))Q := holimn RΓcr(Y1/Wn(k))⊗Q .

The following corollary is an immediate consequence of Corollary 3.10.

Corollary 3.11. Let X be a semistable scheme over OK with a smooth special fiber. We have
the following natural quasi-isomorphisms:

RΓ(X∗,S(r))Q ⊕ RΓ
(
X∗,WΩr−1

X0,log

)
Q

[−r] ∼→ RΓ(X×∗ ,S(r))Q .

Corollary 3.12. Let X be a semistable scheme over OK with a smooth special fiber. For
a constant N = N(p, d) or N = N(p, d, e), depending on whether K has enough roots of unity
or not, we have the following family of compatible pmr-distinguished triangles, for m > N , of
sheaves in the étale topology of X0:

S ′n(r)X → τ6ri
∗Rj∗Z/p

n(r)′ →WnΩr−1
X0,log[−r] . (3.16)

Moreover, for a constant N = N(p, e, d, r), we have the following pm-quasi-isomorphisms for
m > N :

γ(m) : S ′n(r)X ⊕WnΩr−1
X0,log[−r]→ τ6ri

∗Rj∗Z/p
n(r)′ .

Proof. This immediately follows from Theorems 3.5 and 2.3 and Corollary 3.10.

Remark 3.13. For r 6 p−2, the distinguished triangle (3.16) was constructed before by Kurihara.
No additional constants are needed in this case.

Theorem 3.14 ([Kur87, 1]). Let X be a smooth scheme over OK . For r 6 p − 2, we have the
following distinguished triangle of sheaves in the étale topology of X0:

Sn(r)X → τ6ri
∗Rj∗Z/p

n(r)→WnΩr−1
X0,log[−r] .

It is easy to see that Theorem 3.14 holds also for schemes X that are semistable over OK
with a smooth special fiber, that is, that we have the distinguished triangle

Sn(r)X → τ6ri
∗Rj∗Z/p

n(r)→WnΩr−1
X0,log[−r] , r 6 p− 2 .

Indeed, it suffices to note that all the terms involved have Gysin sequences that are compatible
with the maps in the sequence [Tsu00] and to use Theorem 3.14. In particular, in view of
Theorem 2.2, we have the distinguished triangle

Sn(r)X → Sn(r)X× →WnΩr−1
X0,log[−r] , r 6 p− 2 ,

a “small twists” analog of the distinguished triangles from Theorem 3.5.

3.3 Syntomic-étale cohomology and motivic cohomology

The main theorem of this section shows that, in étale topology, syntomic-étale complexes on
smooth schemes over OK approximate motivic complexes.
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Theorem 3.15. Let X be a semistable scheme over OK with a smooth special fiber. We treat
it as a log-scheme with the log-structure induced by the divisor at infinity. Let j′ : Xtr ↪→ X be
the natural open immersion.

(i) There is a natural cycle class map

clsyn
r : Rj′∗Z/p

n(r)M → En(r)X,Nis , 0 6 r 6 p− 2 .

It is a quasi-isomorphism.

(ii) There exist a constant N = N(p, d) or N = N(p, e, d), depending on whether K has enough
roots of unity or not, and a family of natural and compatible cycle class maps, for m > N ,

clsyn,m
r : Rj′∗Z/p

n(r)M → E ′n(r)X,Nis , r > 0 ,

that are pmr-quasi-isomorphisms.

We have analogous statements in the étale topology. These cycle class maps are compatible (via
the localization map and the period map) with the twisted étale cycle class maps; that is, we
have the commutative diagram

Rj′∗Z/p
n(r)M,ét

clsyn,m
r //

pmr clét
r
��

E ′n(r)X

αr

��
Rj′∗Z/p

n(r)ét
can // Rj′∗Z/p

n(r)′ét .

Proof. We will define the classes clsyn,N
r , for a constant N as in the theorem, and set clsyn,m

r =
p(m−N)r clsyn,N

r for m > N .

We start with the Nisnevich topology. We will prove the second claim, the proof of the first
one being analogous. Consider the commutative diagram

jNis!τ6rRj
′
K,∗Rε∗Z/p

n(r)′ //

o
��

E ′n(r)X,Nis
//

��

i∗S ′n(r)X,Nis

��
jNis!τ6rRj

′
K,∗Rε∗Z/p

n(r)′ // E ′n(r)X×,Nis
// i∗S ′n(r)X×,Nis

κN
��

i∗WnΩr−1
X0,log[−r] .

The two rows are distinguished triangles; the right column is a pNr-distinguished triangle, for a
constant N as in the theorem, by Theorem 3.5. It follows that for the same type of N , we have
the pNr-distinguished triangle

E ′n(r)X,Nis → E ′n(r)X×,Nis
κN−−→i∗WnΩr−1

X0,log[−r] . (3.17)

Let Y = Xtr. By functoriality, we get the map of pNr-distinguished triangles

E ′n(r)X,Nis

��

// E ′n(r)X×,Nis

o
��

// i∗WnΩr−1
X0,log[−r]

o
��

Rj′∗E ′n(r)Y,Nis
// Rj′∗E ′n(r)Y ×,Nis

// Rj′∗i∗WnΩr−1
Y0,log[−r] .
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The right vertical arrow is a quasi-isomorphism since MX0 = j′∗O∗X0,tr
: the Gysin sequence for

logarithmic de Rham–Witt cohomology implies the first isomorphism below [Sat13, 2.1.1],

WnΩr−1
X0,log

∼→ j′∗WnΩr−1
Y0,log

∼→ Rj′∗WnΩr−1
Y0,log ;

the second one follows from the quasi-isomorphisms WnΩr−1
Y0,log ' j

′
∗Z/p

n(r−1)M and j′∗Z/p
n(r−

1)M
∼→ Rj′∗Z/p

n(r−1)M . The middle vertical arrow is a pNr-quasi-isomorphism by Corollary 2.6.
Hence, the left vertical arrow is a pNr-quasi-isomorphism, and we may assume that the horizontal
divisor of X is trivial.

Consider the diagram

E ′n(r)X,Nis

��

// E ′n(r)X×,Nis

pNrαro
��

κN // i∗WnΩr−1
X0,log[−r]

p(N+1)r

��
C′n(r) // τ6rRj∗Rε∗Z/p

n(r)′XK

pNκét // i∗WnΩr−1
X0,log[−r] .

(3.18)

Here, the map κét is induced from a map τ6ri
∗Rj∗Z/p

n(r) → WnΩr−1
X0,log[−r] of sheaves on the

étale site of X0 defined as the composition of the canonical map

τ6ri
∗Rj∗Z/p

n(r)→ i∗Rrj∗Z/p
n(r)[−r]

and the symbol map i∗Rrj∗Z/p
n(r) → WnΩr−1

X0,log. The latter is defined by observing that
i∗Rrj∗Z/p

n(r) is locally generated by symbols {f1, . . . , fr} for fi ∈ i∗j∗O∗XK
[BK86, Corol-

lary 6.1.1]. By multilinearity, each symbol can be written as a sum of symbols of the form
{f1, . . . , fr} and {f1, . . . , fr−1, $} for fi ∈ i∗O∗X . Then κét sends the former to zero and the
latter to dlog[f1] · · · dlog[f r−1], where f i is the reduction of fi to O∗X0

. We define C′n(r) as the

mapping fiber of the map pNκét.

We claim that the right square of the diagram commutes. Indeed, we note that we can pass
to the étale site, and there it suffices to show that the following diagram of maps of sheaves
commutes:

Hr(S ′n(r)X×)
p(N+1)rκN //

pNrαr

��

WnΩr−1
X0,log

i∗Rrj∗Z/p
n(r)′XK

.

pNκét

55

Since the map αr is a pNr-isomorphism, it is compatible with symbols up to pr-twits; that is,
αr maps a symbol to the same symbol times pr, and the sheaf i∗Rrj∗Z/p

n(r)XK
is generated

locally by symbols. It suffices to check that the map κN sends the symbol {f1, . . . , fr}, for
fi ∈ i∗O∗X , to 0 and the symbol {f1, . . . , fr−1, $}, for fi ∈ i∗O∗X , to pN dlog[f1] · · · dlog[f r−1].
But this follows from Lemma 3.8. It follows that the left vertical map in the diagram (3.18)
exists. It is unique because

Hom(E ′n(r)X,Nis,WnΩr−1
X0,log[−r − 1]) = 0

for degree reasons. It is clearly a quasi-isomorphism.

It now remains to show that there exists a pNr-quasi-isomorphism Z/pn(r)M → C′n(r) for
N as in the theorem. We proceed as in [Gei04, Section 6]. Consider the following diagram of
distinguished triangles (the complex Cn(r) is defined by the bottom triangle and is pNr-quasi-
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isomorphic to the complex C′n(r)):

Z/pn(r)M,X

��

// j∗Z/p
n(r)M,XK

//

oclét
r

��

i∗Z/p
n(r − 1)M,X0 [−1]

o
��

Cn(r) // τ6rRj∗Rε∗Z/p
n(r)XK

κét // i∗WnΩr−1
X0,log[−r] .

(3.19)

The middle and the right vertical maps are induced by the étale and logarithmic de Rham–Witt
cycle class map, respectively. They are quasi-isomorphisms by the Beilinson–Lichtenbaum con-
jecture. The right square commutes: pass to the étale site; there, this fact was shown in [Gei04,
Section 6]. Hence, the left vertical map exists, is unique, and is a quasi-isomorphism as well. This
concludes the proof of our theorem.

For the étale topology, the computations are analogous, but the diagram (3.19) has to be
replaced with the following one:

Z/pn(r)M,X

��

// τ6rRj∗Z/p
n(r)M,XK

//

o
��

τ6r(i∗Ri
!Z/pn(r)M,X [1])

o
��

Cn(r) // τ6rRj∗Z/p
n(r)XK

κét // i∗WnΩr−1
X0,log[−r] .

The right vertical arrow is a quasi-isomorphism by [Gei04, Section 6].

Consider the composition of maps defined above,

Rj′∗Z/p
n(r)M,Y → Rj′∗C′n(r)←Rj′∗E ′n(r)Y,Nis ← E ′n(r)X,Nis ,

where we invert the last two maps (in the pNr-sense). By the above, it is a pNr-quasi-isomorphism
for N as in the theorem. We choose one such N and set clsyn,N

r equal to that composition. The
claimed compatibility with the étale cycle class follows easily from the definitions.

We list several, more or less immediate, corollaries of Theorems 3.14 and 3.15 (we set α :=
ét,Nis).

Corollary 3.16. Let X be a smooth scheme over OK .

(i) We have H∗α(X, En(r)) ' H∗M,α(X,Z/pn(r)) for r 6 p− 2.

(ii) The kernel and cokernel of the cycle class map

clsyn,N
n : H∗M,α(X,Z/pn(r))→ H∗α(X, E ′n(r))

are annihilated by pNr, where N denotes the constant from Theorem 3.15. Hence,

H∗α(X, E(r))Q ' H∗M,α(X,Qp(r)) .

In the more familiar language of syntomic cohomology, Theorem 3.15 and Corollary 3.16 can
be stated in the following way.

Corollary 3.17. Let X be a semistable scheme over OK with a smooth special fiber. Let
j′ : Xtr ↪→ X be the natural open immersion. Then, on the étale site of X0,

(i) there is a natural quasi-isomorphism [Gei04]

Sn(r)X ' i∗Rj′∗Z/pn(r)M , 0 6 r 6 p− 2 ;
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(ii) there exist a constant N as in Theorem 3.15 and a natural pNr-quasi-isomorphism

S ′n(r)X ' i∗Rj′∗Z/pn(r)′M , r > 0 .

Corollary 3.18. Let X be a proper semistable scheme over OK with a smooth special fiber.

(i) We have H∗α(X,Sn(r)) ' H∗M,α(Xtr,Z/p
n(r)) for r 6 p− 2.

(ii) The kernel and cokernel of the cycle class map

H∗M,α(Xtr,Z/p
n(r))→ H∗α(X,S ′n(r))

are annihilated by pNr, where N denotes the constant from Theorem 3.15. Hence,

H∗α(X,S(r))Q ' H∗M,α(Xtr,Qp(r)) .

Corollary 3.19. Let X be a proper semistable scheme over OK with a smooth special fiber.
Then the claims of Corollary 3.18 hold for XOK

(in place of X). Moreover, for i 6 r, we have
the commutative diagram

H i
M(XOK ,tr

,Qp(r))
j∗

∼
//

clsyn
i,ro
��

H i
M(XK,tr,Qp(r))

p(N−1)r clét
i,ro

��
H i

ét(XOK
,S ′(r))Q

p−rαi,r// H i
ét(XK,tr,Qp(r)) .

Note. The syntomic cohomology of XOK
is defined in the same way as that of X; see [Bei13,

1.18] for details.

Proof. The first and the second claims follow from Corollary 3.18 and Theorem 3.15 by passing to
the limit over finite extensions of K in K. The fact that the localization map j∗ is an isomorphism
was proved in [Niz98, Lemma 3.1].

Remark 3.20. For X proper, the above diagram was studied in [Niz98] (see [Niz06] for a brief
survey): it was constructed first for the Chern classes from p-adic K-theory and then for motivic
cohomology by studying the compatibility of Chern classes with operations on K-theory. This did
not use the Fontaine–Messing period map αi,r; instead, a period map αi,r : H i

ét(XK,tr,Qp(r))→
H i

ét(XOK
,S(r))Q was defined using the above diagram. The fact that it is an isomorphism

followed from the proof of the crystalline conjecture and implies that the syntomic cycle class
map clsyn

i,r is also an isomorphism.

For an open X as above, the situation is, at the moment, reversed. We defined log-syntomic
p-adic Chern classes [Niz16] using the (universal) syntomic cycle class maps constructed in this
paper.

Appendix. Comparison of crystalline, convergent, and rigid syntomic cohomologies

We will compare the crystalline, the convergent, and the rigid syntomic cohomology for smooth
schemes over OK with normal crossing compactifications. Let X be a smooth scheme over OK .
Recall Besser’s definition of rigid syntomic cohomology [Bes00]:

RΓrig
syn(X, r) := [RΓrig(X0/F )⊕ F rRΓdR(XK)

f−−→RΓrig(X0/F )⊕ RΓrig(X0/K)] , r > 0 .

Here RΓrig(·) denotes the rigid cohomology complex, and f is the map defined by (x, y) 7→
((pr − ϕ)(x), sp(y)− x), where sp is Berthelot’s specialization map.
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Proposition A.1. Let X be a proper semistable scheme over OK with a smooth special fiber.
There is a natural quasi-isomorphism

RΓrig
syn(Xtr, r) ' RΓsyn(X, r) , r > 0 .

Proof. As usual, we consider X as a log-scheme (with a trivial vertical log-structure). We can
write

RΓrig
syn(Xtr, r) '

[
RΓrig(X0,tr/F )ϕ=pr → RΓrig(X0,tr/K)/F rRΓdR(XK,tr)

]
.

Since we have

RΓsyn(X, r) '
[
RΓcr(X/F )ϕ=pr → RΓdR(XK)/F r

]
,

it suffices to construct a map

RΓcr(X/F )→ RΓrig(X0,tr/F )

that is compatible (in the dg-category sense) with the Frobenius morphism and the specialization
map from de Rham cohomology. This is accomplished by the following commutative diagram:

RΓcr(X1/F )

i∗vv

// RΓcr(X1/K) RΓdR(XK)

∼

''

σcr

∼
oo

σconv

∼

vv

RΓcr(X0/F ) RΓconv(X1/F )

oi∗

��

//

α1,F

OO

RΓconv(X1/K)

oi∗

��

α1,K

OO

RΓdR(XK,tr)

sp

rr

RΓconv(X0/F )

α0

∼
hh

o
��

// RΓconv(X0/K)

o
��

RΓrig(X0,tr/F ) // RΓrig(X0,tr/K) .

Here RΓconv(·) denotes the (logarithmic) convergent cohomology [Ogu90, BO83, Shi02] that
is used classically to connect rigid cohomology with crystalline cohomology. The quasi-isomor-
phisms between the rigid and the convergent cohomology at the bottom of the diagram are proved
in [Shi02, Corollary 2.4.13]. The maps i∗ are quasi-isomorphisms by the invariance of convergent
cohomology under nilpotent thickenings [BO83, 1.14.3]. The map α0 is a quasi-isomorphism by
[Shi02, Theorem 3.1.1]. The top map i∗ is a quasi-isomorphism on ϕ-eigenspaces [CN17, proof of
Lemma 5.9]; hence, so is the map α1,F . The maps σcr and σconv are quasi-isomorphisms simply
by the crystalline and the convergent [Shi02, 2.3] Poincaré lemmas, respectively. It follows that
the specialization map sp and the map α1,K are quasi-isomorphisms as well.

Remark A.2. Recall that Besser’s definition of rigid syntomic cohomology is modeled on the
definition of convergent syntomic cohomology [Niz01]. In its logarithmic form, the latter is defined
as the mapping fiber

RΓconv
syn (X, r) :=

[
RΓconv(X0/F )ϕ=pr → RΓconv(X0/K)/F rRΓconv(X0/K)

]
.

The proof of Proposition A.1 shows that for a proper and semistable scheme over OK with a
smooth special fiber, we have natural quasi-isomorphisms

RΓrig
syn(Xtr, r) ' RΓconv

syn (X, r) ' RΓsyn(X, r) , r > 0 . (A.1)

In the proper case, this was shown in [Bes00, Proposition 9.8].

For a variety Y over K, let RΓNNsyn (Y, r) denote the syntomic cohomology defined in [NN16].
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Corollary A.3. Let X be a proper semistable scheme over OK with a smooth special fiber.
There is a natural distinguished triangle

RΓrig
syn(Xtr, r)⊕ RΓ

(
X0,ét,WΩr−1

X0,log

)
Q

[−r] ∼→ RΓNNsyn (XK,tr, r) .

Proof. Since we have a canonical quasi-isomorphism [NN16, Proposition 3.18]

RΓsyn(X×, r)Q
∼→ RΓNNsyn (XK,tr, r) ,

this follows immediately from Proposition A.1 and Corollary 3.11.
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