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Syntomic cohomology and p-adic motivic cohomology

Veronika Ertl and Wiestawa Niziot

ABSTRACT

We prove a mixed characteristic analog of the Beilinson—Lichtenbaum conjecture for
p-adic motivic cohomology. It gives a description, in the stable range, of p-adic mo-
tivic cohomology (defined using algebraic cycles) in terms of differential forms. This
generalizes a result of Geisser from small Tate twists to all twists. We use as a critical
new ingredient the comparison theorem between syntomic complexes and p-adic nearby
cycles proved recently by Colmez and Niziot.

1. Introduction

For a smooth variety over a field of characteristic 0, the Beilinson—Lichtenbaum conjecture states
that in a certain stable range, the p-adic motivic cohomology is equal to the étale cohomology:

Hy( (X, Z/p"(r) = He (X, Z/p"(r)), i<

Here motivic cohomology is defined as the hypercohomology of Bloch’s cycle complex Z/p™ (7).
This conjecture follows (see [SV00]) from the Bloch-Kato conjecture that was proved by Voevod-
sky and Rost [Wei09].

For a smooth variety over a field of positive characteristic p, the analog of the Beilinson—
Lichtenbaum conjecture states that, in the same stable range, the p-adic motivic cohomology is
equal to the logarithmic de Rham—Witt cohomology:

Hyy (X, Z/p"(r)) = Hy " (X, Wl 1og) -
This was proved by Geisser and Levine [GLOO0].

The purpose of this note is to prove a mixed characteristic analog of the Beilinson—Lichten-
baum conjecture for p-adic motivic cohomology. Let Ok be a complete discrete valuation ring
with fraction field K of characteristic 0 and with perfect residue field k£ of characteristic p. We
fix a uniformizer @w of K. Let F' be the fraction field of the ring of Witt vectors W (k). Let X
be a semistable scheme over Og. A scheme X over O is called semistable if it is surjective on
Spec Ok, regular, and there is a distinguished divisor “at infinity” D, which is a strict relative
normal crossing divisor and which together with the special fiber forms a strict normal crossing
divisor. Unless otherwise specified, we will treat X as a log-scheme with the log-structure defined
by the special fiber and the divisor at infinity. We assume that the special fiber Xy of X is smooth.
We show that in the same stable range as above, the p-adic motivic cohomology of X,—the open
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SYNTOMIC COHOMOLOGY AND p-ADIC MOTIVIC COHOMOLOGY

set where the log-structure is trivial—is equal to the (logarithmic) syntomic-étale cohomology
of X. This relates algebraic cycles to differential forms.

For a smooth scheme Y, we set Hyy(Y, Qp(r)) := H* holimy, RT(Vzar, Z/p"(r)1) ® Q.
COROLLARY 1.1 (Corollary to Theorem 1.2 below). We have the natural isomorphism
Hiy (X, Qp(r) & Hi (X, £(r))q, i<,

where E(-) denotes the syntomic-étale cohomology complex. If X is proper, this yields the natural
isomorphism

Hy(Xir, Qp(r)) = HY (X, S(r)q, i<,

where S(-) denotes the syntomic cohomology complex.

The rational syntomic cohomology HZ (X,S(r))q above is that defined in [FMS87] as the
filtered Frobenius eigenspace of crystalline cohomology. It differs from the one defined in [NN16]
by the absence of a log-structure associated to the special fiber. We show in the appendix that it is
isomorphic to the logarithmic version of the convergent syntomic cohomology defined in [Niz01],
as well as to the rigid syntomic cohomology defined in [Bes00, Gro94].

Corollary 1.1 is a simple consequence of the following theorem, which is the main result of this
paper. See [CN17, Section 2.1.1] for what it means for a field to contain enough roots of unity.
The field F' contains enough roots of unity, and for any K, the field K ((pn), for n > ¢(K) + 3,
where ¢(K) is the conductor of K, contains enough roots of unity.

THEOREM 1.2. Let r > 0. Let j.: Xy, — X be the natural open immersion. If K has enough
roots of unity, respectively K does not have enough roots of unity, then there exists a constant
N = N(p,d), respectively N = N(p,d,e), depending only on p and the dimension d of X,
respectively only on p, d, and the absolute ramification index e of K, such that for m > N, there
are natural compatible cycle class maps between complexes of sheaves on the Nisnevich site of X
and Xy, respectively,

™™ RGLZ/p™ (1) — EL()Nis, el i RILZ/p" ()M — S)(7)Nis 5

where i: Xg < X is the special fiber of X. They are compatible with the étale cycle class maps
and are p™"-quasi-isomorphisms; that is, the kernels and cokernels of the maps induced on the
cohomology sheaves are annihilated by p™".

See Theorem 3.15 for a precise statement concerning the compatibility with the étale cycle
class maps.

The syntomic-étale cohomology &/ (r) was defined by Fontaine-Messing [FM87] by gluing
syntomic cohomology S/, (r) on X with étale cohomology on the generic fiber via the relative
fundamental exact sequence of p-adic Hodge theory. It is a complex of sheaves on the étale site
of X. We extend this definition to logarithmic schemes (where one replaces syntomic cohomology
with logarithmic syntomic cohomology). The Nisnevich version that appears in the above theorem
is defined by projecting to the Nisnevich site and truncating at r:

E (Mnis := T<rRe & (1), S (r)nis := T<rRexS) (1),

where €: X¢ — Xnis is the natural projection.

The syntomic part of Theorem 1.2 (hence of Corollary 1.1 as well) for twists with r < p — 2
(where no constants are needed) was proved by Geisser [Gei04, Theorem 1.3] (his result was
conditional on the Bloch—Kato conjecture, which at the time of the publication of his paper was
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V. ErTL AND W. NIZIOL

not a theorem yet). The key ingredient in his proof is the exact sequence of Kurihara [Kur87] that
links syntomic cohomology with p-adic nearby cycles coupled with the Beilinson—Lichtenbaum
conjecture over fields of characteristic 0 and p. Our proof of Theorem 1.2 proceeds in a similar
manner using as the main new ingredient the relation between syntomic complexes and p-adic
nearby cycles proved recently in [CN17].

We will now describe the proof briefly in the case when there is no horizontal log-structure.
First, we show that we have the p""-distinguished triangle (on the étale site of X), for a constant

N as in the theorem,
En(r)x = EL(r)xx = Wn Qb [=7], (L.1)

where Wan;Oll ogl—T] denotes the logarithmic de Rham-Witt sheaf and X denotes the scheme X
with added log-structure coming from the special fiber. The syntomic-étale cohomology &/ (1) x x
comes equipped with a period map

ar: EL(r)xx — Rj*Z/p"(r)'XK )

where j.: Xg — X and Z/p"(r)" = (p%a!)"'Z/p"(r) if r = (p — 1)a + b with a,b € Z and
0 < b < p— 1. Projecting it to the Nisnevich site and truncating at r, we obtain the Nisnevich
syntomic-étale period map

Qr 5&(T)XX,Nis — TérRE*Rj*Z/pn(r)/XK .

The computations of p-adic nearby cycles via syntomic cohomology from [CN17] imply that
this is a p’'"-quasi-isomorphism, for a constant N as in the theorem. Hence, from (1.1), we obtain
the p™V"-distinguished triangle

EL(r) x Nis— T Rjut<, ReLZ/p" (). — z'*Wnszggo}log[—r] . (1.2)

Next, we note that the localization sequence in motivic cohomology yields the following
distinguished triangle (on the Nisnevich site of X):

Z/p" (r)m = J=2/p" (r)m — i Z/p" (r — D)m[=1].

By the Beilinson-Lichtenbaum conjecture and the computations of Geisser—Levine [GLO00] of
motivic cohomology in characteristic p, we have the cycle class map quasi-isomorphisms

Z/p"(r)m = T<rReZ/p"(M)xc,  Z/p" (1) = WaQk, 1og—7]-
The above triangle becomes

Z/p"(r)m = J«T<rReZ/p" (1) x ) — i*WnQ%hOg[—r] . (1.3)

Since j.Z/p™(r)m — RjZ/p™(r)m and 1<, Z/p"™ (r)m — Z/p™(r)m, the cycle class map of Theo-
rem 1.2 can now be obtained by comparing sequences (1.2) and (1.3).

Notation and conventions. We assume all the schemes to be locally noetherian. We work
in the category of fine log-schemes.

We will use a shorthand for certain homotopy limits. Namely, if f: C' — C’ is a map in the
differential graded (dg) derived category of abelian groups, we set

(L] = holim(C — ¢ < 0).
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We set
oL
l l =01 L o] = (05 % 4]
s -y

for a commutative diagram (the one inside the large bracket) in the dg derived category of abelian
groups.

2. Syntomic cohomology

Let Ok be a complete discrete valuation ring with fraction field K of characteristic 0 and with
perfect residue field k£ of characteristic p. Let @w be a uniformizer of Og; we will keep it fixed
throughout the paper.! Let W (k) be the ring of Witt vectors of k with fraction field F' (that is,
W (k) = Op); let e be the ramification index of K over F. Let 0 = ¢ be the absolute Frobenius

morphism on W (k). For an Og-scheme X, let X denote the special fiber of X, and let X,, denote
the reduction modulo p™ of X. We will denote by Ok, O, and (9?( the scheme Spec(Og ) with the
trivial, canonical (that is, associated to the closed point), and (N — Ok, 1 — 0) log-structure,
respectively.

In this section, we will briefly review the definitions of the syntomic and the syntomic-étale
cohomology and their basic properties. For details, we refer the reader to [Tsu99, 2], [Tsu98].

2.1 Syntomic cohomology

For a log-scheme X, we denote by Xy, the small syntomic site of X. It is built from log-syntomic
morphisms f: Y — Z in the sense of Kato [Kat94, 2.5] (see also [BM02, 6.1]); that is, the mor-
phism f is integral, the underlying morphism of schemes is flat and locally of finite presentation,

and, étale locally on Y, there is a factorization Y Swhoz , where h is log-smooth and ¢ is an
exact closed immersion that is transversally regular over Z.

For a log-scheme X log-syntomic over Spec(W (k)), define
O5(X) = HA (X0, Ox,),  TYUX) = HE(Xa, TH)).
where Oy, is the structure sheaf of the absolute crystalline site (that is, over Wy, (k)) and Jx, =
Ker(Ox, jw, k) — Ox,) and .7)[;;]1 is its rth divided power. Set j)[gi = Oy, if r < 0. We
know [FM87, I1.1.3] that the presheaves I are sheaves on Xnsyn, flat over Z/p", and that

Jiﬂl QRZL/p" ~ j,w. There is a natural functorial isomorphism

H* (Xsym jry]) = H:r (Xn’ ‘-7)[(1'1)
that is compatible with the Frobenius morphism. It is easy to see that cp(Jr[ﬂ) C p" O for
0 < r < p— 1. This fails in general, and we modify j,W:
AREES {z e \7,[;18 | o(x) € P O5  }/p"  for some s > 7.
This definition is independent of s. We check that \77§T> is flat over Z/p™ and \775:21 RZL/p" =~ jﬁ.
This allows us to define the divided Frobenius morphism ¢, = “p/p"”: jé” — O,

!This is necessary to fix an embedding of Spec(O) into a smooth scheme over Z,.
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Set
Sy (r) := Cone (Jér> iy o) [-1].

Since the sequence

0 —— Sulr) —— J\ 25 0F —— 0

is exact, we actually have

Sp(r) == Ker (‘7757"> .y o).
In the same way, we can define syntomic sheaves S, (r) on Xy, ¢yn for m > n. Abusing notation, we
set Sp(r) = .Sy (r) for the natural map i: X, syn — Xeyn. Since iy is exact, H* (X syn, Sn (1)) =
H*(Xsyn, Sn(r)). Because of that, we will write S,,(r) for the syntomic sheaves on X, syn as well
as on Xgyn. We will also need the “undivided” version of syntomic complexes of sheaves:

S/ (r) := Cone (.7#} i ¢ O [-1].
For 7,7 > 0, we have the long exact sequences
— H'(Xayny Sn(r)) = Ho (X, JE)) =5 HI(X, Ox,) = (2.1)
= H (Xoyn, S (r)) = Hoy (X, 5 ) 2F HL(X, Ox,) —

PROPOSITION 2.1 ([CN17, Proposition 3.12]). For X a fine and saturated log-smooth log-scheme
over O and 0 < r < p — 2, the natural map of complexes of sheaves on the étale site of X

T<rSn(r) = Sp(r)

is a quasi-isomorphism. For X semistable over Ok and r > 0, the natural map of complexes of
sheaves on the étale site of X

T<r S (1) = Sp(r)

is a pN"-quasi-isomorphism for a universal constant N.

The natural map w: S),(r) = S, (r) induced by the maps p”: T 787 and 1d: o — O
has kernel and cokernel killed by p”. So does the map 7: S,(r) — S,,(r) induced by the maps
Id: Z@ — jr[ﬂ and p": O — OFF. We have 7w = wr =p".

If it does not cause confusion, we will write S, () and S/, (r) also for Re.S,(r) and Re, S, (r),

respectively, where €: X, yn — X, ¢ is the natural projection to the étale site (or sometimes to
the Nisnevich site).

2.1.1 Syntomic cohomology and differential forms. Let X be a syntomic scheme over W (k).
Recall the differential definition [Kat87] of syntomic cohomology. First, assume that we have an
immersion ¢: X < Z over W (k) such that Z is a smooth W (k)-scheme endowed with a compat-
ible system of liftings of the Frobenius morphism {F,: Z, — Z,}. Let D, = Dx,(Z,) be the
PD-envelope of X, in Z,, (compatible with the canonical PD-structure on pW,,(k)) and Jp,, the
ideal of X, in D,,. Set ng ={a € Jgi+s|¢(a) €p"Op,,, }/p" forsomes > r. For0 <r < p—1,

we have J gz =

sheaves on Xg:

J 1[171 This definition is independent of s. Consider the following complexes of

Su(r)x.z = Cone (5 @ 0y =& Op, ® 0y )[-1], (2.2)

S (r)x.z = Cone (Jh @ 0y L =505 © 0y )[-1],
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where €3, = Q3 o) and @r s “o/p"” (see [Tsu99, 2.1] for details). The complexes S, () x,z
and S! (r)x,z are, up to canonical quasi-isomorphisms, independent of the choice of ¢ and {F,}
(and we will omit the subscript Z from the notation). Again, the natural maps w: S, (r)x —
Sn(r)x and 7: Sy(r)x — S),(r) x have kernels and cokernels annihilated by p".

In general, immersions as above exist étale locally, and we define S,,(r)x € DT (Xg, Z/p")
by gluing the local complexes. We define S/ (r)x in a similar way. There are natural quasi-
isomorphisms Sy, (r)x ~ S,(r)x and S, (r)x ~ S, (r)x.

Now, let X be a log-syntomic scheme over W (k). Using log-crystalline cohomology, the above
construction of syntomic complexes goes through almost verbatim (see [Tsu99, 2.1] for details)
to yield the logarithmic analogs Sy, () and S}, (r) on Xg. In this paper, we are often interested in
log-schemes coming from a regular syntomic scheme X over W (k) and a relative simple (that is,
with no self-intersections) normal crossing divisor D on X. In such cases, we will write S,,(r) x (D)
and S}, (r)x (D) for the syntomic complexes and use the Zariski topology instead of the étale one.

2.1.2 Products. We need to discuss products. Assume that we are in the lifted situation (2.2).
Then we have a product structure
U: S, (rxz®S,(Mxz— S,(r+r)xz, rr' >0,
defined by the following formulas:
(z,9) ® (&,3/) = (22, (=1)"p 2y’ + yo(a')) ,
(z.9) € (%7 = (5, " ©04,) @ (O, © 03 ).
(«'.y) € S,k 7 = (5, " @ Q) & (Op, ©93 ).
Globalizing, we obtain the product structure
U: S (rx @8 (MM x — St (r+1)x, mr' >0.
This product is clearly compatible with the crystalline product (via the canonical map S/, (r)x —
T
Similarly, we have the product structures
Ut Sp(r)x,z ® Sn(T/)X,Z — Sp(r + T/)X,Z, r,r’ >0,
defined by the formulas
(z,y) @ (¢,) = (22, (=1)"2y’ + yor (2')) ,
(x.9) € Su(r)kz = (T, ©0Y,) @ (Op, ® 9% ).
(2',y) € Sn(r')g(’z = (Jg;_b> ® szn) <) (ODn ® QbZ:LI) .
Globalizing, we obtain the product structure
U: Sp(r)x @% S, (rx = Sp(r+1")x, mr >0.

This product is also clearly compatible with the crystalline product (via the canonical map
Su(r)x — JE).

The above product structures are compatible with the maps w. On the other hand, the maps 7
are, in general, not compatible with products.
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2.1.3 Symbol maps. Let X be a regular syntomic scheme over W (k) with a divisor D with
relative simple normal crossings. Recall that there are symbol maps defined by Kato and Tsuji
[Tsu99, 2.2]

®r r Qr r
(M)ggn) — H"(S!(r)x(D)), (M)ggfnﬂ) — H"(Sp(r)x(D)), r=>0, (2.3)
where, for a log-scheme X, its log-structure is denoted by Mx. For » = 1, we get the first Chern
class maps (recall that M§ = J+O%\ p» where j: X \ D — X is the natural immersion)
& 1.0 pl-1] = 14O py [-1] = Su(1)x (D),
o 3«Ox\pl=1] = i*j*OEkX\D)n[—l] = S, (Dx(D),

that are compatible; that is, the following diagram commutes:

syn

J-0% pl=1] = S5,(1)x (D)
Sn()x(D).
In the embedded situation, these classes are defined in the following way. Let C), be the complex
(14 Jp, = Mp) ~ 3+O(x\py, [-1] = M2 [-1].
The Chern class maps
& .00y, 1) = Sy(Ux (D), & .00 py 1] = Su(1)x(D)
are defined by the morphisms of complexes
Cn— S (xz, Cny1— Sn(l)xz
given by the formulas

1+ Jp, = (S,(V)x,2)°=Jp,, ar loga,

)

1+ Jp,,, — (Sn(l)X,Z)O =Jp,, ar>loga mod p"
and
ME - (S,(1)x,2)' = (Op, © Q) ®Op,, b (dlogb,log (Pep, (0)1)),
ME = (Sa(l)x,2)' = (Op, ®Qy,) ®Op,, b+ (dloghmod p",p~"log (Wep,.,,(b) "))

The symbol maps (2.3) for general r are obtained from the case = 1 using the product structure
on syntomic cohomology.

2.2 Syntomic-étale cohomology

We will now recall the definition and basic properties of syntomic-étale cohomology. The rela-
tionship between syntomic cohomology and syntomic-étale cohomology mirrors the one between
étale nearby cycles and étale cohomology. Let X be a log-scheme, log-syntomic over Spec(W (k)).
We will need the logarithmic version of the syntomic-étale site of Fontaine-Messing [FM87]. We
say that a morphism Z — ) of p-adic formal log-schemes over Spf(W(k)) is (small) log-syntomic
(see [Tsu98] for a precise definition) if every Z,, — Y,, is (small) log-syntomic. For a formal log-
scheme Z, the syntomic-étale site Zy is defined by taking as objects morphisms f: Y — Z that
are small log-syntomic and have log-étale generic fiber. This last condition means that, étale
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locally on ), the morphism f has a factorization Y - X 5 Z with X affine, ¢ an exact closed
immersion, and g log-smooth such that the map F @y () F(y,I/IQ) — F Qw ) F(y,i*Qk/z)
is an isomorphism, where I is the ideal of Oy defining ). For a log-scheme Z, we also have the
syntomic-étale site Zg. Here the objects are morphisms U — Z that are small log-syntomic with
the generic fiber Uk log-étale over Zg.

Let X be the p-adic completion of X. Let i: X, ¢t — X¢ and j: X k60 — X¢t be the natural
maps. Here X, is the open set of X where the log-structure is trivial. We have the following
commutative diagram of maps of topoi:

< 156 jsé
Xeg — Xo =— XKk ¢

[ 1.

o L6t Jeét
KXo — Xgp <— XKt -

First, assume 0 < 7 < p— 2. Abusively, let S,(r) denote also the direct image of Sy, (r) under the
canonical morphism X, syn — Xg. By [FM87, IIL5], for Vg Xir k6t — XK s, there is a canonical
homomorphism

art Sp(r) = isJse s JLGZ/p" (1),
where G denotes the Godement resolution of a sheaf (or a complex of sheaves). Similarly, for any
r > 0, we get a natural map

Oy Sn('r) — z:éjsé *j;GZ/pn(T),,
where Z/p"(r) = (p*a!)™1Z/p"(r) if r = (p — 1)a + b with a,b € Z and 0 < b < p — 1 [FM87,
I11.5]. Composing with the map S),(r) — S,(r), we get a natural morphism

ar: Sh(r) = it gsesjiGZ/p"(r) .

2.2.1 Syntomic complexes and p-adic nearby cycles. For log-schemes over O, in a stable
range, syntomic cohomology tends to compute (via the period morphism) p-adic nearby cycles.
We will briefly recall the relevant theorems. For 0 < r < p — 2, there is a natural homomorphism
on the étale site of X,

ay: Sp(r) = i*RjZ/p"(r) .

To define it, we apply REs to the map S,(r) — i’ Rjsc«Rj.Z/p"(r) induced from the map a,
described above and get

Re.Sn(r) = REWSL(r) — REViLRIse«RILZ/p" (1) = il RexRjss«RjLZ/p™ (1) = i*Ryj.Z/p" (1) .

The first equality follows from the fact that the morphism X, syn — Xsé is exact [FM87, I11.4.1].
The second equality was proved in [KM92, 2.5], [Tsu98, 5.2.3]. One checks that «,. is compatible
with products.

THEOREM 2.2 ([Tsu00, Theorem 5.1]). For i < r < p — 2 and for a fine and saturated log-
scheme X log-smooth over O, the period map

ar: Sp(r)x 5 T<ri"RJZ/p" (1) x,, - (2.4)

is an isomorphism.

Note that the definition of the period map in [Tsu00] is different from the one in [Tsu98] that
we use here. However, they clearly agree in the derived category.
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Similarly, for any r > 0, we get a natural map
G Sp(r) = i*RjZ/p"(r) .

Composing with the map w: S} (r) — S,(r), we get a natural morphism, compatible with prod-

UCt}S,
(075 S,
T

n

(r) = "Ry Z/p"(r)".

THEOREM 2.3 ([CN17, Theorem 1.1]). For 0 < i < r and for a semistable scheme X over Ok,
consider the period map

ar: HY(S, (1) x) = *RGZ/D™(r),, - (2.5)

If K has enough roots of unity, then the kernel and cokernel of this map are annihilated by p™"
for a universal constant N depending only on p (and dim X if p = 2). In general, the kernel and
cokernel of this map are annihilated by p™" for an integer N = N(e,p) which depends only on e
and p.

2.2.2 Syntomic-étale cohomology. Recall [FM87, I11.4.4], [Tsu98, 5.2.2] that the functor F +—
(05, F, jaF it F — ilJsexJosF) from the category of sheaves on X to the category of triples

séY 1 Ysé sé
(G, H,G — i%jss«H), where G and H are sheaves on )?sé and X ¢, respectively, is an equivalence
of categories. It follows that we can glue the complexes of sheaves S, (r) and S),(r) and the
complexes of sheaves j.GZ/p"(r) and j.GZ/p"(r) by the maps «, and obtain complexes of
sheaves &,(r) and &/ (r) on X. We have the exact sequences

0 = JsetfsGZ/p" (1) = En(r) = ixSp(r) = 0, 0
,

g p—- 2 )
0= Jsarj GZ/p" (1)) — E(r) = ixSpy(r) = 0, :

<r
>0
Remark 2.4. The syntomic-étale complexes &,(r) that we describe here are the same (in the
derived category) as those defined by Fontaine-Messing in [FM87, 5] in the case when Xi, = X

but differ from those defined by Tsuji in [Tsu98, 5.2] in the general situation. More specifically,
we have

Ex (r) = H(En(r)),
where we write £! (1) for the syntomic-étale sheaves of Tsuji.
If it does not cause confusion, we will denote by &,(r) and &/ (r) also the derived pushforwards
of &y,(r) and & (r) to X¢. Note that they are quasi-isomorphic to the complexes obtained by

gluing the complexes of sheaves S, (r) and S}, () and the complexes of sheaves j.GZ/p™(r)" by
the maps &, and a,.. Hence, we have the distinguished triangles

JeuRIZ/p" (1) = En(r) = 1xSn(r),  JeuRILZ/P"(r) — E,(1) = ixS,,(7), (2.6)
where j': Xk — Xk, as well as the natural maps
Qr: En(r) = RALZ/p" (1), ap: En(r) — RjZ/p"(r)

compatible with the maps &, and «a,.. For a > 0, we have the truncated version of the above: the
distinguished triangles

JerT<aRILZ /D™ (1) = T<o&n (1) = 1xT<aSn(7) ,
JerT<aRILZ /D™ (1) — T<o&L (1) = 1xT<aSh (7). (2.7)
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2.2.3 Syntomic-étale cohomology and étale cohomology of the generic fiber. For a log-scheme
over O, in a stable range, syntomic-étale cohomology tends to compute étale cohomology of
the generic fiber.

THEOREM 2.5. Let X be a log-scheme log-smooth over Oj.. Let j: Xy < X be the natural open
immersion. Then

(i) we have a natural quasi-isomorphism
Qe Térgn(r) = TgTRj*Z/pn(’l“) , 0<r<p-2;
(ii) if X is semistable, there exist a constant N as in Theorem 2.3 and a natural morphism
ar: EL(r) = Rj.Z/p"(r), r>0,
such that the induced map on cohomology sheaves in degree q < r has kernel and cokernel
annihilated by pN".
Proof. Assume 0 < r < p — 2. Consider the following commutative diagram of distinguished
triangles:
jét!TéeriZ/pn(r) I Térgn (T) —_— Z*Sn (T)
led ldr zlar
JenT<rRILZ/P" (r) — 7w R Z/p" (r) —ii* 1<, R Z/p" (7).
The top triangle is distinguished because we have the distinguished triangle from (2.7) and the
natural map 7<,S,(r) = S,(r) is a quasi-isomorphism. The map «. is a quasi-isomorphism by
Theorem 2.2. The first part of the theorem follows.

For the second part, consider the following commutative diagram of distinguished triangles:
JenT<r RILZ/P" (1) ——— 7, &, (1) ————= i.:7<, S, (1)
E\le J{ar iw
Jem<rRIZZ/p" (1) —— 1< RGZ/p" (1) — i T RjZ/p" (r)".

By Theorem 2.3, on the level of cohomology, the right period map «, has kernels and cokernels
killed by p™" for a constant N as in the theorem. Hence, the same is true of the left map «.., as
wanted. O

Theorem 2.5 implies that the logarithmic syntomic-étale cohomology is close to the logarith-
mic syntomic-étale cohomology of the complement of the divisor at infinity.

COROLLARY 2.6. Let X be a semistable scheme over Ok with a divisor at infinity D.,. We treat
it is as a log-scheme over Oj;. Let Y := X \ Do, and let j;: Y < X.

(i) We have a natural quasi-isomorphism
Qr: T<rEn(T)x = T<rRj1En(r)y, 0<r<p—2.
(ii) There exist a constant N as in Theorem 2.3 and a natural morphism
ap: E(r)x = Rj&L(r)y, r=0,

such that the induced map on cohomology sheaves in degree q < r has kernel and cokernel
annihilated by pN".
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Proof. Note that Xy, = Yk, and set jo: Y — Y. We have j = j1jo. By Theorem 2.5, both
terms in the first claim are quasi-isomorphic to
T<rRI«Z/p" (1) x,, = T RjnT<r Rij2«Z/p" (1) vy, -

Hence, they are quasi-isomorphic. The second claim of the corollary is proved in the same way. [

2.2.4 Nisnevich syntomic-étale cohomology. We will now pass to the Nisnevich topos of X.
Denote the natural projection by €: Xg — Xnis. For r > 0, by applying Re, to the étale period
map above and using that? Re.i* = i*Re, (cf. [Geil4, 2.2.b]), we obtain a natural map

ar: ReoSp(r) — i*Rj.Re Z/p"(r) .
Composing with the map w: Re,S),(r) = Re S, (r), we get a natural morphism, compatible with
products,

ar: Re S, (r) — i*Rj.Re Z/p" (r) .
Write, for simplicity, S,(r) and S),(r) for the derived pushforwards of S, (r) and S/, (r) from X
to Xnis, and likewise for &,(r) and &), (r). Notice that they are quasi-isomorphic to the complexes
obtained by gluing the complexes of sheaves S, (r) and S),(r) on X nis and the complexes of

sheaves ,j.GZ/p™(r)" on X K.Nis by the maps &, and «,. Hence, we have the distinguished
triangles

INistRJARELZ/p™ (1) — En(r) = ixSn(r),  jnistRILReLZ/p™ (1) — EL(r) — ixSL(r),  (2.8)
as well as the natural maps
ar: En(r) = RiReZ/p" (), i Ea(r) — RijxReZ/p"(r),

compatible with the maps &, and «,.. For a > 0, we have the truncated version of the above: the
distinguished triangles

INistT<aRIREZ/P" (1) = T<aln(r) = ixT<aSn(r)
INisl T<aRJLRELZ /D™ (1) — T<oEh (1) = 1xT<aS) (7). (2.9)
Define the following complexes of sheaves on Xpyjs:
Sn(r)Nis == T<rSn(r),  Sp(r)nis = T<rSp (1)
En(M)Nis = T<rEn (1), EL(T)Nis = T<rEL(T)
Ezample 2.7. For X = Spec(W(k)), we have
Z/p", i=r=0,
H'(W(k),Sp(r)nis) = Wa(k), i=1,r>1,
0 otherwise .
Moreover, the morphism H(W (k), &, (r)nis) — HY (W (k), Sp(r)Nis) is an isomorphism.
To see the first claim, note that we have
Sn(0)et: Wa(k)—2Wo(k), Su(r)er: 0= Wy(k), r>1.
It follows that
Sn(O)nis = Z/p",  Sp(r)es := Wy(k)[-1], r>1.

2This equality fails for the projection to Zariski topology and is the reason we use Nisnevich topology instead of
Zariski topology.

110



SYNTOMIC COHOMOLOGY AND p-ADIC MOTIVIC COHOMOLOGY

For the second claim, use the distinguished triangle (2.9) and the fact that
H' (W (k), jnisr<aR\ReZ/p™ (1) =0, >0,

because W (k) is Henselian.

3. Syntomic cohomology and motivic cohomology

3.1 Syntomic cohomology and motivic cohomology

This is the main section of this paper. We will prove Theorem 1.2 from the introduction.

3.1.1 Definition of motivic cohomology. Let X be a smooth scheme over Ok. Let Z(r)m
denote the complex of motivic sheaves Z(r)y := X +— 2" (X, 2r — %) in the étale topology of X.
Let Z/p"(r)m = Z(r)m @ Z/p". Recall how the complex z"(X,*) is defined [Blo86]. Denote
by A™ the algebraic n-simplex SpecZ[to,...,t,|/(O>_t; — 1). Let z"(X,i) be the free abelian
group generated by closed integral subschemes of codimension r of X x A’ meeting all faces
properly. Then z"(X, %) is the chain complex thus defined, with boundaries given by pullbacks of
cycles along face maps. This complex is covariant for proper morphisms (with a shift in weight
and degree) and contravariant for flat morphisms.

We know that in the Zariski topology, H’(Xzar, Z/p™(i)M) = HIT(Xzar, Z/p™(r)M) is the
Bloch higher Chow group [Gei04, Theorem 3.2] and that this is also the case for the Nis-
nevich topology [Gei04, Proposition 3.6]. Locally, in the étale topology, when p is invertible,
the étale cycle class map defines a quasi-isomorphism Z/p™(r)m ~ Z/p™(r); when X is of
characteristic p, the logarithmic de Rham-Witt cycle class map defines a quasi-isomorphism
Z/p"(r)m = WnSly o, [—7] (see [GLO0]), where, for a log-scheme Y, the right-hand side W,Q5,
denotes the sheaf of logarithmic de Rham—Witt differential forms [Lor02]. Moreover, if i: Z < X
is a closed subscheme of codimension ¢ with open complement j: U < X, then the exact sequence

0— i*Z(T — C)M7z[—2c] — Z(T)M,X — j*Z(T‘)M,U

forms a distinguished triangle in the derived category of sheaves on X,, where * denotes the
Zariski or Nisnevich topology. We define the motivic cohomology as

Hy (X, Z/p"(r)) := H*(Xzar, Z/p" (r)nr) = H* (Xnis, Z/p" (r)n1)
HKA,ét (X, Z/pn(r)) = H* (Xét, Z/p”(T)M) .

For a smooth scheme Y over O, we define its p-adic motivic cohomology as
Hy (Y, Qp(r)) :== H* (holimy, RT'(Yzar, Z/p" (r)m) ® Q) = H*(holim, I'(Yzar, Z/p" (r)m) ® Q) .
We define its étale version Hyy ¢ (Y, Qp(r)) in an analogous way.

3.1.2 p™V-homological algebra. We will need to control denominators. For that purpose, we
introduce a few, very ad hoc, definitions and list a few of properties that we will use.

DEFINITION 3.1. Let N € N. For a morphism f: M — M’ of abelian sheaves, we say that
f is pN-injective (respectively, p -surjective) if its kernel (respectively, cokernel) is annihilated
by p", and we say that f is a p’¥-isomorphism if it is p™V-injective and p~-surjective. A morphism
f: M — M’ in the derived category is a p” -quasi-isomorphism if its cone has cohomology that
is pN-torsion. In particular, a p™¥-acyclic complex is a complex whose cohomology groups are
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annihilated by p". We define a p" -distinguished triangle as a triangle
At B ol ap

together with a map to a distinguished triangle that is a p-quasi-isomorphism on each vertex.
It follows that the associated long exact sequence of cohomology sheaves is p?N-acyclic. We note
that if a morphism A — B is a pN-quasi-isomorphism, then the triangle A — B — 0 is p~-
distinguished and, almost vice versa, if the triangle A — B — 0 is p"-distinguished, then the
morphism A — B is a p*N-quasi-isomorphism.

Now, we recall the following simple lemma.

LEMMA 3.2 ([HK94, Lemma 4.18]). Let C be an abelian category, A an object of the derived
category D(C), S a finite subset of Z, my, q € S, integers, and assume H1(A) =0, ¢ ¢ S, and
that H(A) is killed by mq for ¢ € S. Then A is killed by [],cqmq.

We will repeatedly use this lemma. Here is a typical example. Let f: A—B be a p"-quasi-
isomorphism of complexes A and B concentrated in degrees [0, m]. Then there exists a morphism
g: B — A such that gf = pV™N where N (m) is a constant depending only on m; it is unique
up to pNN: that is, if g1 is another such morphism, then pN("Ng = pNWN g T gee this,
let C be the cone of f. By assumption, H*(C) is p"-torsion. Consider the exact sequence of
Hom-groups in D(C)

Hom(C, A) — Hom(B, A) ©5 Hom(4, A) — Hom(C[-1], A).

By Lemma 3.2, we have p™(™~ Hom(C[-1], A) = 0. Hence, there exists a morphism g as above.
Since we also have pN ()N Hom(C, A) = 0, such a g is pNN _ynique. We note that g is a p2V-
quasi-isomorphism. It also follows that g(fg) = gp~ (m)N Using the exact sequence

Hom(C'[~1], A) — Hom(A, A) % Hom(B, A) — Hom(C", A),

where C’ is the cone of g, we get f(pzN(m)Ng) = p?NMN Hence, if we put h = p?N"N g we
get fh = p3 NN and hf = p3NIN,

Remark 3.3. It is clear to us that many of the denominators appearing in this paper can be
improved upon with more careful bookkeeping. In particular, it is likely that the constants N(d)
depending on the dimension of the variety can be replaced by constants N (r).

3.1.3 Cycle class map to syntomic cohomology. We state the following corollary of Theo-
rem 2.5.

COROLLARY 3.4. Let X be a smooth variety over K. Then there exists a natural syntomic cycle
class map

el Hyg(X, Qp(r)) = Hipn (X, Qp(r))

where the target group is the syntomic cohomology defined in [NN16]. This map is compatible
with the étale cycle class map; that is, the following diagram commutes:

Hy (X, Qp(r))

ét

lsyn Cliq"‘
c i,

alNN

H;yn(Xa QP(T)) L Hét(X’ QP(T)) ’
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where a N is the period map defined in [NN16, 4.2], where it is called psyn- Moreover, the cycle
class map clw is an isomorphism for i < r.

Proof. For a semistable scheme X over O, consider the following diagram of sheaves on the
Nisnevich site of X:

«

grlz (7)Nis — T<er*T<TR5*Z/pn(T)/

~ ~
S~ letnTl
AR~
Rj«Z/p" (1)
The étale cycle class map cl », 1s a quasi-isomorphism by the Beilinson-Lichtenbaum conjecture

(a corollary [SV00, GLO1] of the Bloch-Kato conjecture proved by Voevodsky and Rost [Wei09)]),
by the quasi-isomorphism [GLO0O]

Z/p"(r)u = T<ReZ/p"(r),
and by the quasi-isomorphisms
GZ/p"(r)mr = RiZ/p"(r)v and  7<,RGZ/p"(r)m = R Z/p" (r)m

The period map «;., is a pV"-quasi-isomorphism for a constant N as described in Theo-
rem 2.5. We clalm that we can define compatible syntomic cycle class maps cl}’}’ such that

g B = p?N lﬁtn To do this, take the cone C), of the map h,, := (c l‘ﬁfn)* ayp. It fits into
the distinguished triangle

hn )
gvlz(r)Nis >R]*Z/pn(7‘)/M — Cp
which yields the exact sequence of Hom-groups (in the derived category)
Hom(By, . (r)xis) —= Hom(By, B,) — Hom(B,, Cy), (3.1)
where we set B, := Rj.Z/p"(r)),

Now, Lemma 3.2 applied to C), implies that C), is annihilated by M := pN . Hence, so is
Hom(B,, C,), and the exact sequence (3.1) gives that there exists a map gn: B, — &, (r)Nis
such that h,g, = M. We easily see that (Mgy), for n > 1, is a morphism of pro-systems
{B,} — {&\(r)Nis} such that h,(Mg,) = M? and (Mg,)h, = M? for n > 1. Set Py == Mg,

The above syntomic cycle class map cl}’}' induces the syntomic class map into syntomic
cohomology

svn . cl 'rn
Xy RyZ/p™ (1) m —5E! (M)Nis = Sh(r)Nis — ResSh(r)st - (3.2)

By construction, it is compatible with the étale cycle class map (via the map «,., and up to p2N ).

Its rational version clsyn h-sheafifies and gives the syntomic cycle class map

o Hyg(X, Qp(r)) = Hipn (X, Qp(r)), - el = p—@N?‘—”Tclji“h.

syn

For the compatibility with the étale cycle class, it suffices to check that a =p "ay,, but this
was done by the second author in an upcoming paper.

We will describe how this h-sheafification works. Recall that the syntomic cohomology
Hsiyn(X ,Qp(r)) is defined by h-sheafifying the (rational) Fontaine-Messing syntomic cohomo-
logy [NN16, 3.3]. More precisely, but simplifying enormously, the site Varg j, of varieties over K
equipped with h-topology has a base consisting of proper semistable schemes Y over Op, with
[L : K| < oo, such that Y;; — X is an h-map. It follows that to give a sheaf on Varg, it

suffices to describe its value on such Y. In particular, for the syntomic sheaf S’(r)q defined as
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the h-sheafification of the presheaf sending Y as above to RTgyn (Y, r)q, we set HL, (X, Q,(r)) :=
HY(Xp,S'(r)q). We can also define the h-sheaf Q,(r)ys by sending Y to

( holim,, Rj*Z/p"(r)M(Y)) Q= ( holim,, Z/p”(r)M(Ytr))Q .
Finally, we can h-sheafify all the other terms in (3.2) to obtain the map
Hy (X, Qp(r)) := H'(Xn, Qp(r)ar) = Hipn(X, Qp(r)).

Composing it with the change of topology map Hij nio(X, Qp(r)) — Hiyp (X, Qp(r)), we get the
cycle class map cl’’}' we wanted.

The last claim of the corollary follows from the fact that both af-YTN and clff,, are isomorphisms

for i < r by [NN16, Theorem A] and the Beilinson—Lichtenbaum conjecture, respectively. O

3.2 Syntomic cohomology and logarithmic de Rham—Witt cohomology

We will show in this section that adding the logarithmic structure at the special fiber changes
the syntomic cohomology by logarithmic de Rham-Witt cohomology, WHQ}O,IOg. Recall [Lor02]
that in degree ¢, the latter is defined as the abelian subsheaf® of WnQ§(O generated locally by
the symbols dlogmy - - - dlogm, for my, ..., mq local sections of M)g(%. We note that if z € Ox,,
then dlogz = dlog[z] = [z]~d([z]).

THEOREM 3.5. There exists a constant N = N(p,d) or N = N(p,d, e), depending on whether K
has enough roots of unity or not, such that for every m > N and a semistable scheme X over O
with a smooth special fiber and of dimension d, we have the following natural p™"-distinguished
triangle of sheaves in the étale or Nisnevich topology of X, respectively:

Sl (r)x — SL(r)xx '{—m>WnQ§(_O7llog[—r] or S, (r)xNis — 87/1(74)X><’Nisﬁ—m>WnQTX_O7110g[_7q] .

Here we write X* for the scheme X with added log-structure coming from the special fiber.
These triangles are compatible for different choices of m.

Proof. We will find such a constant N and the triangles corresponding to it. For m > N, we
simply set £y, := N7 gy

After setting up the local coordinates, we do, as an example, computations in dimension 0,
where it becomes clear how to define the map to logarithmic de Rham—Witt differentials. Then
we lift these computations to higher dimensions and globalize.

Step 1: Choice of local coordinates. To construct the first distinguished triangle, we start
with local computations. Let d be a positive integer satisfying a < d. Let

RY = Op{XF, . . XE Xy, .0, Xa}

be the p-adic completion of OK[Xfl, o, XFU X0, .., Xg). Let R be the p-adic completion
of an étale algebra over RY%. Let RY. be the (p,T)-adic completion of W (k)[T, Xfcl, co, XY
Xat1,--.,X4]; take the map R} — RY%, T + w, and take the (formally) étale lifting Ry
of R to R%. Let Sk be the p-adically complete PD-envelope of R in Ry equipped with the
PD-filtration F"Sg. We will write Sg := So,.. We have Sp = RT®W(k){T}SK with filtration
F'Sg = Rr®wym F Sk. Let R® == W(k){X{",...,XF, Xat1,..., Xq}, and let Ryg =
Rp/T.

3We will use étale or Nisnevich topology.
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We have the following diagrams of maps (the right diagram is obtained by reducing the rings
modulo T'):

Spf Sr
Spf RC Spf Ry Spec Ry—— Spf R7
| | i | e
Spf RYC Spf RY Spec R > Spf R
Spf Ox¢ Spf Op{T?}, Speck ——— Spf Op.

Equip R° with a Frobenius morphism ¢ o : Xz-il — XZ-i P Equip R% with a Frobenius morphism
o, compatible with ¢g, (T — TP) and with ¢ o, and equip Rz with a Frobenius morphism ¢p,,
compatible with ¢ RY.- We will simply write ¢ for the Frobenius morphism if the domain of action
is understood. The natural log-structure on Spf R is given by the special fiber and the divisor
at infinity, Xq41--- X4 = 0. It is described by the monoid M = N¢~%*! and the map defined on
the generators by eg — w and e; — X; fora+1 <7 < d.

Set Qg 1= Sk @r,; Qr,. For r € N, we filter the de Rham complex Q:‘JR by subcomplexes
FTQ:gR = F"Sp — FrilsR QRy QRT — FT72SR QRy Q%{T .
We define the syntomic complex of R as
S(R,r) := Cone (F"Q%, 25303 )[~1]. (3.4)
Set 2 5% = Sk ®r, R where R is the ring Ry with log-structure induced by 7. We define
the log-syntomic complex of R as

S(R*,r) := Cone (F”Qégw) * ) [—1]. (3.5)

Sk
For n € N, we define the syntomic and log-syntomic complexes modulo p™ as S (Rﬂ“)n =
S(R,r) ®z Z/p" and S(R*,r), := S(R*,r) ®z Z/p", respectively. In the case when R is the
p-adic completion of an étale algebra R over Ok [Xlil, . ,X;ltl, Xa+1,- .-, X4, we have
S/ (r)g = S(Rr)n, S/ (r)px = S(EX,T)
holimy, Sl,(r)g = S(R,7), holim, S, (r)gx = S(R*,7).

n )

We would like to separate the arithmetic and geometric variables. Specifically, we remove
the differentials connected with the variable T' by setting €2 S, = SR ®po Qgo. Since Qyy )1 =
W (Ek)[T)dT, we can dispose of this module of differentials by writing df as dfdT, and we can
rewrite the above syntomic complex as the following homotopy limit:

. P —p*pe
FrQ S

S(R,r) = J/a

oy,
(3.6)

0
7p.+1TP7150. i

- L] p L]
Froigy, T —20y,

Here the map ¢,: Qf, — QF, sends w € ng, to (/p*)(w). By adding logarithmic differentials
R R R

115



V. ErTL AND W. NIZIOL

dT'/T along the special fiber, we get the following log-syntomic complex:

N e .
_—
FrQ 5 Q 5

S(R*,r) = lTa lw . (3.7)

—1e Pr—p* e .
In this language, the natural map S(R,r) — S(R*,r) is given by multiplication by 7" on the
bottom row.

Step 2: Dimension 0. For R = Ok, we obtain the following proposition.

PROPOSITION 3.6. Let n > 1. We have a compatible family of p*®-distinguished triangles of
sheaves in the étale topology of Speck,

SOk, 1)n = SOk, 1), — Z/p"[-1].
For r # 1, the natural map S(Of,7)n, — S(O), 1)y is a p¥-quasi-isomorphism.

Proof. Using the above homotopy limit presentations, we write down two syntomic complexes

r_ e _1
S(Ox,r): FrS 08 = proig g g, ~@ P Tokog,

8,p" — —(pr— 9
S(O%,1): Frog Lo R pr=ig, g g, W PIHIg,
The natural map S(Og,r) = S(Of,r) is given by the multiplication by 7' on F" 'Sk and the
last Sk.
Let S%] be the p-adic completion of W (k)[T, T?/pl/¢l,i € N]. Elements of SE can be written
uniquely in the form ), a; T /pli/el where a; € W (k) with a; — 0 as i — co. They form the
ring of analytic functions over F' with integral values on the disk v,(T") > 1/e. We have Sk C SE.

(1]

The formulas (3.4) and (3.5) make sense with Sk replaced by S é . We call the resulting complexes

the syntomic complexes of (’)[Iy and denote them by S (O%],r) and Siog (O[Iy,r), respectively.
The natural maps

S(Ok,r) = S(OW 1), S(OF%,1) = Sieg(OW, 1) (3.8)

are p%T-quasi-isomorphisms. In the case of the second map, this is [CN17, Proposition 3.3]. A

simple corollary of [CN17, Lemma 3.2] states that the map p* —¢, for s = r,7—1, induces a p**"-

isomorphism FTQ;M /FTQgK ~ Qg[l]/QgK. This lemma holds also for the map p® — TP~ 1y, with
K K

basically the same proof, which implies that the first map in (3.8) is a p%"-quasi-isomorphism as
well.

The residue map resr: Qll gl Or induces the following sequence of complexes:
og, K

0= S(OW 1) = Siog (OW 1) 27, (0 - 0 —Z =2 o) 0.
The above sequence is p-exact because F SS’E} =p °kE* SE}, for £/ the minimal polynomial of w
C ~ oll] (1] (1] (1 _
over F'; which implies that FSQllog’SE] /FSQ;[%] = S, /TS) and Sy /TS, = Op ® M, where M
is p-torsion.
Modulo p", we have Op,, = W, (k) and the exact sequence in the étale topology of Speck

0— Z/p" — Op,niORn —0.
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For r = 0, the map p" — py: Of,, = OF,, is an isomorphism since 1 — pyp is invertible. For r > 1,
the map p" ! — ¢: Orn — OF,, is an isomorphism as well since both ¢ and p lo~t — 1 are

invertible. Our proposition is now proved using Section 3.1.2. O

Step 3: Local computations in higher dimensions. The computations in the above example
generalize to any ring R.

LEMMA 3.7. There exist a constant N = N(p,d) or N = N(p,d,e), depending on whether K
has enough roots of unity or not, and a natural p’"-distinguished triangle in the étale topology
of Spec Ry,

S(R,7)n — S(RX,T)H%WnQE}IOg[fT] .
Proof. We claim that the triangle

S(R,r) = Siog(R,7)

o1

[, T 008, 1) (3.9)

res

is pN7-distinguished for N as in the theorem. We note that the complex QkT’O computes the
crystalline cohomology of Ry over W (k). To prove the claim, we can assume r > 0 since it is
clear for r = 0. Set SE = RT@)W(k)[T] S%] with the induced Frobenius morphism and filtration.
Define syntomic cohomology complexes S(RM,r) and Siog(RI, ) by formulas (3.4) and (3.5),

replacing S with Sg]. Just as above, in dimension 0, we can pass from the syntomic cohomology
of R to the syntomic cohomology of R via a pb-quasi-isomorphism. It now suffices to show
that the triangle

resp

r__,e+1 . .
SR 1) — Sog (RM, ) 225 [ ;mu o) [~ 1] (3.10)

is p/V"-distinguished for N as in the theorem.
Using the homotopy limit presentations (3.6) and (3.7), we get the exact sequence
1 1 . A AN
0— S(RY,7) = Siog(RY,r) — [FTQSEL, [T, JT][-1] =0,

where € ), = Sg] ®po Qro = SE@)W(M{T}RT ®po Qgo. By Section 3.1.2, it suffices to show
that the Iﬁap

r__e+1 o . . r__e+1 . .
resy: [Fmég],, JT 2 e JT) = [, 0%, ] (3.11)

is a p?-quasi-isomorphism. The complex on the left can be simplified. We have (see the proof of
Proposition 3.6)

FSQSE]"/T = (FSSE/T) ®po Qpo = (FSSE/T)@WUC)RT,O ®pgo Q2po
~ ((ES/pS)SE)/T@W(k)RT,O ®po Qpo = (OF & M)&w 1y Rr,0 ®po Qpo

for a p-torsion module M. Here E is a twist of E = acT“+---+a1T+ap, the minimal polynomial
of @ over Op. Note that since E is Eisenstein, u = agp~! is a unit. We set E := u~! E; its constant
coefficient is equal to p. Hence, the residue map

. . _ 0 —-101 —-202
reST. FTQSE%]’//T— (FTQSE]’//T%FT ng]yl/T%FT QSE]’//T% )
0 d 1 d 2 d
- (QRT,O = QRT,O = QRT,O = )

is a p-quasi-isomorphism. It follows that the map (3.11) is a p?-quasi-isomorphism, as wanted.
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Set S := Ry. We claim that there exists a p’"-quasi-isomorphism, for N as in the theorem,
on the étale site of Spec Ry,
o« PP e e 1 r—1
[Q%, ———0Q%,,] & W QR [-r+1]. (3.12)

1—p*tlp, . . .
Indeed, for » = 0, the complex [ S P2 'Sn] is acyclic because the map 1 — p**! is

invertible. Thus, assume r > 1 and take s = r — 1. Set
HK(S, 5),, == | Sn%%n] :

This complex is p?-quasi-isomorphic to the complex [QS n—) ] Using the global
Frobenius lift on S, we get the following commutative diagram:

. P°—p°pe .

Sn Sn

lﬂs@) lé(w)
W%, i O, /dVI05 !

We note here that the de Rham—Witt Frobenius morphism F': Wn+1Q}%O — WnQ}zo restricts to
a morphism
F: Fil" W1 Qk, = V"'Qy, +dV Q5" — dV" 105"
Hence F factors as in the above diagram. Moreover, since pdV"_IQ*R0 = 0, we get the induced
map pF: W,Q% — W,Q% .
The first vertical arrow in the above diagram is a quasi-isomorphism. The second one is a p-

quasi-isomorphism since pdV"™ 1(2* = 0. Hence, the complex HK(S, s),, is p?-quasi-isomorphic

to the complex [V, p—pF>W Q' Ro/ AV 10 01]. We list the following properties of the latter

complex:
(1) For t > s, the map 1 — p'~*F: WnQ’}%O — WnQ’}%O is an isomorphism (since 1 — p!~*F is
invertible).
(2) For t < s, the map
- —10t—1
— F: Wy — WnQh, /dV" 105
is a p-isomorphism. Indeed, for the p-surjectivity it suffices to note that (p*~! — F)(Va) =
p* Vo — pa for a € WnQEO/dV”_lﬂgl and t < s — 1. For the p-injectivity, we note that

if (p>t —F)(a) =0 for a € WnQﬁzO, then V(p*~t — F)(a) = p* 'Va — pa = 0. Hence,

p* 11V = a, which implies p™(5—t—1)

V"o = a. Hence, a = 0.
(3) There is an exact sequence
0 = Wnly, 1og — Wiz~ W2, /dV™ 1251 = 0

in the étale topology of Spec Ry [CSS83, Lemma 1.2], [Lor02, Proposition 2.13]. In the
Nisnevich topology it is still exact on the left and in the middle.

Consider the following sequence of complexes on the étale site:
0 = Wi, 10— 5] = Wl LW, O, /dV™ Q5 — 0.

By point (3) above it is p*-exact in degree s. By point (2), it is p*-exact in degrees less than s.
In degrees s + i > s, it becomes the sequence

0 = W Qs 2Py gt qyn-lsticl g
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By point (1), it is p*-exact on the right; by the same point and the fact that pdV"*197%0 =0, it
is also p*-exact on the left. Thus the natural map

S ° °—p*F ° n— *—
Wk, 1og|—5] = (W3, T W, Q% /dV 05

is a p**-quasi-isomorphism in the étale topology of Spec Ry, as wanted.

We obtain the quasi-isomorphism (3.12) by appealing to Section 3.1.2. Then, using the same
section, we get our lemma. O

Step 4: Globalization; the first triangle. The above local computations can be globalized in
the case of the first triangle in the theorem in the following way. We note that we have actually
proved above that we have the following p**-quasi-isomorphisms of sheaves on the étale site
of X():

S_pe | _ . S__
W Qi 1o | — 51— Wi, 2 W Qe V™ 250 2 [Acrn—2—Es Acr ]
where A, is the sheaf (U — Xoy) — RI'¢(U/Wp(k)). The notation is slightly abusive here,
but we hope that this will not lead to confusion. The second p-quasi-isomorphism follows from
Tlusie’s comparison quasi-isomorphism Ay, — Wi, [11179, Section IL.1]. By Section 3.1.2, for
N = N(d), there exists a pV*-section vy; of the map f31, that is, a map v; such that v,3; = p’¥*
and By = p™V°. It thus suffices to construct a map
Sn(r)xx = [Aern =" Acrn] [~1]
and show that the triangle
Sp(r)x = (1) xx = [Acap——"+Acn][-1]

is pV"-distinguished for N as in the theorem.

For this, consider the following two diagrams of compatible coordinate systems (localize on X
if necessary to get X = Spec A):

Spec Dr Spec Dy,

Spec A,© Spec Brp, Spec A€ Spec B,
| | | |
Spec Ok n© Spec Op [T Speck € Spec Ofp,

Spec O, Spec OF, .

Here By, is log-smooth over Spec O[T, where the latter scheme is equipped with the log-
structure associated to 7', and the hooked arrows are exact closed embeddings. The right dia-
gram is obtained by “reducing” the left diagram “modulo 7'.” It follows that the residue map
res: § B, — Op,, induces a map resy: Qb% — QBnl (we note that the Frobenius morphism

n

 on the domain is compatible with py on the target) and that the sequence

0= Qh, =, =505 =0 (3.13)
’ Tn n

is exact. These constructions glue in the usual way, and we obtain a map resy: J. )[;L — Acrn[—1]
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and a sequence of complexes of sheaves on the étale site of X

T = T0 2 A1), (3.14)

where we write J )[;} for the sheaf (U — X,,) — RI'¢(U, J. [Tl). Hence, we obtain a sequence

Sh(r)x = Shr) xx =5 [Acon T2 Acen] [-1]. (3.15)

It is a pN"-distinguished triangle for N as in the theorem: this can be checked locally, where
we can pass to the more convenient coordinate system from (3.3) and use the computations we
have done in the proof of Proposition 3.6. Define the map xy in our theorem as the composition
~189 rest for a fixed choice of such an N. This concludes the construction of the first distinguished
triangle of our theorem.

Step 5: Symbols and the map xy. Before continuing, we need to understand the relation
between syntomic symbols and the map xy defined above.

LEMMA 3.8. (1) For f; € O%(X), for 1 < i < r, we have

’L{N({fh LR fT‘}) =0, K/N({fl, e Jret, w}) = pN leg[?l] T leg[?rfl] )
where f; is the reduction of f; to O%,-
(2) For f; € M3 (X), for 1 <i < r, we have

K:N({flv R 7f7"}) =0, HN({fl? . 'afolaw}) :delog?I o 'dlog?r—l )

where f, is the reduction of f; to M )g(l()).

Proof. 1t is enough to argue locally, so we will assume that we have the coordinate system
from (3.3). We start with the first point. Choose lifts g; € Rr,, of functions f; € R, for 1 <i <.
We have

resp({f1,..., fr}) =resp ((dloggl,log (gfgo(gl)*l)) u---u (dloggr,log (gf(p(gr)*l))) =0.

This proves the first equality of the first point of the lemma.

For the second equality of the same point, first assume r = 2. We have (with an analogous
notation)

rest({f,@}) = resr ((dlog g, log (9"¢(9) ")) U (dlog T,0))
= resy (dlogg dlog T, plog (gpgo(g)*l) dlog T)
= (dlogg,plog (3¢ (9) ")),
where g is the reduction of g to Ry, Let a: Qf, — W, Q% be the canonical map. Since the

reduction of g to Ry is the same as the reduction f of f, we can write a(g) = [f]u, u € 1+pW,, Ry.
We have dlog a(g) = dlog[f] + dlogu. Set ¢ := gP¢(g) L. It follows that

P2((dlogg, c)) = (dlog[f] + dlog u, a(c)) = (dlog[f],0) + (dlog u, a(c)),

[B2((dlog g, ¢))] = [B1(dlog[f])] -

The last equality of cohomology classes can be seen using the computations in the first part of
the proof of Lemma 3.7, and it finishes our argument.
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For a general r, we compute similarly

resp({/f1,-.., fr—1,@}) =" ({91, .., gr—1}) Uresp({w}) = (dlog g, - - - dlog g, 1,c) U(1,0)
= (dloggl -+~ dlog 9r—1 C,) :
Here i: Spec Ry — Spec Ry is the natural map, and the first equality follows from the projection

formula in crystalline cohomology. We define ¢ and ¢ by the second and the third equality,
respectively. We get

Ba((dlogg, -+~ dlogg, ,,¢')) = (((dlog[f,] + dlogus) - - (dlog[f, ] + dlogur_1), a(c'))) ,

[B2((dlog g, - - - dlog gy, )] = [Bu(dlog[fy] - - - dlog[f,_1])],

as wanted.
For the second point of the lemma, we start with sections f; € M and f; = f/X Niwhere
fl € R* and, for N; = (mjq41,...,Mmiq) € Z4 % we have X Vi .= HaJrKKd X;ﬂ’"‘j. We get

rest({f1,..., fr}) = resp((dlog gi,c1) U--- U (dlog gr,c)) =0.

Computing as above, we get
I'eST({fl, o 7f7"—la ZU}) = (dloggl e dlog?r—h C) :
But dlog a(g;) = dlog([ﬂ]XN") + dlogu; for u; € 1 4+ pW, Ry. Hence

[Ba((dlog g, -+~ dlog gy, ¢))] = [B1(dlog ([7JX™) - (log ([, X))
= 61 (diog[F1] -+~ diog[F,1])]

as wanted. O

Step 6: Globalization; the second triangle. To get the second triangle in the theorem, take
the first triangle and push it down to the Nisnevich site. We obtain the p™"-distinguished triangle

Re. Sl (r)x — RewSl(r)xx —sRe Wa e b [-1].

Recall that, in the absence of a horizontal log-structure, Kato proved that T<0R5*WnQ§(_011og ~

W”QTX_O,Ilog [Kat82]. This is also true in our setting: adding one horizontal irreducible divisor at
a time, use Gysin sequences and Kato’s original result. The second triangle in the theorem is
just the truncation 7<, of the above triangle, assuming, of course, that it is a p’V"-distinguished
triangle, for V as in the theorem. For that it suffices to check that the map H"(S;,(r)xx nis) —

WnQS(_Oll og 18 pV"-surjective. But this follows from Lemma 3.8. O

Remark 3.9. There is a variant of Theorem 3.5 in which p™" is replaced by a worse error p’¥

for N = N(p,e,r), but which has a slightly simpler proof. Namely, we can use the following
commutative diagram in which rows are distinguished triangles:

Cone(7) = RE e (Xo/ W (k))Pe=F" [-1]

RI(Xet, S5, (r) x <) RTer (X7 /Wi (k)7 —=— Rlex (X[ /Wa (k) / F"

A ] o

RI( X, S, (1) x) R (X1 /Wi (E))P=P" — » R (X1 /Wp(k))/F".
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The first two columns are clearly distinguished triangles. The map 7 is a pV-quasi-isomorphism
for N = N(p,e). In fact, we have canonical p™V-quasi-isomorphisms

REex (X1 /Wi (k))/F" — Rler(X{ /Of )/ F",
RE (X1 /Wy (E))/F" — Rl (X1/Ok )/ F" .

The first one is proved in the proof of [NN16, Corollary 2.4]; the second one is proved by a non-
logarithmic version of the same argument. It follows that the top horizontal map in the above
diagram is a pV-quasi-isomorphism for N = N (p,e). It now suffices to construct a p™-quasi-
isomorphism, for N = N(r), between the complexes of sheaves W, - r+ 1] and AL "
this was done in the proof of Theorem 3.5.

log [

COROLLARY 3.10. Let X be a semistable scheme over O with a smooth special fiber. There
exist a constant N = N(p,e,d,r) and the following natural family of compatible p™-quasi-
isomorphisms for m > N, where * denotes the étale or Nisnevich topology of X,

Y(m): Sy(r)xs ® Wl og[=1] = S1(r)xx -

Proof. It suffices to argue in the étale topology. The commutative diagram below shows that there
exists a natural pV(®%7")_section of the canonical map RF(Xet, ' (r)x) — RT(Xegt, SL(r) xx ),
hence a p™N(Ped7)_gection of the map S/ (1) xx 6 — W, QXO 7], as wanted:

)/E"

log [

RT e (X /Wi (K))PP" —25 RO (X[ /Wi (K

R (X /Skn) PP —LZ s RT (X /Wi (K

)/E"

B1 RFCT(X6< /Wn(k)0)¢:p

RE o (X1 /Wi () F=F —S0 o R (X /W (k) E”

Here the map ps is induced by T' +— w, the map ij by 7' — 0. The latter map is a quasi-
isomorphism: this is an immediate consequence of the fact that the Frobenius morphism is
highly topologically nilpotent on the divided power ideal of Sk. The map «; is defined to make
the triangle commute. The map ao is defined to make the trapezoid p¥®e4)_commute: recall
that 3, is a pN€)_quasi-isomorphism, and use Section 3.1.2. The map i*, where i: Xy — X
is the natural closed immersion, is a p¥("¢)-quasi-isomorphism [CN17, proof of Lemma 5.9]. A
diagram chase shows that the bottom triangle p™¥(®¢%9_commutes. O

Let, for * denoting the étale or the Nisnevich topology,
RI(X,,8(r))q := holim, RI'(X,, S, (r)) ® Q = holim, RI'(X,, S, (r)) @ Q,
RI(X., &(r))q = holim,, RI'(X, &,(r)) ® Q = holim, RT(X,, &, (r)) ® Q,

RI(X., W L) Q

:= holim, RI" (X, i,

r—1
Whn QXO log
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In the proof of Theorem 3.5, we have shown that there is a p™¥(4)"

WnQer}log[_T + 1] :> [Acr,nMAcr,n] .

-quasi-isomorphism

It follows that we have

r—1

RI (X, WO ho.) g = Rl (Xo/F)G [ —1],

where, for a scheme Y over W (k), we set
Rl (Y/F) := RTl:(Y/W (k))q := holim,, RT'o;(Y1 /W, (k)) ® Q.
The following corollary is an immediate consequence of Corollary 3.10.

COROLLARY 3.11. Let X be a semistable scheme over Ok with a smooth special fiber. We have
the following natural quasi-isomorphisms:

RI(X.., S(r))q & RT (X, W) o[—7] = RO(XX, S(r)q -

COROLLARY 3.12. Let X be a semistable scheme over Ok with a smooth special fiber. For
a constant N = N(p,d) or N = N(p,d,e), depending on whether K has enough roots of unity
or not, we have the following family of compatible p™"-distinguished triangles, for m > N, of
sheaves in the étale topology of Xg:

S (r)x — <" RjZ/p" (r) — WnQTX_O}log[—r] : (3.16)
Moreover, for a constant N = N(p,e,d,r), we have the following p™-quasi-isomorphisms for
m > N:

y(m): Sh(r)x @ WnQTX_O,llog[_r] — <, i RjZ/p" () .

Proof. This immediately follows from Theorems 3.5 and 2.3 and Corollary 3.10. 0

Remark 3.13. For r < p—2, the distinguished triangle (3.16) was constructed before by Kurihara.
No additional constants are needed in this case.

THEOREM 3.14 ([Kur87, 1]). Let X be a smooth scheme over Ok. For r < p — 2, we have the
following distinguished triangle of sheaves in the étale topology of Xy:

Sn(r)x = 1<, " RjLZ/p" (1) — WnQ}_O,llog[—r] .

It is easy to see that Theorem 3.14 holds also for schemes X that are semistable over Ok
with a smooth special fiber, that is, that we have the distinguished triangle

Sn(r)x = 1<, i"RGZ/p" (1) — WnQ&;}log[—r] , r<p—2.

Indeed, it suffices to note that all the terms involved have Gysin sequences that are compatible
with the maps in the sequence [Tsu00] and to use Theorem 3.14. In particular, in view of
Theorem 2.2, we have the distinguished triangle

Sn(r)x = Su(r)xx = WS Lo =71, r<p-2,

a “small twists” analog of the distinguished triangles from Theorem 3.5.

3.3 Syntomic-étale cohomology and motivic cohomology

The main theorem of this section shows that, in étale topology, syntomic-étale complexes on
smooth schemes over Ok approximate motivic complexes.
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THEOREM 3.15. Let X be a semistable scheme over Ok with a smooth special fiber. We treat
it as a log-scheme with the log-structure induced by the divisor at infinity. Let j': X — X be
the natural open immersion.

(i) There is a natural cycle class map
™ RILZ/DM ()M = En(P)xNis, 0<r<p-—2.
It is a quasi-isomorphism.
(ii) There exist a constant N = N (p,d) or N = N(p, e, d), depending on whether K has enough
roots of unity or not, and a family of natural and compatible cycle class maps, for m > N,
Y™ RGLZp™ ()M — Eé(r)xyNiS, r>=0,
that are p""-quasi-isomorphisms.

We have analogous statements in the étale topology. These cycle class maps are compatible (via
the localization map and the period map) with the twisted étale cycle class maps; that is, we
have the commutative diagram

syn,m
Clry s

Rj.Z/p" (r)mee —— (1) x

p"mr v:lﬁt \L iar

RjZ/p"(r)ss —= RILZ/p"(r)} -
Proof. We will define the classes cliyn’N , for a constant N as in the theorem, and set clY™™ =

PN YN for m > N.

We start with the Nisnevich topology. We will prove the second claim, the proof of the first
one being analogous. Consider the commutative diagram

INist T<r Rig JRe«Z/p"™ (1) —— &, (r) x Nis 1S, (1) x Nis
| | l
INistT<r R (REZ/p" (1)) —— & (1) xx Nis — 15, (T) x % Nis

lm

, —1
Wl el —T] -

The two rows are distinguished triangles; the right column is a p™"-distinguished triangle, for a
constant IV as in the theorem, by Theorem 3.5. It follows that for the same type of N, we have
the pN"-distinguished triangle

E;L(T)X,Nis — g;L(T)XX,NisH—N%*WnQS(_O’l]Og[_r] . (317)

Let Y = Xi,. By functoriality, we get the map of pV"-distinguished triangles

En(r)x Nis ——= &(r) x x Nis 1 W og 7]

lz lz
RjLEL(r)y,Nis — RILEL(r)y = nis — Rt WSy o [=7] -
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The right vertical arrow is a quasi-isomorphism since My, = j.O% Xo.tr: the Gysin sequence for
logarithmic de Rham—-Witt cohomology implies the first isomorphism below [Sat13, 2.1.1],

~

r—1 -/ r—1 -/ r—1
W, QXO log J Wa QYO log 5 RiLW, QYO log >

the second one follows from the quasi-isomorphisms W, QYO log =~ JiZ/p™(r—1)p and jLZ/p™(r—

ar = RjLZ/p™(r—1) 5. The middle vertical arrow is a p’¥"-quasi-isomorphism by Corollary 2.6.

Hence, the left vertical arrow is a p™"-quasi-isomorphism, and we may assume that the horizontal
divisor of X is trivial.

Consider the diagram

En(r)x Nis ——— &5 (7) xx Nis i W, QTxolbg[ r]

e, lpwmr (3.18)
\
Cp(r)

N
T@Rj*Ra*Z/p”(r)'X u>z>,<W ngollog[ r].

Here, the map kg is induced from a map 7<,i*Rj.Z/p"(r) — WnQS{;}log[—r} of sheaves on the
étale site of X defined as the composition of the canonical map

re "R Z/p"(r) — PR G.Z/p" () [-1]

and the symbol map *R"j,.Z/p"(r) — WnQ;(_Ollog' The latter is defined by observing that

R"j.«Z/p"(r) is locally generated by symbols {fi,..., f} for f; € i*j,O%,  [BK86, Corol-
lary 6.1.1]. By multilinearity, each symbol can be written as a sum of symbols of the form
{fiy-o s fr} and {fi,... ,Ir_l,w} for f; € i*O%. Then k¢ sends the former to zero and the
latter to dlog[f,]---dlog[f,_1], where f; is the reduction of f; to O%, . We define C,,(r) as the

mapping fiber of the map p" k.

We claim that the right square of the diagram commutes. Indeed, we note that we can pass
to the étale site, and there it suffices to show that the following diagram of maps of sheaves
cominutes:

p(N+1)THN

H" (S5 (r)x <)

Nr
b o
i %

i*RTj*Z/p”(r)’XK

Since the map «, is a pV"-isomorphism, it is compatible with symbols up to p’-twits; that is,
a, maps a symbol to the same symbol times p", and the sheaf i*R"j,.Z/p"(r)x, is generated
locally by symbols. It suffices to check that the map ky sends the symbol {fi,..., f.}, for
fi € i*O%, to 0 and the symbol {fi,..., fr_1,@}, for f; € i*O%, to p~ dlog[f;] - - - dlog[f,_;]-
But this follows from Lemma 3.8. It follows that the left vertical map in the diagram (3.18)
exists. It is unique because

r—1
WnQXO,log

HOm(gl( )XNIS,W QXO log[ r— 1]) =0

for degree reasons. It is clearly a quasi-isomorphism.

It now remains to show that there exists a p™"-quasi-isomorphism Z/p™(r)y — C.(r) for
N as in the theorem. We proceed as in [Gei04, Section 6]. Consider the following diagram of
distinguished triangles (the complex C,(r) is defined by the bottom triangle and is p™"-quasi-
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isomorphic to the complex C},(r)):
Z/p"(r)mx ———= 3L /P" (") M xc ——1Z/p"(r = 1), x0[—1]

clftlk J{z (3.19)
Két

Cn(T‘) Téer*RE*Z/pn(r)XK - i*WnQTXB}IOg[_T] '

The middle and the right vertical maps are induced by the étale and logarithmic de Rham—Witt
cycle class map, respectively. They are quasi-isomorphisms by the Beilinson—Lichtenbaum con-
jecture. The right square commutes: pass to the étale site; there, this fact was shown in [Gei04,
Section 6]. Hence, the left vertical map exists, is unique, and is a quasi-isomorphism as well. This
concludes the proof of our theorem.

For the étale topology, the computations are analogous, but the diagram (3.19) has to be
replaced with the following one:

Z/p"(r)m,x — T<rRIZ/p" (r)ar,xc — T<r (ixRI'Z/p"™ (7)1, x [1])

V | |

Ca(r) TerRGZ/P" (1) xje — = i WU o [

The right vertical arrow is a quasi-isomorphism by [Gei04, Section 6].

Consider the composition of maps defined above,
RGLZ/p" (r)my — RiCr(r) R E (r)yNis < En(r) x Nis »

where we invert the last two maps (in the p’"-sense). By the above, it is a p’"-quasi-isomorphism
for N as in the theorem. We choose one such N and set clf,yn’N equal to that composition. The
claimed compatibility with the étale cycle class follows easily from the definitions. O

We list several, more or less immediate, corollaries of Theorems 3.14 and 3.15 (we set o :=
ét, Nis).
COROLLARY 3.16. Let X be a smooth scheme over Og.
(1) We have H} (X, En(r)) =~ Hyy (X, Z/p"(r)) forr < p —2.
(ii) The kernel and cokernel of the cycle class map
YN HY (X, Z/p" (1) — HA(X, E,,(r)
are annihilated by p™N", where N denotes the constant from Theorem 3.15. Hence,

H;(X> 5(7“))Q = HlT/I,a(Xv Qp(r)) :

In the more familiar language of syntomic cohomology, Theorem 3.15 and Corollary 3.16 can
be stated in the following way.

COROLLARY 3.17. Let X be a semistable scheme over O with a smooth special fiber. Let
j': Xty < X be the natural open immersion. Then, on the étale site of Xy,

(i) there is a natural quasi-isomorphism [Gei04]

Sn(r)x ~*Rj.Z/p"(r)m, 0<r<p—2;
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(ii) there exist a constant N as in Theorem 3.15 and a natural p’¥"-quasi-isomorphism
Sp(r)x =" RiZ/p"(r)m, 720.

COROLLARY 3.18. Let X be a proper semistable scheme over O with a smooth special fiber.

(i) We have Hj(X,Sn(r)) ~ Hyy (X, Z/p"(r)) for r < p —2.

(ii) The kernel and cokernel of the cycle class map

Hyp o(Xex, Z/p" (1)) = HA(X, S,(r))
are annihilated by pN", where N denotes the constant from Theorem 3.15. Hence,

Hy(X,S8(r))q = Hypo(Xer, Qp(r)) -

COROLLARY 3.19. Let X be a proper semistable scheme over Ok with a smooth special fiber.
Then the claims of Corollary 3.18 hold for Xo.. (in place of X). Moreover, for i < r, we have
the commutative diagram

Hif(Xo i, Qp(r)) = Hiy (Xge 11, Qp(r))

zlclf?’rn le(N_l)r clfl:“T
. P
Hg(Xog, S'(r)q — Hey (X 10y Qp(7)) -
Note. The syntomic cohomology of Xo_ is defined in the same way as that of X; see [Beil3,
1.18] for details.

Proof. The first and the second claims follow from Corollary 3.18 and Theorem 3.15 by passing to
the limit over finite extensions of K in K. The fact that the localization map j* is an isomorphism
was proved in [Niz98, Lemma 3.1]. O

Remark 3.20. For X proper, the above diagram was studied in [Niz98] (see [Niz06] for a brief
survey): it was constructed first for the Chern classes from p-adic K-theory and then for motivic
cohomology by studying the compatibility of Chern classes with operations on K-theory. This did
not use the Fontaine-Messing period map o ,; instead, a period map «; ,: H, ét(XKtr’ Qp(r)) —
Hgt(Xo?,S (r))q was defined using the above diagram. The fact that it is an isomorphism
followed from the proof of the crystalline conjecture and implies that the syntomic cycle class
map cl3” is also an isomorphism.

For an open X as above, the situation is, at the moment, reversed. We defined log-syntomic
p-adic Chern classes [Niz16] using the (universal) syntomic cycle class maps constructed in this

paper.

Appendix. Comparison of crystalline, convergent, and rigid syntomic cohomologies

We will compare the crystalline, the convergent, and the rigid syntomic cohomology for smooth
schemes over Ok with normal crossing compactifications. Let X be a smooth scheme over Og.
Recall Besser’s definition of rigid syntomic cohomology [Bes00]:

RIE (X, r) := [RTyig(Xo/F) @ FTRPdR(XK)LRFrig(XO/F) @ RIvig(Xo/K)], r=0.

syn
Here RI'jig(-) denotes the rigid cohomology complex, and f is the map defined by (z,y) —
((p" — ¢)(x),sp(y) — =), where sp is Berthelot’s specialization map.
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PropoOSITION A.1. Let X be a proper semistable scheme over Ok with a smooth special fiber.
There is a natural quasi-isomorphism

RIME (X, 7) =~ RTgyn(X,7), 7=0.

syn

Proof. As usual, we consider X as a log-scheme (with a trivial vertical log-structure). We can
write

RILE (Xir,7) o [RTvig(Xoe/F)?™" — RTvig(Xo4e/K)/F'REar (X )] -
Since we have
REgyn(X,7) =~ [RTe(X/F)?="" — RI4r(Xk)/F'],
it suffices to construct a map

RFcr(X/F) — RFrig(XO,tr/F)

that is compatible (in the dg-category sense) with the Frobenius morphism and the specialization
map from de Rham cohomology. This is accomplished by the following commutative diagram:

Rl (X1 /F) Rl (X1 /K) << — RT4r(Xx)
/ onE K \
chr(XO/F) RIcony (Xl /F) — RIconv (Xl/K) Oconv RFdR(XK,tr)
%N i* 1 i* 1 ~

chonv (XO/F) — RFCOHV (XO/K)
{ !

Rrrig(XO,tr/F) I Rrrig(XO,tr/K) .

Here RIcony(-) denotes the (logarithmic) convergent cohomology [Ogu90, BOS83, Shi02] that
is used classically to connect rigid cohomology with crystalline cohomology. The quasi-isomor-
phisms between the rigid and the convergent cohomology at the bottom of the diagram are proved
in [Shi02, Corollary 2.4.13]. The maps i* are quasi-isomorphisms by the invariance of convergent
cohomology under nilpotent thickenings [BO83, 1.14.3]. The map «g is a quasi-isomorphism by
[Shi02, Theorem 3.1.1]. The top map i* is a quasi-isomorphism on ¢-eigenspaces [CN17, proof of
Lemma 5.9]; hence, so is the map a1 p. The maps ¢ and ocony are quasi-isomorphisms simply
by the crystalline and the convergent [Shi02, 2.3] Poincaré lemmas, respectively. It follows that
the specialization map sp and the map oy x are quasi-isomorphisms as well. ]

Remark A.2. Recall that Besser’s definition of rigid syntomic cohomology is modeled on the
definition of convergent syntomic cohomology [Niz01]. In its logarithmic form, the latter is defined
as the mapping fiber

RIEM(X,7) i= [Rlconv(Xo/F)¥="" — Rl cony(Xo/K)/F " RT conv(Xo/K)] -

syn
The proof of Proposition A.1 shows that for a proper and semistable scheme over Ok with a
smooth special fiber, we have natural quasi-isomorphisms

Rrrig (Xtr, 7“) = RFCOHV(Xv r) = RFSYH(X7 T) , r=20. (Al)

syn syn

In the proper case, this was shown in [Bes00, Proposition 9.8].

For a variety Y over K, let RTNN (Y, r) denote the syntomic cohomology defined in [NN16].

syn
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COROLLARY A.3. Let X be a proper semistable scheme over Ok with a smooth special fiber.
There is a natural distinguished triangle

RIGE (Xer, 7) @ R (Xo60, W hoe) o[—7] = REG (X ors ) -

Proof. Since we have a canonical quasi-isomorphism [NN16, Proposition 3.18]

RIyn(X*,7)q = RINN (X0, 1),

syn

this follows immediately from Proposition A.1 and Corollary 3.11. O
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