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Hochschild cohomology versus the Jacobian ring

and the Torelli theorem for cubic fourfolds

Daniel Huybrechts and Jørgen Vold Rennemo

Abstract

The Jacobian ring J(X) of a smooth hypersurface X ⊂ Pn+1 determines the isomor-
phism type of X. This has been used by Donagi and others to prove the generic global
Torelli theorem for hypersurfaces in many cases. However, in Voisin’s original proof
(and, in fact, in all other proofs) of the global Torelli theorem for smooth cubic four-
folds X ⊂ P5, the Jacobian ring does not intervene. In this paper, we present a proof of
the global Torelli theorem for cubic fourfolds that relies on the Jacobian ring and the
(derived) global Torelli theorem for K3 surfaces. It emphasizes, once again, the close
and still mysterious relation between K3 surfaces and smooth cubic fourfolds.

More generally, for a variant of Hochschild cohomology HH∗(AX , (1)) of Kuznetsov’s
category AX (together with the degree-shift functor (1)) associated with an arbitrary
smooth hypersurface X ⊂ Pn+1 of degree d 6 n + 2, we construct a graded-ring
homomorphism J(X) // //HH∗(AX , (1)), which is shown to be bijective whenever AX
is a Calabi–Yau category.

1. Introduction

The derived category Db(X) of a smooth hypersurface X ⊂ Pn+1 of degree d 6= n+ 2 determines
the hypersurface X uniquely. However, a certain full triangulated subcategory AX ⊂ Db(X)
introduced by Kuznetsov in [Kuz10] turns out to be a subtler and more interesting derived
invariant of X. The case of cubic fourfolds X ⊂ P5 has been studied intensively; cf. [AT14,
Huy17, Kuz10, MS12]. As observed by Kuznetsov, in this case AX behaves in many respects like
the derived category Db(S) of a K3 surface S. In particular, its Hochschild cohomology HH∗(AX)
is known to be isomorphic to the Hochschild cohomology of a K3 surface.

The aim of the paper is twofold. We introduce a version of Hochschild cohomology of AX
for smooth hypersurfaces X ⊂ Pn+1, denoted by HH∗(AX , (1)), and explain its relation to the
Jacobian ring J(X). The main result here is the following (cf. Corollary 3.7).

Theorem 1.1. For any smooth hypersurface X ⊂ Pn+1 of degree d 6 (n + 2)/2, there ex-
ists a natural surjective homomorphism of graded rings π : J(X) // //HH∗(AX , (1)), which is an
isomorphism if n+ 2 is divisible by d.
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Note that the numerical assumption d | (n + 2) is exactly the one that according to Kuzne-
tsov [Kuz18] ensures that AX is a Calabi–Yau category. The theorem can be viewed as a graded
version of Dyckerhoff’s description of the Hochschild cohomology of the category of (ungraded)
matrix factorizations [Dyc11].

The category AX is naturally endowed with an auto-equivalence (1), the degree-shift func-
tor, which can be described either as the line bundle twist ⊗OX(1) followed by the projection
onto AX , see Section 2, or as the degree shift by interpreting AX as the category of graded matrix
factorizations; see Section 6. A purely categorical consequence of Theorem 1.1 is the following
(see Corollary 3.10 for details).

Corollary 1.2. Two smooth hypersurfaces X,X ′ ⊂ Pn+1 of degree d | (n+2) with 1 < d < n+2
are isomorphic if and only if there exists a Fourier–Mukai equivalence (AX , (1)) ' (AX′ , (1)).

Using this, we can provide a new proof of the global Torelli theorem for cubic fourfolds based
on the (derived) global Torelli theorem for K3 surfaces.

Theorem 1.3. Two smooth complex cubic fourfolds X,X ′ ⊂ P5 are isomorphic if and only if
there exists a Hodge isometry H4(X,Z)pr ' H4(X ′,Z)pr.

The proof presented here passes via an isomorphism of Jacobian rings J(X) ' J(X ′) and
so is closer in spirit to Donagi’s generic Torelli theorems for hypersurfaces [Don83] than to the
original by Voisin [Voi86]. We certainly make no claim that our arguments are any easier or
more natural than the existing ones. But it is certainly interesting to see that the result can be
deduced directly from the global Torelli theorem for K3 surfaces, demonstrating once more the
fascinating and mysterious link between cubic fourfolds and K3 surfaces.

In the rest of the introduction, we provide more background for both parts of the paper.

1.1. Global Torelli theorem. The classical Torelli theorem asserts that two smooth complex
projective curves C and C ′ are isomorphic if and only if there exists a Hodge isometry H1(C,Z) '
H1(C ′,Z). The Hodge structure is the usual Hodge structure of weight one, and the pairing is
provided by the intersection product.1

Due to results of Pjateckĭı-Šapiro and Šafarevič [PS71] and Burns and Rapoport [BR75],
a similar result holds true for K3 surfaces. More precisely, two K3 surfaces S and S′ are isomorphic
if and only if there exists a Hodge isometry H2(S,Z) ' H2(S′,Z). The Hodge structure is of
weight two, and the pairing is again given by the intersection product.2

More recently, Verbitsky [Ver13] proved a version of the global Torelli theorem for compact
hyperkähler manifolds, higher-dimensional versions of K3 surfaces, which shows that two such
manifolds Y and Y ′ are birational if and only if there exists a Hodge isometry H2(Y,Z) '
H2(Y ′,Z) (with respect to the Beauville–Bogomolov pairing) which is a parallel transport oper-
ator; cf. [Huy12, Mar11].

Classically, a similar question has been asked for smooth hypersurfaces. Concretely, are two
smooth hypersurfaces X,X ′ ⊂ Pn+1 isomorphic if and only if there exists a Hodge isometry
between their primitive middle cohomology Hn(X,Z)pr ' Hn(X ′,Z)pr? The question has been

1If the condition on the compatibility with the pairing is dropped, then the Jacobians of C and C′ are still
isomorphic, J(C) ' J(C′), as unpolarized abelian varieties and, in particular, [SnC] = [SnC′] for n > 2g − 2 in
the Grothendieck ring of varieties K0(Var).
2If the intersection product is ignored, then the Hodge conjecture still predicts the isomorphism to be induced by
an algebraic class on the product, but its concrete geometric meaning is unclear.
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addressed and answered in most cases by Donagi [Don83]. Combined with the later work by
Donagi–Green [DG84] and Cox–Green [CG90], his results can be stated as follows.

Theorem 1.4 (Donagi, Cox, Green). The global Torelli theorem holds for generic hypersurfaces
X,X ′ ⊂ Pn+1 of degree d except possibly in the following cases:

(i) (d, n) = (3, 2) , (ii) (d, n) = (4, 4m) , and (iii) d | (n+ 2) .

Note that the third exception corresponds to the situation considered in Theorem 1.1 and
ensures that AX is a Calabi–Yau category [Kuz18].

Also note that in the exceptions (i)–(iii), X is either a Fano or a Calabi–Yau variety. The
latter is the case d = n + 2 in exception (iii). In the Calabi–Yau situation, the global Torelli
theorem is known to hold (and not only generically) for the cases (d, n) = (3, 1) (elliptic curves),
(d, n) = (4, 2) (quartic K3 surfaces), and (d, n) = (5, 3) (quintic threefolds). The first two are
either trivial or special cases of the global Torelli theorem for K3 surfaces. The case of quintic
threefolds is much harder and has been settled by Voisin in [Voi99].

In the Fano situation, the global Torelli theorem really fails for (d, n) = (3, 2), for the Hodge
structure of a cubic surface X ⊂ P3 is of type (1, 1) and thus cannot distinguish between non-
isomorphic cubic surfaces. So, the first interesting case is that of cubic fourfolds X ⊂ P5. Again,
the global Torelli theorem is known to hold for those, a result due to Voisin [Voi86, Voi08].
Her proof eventually relies on the global Torelli theorem for K3 surfaces of degree two (for which
a direct proof was given by Shah [Sha80]). Another proof for cubic fourfolds, not drawing upon K3
surfaces, was given by Looijenga in [Loo09] and yet another more recent one by Charles [Cha12]
uses Verbitsky’s global Torelli theorem applied to the hyperkähler fourfold provided by the Fano
variety of lines F (X).

Donagi’s proof of the generic global Torelli theorem for hypersurfaces uses the period map
to identify certain graded parts of the Jacobian rings of X and X ′. Applying his symmetrizer
lemma [Don83, Proposition 6.2], for which one has to exclude cases (i)–(iii), allows him to deduce
from this a graded-ring isomorphism J(X) ' J(X ′). A version of the Mather–Yau theorem
then implies X ' X ′. The argument breaks down for the exceptional cases and, indeed, in the
existing proofs of the global Torelli theorem for cubic fourfolds, the Jacobian ring makes no
appearance.

The idea of our approach is to show that whenever there exists a Hodge isometryH4(X,Z)pr '
H4(X ′,Z)pr between two (very general) smooth cubic fourfolds, the K3 categories AX and AX′
are equivalent. This relies on the derived global Torelli theorem for K3 surfaces due to Orlov
[Orl97] and the result of Addington and Thomas [AT14] showing, in particular, that the set
of cubics X for which AX is equivalent to the bounded derived category Db(S) of some K3
surface S is dense. If an equivalence AX ' AX′ in addition commutes with the natural auto-
equivalence (1) given by mapping an object E to the projection of E ⊗O(1) (called the degree-
shift functor), then HH∗(AX , (1)) ' HH∗(AX′ , (1)) essentially by the definition of the Hochschild
cohomology of (A, (1)). Theorem 1.1 then yields a graded-ring isomorphism J(X) ' J(X ′) and,
by the Mather–Yau theorem, an isomorphism X ' X ′. In order to reduce to the situation where
the equivalence AX ' AX′ indeed commutes with the degree-shift functor, one needs to argue
that the set of cubics X for which AX ' Db(S, α) for some twisted K3 surface (S, α) without
any spherical objects is dense in the moduli space; cf. [Huy17]. This suffices to conclude the
compatibility with the degree-shift functor, since the results of [HMS08] show that the group of
auto-equivalences of Db(S, α) is essentially trivial.
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1.2. Graded matrix factorizations. Kuznetsov’s category AX of a hypersurface X ⊂ Pn+1

defined by an equation f ∈ k[x0, . . . , xn+1] has been shown to be equivalent to the cate-
gory of graded matrix factorizations MF(f,Z); see [Orl09] and Section 6 for the definition
and some facts. Although we do not make use of this equivalence, it served as a motivation
for our approach. In particular, Dyckerhoff’s description [Dyc11] of the Hochschild cohomology
HH∗(MF(f)) of the category of ungraded matrix factorization as the Jacobian ring J(X) got this
project started.

More precisely, Dyckerhoff studies an isolated hypersurface singularity, that is, a regular local
k-algebra R, and a non-unit f ∈ R such that the quotient R/(f) has an isolated singularity. He
then shows that the Hochschild cohomology HH∗(MF(f)) (which is concentrated in even degree)
of the differential graded category of Z/2Z-periodic matrix factorizations is isomorphic to the
Jacobian ring R/(∂if); cf. [Dyc11, Corollary 6.5].

The naive original idea of our approach was to say that any equivalence AX ' AX′ , inter-
preted as an equivalence MF(f,Z) ' MF(f ′,Z), that commutes with the degree-shift functor (1)
on both sides descends to an equivalence MF(f) ' MF(f,Z)/(1) ' MF(f ′,Z)/(1) ' MF(f ′).
The latter then induces a ring isomorphism J(X) ' J(X ′).

There are, however, a number of problems that one has to address when using the equiv-
alence AX ' MF(f,Z). First, this is an equivalence of triangulated categories. It comes with
an enhancement, but in order to apply any graded version of [Dyc11], one would need to make
sure that the enhancement for MF(f,Z) corresponds to the one used by Dyckerhoff. Also, the
compatibility of the equivalence AX ' AX′ with the degree-shift functor would need to be lifted
to the enhancement. Second, the naive idea to pass from the category MF(f,Z) to the quotient
MF(f) = MF(f,Z)/(1) needs to be spelled out and possibly be lifted to the enhancements.
Third, the relation between the degree-shift functors (k) for MF(f,Z) and the auto-equivalences
of AX is rather technical; see [BFK12].

So, we decided to work entirely on the derived side AX ⊂ Db(X) and adapted Kuznetsov’s
philosophy that viewing AX as an admissible subcategory of Db(X) and working exclusively
with Fourier–Mukai kernels replaces the choice of a dg-enhancement for AX .

Versions of Hochschild cohomology for categories of graded matrix factorizations have been
introduced and studied in [BFK14], in which a relation to the Jacobian ring was also explained;
see Section 6 for further comments.

2. Kuznetsov’s category AX from the kernel perspective

In this section, we first recall the definition of the category AX for a smooth hypersurface
X ⊂ Pn+1 (over an arbitrary field of characteristic zero) of degree d and state Kuznetsov’s result
saying that it is a Calabi–Yau category under suitable assumptions on d and n. Then we revisit the

auto-equivalence (1) : AX ∼ //AX , E � // i∗(E⊗OX(1)) (the degree-shift functor) and Kuznetsov’s
central observation that the d-fold composition (d) is the double shift [2]. As for our purposes it
is important to understand this not only as an isomorphism of functors but as an isomorphism
between their Fourier–Mukai kernels, we essentially re-prove his result in the kernel setting. This
then allows us to factor the isomorphism (d) ' [2] through the tangent bundle, see Lemma 2.19,
which is crucial for proving the existence of the ring homomorphism from the Jacobian ring J(X)
to the Hochschild cohomology HH∗(AX , (1)).
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2.1. Let X ⊂ P := Pn+1 be a smooth hypersurface of degree d, and let

AX := 〈OX , . . . ,OX(n+ 1− d)〉⊥ ⊂ Db(X)

be the full triangulated subcategory of all objects E with Hom∗(OX(`), E) = 0 for all ` =
0, . . . , n + 1 − d. We will denote the image of AX under the line bundle twist E � //E ⊗ OX(`)
by AX(`), which can also be described as 〈OX(`), . . . ,OX(n+ 1− d+ `)〉⊥.

By definition, the left orthogonal ⊥AX is the full triangulated subcategory spanned by the
exceptional collection OX , . . . ,OX(n+ 1− d). This yields a semi-orthogonal decomposition

Db(X) = 〈AX ,OX , . . . ,OX(n+ 1− d)〉 ;

see [BK89, BO95]. In particular, the inclusion i∗ : AX �
� //Db(X) admits right- and left-adjoint

functors

i!, i∗ : Db(X) //AX
(also called right and left projections), so that there exist functorial isomorphisms

HomDb(X)(i∗E,F ) ' HomAX (E, i!F ) and HomDb(X)(F, i∗E) ' HomAX (i∗F,E)

for all E ∈ AX and F ∈ Db(X). With this notation, any object E ∈ Db(X) sits in unique exact
triangles

E′ //E // i∗i
∗E and i∗i

!E //E //E′′

with E′ ∈ 〈OX , . . . ,OX(n+ 1− d)〉 = ⊥AX and E′′ ∈ 〈OX(d− n− 2), . . . ,OX(−1)〉 = A⊥X .

The category Db(X) is endowed with a Serre functor described by SX : E � //E ⊗ OX(d −
n − 2)[n], and a Serre functor on the admissible subcategory AX ⊂ Db(X) is then given by
SAX ' i! ◦ SX ◦ i∗. This isomorphism can also be read as a description of i! as SAX ◦ i∗ ◦ S

−1
X .

The category AX is called a Calabi–Yau category if SAX is isomorphic to a shift functor
E � //E[N ], in which case N is called its dimension. For instance, if d = n + 2, then X itself is
a Calabi–Yau variety and, in particular, Db(X) is a Calabi–Yau category (of dimension n).

See Remark 2.18 for an argument proving the next result in the case of cubic fourfolds.

Theorem 2.1 (Kuznetsov [Kuz18, Theorem 3.5]). Assume d | (n+ 2). Then AX is a Calabi–Yau
category of dimension (n+ 2)(d− 2)/d.

Clearly, with AX also all twists AX(`) are Calabi–Yau categories (of the same dimension).

Remark 2.2. As shall be explained, it is no accident that the Jacobian ring

J(X) := k[x0, . . . , xn+1]/(∂if)

of the equation f ∈ k[x0, . . . , xn+1]d defining the hypersurface X ⊂ Pn+1 is of top degree (n +
2)(d− 2); see [Don83, Theorem 2.5].

Example 2.3. The first interesting cases occur for d = 3 and hypersurfaces X ⊂ Pn+1 of
dimension n = 4, 7, 10, . . .. In these cases, the Calabi–Yau categories AX are of dimensions N =
2, 3, 4, . . ., respectively. Besides the case of a quartic K3 surfaces X ⊂ P3, where AX = Db(X),
the case of a cubic fourfold X ⊂ P5 is the only one that leads to a Calabi–Yau category of
dimension two (namely a K3 category).

2.2. Kuznetsov [Kuz11] associates with any subcategory B ⊂ Db(X), say full triangulated and
closed under taking direct summands, a subcategory B�Db(X) ⊂ Db(X ×X). By definition, it
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is the smallest full triangulated subcategory closed under taking direct summands that contains
all objects of the form E � F := p∗1E ⊗ p∗2F with E ∈ B and F ∈ Db(X). The subcategory
Db(X)� B is defined similarly. Note that Db(X)�Db(X) ' Db(X ×X). According to [Kuz11,
Proposition 5.1], any semi-orthogonal decomposition Db(X) = 〈A1, . . . ,Am〉 induces a semi-
orthogonal decomposition Db(X ×X) = 〈A1�Db(X), . . . ,Am�Db(X)〉. Moreover, in this case
(cf. [Kuz11, Proposition 5.2]),

Ai �Db(X) =
{
E ∈ Db(X ×X) | p1∗(E ⊗ p∗2F ) ∈ Ai for all F ∈ Db(X)

}
. (2.1)

We shall also need the exterior product B�B′ ⊂ Db(X×X) of two categories B,B′ ⊂ Db(X).
As introduced in [Kuz11, Section 5.5], this is the intersection of B � Db(X) and Db(X)� B′ in
Db(X × X).3 For two semi-orthogonal decompositions Db(X) = 〈A1, . . . ,Am〉 and Db(X) =
〈A′1, . . . ,A′n〉, the products Ai � A′j ⊂ Db(X × X) are admissible subcategories and, in fact,

describe a semi-orthogonal decomposition of Db(X ×X); see [Kuz11, Theorem 5.8]. The case of
interest to us is the product

AX(−(n+ 1− d))�AX ⊂ Db(X ×X) , (2.2)

which can alternatively be described as the subcategory right orthogonal to 〈OX(−(n + 1 −
d)), . . . ,OX〉�Db(X) and Db(X)� 〈OX , . . . ,OX(n+ 1−d)〉. We shall denote the inclusion (2.2)
by j∗ and its right and left adjoints by

j!, j∗ : Db(X ×X) //AX(−(n+ 1− d))�AX ⊂ Db(X ×X) . (2.3)

As a consequence of Theorem 2.1, one finds the following.

Corollary 2.4. Assume d | (n + 2). Then for all `, the product AX(`) � AX is a Calabi–Yau
category of dimension 2(n+ 2)(d− 2)/d.

Proof. Consider the left and right projections j∗, j! : Db(X ×X) //AX(−(n+ 1− d))�AX of
the inclusion, which can be written as the compositions of left and right projections id� i∗, id�
i! : Db(X×X) //Db(X)�AX and i∗� id, i!� id : Db(X)�AX ⊂ Db(X×X) //AX(−(n+ 1−
d))�Db(X), for all of which the Fourier–Mukai kernels (see below) are obtained by base change
from the ones for i∗ and i!. Now, together with the comparison S ◦ j∗ ' j! ◦ SX×X of j∗ and j!,
which can also be read as a description of the Serre functor S of AX(−(n + 1 − d)) �AX , and
the relation between i∗ and i! obtained from SAX ' [(n + 2)(d − 2)/d] (see Theorem 2.1), this
yields the assertion.

2.3. For P ∈ Db(X × X), we denote by ΦP : Db(X) //Db(X) the Fourier–Mukai functor
E � // p2∗(p

∗
1E ⊗ P ). Applying Kuznetsov’s arguments [Kuz11], one easily finds the following

result.

Lemma 2.5. (i) The essential image of ΦP is contained in AX ⊂ Db(X) if and only if P ∈
Db(X)�AX .

(ii) There exists a factorization of ΦP via the projection i∗ : Db(X) //AX , that is, ΦP = 0
on 〈O, . . . ,O(n+ 1− d)〉, if and only if P ∈ AX(−(n+ 1− d))�Db(X).

3The notation may suggest to define B � B′ as the smallest triangulated subcategory that is closed under taking
direct summands and contains all objects of the form E �E′ with E ∈ B and E′ ∈ B′. But this a priori produces
a smaller subcategory. However, if B and B′ are components of semi-orthogonal decompositions, this description
is valid, as was explained to us by Alex Perry.
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Proof. The first assertion follows from (2.1). For the second, use that ΦP (OX(`)) = 0 implies
HomX×X(p∗1OX(−`) ⊗ p∗2E,P ) ' HomX(E, p2∗(p

∗
1OX(`) ⊗ P )) = 0 for all E ∈ Db(X). Hence,

if ΦP = 0 on 〈OX , . . . ,OX(n + 1 − d)〉, then P ∈ 〈OX(−(n + 1 − d)), . . . ,OX〉⊥ � Db(X) =
AX(−(n+ 1− d))�Db(X).

Corollary 2.6. There exists a factorization

Db(X)

i∗ $$

ΦP // Db(X)

AX
Φ̄P

// AX
i∗

::

if and only if P ∈ AX(−(n+ 1− d))�AX .

Definition 2.7. A functor Φ: AX //AX is called a Fourier–Mukai functor if it is isomorphic
to a functor of the form Φ̄P with P ∈ AX(−(n+ 1− d))�AX as above.

For any P ∈ Db(X×X), one can consider j∗P ∈ AX(−(n+ 1−d))�AX , which then defines
a Fourier–Mukai functor Φ̄j∗P : AX //AX .

Remark 2.8. The notion of a Fourier–Mukai functor Φ̄P : AX //AX′ between the Calabi–Yau
categories of two different hypersurfaces is defined similarly. In this case, the kernel is contained
in AX(−(n+ 1− d))�AX′ .

Example 2.9. In the following, we shall denote by ∆ = ∆X ⊂ X × X the diagonal (and also
the diagonal embedding).

(i) Clearly, ΦO∆
' id, but also Φ̄j∗O∆

' id. We shall use the shorthand

P0 := j∗O∆ .

As observed in [Kuz09, Proposition 3.8] (see also Lemma 2.13), P0 can also be obtained as
the image of O∆ under the left projection onto Db(X)�AX or onto AX(−(n+ 1−d))�Db(X).
In other words, the cone of the adjunction O∆

// j∗O∆ ' P0 is contained in the intersection of
〈OX(−(n + 1 − d)), . . . ,OX〉 � Db(X) and Db(X) � 〈OX , . . . ,OX(n + 1 − d)〉. Indeed, the left
projection image of O∆ in Db(X)�AX , considered as a Fourier–Mukai kernel, is automatically
trivial on 〈OX(−(n + 1 − d)), . . . ,OX〉; then use Lemma 2.5. Similarly, its image in AX(−(n +
1− d))�Db(X), considered as a Fourier–Mukai kernel, already takes values in AX .

(ii) The functor ΦO∆(`) : Db(X) //Db(X) is the line bundle twist E � //E ⊗OX(`). We are
particularly interested in the case ` = 1 and denote the projection of the corresponding kernel
by

P1 := j∗O∆(1) .

The induced functor was introduced by Kuznetsov in [Kuz04, Section 4]:

(1) := Φ̄P1 : AX //AX , E � // i∗(E ⊗OX(1)) .

We call (1) the degree-shift functor, which is motivated by interpreting AX as a category of
graded matrix factorizations; see Section 6.

Remark 2.10. Recall that for two objects P,Q ∈ Db(X×X), the convolution P ◦Q ∈ Db(X×X)
is defined as p13∗(p

∗
12P⊗p∗23Q). Then ΦP◦Q ' ΦQ◦ΦP : Db(X) //Db(X); see [Huy06, Chapter 5].

Note that if P and Q are contained in AX(−(n+ 1− d))�AX , then so is the convolution P ◦Q.
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As an application, we rephrase the observation in Example 2.9(i) and write P0 as the convo-
lution

P0 ' [O(−m,m) //O∆] ◦ [O(−m+ 1,m− 1) //O∆] ◦ · · · ◦ [O //O∆] , (2.4)

where O(a, b) := O(a)�O(b) and m := n+ 1− d.

Remark 2.11. It is not difficult to show that for any P ∈ Db(X × X), the projection j∗P ∈
AX(−(n+ 1− d))�AX is isomorphic to the right-left convolution with P0; that is,

j∗P ' P0 ◦ P ◦ P0 .

Indeed, for every kernel P , there exists an exact triangle P ′ //P // j∗P with P ′ contained in the
category spanned by Db(X)�〈OX , . . . ,OX(n+1−d)〉 and 〈OX(−(n+1−d)), . . . ,OX〉�Db(X).
Convoluting P ′ with P0 (or any object in AX(−(n+ 1−d))�AX) from both sides is trivial and,
therefore, P0 ◦P ◦P0 ' P0 ◦ j∗P ◦P0. Similarly, by the arguments in Example 2.9(i), convoluting
O′∆ //O∆

//P0 with j∗P from the left and with j∗P ◦ P0 from the right yields isomorphisms
j∗P ' j∗P ◦ P0 ' P0 ◦ j∗P ◦ P0.

As a special case, we record that

P1 ' P0 ◦ O∆(1) ◦ P0 ' P0 ◦ O∆(1) ◦ [O //O∆] , (2.5)

where for the second isomorphism we use (2.4) and AX(1) ⊂ 〈OX(1), . . . ,OX(m)〉⊥.

The `-fold convolution of P1 with itself yields

P` := P ◦`1 := P1 ◦ · · · ◦ P1 ∈ AX(−(n+ 1− d))�AX , (2.6)

whose induced Fourier–Mukai functor ΦP` is isomorphic to (`) := (1)` : AX //AX .

Remark 2.12. In fact, Kuznetsov shows [Kuz18, Corollary 3.18] that the functor (1) (which is
his O|AX ) is an equivalence and clearly so are all (`). Alternatively, this can be deduced from
Corollary 2.16; see Remark 2.17.

Note that, in general, neither is the kernel P` isomorphic to j∗O∆(`) nor is the functor
(`) isomorphic to Φ̄j∗O∆(`). However, for ` = 0, . . . , d, Kuznetsov establishes this isomorphism
[Kuz18, Proposition 3.17], which is made explicit by the following kernel version, crucial for our
purposes. See Corollary 2.16 for a characterization of all P`.

Lemma 2.13. Assume d 6 (n+ 2)/2. Then for all ` = 0, . . . , d, there exist natural isomorphisms
P` ' j∗O∆(`).

Proof. Consider the natural exact triangle O∆(`)′ //O∆(`) // j∗O∆(`). As in the proof of
[Kuz09, Proposition 3.8] (cf. Example 2.9(i)), we shall show that O∆(`)′, for ` = 0, . . . , d −
1, is contained in the subcategory spanned by 〈OX(−(n + 1 − d)), . . . ,OX(−(n + 1 − d) +
` − 1)〉 � Db(X) and Db(X) � 〈OX , . . . ,OX(n + 1 − d)〉. For this, consider the projection
k∗ : Db(X × X) // 〈OX(−(n + 1 − d)), . . . ,OX(−(n + 1 − d) + ` − 1)〉⊥ � AX . It suffices to
show that the kernel of O∆(`) // k∗O∆(`) is O∆(`)′ or, equivalently, that k∗O∆(`) ' j∗O∆(`).
Now, Hom∗(p∗1OX(a), k∗O∆(`)) = 0 holds for a = −(n + 1 − d), . . . ,−(n + 1 − d) + ` − 1 by
the definition of k∗ and for a = −(n + 1 − d) + `, . . . , 0, as E � // i∗(E ⊗ OX(`)) is trivial on
〈OX , . . . ,OX(n+ 1− d− `)〉.

Next, convolute the above exact triangle with O∆(1) from the left to obtain the exact triangle
O∆(1)◦O∆(`)′ //O∆(`+1) //O∆(1)◦j∗O∆(`). As O∆(1)◦O∆(`)′ is now contained in the span
of 〈OX(−(n+1−d)+1), . . . ,OX(−(n+1−d)+`)〉�Db(X) and Db(X)�〈OX , . . . ,OX(n+1−d)〉,
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it becomes trivial under j∗. This then implies that j∗O∆(`+1) ' j∗(O∆(1)◦j∗O∆(`)) ' P1◦P` '
P`+1 by induction. Note that the argument works as long as −(n+ 1− d) + ` 6 0, which under
the assumption on d holds for ` = 0, . . . , d− 1.

2.4. Consider a smooth hypersurface X ⊂ P := Pn+1 of degree d. We write ∆P ⊂ P × P and,
as before, ∆ = ∆X ⊂ X × X for the two diagonals as well as for the corresponding closed
immersions.

Lemma 2.14. The pull-back of the structure sheaf O∆P ∈ Db(P×P) under the natural embedding
ϕ : X ×X �

� //P × P is a complex ϕ∗O∆P ∈ Db(X ×X) concentrated in degrees 0 and −1 with
cohomology sheaves H0 ' O∆X

and H−1 ' O∆X
(−d).

Proof. We view the cohomology sheaves Hi of ϕ∗O∆P as Hi ' Hi(OX×X ⊗P×P O∆P). They are
supported on ∆X and can be computed by means of the locally free resolution

E :=
[
OP×P(−d,−d) //OP×P(−d, 0)⊕OP×P(0,−d) //OP×P

] ∼ //OX×X ∈ Db(P× P) .

Hence,Hi ' Hi(E⊗P×PO∆P) ' Hi[O∆P(−2d) //O∆P(−d)⊕2 //O∆P ] and, in particular,Hi = 0
for i 6= 0,−1,−2. Moreover, as H−2 is supported on the proper subscheme ∆ ⊂ ∆P and is, at
the same time, contained in O∆P(−2d), it has to be trivial, too. Obviously, H0 ' O∆X

and,
therefore,

H−1 ' Coker(O∆P(−2d) �
� //O∆P(−d)) ' O∆X

(−d) .

The usual exact triangle H−1[1] //ϕ∗O∆P
//H0 for a complex concentrated in degrees 0

and −1 twisted by O(d, 0) (or, equivalently, O(0, d)) becomes

ϕ∗O∆P(d) // O∆X
(d)

α // O∆X
[2] . (2.7)

The proof of the following result is close in spirit to Kuznetsov’s arguments in the proof of
[Kuz04, Lemma 4.2].

Lemma 2.15. Assume d 6 (n+ 2)/2. Then under the left adjoint j∗ : Db(X ×X) //AX(−(n+
1− d))�AX of the natural inclusion (see (2.3)), the object ϕ∗O∆P(d) becomes trivial; that is,

j∗ϕ∗O∆P(d) ' 0 .

Proof. The Koszul resolution[
OP(−(n+ 1))� Ωn+1

P (n+ 1) // · · · //OP(−1)� ΩP(1) //OP×P
] ∼ //O∆P

allows one to compute ϕ∗O∆P(d) as [En+1
// · · · //E0], where Ei := OX(d− i)� Ωi

P(i)|X .

Now, from the Euler sequence 0 //ΩP(1) //O⊕n+2
P

//OP(1) // 0 and its alternating powers

0 //Ωi
P(i) //O⊕(n+2

i )
P

//Ωi−1
P (i) // 0, one deduces Ei ∈ Db(X)� 〈OX , . . . ,OX(n+ 1− d)〉 for

i = 0, . . . , n + 1 − d. As d 6 (n + 2)/2, the remaining Ei, for i = n + 2 − d, . . . , n + 1, are
all contained in 〈OX(−(n+ 1− d)), . . . ,OX〉�Db(X). Altogether, this shows that ϕ∗O∆P(d) is
contained in the left orthogonal of AX(−(n+ 1− d))�AX and hence j∗ϕ∗O∆P(d) ' 0.

Combining this with Lemma 2.13 yields the next result, which again is just the kernel version
of a result of Kuznetsov [Kuz04, Kuz18].

Corollary 2.16. For d 6 (n+ 2)/2, one has

Pd ' j∗O∆X
(d) ' j∗O∆X

[2] and (d) ' [2]
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and, more generally,

Pd`+a ' j∗O∆(a)[2`] and (d`+ a) ' (a) ◦ [2`]

for all ` > 0 and 0 6 a < d.

Remark 2.17. Note that this, a posteriori, shows that (1) : AX //AX is an auto-equivalence.

Remark 2.18. For the reader’s convenience, we briefly mention that at least for cubic fourfolds
X ⊂ P5, the arguments presented so far already ensure that AX is a two-dimensional Calabi–Yau
category. Indeed, in this case, Lemma 2.13 applies to ` = n+2−d and hence for all E,F ∈ AX one
finds HomAX (i∗(E⊗OX(n+2−d)), F ) ' HomDb(X)(E⊗OX(n+2−d), F ) ' HomDb(X)(F,E[n])∗,
which can be read as SAX ◦ (n+2−d) ' [n]. This together with the isomorphism (d) ' [2] yields
the assertion.

2.5. We shall need an alternative description of the isomorphism j∗O∆(d) ' j∗O∆[2] that
involves the tangent bundle TX .

The normal bundle sequence 0 // TX // TP|X //OX(d) // 0 is encoded by the boundary
map OX(d) // TX [1], which is certainly non-trivial for d > 2 and n > 2, which covers all cases
of interest to us. Taking the direct images under the diagonal morphism yields

O∆(d) //∆∗TX [1] . (2.8)

The boundary morphism of the short exact sequence 0 //∆∗ΩX
//OX×X/I2

∆
//O∆

// 0
is the universal Atiyah class At: O∆

//∆∗ΩX [1]. Taking exterior powers, it yields a natural map⊕
Atp : O∆

//∆∗
⊕n

p=0 Ωp
X [p], whose adjoint

∆∗O∆
∼ //

n⊕
p=0

Ωp
X [p]

is known to be an isomorphism [Căl05, Mar09]. We shall rather work in the dual setting [Kuz09,
Section 8]:

n⊕
p=0

∧p
TX [−p] ∼ //∆!O∆ .

Taking the direct image under the diagonal and composing with the natural inclusion of TX [−1]
on the left and with the adjunction ∆∗∆

! // id on the right yields

∆∗TX [1] //∆∗

n⊕
p=0

∧p
TX [2− p] ∼ //∆∗∆!O∆[2] //O∆[2] . (2.9)

Now, composing (2.8) and (2.9) yields a map

β : O∆(d) //∆∗TX [1] //O∆[2] ,

which can be compared to α in (2.7).

Lemma 2.19. The two maps α, β : O∆(d) //∆∗TX [1] //O∆[2] coincide (up to non-trivial scal-
ing).

Proof. This can be seen as a consequence of [HT10, Theorem 2.10]. Indeed, β is by construction
the composition of the universal Atiyah class with the Kodaira–Spencer class for the embedding
X ⊂ Pn+1, which coincides with the universal obstruction class α.
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Alternatively, one can show that HomX×X(O∆(d),O∆[2]) is just one-dimensional and that
both maps α and β are non-zero. Indeed, HomX×X(O∆(d),O∆[2]) ' H0(X,∆!O∆(−d)[2]) '
H0(X,

⊕n
p=0

∧p TX(−d)[2 − p]). For degree reasons, only H2(X,O(−d)), H1(X, TX(−d)), and

H0(X,
∧2 TX(−d)) contribute to the direct sum. The first and third cohomology groups are

obviously trivial, and due to the normal bundle sequence, the second one is one-dimensional.
Clearly, α 6= 0, as j∗α is an isomorphism by Lemma 2.15. Similarly, one checks that β 6= 0,
as otherwise the adjunction ∆!∆∗O∆

//O∆ would be zero. Hence, α and β differ at most by
a non-trivial scalar.

Remark 2.20. The interpretation of α as the universal obstruction class has the following geo-
metric consequence for objects in AX : non-trivial objects E ∈ AX are maximally obstructed;
that is, they do not even deform to first order to the ambient projective space. Indeed, α as
a morphism between Fourier–Mukai kernels applied to any object E ∈ Db(X) yields the ob-
struction o(E) ∈ Ext2(E ⊗ O(d), E) to extending E to the first-order neighbourhood of X
in P; cf. [HT10]. However, for E ∈ AX , this class, via adjunction, yields the isomorphism

E(d) ' i∗(E ⊗O(d))
∼ //E[2], and so o(E) 6= 0 for all non-trivial E ∈ AX .

Composing O⊕n+2
X

// // TP(−1)|X , coming from the restriction of the Euler sequence, with the
natural projection TP(−1)|X // //OX(d− 1) in the normal bundle sequence yields a map

γ : O⊕n+2
X

// TP(−1)|X // OX(d− 1) .

This map is induced by the partial derivatives ∂if ∈ H0(X,OX(d − 1)) of the equation f ∈
k[x0, . . . , xn+1]d defining X ⊂ Pn+1.

Corollary 2.21. The induced map j∗∆∗γ in the product category AX(−(n+ 1− d))�AX ⊂
Db(X ×X) is trivial:

0 = j∗∆∗γ : j∗O⊕n+2
∆

// j∗O∆(d− 1) .

Proof. First note that the composition α(−1) ◦ ∆∗γ : O⊕n+2
∆

//O∆(d − 1) //O∆(−1)[2] is
trivial. Indeed, as α = β and β factors through the boundary map OX(d − 1) // TX(−1)[1]
of the normal bundle sequence, this follows from the observation that already the composi-
tion TP(−1)|X //OX(d − 1) // TX(−1)[1] is trivial. Hence, ∆∗γ factors through a morphism
δ : O⊕n+2

∆
//ϕ∗O∆P(d− 1) (use the triangle (2.7) tensored by OX(−1)), and it suffices to show

that j∗δ = 0.

Now, using the notation from the proof of Lemma 2.15, we let E′i := Ei⊗O(−1, 0). Then we
still have E′i ∈ Db(X)� 〈OX , . . . ,OX(n+1−d)〉 for i = 0, . . . , n+1−d and E′i ∈ 〈OX(−(n+1−
d)), . . . ,OX〉�Db(X) for i = n+2−d, . . . , n. Only the last one, E′n+1 ' O(d−1−(n+1),−1), does
not vanish under j∗. Hence, the pull-back under j∗ of the natural map ϕ∗O∆P(d−1) //E′n+1[n+1]

becomes an isomorphism j∗ϕ∗O∆P(d − 1)
∼ // j∗E′n+1[n + 1]. Therefore, in order to prove the

assertion, it suffices to show that the composition O⊕n+2
∆

//ϕ∗O∆P(d − 1) //E′n+1[n + 1] is
trivial, which follows from Extn+1

X×X(O∆, E
′
n+1) ' Hn−1(X,OX(d − n − 1))∗ = 0 using Serre

duality.

See Section 6 for an interpretation of his result using the category of graded matrix factor-
izations.
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3. Extended Hochschild cohomology of hypersurfaces

We define the Hochschild cohomology HH∗(AX , (1)) of the category AX endowed with the degree-
shift functor (1) associated with any smooth hypersurface X ⊂ Pn+1. It is intimately related to
the usual even Hochschild cohomology HH∗(AX) but also incorporates the degree-shift functor.
This section also contains the comparison of the Jacobian ring J(X) with HH∗(AX , (1)) (cf.
Theorem 1.1). We work again over an arbitrary field of characteristic zero.

3.1. As before, we let X ⊂ P = Pn+1 be a smooth hypersurface defined by a homogeneous
polynomial f ∈ k[x0, . . . , xn+1]d of degree d > 2. We set σ := (n+ 2)(d− 2) and define

L(X) :=
σ⊕
`=0

L`(X) =
σ⊕
`=0

Hom(P0, P`)

(with Hom taken in the full subcategory AX(−(n+ 1− d))�AX ⊂ Db(X ×X)) with its natural
ring structure defined by composition. More precisely, by applying convolution with P` as defined
in (2.6), one obtains a natural map Hom(P0, P`′) //Hom(P` ◦ P0, P` ◦ P`′) ' Hom(P`, P`+`′),
which then yields

Hom(P0, P`)×Hom(P0, P`′) //Hom(P0, P`)×Hom(P`, P`+`′) //Hom(P0, P`+`′)

with the convention that the multiplication is trivial as soon as ` + `′ exceeds σ. Standard
arguments show that this endows L(X) with the structure of a graded ring.

Next, consider the natural map

H0(P,OP(1)) ' H0(X,OX(1))
∼ //Hom(O∆,O∆(1)) //Hom(j∗O∆, j

∗O∆(1)) = L1(X) . (3.1)

Lemma 3.1. The homomorphism (3.1) is bijective.

Proof. (1) We shall first show that (3.1) is bijective for d > 4 and injective for d > 3. Consider
the exact triangle P ′1

//O∆(1) //P1. Using (2.5), a direct computation shows that

P1 '

[
H0(X,OX(1))⊗m+1 ⊗O(−m, 0) // · · · //

m⊕
i=−1

O(−i, i+ 1) //O∆(1)

]
,

where one uses that all pull-backs, direct images, and tensor products are in fact underived due
to the vanishing H>0(X,O(i)) = 0. Hence,

Hom(O∆, P
′
1[i]) ' Hom(OX ,∆∗P ′1 ⊗ ω∗X [i− n]) = 0

for i−n < −m−1 or, equivalently, for i < d−2. Therefore, Hom(O∆, P
′
1) = 0 = Hom(O∆, P

′
1[1])

for d > 4, which proves the bijectivity of (3.1) in these cases. For d = 3, we still have Hom(O∆, P
′
1)

= 0, which proves at least the injectivity.4

(2) Surjectivity also holds for d = 3, but since the calculation is long and we do not have
any applications for n > 4, we only give the proof in the case n = 4. For this, we will prove
that in (3.1) one has dimH0(X,OX(1)) > dimL1(X), which, together with the injectivity from
part (1), proves the bijectivity.

By definition and Serre duality for the Calabi–Yau category AX(−2)�AX (which is of dimen-
sion four), L1(X) = Hom(j∗O∆, j

∗O∆(1)) ' Ext4(j∗O∆(1), j∗O∆)∗ ' Ext4(O∆(1), j∗O∆)∗ '

4Note that for d | (n + 2) and d < n + 2, the injectivity also follows from Proposition 3.5.
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H4(X,∆!j∗O∆ ⊗OX(−1))∗ ' H0(X,∆∗j∗O∆ ⊗OX(2))∗, where we use that ∆! ' (ω∗X ⊗ ( )) ◦
∆∗ ◦ [−4].

In order to compute ∆∗j∗O∆, consider the left projections j∗0 : Db(X × X) //Db(X) �
〈OX(2)〉⊥ and j∗1 : Db(X×X) //Db(X)�〈OX(1),OX(2)〉⊥. Then j∗O∆ is recursively described
by the exact triangles

O∆ ◦ O(−2, 2) //O∆
// j∗0O∆ ,

j∗0O∆ ◦ O(−1, 1) // j∗0O∆
// j∗1O∆ , (3.2)

j∗1O∆ ◦ O // j∗1O∆
// j∗O∆ .

Applying ∆∗ yields the diagram of exact triangles

∆∗j∗0O∆

��

∆∗(j∗0 ◦ O)[1]

��
∆∗j∗1O∆

��

// ∆∗j∗O∆
// ∆∗(j∗1O∆ ◦ O)[1]

��
∆∗(j∗0O∆ ◦ O(−1, 1))[1] ∆∗(j∗0O∆ ◦ O(−1, 1) ◦ O)[2] .

The computation of the four corners is straightforward. For example, the lower-left corner is
∆∗(j∗0O∆ ⊗O(−1, 1)) ' ΩP|X [1], as it is the cone of the natural map

H0(X,OX(1))⊗OX(−1) ' ∆∗(O∆ ◦ O(−2, 2) ◦ O(−1, 1)) //∆∗(O∆ ◦ O(−1, 1)) ' OX .

Similarly, the lower-right corner is ∆∗(j∗0O∆ ◦O(−1, 1)◦O)[2] ' (ΩP|X(−1)⊗H0(X,OX(1)))[3].
Indeed, it is the [2]-shift of the cone of the map

H0(X,OX(1))⊗2 ⊗OX(−2) ' ∆∗(O∆ ◦ O(−2, 2) ◦ O(−1, 1) ◦ O) //∆∗(O∆ ◦ O(−1, 1) ◦ O) ,

which is the evaluation H0(X,OX(1))⊗OX(−2) //OX(−1) tensored with H0(X,OX(1)). For
the computation of the upper-left corner, use ∆∗O∆ '

⊕
Ωp
X [p] and ∆∗(O∆ ◦ O(−2, 2)) ' OX

to conclude that ∆∗(j∗0O∆) '
⊕

p>1 Ωp
X [p]. Finally, the upper-right corner is the [1]-shift of the

cone of

H0(X,OX(2))⊗OX(−2) ' ∆∗(O∆ ◦ O(−2, 2) ◦ O) //∆∗(O∆ ◦ O) ' OX
and so ∆∗(j∗0 ◦ O)[1] ' ΩP′ |X [2], where X ⊂ P′ = P20 is the second Veronese embedding.

Now, in order to compute H0(X,∆∗j∗O∆ ⊗OX(2)), use the induced diagram of triangles⊕
p>1H

p(Ωp
X ⊗OX(2))

��

H2(ΩP′ |X ⊗OX(2))

��
H0(∆∗j∗1O∆ ⊗OX(2))

��

// H0(∆∗j∗O∆ ⊗OX(2)) // H1(∆∗(j∗1O∆ ◦ O)⊗OX(2))

��
H2(ΩP|X ⊗OX(2)) H3(ΩP|X(1)) .

Using the Euler and conormal bundle sequences (and their exterior powers) and standard van-
ishing results, one easily shows that the only non-trivial term in the four corners is the term
H2(X,Ω2

X ⊗ OX(2)) ' H3(X,ΩX(−1)) ' H4(X,OX(−4)) ' H0(X,OX(1))∗ in the left-upper
corner.
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Remark 3.2. Note that the analogous maps H0(X,O(`)) //L`(X) for arbitrary ` are usually
not surjective. For example, in the case of the cubic fourfold, L3(X) is of dimension 22, but
by Proposition 3.3, the map H0(X,OX(3)) //L3(X) factors through J3(X) ' H1(X, TX) (see
below) which is of dimension 20.

The map (3.1) induces a homomorphism of graded rings

R := k[x0, . . . , xn+1] //L(X) . (3.3)

For this, one has to check that the images of xi and xj in L(X) commute, which follows from
the commutativity of the diagram

Hom(O∆,O∆(1))×Hom(O∆,O∆(1))

=

��
'
��

// Hom(P0, P1)×Hom(P0, P1)

=

��
'
��

Hom(O∆,O∆(1))×Hom(O∆(1),O∆(2))

��

// Hom(P0, P1)×Hom(P1, P2)

��
Hom(O∆,O∆(2)) // Hom(P0, P2)

and the fact that the compositions xi ◦ xj and xj ◦ xi in Hom(O∆,O∆(2)) = H0(X,OX(2))
correspond to xixj = xjxi and so coincide.

The following observation essentially proves the first half of Theorem 1.1; see also Corol-
lary 3.7. For related results in this direction, compare with [BFK12, Proposition 5.14].

Proposition 3.3. If d 6 (n+ 2)/2, the ring homomorphism (3.3) factors through a graded-ring
homomorphism from the Jacobian ring J(X) = R/(∂if) to L(X):

R(X) // // J(X)
π // L(X) . (3.4)

Proof. This is an immediate consequence of Corollary 2.21, which claims that all partial deriva-
tives ∂if ∈ Rd−1 of the equation f defining X vanish under (3.3). At this point, one uses
Lemma 2.13 to ensure that Pd−1 ' j∗O∆(d− 1), for which the assumption on d is needed.

3.2. In this section, we in addition assume d | (n + 2) with d < n + 2. Then, in particular,
Kuznetsov’s Theorem 2.1, Corollary 2.4, Lemma 2.13, and Corollary 2.16 all apply to our sit-
uation. It turns out that the Jacobian ring J(X) and L(X) (apart from possibly being non-
commutative) are both Gorenstein rings of the same top degree σ = (n+2)(d−2); cf. Remark 2.2.

Proposition 3.4. The ring L(X) has the following properties:

(i) L0(X) ' HH0(AX) ' k.

(ii) Ld`(X) = Hom(P0, Pd`) ' Hom(j∗O∆, j
∗O∆[2`]) ' HH2`(AX), which is of dimension one

for d` = σ.

(iii) Composition induces a non-degenerate pairing L`(X)× Lσ−`(X) //Lσ(X) ' k.

Proof. Recall from Theorem 2.1 that σ/d is the dimension of the Calabi–Yau category AX .

In property (i), the first isomorphism is by definition and the second one follows from [Kuz09,
Corollary 7.5]. Alternatively, use the arguments in the proof of Lemma 3.1.

Next, property (ii) follows from Corollary 2.16 and the definition of Hochschild cohomology;
see [Kuz09]. That in property (ii), the space is of dimension one for d` = σ can be deduced either
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from Serre duality for the (2σ/d)-dimensional Calabi–Yau category AX(−(n+ 1− d))�AX (cf.
Corollary 2.4) or from [Kuz18, Proposition 5.3] and [Kuz09, Corollary 7.5] showing that

HH2 dimAX (AX) ' HH− dimAX (AX) ' HH− dimAX (X) '
⊕

H− dimAX+p(X,Ωp
X) ,

which can be shown to be one-dimensional (using Hirzebruch’s formula for χ(Ωp
X), see [SGA7],

and the Lefschetz hyperplane theorem). Yet another possibility would be to follow the arguments
in the proof of Lemma 3.1.

The last assertion follows again from Serre duality and the fact that AX(−(n+ 1− d))�AX
is a Calabi–Yau category of dimension 2 dim(AX) = 2σ/d; cf. Corollary 2.4.

In fact, it seems likely that Hom(P0, P`) = 0 for all ` > σ, which certainly is the case if d | `.
So presumably, L(X) =

⊕
`>0 Hom(P0, P`), but this is of no importance for what follows.

Proposition 3.5. The ring homomorphism π : J(X) //L(X) in (3.4) is injective.

Proof. For a proof of the injectivity in degree one, see the proof of Lemma 3.1. However, it can
also be seen as a consequence of the following arguments.

The graded-ring homomorphism π induces commutative diagrams

J`

π`
��

× Jσ−`

πσ−`

��

// Jσ

πσ

��

' k

L` × Lσ−` // Lσ ' k ,

with both rows non-degenerate, due to [Don83, Theorem 2.5] and Proposition 3.4(iii). Hence,
the injectivity of π is equivalent to the injectivity of πσ, which in turn is equivalent to πσ 6= 0.

First, we recall that Jd(X) ' H1(X, TX). Indeed, the normal bundle sequence

0 // TX // TP|X //OX(d) // 0

combined with the restriction of the Euler sequence shows that

Jd(X) ' Coker
(
H0
(
X,OX(1)⊕n+2

) (∂if) // H0(X,OX(d))
)
' H1(X, TX) .

Moreover, the discussion in Sections 2.4 and 2.5 (cf. Lemma 2.19) shows that the map

H1(X, TX) ' Jd(X)
πd // Ld(X) = Hom(P0, Pd) ' HH2(AX)

can be described as the composition of the standard injection H1(X, TX) �
� //HH2(X) with the

projection HH2(X) //HH2(AX); see [Kuz09]. The latter is obtained by applying left projec-
tion: j∗ : HH2(X) = Hom(O∆,O∆[2]) //Hom(j∗O∆, j

∗O∆[2]) = Hom(P0, P0[2]) = HH2(AX). In
particular, there exists a commutative diagram

J
×σ/d
d

//

π
σ/d
d
��

Jσ

πσ
��

HH2(AX)×σ/d // HH2σ/d(AX) .

(3.5)

On the other hand, for the Calabi–Yau category AX , one knows by [Kuz18, Proposition 5.3]
that there are isomorphisms HHk(AX) ' HHk−σ/d(AX) compatible with the multiplication on
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HH∗(AX) and the HH∗(AX)-module structure of HH∗(AX). So, (3.5) can be completed by the
commutative diagram

HH2(AX)×σ/d−1

o
��

× HH2(AX)

o
��

// HH2σ/d(AX)

o
��

HH2(AX)×σ/d−1 × HH2−σ/d(AX) // HHσ/d(AX)

HH2(X)×σ/d−1

OO

× HH2−σ/d(X) //

o

OO

HHσ/d(X) ,

o

OO
(3.6)

where the lower vertical arrows between the Hochschild homology groups are indeed isomor-
phisms as long as we assume σ/d > 2; see [Kuz09]. To conclude, use the isomorphism between
(HH∗(X),HH∗(X)) and (HT ∗(X) :=

⊕
r+s=∗H

r(X
∧s TX), HΩ∗(X) :=

⊕
q−p=∗H

p,q(X)),

see [Căl05], and the fact that H1(X, TX)×σ/d−1 ×HΩ2−σ/d(X) //HΩσ/d(X) is non-trivial due
to a result of Griffiths; cf. [Don83, Theorem 2.2]. Altogether, this proves πσ 6= 0.

Let us now come to the case σ/d = 2, which is the case of cubic fourfolds and for which the
proof is more direct. Here, we know that

J3(X) ' H1(X, TX) //HH2(AX) = L3(X)

is injective with image a subspace of codimension two of the 22-dimensional HH2(AX). If π6

were trivial, then the non-degenerate pairing HH2(AX) × HH2(AX) //HH4(AX) ' k would be
trivial on a subspace whose dimension exceeds the maximal dimension of an isotropic subspace.
This is the contradiction which allows us to conclude that π6 6= 0 and hence all π` are indeed
injective.

3.3. We now introduce the version of Hochschild cohomology of AX of a smooth hypersurface
X ⊂ Pn+1 that is appropriate for our purpose.

Definition 3.6. The Hochschild cohomology of the pair (AX , (1)) is the graded subalgebra

HH∗(AX , (1)) ⊂ L(X)

generated by L1(X).

The next result is Theorem 1.1.

Corollary 3.7. There exists a surjection of graded rings

J(X) // //HH∗(AX , (1)) , (3.7)

which is an isomorphism if n+ 2 divisible by d < n+ 2.

Proof. The first assertion follows from the definition of HH∗(AX , (1)), Lemma 3.1, and Proposi-
tion 3.3. The second part is an immediate consequence of Proposition 3.5.

Remark 3.8. Note that the natural gradings of HH∗(AX) and HH∗(AX , (1)) are not compatible,
as, for example, HH2`(AX) is mapped into Ld`(X). Also, the projections π` : J`(X) //L`(X)
are in general not surjective; that is, HH∗(AX , (1)) ⊂ L(X) is a proper subalgebra. For exam-
ple, for the cubic fourfold, we have dimJ3(X) = dimH1(X, TX) = 20, whereas dimL3(X) =
dim HH2(AX) = 22.
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3.4. Consider two smooth hypersurfaces X,X ′ ⊂ Pn+1 of degree 1 < d 6 (n + 2)/2 and their
associated categories AX ⊂ Db(X) and AX′ ⊂ Db(X ′). We denote the degree-shift functors

by (1) : AX ∼ //AX′ and (1)′ : AX′
∼ //AX′ and their natural kernels by P1 ∈ AX(−(n+ 1− d))�

AX and P ′1 ∈ AX′(−(n+ 1− d))�AX′ ; see Example 2.9(ii).

Proposition 3.9. Under the above assumption, let Φ = Φ̄P : AX ∼ //AX′ be a Fourier–Mukai
equivalence. Then an isomorphism of the natural Fourier–Mukai kernels of Φ ◦ (1) and (1)′ ◦Φ,

P1 ◦ P ' P ◦ P ′1 , (3.8)

induces an isomorphism of graded algebras

HH∗(AX , (1)) ' HH∗(AX′ , (1)′) .

Proof. By the definition of a Fourier–Mukai functor, P ∈ AX(−(n+1−d))�AX′ ; see Remark 2.8.
Hence, both sides of (3.8) are objects in AX(−(n+1−d))�AX′ . Moreover, successive convolution
with P1 from the left yields isomorphisms P`◦P ' P ◦P ′` for all ` > 0. Alternatively, P`◦P can be

seen as the image of P` under the equivalence ( ◦P ) ' id�Φ: AX(−n+1−d))�AX ∼ //AX(−n+
1− d))�AX′ and P ◦P ′` as the image of P ′` under the equivalence (P ◦ ) ' Ψ� id : AX′(−(n+

1 − d)) � AX′
∼ //AX(−(n + 1 − d)) � AX′ . Here, Ψ: AX′(−(n + 1 − d))

∼ //AX(−(n + 1 − d))
is the Fourier–Mukai equivalence with kernel in AX′ � AX(−(n + 1 − d)) given by applying
the transposition to P . The arguments in the geometric case, that is, when AX is the bounded
derived category of a variety, can be easily adapted to show that Ψ is indeed an equivalence.

Hence, the equivalence (Ψ�id)−1◦(id�Φ): AX(−(n+1−d))�AX ∼ //AX′(−(n+1−d))�AX′
sends P` to P ′` and, therefore, defines isomorphisms L`(X) ' L`(X ′), for ` > 0, compatible with
composition. Restricted to the sub-algebras generated by L1, this yields the desired isomorphism

of graded algebras HH∗(AX , (1))
∼ //HH∗(AX′ , (1)′).

As it is expected that Fourier–Mukai kernels P ∈ AX(−(n + 1 − d)) � AX′ of Fourier–

Mukai equivalences Φ = Φ̄P : AX ∼ //AX′ are unique, an isomorphism (3.8) should exist whenever
Φ ◦ (1) ' (1)′ ◦Φ. This is certainly the case when AX ' Db(S, α) for a twisted K3 surface (S, α),
due to [CS07, Orl97].

Corollary 3.10. Let X,X ′ ⊂ Pn+1 be smooth hypersurfaces of degree 1 < d 6 (n + 2)/2
with d | (n+ 2). Then an isomorphism (3.8) of the natural Fourier–Mukai kernels of Φ ◦ (1) and
(1)′◦Φ, induces an isomorphism of graded algebras J(X) ' J(X ′) and, therefore, an isomorphism
X ' X ′.

Proof. The isomorphism between the Jacobian rings follows from Proposition 3.9 and Corol-
lary 3.7. That the isomorphism between the Jacobian rings implies the existence of an isomor-
phism X ' X ′ is an immediate consequence of the Mather–Yau theorem; see [Don83, Proposi-
tion 1.1] or [Voi02, Lemma 18.31]. It may be worth noting that the isomorphism J(X) ' J(X ′)
itself may not lift directly to an automorphism of k[x0, . . . , xn+1] identifying the equations of X
and X ′.

4. Hodge theory

The existence of a Hodge isometry H4(X,Z)pr ' H4(X ′,Z)pr is shown to yield a Hodge isometry

H̃(AX ,Z) ' H̃(AX′ ,Z) with additional properties. It will subsequently be lifted to an equivalence
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AX ' AX′ that on the level of Hochschild cohomology yields an isomorphism between the
Jacobian rings. From now on, we work over C.

4.1. Let us briefly recall the Hodge structure of weight two H̃(AX ,Z) of the K3 category
AX ⊂ Db(X) associated with a smooth cubic X ⊂ P5, as defined by Addington and Thomas
in [AT14]. As a lattice, H̃(AX ,Z) is the orthogonal complement of 〈[OX ], [OX(1)], [OX(2)]〉 ⊂
Ktop(X) with the quadratic form given by the Mukai pairing. The Hodge structure is determined

by H̃2,0(AX) defined as the pull-back of H3,1(X) via the Mukai vector. Furthermore, there exists
a natural primitive inclusion (see [AT14, Proposition 2.3])

ιX : H4(X,Z)pr
� � // H̃(AX ,Z) ,

which is compatible up to sign with the intersection form on H4(X,Z)pr and the Mukai pairing

on H̃(AX ,Z). Moreover, ιX respects the Hodge structures (up to Tate twist); that is, it restricts

to an isomorphism H3,1(X)
∼ // H̃2,0(AX ,Z). The orthogonal complement of the inclusion is the

primitive sublattice spanned by λj = [i∗O(j)], for j = 1, 2, where as before, i∗ : Db(X) //AX is
the left adjoint of the natural inclusion i∗ : AX �

� //Db(X). The choice of the generators induces
an isometry Im(ιX)⊥ ' A2, which we shall tacitly fix throughout. The induced inclusion

H4(X,Z)pr ⊕A2
� � // H̃(AX ,Z)

is of index three, cf. [Huy16, Section 14.0.2], and its quotient HX := H̃(AX ,Z)/(H4(X,Z)pr⊕A2)
can be viewed naturally as a subgroup of the discriminant group

AH4(X,Z)pr⊕A2
' AH4(X,Z)pr

⊕AA2 ' Z/3Z⊕ Z/3Z .

The two projections from HX yield an isomorphism

γX : AH4(X,Z)pr

∼ //AA2 (' Z/3Z) . (4.1)

Also note that H4(X,Z)pr with the reversed sign has two positive directions which are natu-
rally oriented by taking the real and imaginary parts of any generator ofH3,1(X) (or, equivalently,
of H̃2,0(AX) via ιX). Clearly, by picking the base λ1, λ2 of the positive-definite orthogonal com-
plement Im(ιX)⊥ ' A2, one also gives this part a natural orientation. Put together, the four
positive directions of H̃(AX ,Z) are endowed with a natural orientation.

The orthogonal group of A2 is known to be O(A2) ' S3×Z/2Z. Here, the second factor acts
by a global sign change, whereas the first one is the Weyl group acting by permutation of the unit
vectors ei, where we have an embedding A2

� � //R3 via λ1
� // e1− e2 and λ2

� // e2− e3. Note that
S3 can also be described as the kernel of the restriction O(A2) // //O(AA2) ' O(Z/3Z) ' Z/2Z.
Moreover, g ∈ O(A2) preserves the natural orientation of the lattice A2 if and only if it is
contained in A3 × Z/2Z, which still surjects onto O(AA2). A generator of A3 is described by the
cyclic permutation of λ1, λ2, −λ1 − λ2; cf. [Huy17, Remark 2.1].

Remark 4.1. The category AX is equipped with the natural auto-equivalence (1) : AX ∼ //AX
which is of Fourier–Mukai type; see Example 2.9(ii). The induced action

(1)H : H̃(AX ,Z)
∼ // H̃(AX ,Z) (4.2)

is the identity on H4(X,Z)pr and cyclically permutes λ1, λ2, −λ1 − λ2 in the orthogonal com-
plement A2; cf. [Huy17, Proposition 3.12].
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4.2. Any Hodge isometry ϕ : H4(X,Z)
∼ //H4(X ′,Z) mapping hX to hX′ induces a Hodge iso-

metry ϕ : H4(X,Z)pr
∼ //H4(X ′,Z)pr. Conversely, adapting [Nik80, Corollary 1.5.2] to the present

context, one shows that any Hodge isometry H4(X,Z)pr
∼ //H4(X ′,Z)pr extends to a Hodge

isometry H4(X,Z)
∼ //H4(X ′,Z) mapping hX to ±hX′ . (Use the natural isomorphism between

the discriminant groups AH4(X,Z)pr
' AA2 ' Z/3Z.)

For the following, both primitive cohomologies are considered with their natural inclusions
ιX : H4(X,Z)pr

� � // H̃(AX ,Z) and ιX′ : H
4(X ′,Z)pr

� � // H̃(AX′ ,Z).

Proposition 4.2. Any Hodge isometry ϕ : H4(X,Z)pr
∼ //H4(X ′,Z)pr extends to an orientation-

preserving Hodge isometry ϕ̃ : H̃(AX ,Z)
∼ // H̃(AX′ ,Z) that commutes with (1)H in (4.2).

Proof. The key is Nikulin’s classical result [Nik80, Corollary 1.5.2], see also [Huy16, Chapter 14],
showing that ϕ can be extended to an isometry that restricts to a given g ∈ O(A2) between
the orthogonal complements (which we have identified with A2) if and only if ḡ ◦ γX = γX′ ◦
ϕ̄ : AH4(X,Z)pr

//AA2 . Here, ḡ and ϕ̄ are the induced maps between the discriminant groups
and γX , γX′ are as in (4.1).

Thus, any lift g ∈ O(A2) of γX′ ◦ ϕ̄ ◦ γ−1
X ∈ O(AA2) defines an extension of the Hodge iso-

metry ϕ to an isometry ϕ̃ : H̃(AX ,Z)
∼ // H̃(AX′ ,Z) which is then automatically compatible with

the Hodge structures. Moreover, there always exists a lift g ∈ A3 × Z/2Z of γX′ ◦ ϕ̄ ◦ γ−1
X such

that ϕ̃ not only is a Hodge isometry but also preserves the natural orientation of the four positive
directions. Any such g automatically commutes with the cyclic permutation of λ1, λ2, −λ1−λ2,
and, therefore, the induced ϕ̃ commutes with (1)H .

5. Deformation theory

In this section, we show how to combine Corollary 3.10 with results from [Huy17] to prove the
global Torelli theorem first for general and then for all cubics.

5.1. We start by recalling [Huy17, Theorem 1.2], which describes the group of auto-equivalences
of AX for a very general cubic. Here, a cubic X ∈ |O(3)| is very general if it is contained in
the complement of a countable union of proper closed subsets of |O(3)|. The proof in [Huy17]
does not depend on the global Torelli theorem for cubic fourfolds, but makes use of results on
Aut(Db(S, α)) for twisted K3 surfaces (S, α) without spherical objects; see [HMS08].

Proposition 5.1. Let X ⊂ P5 be a very general smooth cubic. Then the group Aut(AX) of

Fourier–Mukai auto-equivalences Φ: AX ∼ //AX (see Definition 2.7) is an infinite cyclic group
containing Z · [1] as an index three subgroup.

The degree-shift functor (1) ∈ Aut(AX) is symplectic; that is, it acts trivially on the tran-
scendental part (which for a general cubic is H4(X,Z)pr ' Im(ιX)) and generates the quotient
Auts(AX)/Z · [2].

Corollary 5.2. Let X,X ′ ⊂ P5 be two very general cubics, and let Φ = Φ̄P : AX ∼ //AX′
be a Fourier–Mukai equivalence for which the induced action ΦH : H̃(AX ,Z)

∼ // H̃(AX′ ,Z) com-
mutes with the action of the degree shift (1)H on H̃(A,Z). Then Φ commutes with the degree-shift
functor on both sides, that is, Φ ◦ (1) ' (1)′ ◦ Φ.
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Proof. Indeed, under the assumption, Ψ := Φ−1 ◦ (1)′ ◦ Φ ◦ (−1) ∈ Aut(AX) acts trivially
on H̃1,1(AX ,Z) ' A2 and hence Ψ ' [k]. However, as [2] ' (3) on both sides, the relation
(1)′ ◦ Φ ' Φ ◦ (1) ◦ [k] automatically implies k = 0.

If Fourier–Mukai kernels of Fourier–Mukai equivalences AX ∼ //AX′ are unique, then Φ◦(1) '
(1)′ ◦ Φ would immediately yield (3.8) and hence X ' X ′ by Corollary 3.10.

Remark 5.3. In fact, as was stated in [Huy17, Theorem 1.5], two very general cubics X and
X ′ are isomorphic if and only if there exists a Fourier–Mukai equivalence AX ' AX′ . However,
the proof given in [Huy17] relies on the global Torelli theorem. Indeed, if X and X ′ are very
general, then H̃1,1(AX ,Z) ' H̃1,1(AX′ ,Z) is just an isometry of A2 and the Hodge isometry of
its orthogonal complement can therefore be read as a Hodge isometry H4(X,Z)pr ' H4(X ′,Z)pr.

Remark 5.4. Note that all that was needed in the proof of Corollary 5.2 was that the kernel of
Auts(AX) //Aut(H̃(AX ,Z)) is Z · [2]. This is true for very general cubics but also for cubics X
for which there exists a twisted K3 surface (S, α) with AX ' Db(S, α) and without any (−2)-
classes in N(S, α) ' H̃1,1(AX ,Z); see [HMS08]. Moreover, in the latter case, Φ ◦ (1) ' (1)′ ◦ Φ
implies P` ◦P ' P ◦P ′`, for ` > 1, due to the uniqueness of Fourier–Mukai kernel for the category
of twisted coherent sheaves [CS07].

5.2. Proof of Theorem 1.3. Let ϕ : H4(X,Z)pr
∼ //H4(X ′,Z)pr be a Hodge isometry. Accord-

ing to Proposition 4.2, the map ϕ can be extended to an orientation-preserving Hodge isometry

ϕ̃ : H̃(AX ,Z)
∼ // H̃(AX′ ,Z) that commutes with the action of the degree shift (1)H on the two

sides, which corresponds to a cyclic permutation of λ1, λ2, −λ1 − λ2.

Due to the local Torelli theorem, ϕ can be naturally extended to Hodge isometries

ϕt : H
4(Xt,Z)pr

∼ //H4(X ′t,Z)pr (5.1)

for all local deformations Xt and X ′t. More precisely, there exists an identification Def(X) '
Def(X ′) between the bases of the universal deformation spaces (think of them as open sets of
the period domain) such that parallel transport induces (5.1). Simultaneously, the ϕt can be

extended to orientation-preserving Hodge isometries ϕ̃t : H̃(AXt ,Z)
∼ // H̃(AX′t ,Z) commuting

with the degree shift.

The set D′ of points t ∈ Def(X) ' Def(X ′) for which there exists a twisted K3 surface (St, αt)
without spherical objects and orientation-preserving Hodge isometries

ϕ̃t : H̃(AXt ,Z)
∼ // H̃(St, αt,Z)

∼ // H̃(AX′t ,Z) (5.2)

is dense (more precisely, a countable union of hypersurfaces, which, using their Hodge-theoretic
description, can be seen to be also analytically dense); see [Huy17, Corollary 2.16]. Moreover, due
to [Huy17, Theorem 1.4], which is the twisted version of [AT14, Theorem 1.1], we may assume
that the Hodge isometries (5.2) can be lifted to Fourier–Mukai equivalences

Φt = Φ̄Pt : AXt
∼ //Db(St.αt)

∼ //AX′t , (5.3)

where Pt ∈ AXt(−2)�AX′t . Note that, at this point, one implicitly uses the derived global Torelli
theorem for K3 surfaces, which ultimately relies on the classical global Torelli theorem for K3
surfaces. For example, it is used in [AT14, Proposition 5.1] and, more generally, in the description
of the image of Aut(Db(S, α)) //Aut(H̃(S, α,Z)).

Remark 5.4 applies to t ∈ D′ and yields P`t ◦Pt ' Pt ◦P ′`t, where P`t and P ′`t are the natural
kernels for the degree-shift functor (`) on AXt and AX′t , respectively. Corollary 3.10 then yields
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Xt ' X ′t for all t in the dense set D′ and, as the moduli space of cubics is separated, this shows
that X ' X ′. This concludes the proof of Theorem 1.3.

Remark 5.5. Note that the arguments in [AT14, Huy17] rely on the fact that all cubics X ∈ C8

contain a plane. This is a result due to Voisin; see [Voi86, Section 3]. It is used to prove the
global Torelli theorem first for these cubics before extending it to all.

In the deformation theory in [AT14, Section 5.2], the authors use the global Torelli theorem
to construct a universal family over a finite cover of the moduli space. This can be completely
avoided by working with the Hilbert scheme or proved by standard algebraic methods. So, in
particular, our arguments to prove the global Torelli theorem are at least not circular.

6. Further comments

Although matrix factorizations have not been used in any of the proofs above, some of the
arguments are clearly motivated by thinking in terms of MF(f,Z). We briefly recall the inter-
pretation of AX as the category of graded matrix factorizations and explain how to view some
of the techniques in this light.

The category AX of a smooth hypersurface X ⊂ Pn+1 can also be described as a category of
graded matrix factorizations. More precisely, there exists an exact linear equivalence

MF(f,Z) ' AX ,

where f ∈ Rd = k[x0, . . . , xn+1]d is defining X. In fact, Orlov constructs a series of fully faithful
embeddings Φi : MF(f,Z) �

� //Db(X), see [Orl09, Theorem 2.5], and for i = 1, the image is the
subcategory AX = 〈O, . . . ,O(n+ 1− d)〉⊥ = ⊥〈O(d− n− 2), . . . ,O(−1)〉.

The objects of MF(f,Z) are pairs (K α // L
β // K(d)), where K and L are finitely gen-

erated, free, graded R-modules and α, β are graded R-module homomorphisms with β ◦ α =
f · id = α(d) ◦ β. Recall that K(`) for a graded R-module K =

⊕
Ki is the graded module with

K(`)i = K`+i. Morphisms in MF(f,Z) consist of homotopy classes of pairs of graded homomor-
phisms g : K //K ′ and h : L //L′ with α′ ◦ g = h◦α and β′ ◦h = g(d)◦β, and the shift functor
making MF(f,Z) into a triangulated category is given by(

K
α // L

β // K(d)
)
[1] :=

(
L
−β− // K(d)

−α− // L(d)
)
.

The degree-shift functor for MF(f,Z) is by definition the auto-equivalence given by

(1) : MF(f,Z)
∼ //MF(f,Z) ,(

K
α // L

β // K(d)
) � //

(
K(1)

α(1)− // L(1)
β(1)− // K(d+ 1)

)
,

which obviously satisfies (d) ' [2]; cf. Corollary 2.16.

Remark 6.1. According to [BFK12, Proposition 5.8], under the fixed equivalence MF(f,Z) ' AX
(which corresponds to Φ1 in [Orl09, Theorem 2.5]), the degree-shift functor (1) on MF(f,Z) is
isomorphic to the auto-equivalence i∗ ◦ (O(1)⊗ ( )) of AX , which is the degree-shift functor (1)
on AX as introduced in Example 2.9(ii).

Of course, once this is established, the isomorphism (d) ' [2] in Corollary 2.16 is immediate.
However, only on the level of functors but not on the level of Fourier–Mukai kernels, which was
crucial for our purposes.

Consider the image of a section s ∈ H0(X,OX(1)) under the isomorphism (3.1), and view
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it as a morphism between Fourier–Mukai kernels s : P0 = j∗O∆
//P1 = j∗O∆(1). The induced

natural transform s : id // (1) between the auto-equivalences id, (1) : AX ' MF(f,Z)
∼ //AX '

MF(f,Z) can be described in terms of matrix factorizations as given by multiplication by the
section s, that is,(

K
α // L

β // K(d)
) (s,s,s) //

(
K(1)

α(1) // L(1)
β(1) // K(d+ 1)

)
. (6.1)

A similar description holds for the transforms id // (`) induced by sections s ∈ H0(X,OX(`)).

Remark 6.2. The naive idea behind Proposition 3.3 is the chain rule. Indeed, for s = ∂if ∈
H0(X,OX(d− 1)), the map (6.1) is homotopic to zero; just use the chain rule ∂if = ∂i(β ◦α) =
∂iα◦β+α◦∂iβ to see that ∂iβ : L //K(d−1) and ∂iα : K //L(−1) define a homotopy ∂if ∼ 0;
see, for example, [Dyc11]. However, Proposition 3.3 cannot be replaced by this easy observation,
as the natural map Hom(P0, P`) //Fun(id, (`)) is not always injective.5

It seems feasible that some of the arguments in this paper can indeed be rephrased in the
language of matrix factorizations. However, the transition between the two points of view is
often involved; cf. [BFK12]. Already, identifying the two degree-shift functors (1) or verifying
that s ∈ H0(X,OX(1)) really yields (6.1) are non-trivial matters. In the end, we decided that
staying in the derived context throughout makes the arguments cleaner.

Passing from the formalism of matrix factorizations to the equivalent formalism of general
factorizations (see, for instance, [ADS15, BFK14]), we may represent the functors

(i) : MF(f,Z) //MF(f,Z)

by a natural Fourier–Mukai kernel Qi in (the appropriately graded version of) MF(−f � f).
We may then define LMF(X) :=

⊕
Hom(Q0, Qi). A more general version of this ring is com-

puted in [BFK14]. Their methods can presumably be used to show that J(X) is isomorphic
to the subring of LMF(X) generated by its degree one part. It is natural to conjecture that
LMF(X) ' L(X), but for the reasons listed, proving this is a non-trivial task.
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