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Uniqueness of minimal morphisms

of logarithmic schemes

Jonathan Wise

Abstract

We give a sufficient condition under which the moduli space of morphisms between
logarithmic schemes is quasifinite over the moduli space of morphisms between the
underlying schemes. This implies that the moduli space of stable maps from logarithmic
curves to a target logarithmic scheme is finite over the moduli space of stable maps,
and therefore that it has a projective coarse moduli space when the target is projective.

1. Introduction

Chen [Che14], Abramovich and Chen [AC14], and Gross and Siebert [GS13] have recently con-
structed a moduli space of stable maps from logarithmic curves into logarithmic target schemes.
In [Wis16], we extended the existence results of those papers beyond logarithmic curves and
eliminated some technical restrictions that applied even to curves. However, [Wis16] only asserts
that the moduli space of maps between logarithmic schemes exists as an algebraic space that is
locally of finite presentation; Chen showed that when the target has a rank 1 logarithmic struc-
ture, the moduli space of logarithmic maps is a disjoint union of pieces, each of which is finite
over the moduli space of maps between the underlying schemes [Che14, Proposition 3.7.5]. This
implies in particular that the moduli space of stable maps from logarithmic curves has a pro-
jective coarse moduli space when the target variety is projective. That result was extended to
so-called generalized Deligne–Faltings logarithmic structures by Abramovich and Chen [AC14].

We will explain these results with a general criterion on the domain that applies to arbitrary
logarithmic targets.

Theorem 1.1. Let S be a fine logarithmic scheme. Let X and Y be fine logarithmic S-schemes,
with X also geometrically reduced, proper, and integral (in the logarithmic sense [Kat89, Defi-
nition (4.3)]) over S. If the relative characteristic monoid of X/S is generically trivial, then the
projection from the space of logarithmic maps to the space of maps of underlying schemes factors
as a monomorphism followed by an étale map

HomLogSch/S(X,Y )→ T → HomSch/S(X,Y ) , (1.1)

where T is the space of types.

The space of types is defined in Definition 3.1.

Received 15 May 2017, accepted in final form 15 September 2017.
2010 Mathematics Subject Classification 14D20, 14H10, 14D22.
Keywords: logarithmic geometry, moduli spaces, curves, stable maps.
This journal is c© Foundation Compositio Mathematica 2019. This article is distributed with Open Access under
the terms of the Creative Commons Attribution Non-Commercial License, which permits non-commercial reuse,
distribution, and reproduction in any medium, provided that the original work is properly cited. For commercial
re-use, please contact the Foundation Compositio Mathematica.

Supported by an NSA Young Investigator’s Grant, Award #H98230-14-1-0107.

http://algebraicgeometry.nl
http://www.ams.org/msc/
http://algebraicgeometry.nl
http://creativecommons.org/licenses/by-nc/3.0/
http://algebraicgeometry.nl


Uniqueness of minimal morphisms

The following corollary recovers and generalizes the results of Chen, Abramovich–Chen, and
Gross–Siebert mentioned earlier.

Corollary 1.2. Let Y be a fine, saturated logarithmic scheme over S. Fix a type u (see Defini-
tion 3.1). Let Mu(Y ) be the moduli space of stable maps from logarithmic curves to Y of type u,
let Mu(Y ) be its underlying algebraic stack, and let M(Y ) be the moduli space of stable maps
to Y . Then Mu(Y ) is finite over M(Y ).

Proof. It has been shown elsewhere that the moduli space of stable logarithmic maps is locally
of finite type [Wis16, Theorem 1.1], bounded [ACMW17, Proposition 1.5.6], and satisfies the
valuative criterion for properness [ACMW17, Proposition 1.4.3] over stable maps, so it remains
only to show that the geometric fibers are finite.

It is therefore sufficient to consider a base S whose underlying scheme is the spectrum of an
algebraically closed field and fix a logarithmic curve X over S. This corresponds to a map from S
to the moduli space of curves, and we wish to show that the base change Mu,X(Y ) of Mu(Y ) via
this map is finite over the base change Mu,X(Y ) of Mu(Y ). The space Mu,X(Y ) is the saturation1

of the logarithmic algebraic space HomLogSch/S(X,Y )u obtained from HomLogSch/S(X,Y ) by
base change via u : S → T . Therefore, the projection from Mu,X(Y ) to S can be factored:

Mu,X(Y )→HomLogSch/S(X,Y )u → S .

The first map is the saturation, hence is quasifinite; the second is geometrically injective by
Theorem 1.1.

Conventions and notation

We have retained the notation of [Wis16] as much as seemed practical. In particular, X is the
underlying space or stack of a logarithmic algebraic space or stack X. We have consistently
used underlined Roman characters to represent schemes, even when no logarithmic scheme is
present for the schemes to underlie, but we have not applied the same convention to morphisms
of schemes, lest the underlines overwhelm.

We have made one departure from the notation of [Wis16], however. In order to distinguish
pullback of logarithmic structures from pullback of étale sheaves, we apply a superscript ∗ to
a morphism of schemes for the former and a superscript −1 for the latter. In [Wis16], a super-
script ∗ was used for both. The superscript ∗ is sometimes also applied to a morphism of loga-
rithmic schemes, and we direct the reader to Section 5 for an explanation of that usage.

When A and B are objects that vary with objects of some category C , we write HomC (A,B)
for the functor or fibered category on C of morphisms from A to B. This convention conflicts
with the more standard convention of using the subscript to indicate in which category the
homomorphisms should be taken. Our perspective is that Hom should only be applied to pairs
of objects of the same type, and that it should be possible to infer the type from the arguments.

Outline of the argument

The fiber of (1.1) over a fixed type u ∈ T is the collection of minimal logarithmic maps of that
type. Our demonstration that there are only finitely many minimal maps proceeds by showing

1The reason for the saturation is a matter of conventions in the literature. The space of morphisms
HomLogSch/S(X,Y ) was constructed in the category of fine, but not necessarily saturated, logarithmic struc-
tures [Wis16], whereas the moduli space of stable maps from logarithmic curves to a logarithmic target is usually
understood to be defined only over fine, saturated, logarithmic schemes [GS13]. To pass from the one to the other,
one must saturate.

51



J. Wise

first that, provided that the relative characteristic of X/S is generically trivial, the characteristic
monoid of a minimal logarithmic map is determined by the type (Corollary 6.2). Once the
characteristic monoid is determined, Lemma 6.3 implies that the collection of minimal objects
is either empty or a torsor under an explicitly determined group. We show in Section 7 that this
group is trivial, which completes the proof.

2. A preliminary reduction

In order to simplify the notation, we make a preliminary reduction. To prove Theorem 1.1, it is
sufficient to work relative to HomSch/S(X,Y ) and assume that an S-morphism f : X → Y has
already been fixed. Then we have an equivalence of categories:

HomLogSch/S(X,Y )f = HomLogSch/S(f∗MY ,MX) . (2.1)

On the left side, Hom should be interpreted as morphisms of logarithmic schemes over S with fixed
morphism of underlying schemes f ; on the right side, Hom refers to morphisms of logarithmic
structures commuting with the structural maps from π∗MS .

Equation (2.1) informs us that we can dispense with Y and work entirely on X, setting
M = f∗MY . The following assumptions will remain in force for the rest of the paper:

(i) S = (S,MS) and X = (X,MX) are fine logarithmic schemes and π : X → S is a morphism
of logarithmic schemes;

(ii) M is a fine logarithmic structure on X, equipped with a homomorphism of logarithmic
structures π∗MS →M .

Theorem 1.1 breaks up into the following two statements. For the space of types mentioned
in the first, see Definition 3.1.

Theorem 2.1. Assume that X is proper over S. Then the space of types is étale over S.

For the next statement, we introduce some notation. For any type u, denote the space of
morphisms of type u by HomLogSch/S(M,MX)u.

Theorem 2.2. Assume that S is the spectrum of an algebraically closed field, that π∗MS →MX

is an integral homomorphism of monoids, that X is reduced, and that X is proper over S. If the
sheaf of relative characteristic monoids MX/π

∗MS vanishes on a dense open subset of X, then
for any type u, the underlying algebraic space of HomLogSch/S(M,MX)u has at most one point.

The first of these statements is treated in Section 3, and the other takes up the balance of
the paper.

3. Types

Definition 3.1. Let the notation be as in Section 2: M is a logarithmic structure on X that is
integral over MS . A type consists of a homomorphism of sheaves of abelian groups

u : Mgp/π∗Mgp
S →Mgp

X /π∗Mgp
S .

We define

T = HomSch/S

(
Mgp/π∗Mgp

S ,Mgp
X /π∗Mgp

S

)
= HomSch/S

(
Mgp/π−1Mgp

S ,M
gp
X /π

−1Mgp
S

)
.
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Uniqueness of minimal morphisms

More explicitly, for any S-scheme S′, write X ′ = X ×S S
′ and g : X ′ → X for the projection;

then

T (S′) = Hom
(
g−1
(
Mgp/π∗Mgp

S

)
, g−1

(
Mgp

X /π∗Mgp
S

))
= Hom

(
g−1
(
Mgp/π−1Mgp

S

)
, g−1

(
Mgp

X /π
−1Mgp

S

))
.

Proof of Theorem 2.1. For the duration of the proof, we abbreviate F = Mgp/π−1Mgp
S and

G = Mgp
X /π

−1Mgp
S . The object of the proof is to show that HomSch/S(F,G) is representable by

an étale algebraic space over S. Since F and G are constructible, we have2

Homét(X′)

(
g−1F, g−1G

)
' g−1 Homét(X)(F,G) (3.1)

for any morphism g : X ′ → X. Let us establish (3.1): since these are sheaves, it is sufficient to
verify it at the stalks, so we can assume that X ′ = x is the spectrum of an algebraically closed
field. Consider first the case where F is freely generated by the sheaf of sections of an étale
scheme Z of finite presentation over X. In that case,

Homét(X′)

(
g−1F, g−1G

)
= Hom(Fx, Gx) = Γ(Zx, Gx) ,

Homét(X)(F,G)x = lim−→
U

Γ(ZU , G) ,

where the direct limit is taken over étale neighborhoods of x. As Zx is finite, we can identify the
direct limit with Γ(Zx, Gx).

For the general case of (3.1), it is sufficient to prove this assertion in an affine neighborhood
of each point of X ′, so we can assume that X is quasicompact and quasiseparated. Therefore, by
[SGA4-3, Proposition IX.2.7], the sheaf F has a finite presentation, with F0 and F1 both freely
generated by the sheaves of sections of étale schemes of finite presentation over X:

F = lim−→(F1 ⇒ F0) .

Then by the universal property of the colimit, Homét(X)(F,G) can be represented as an equalizer:

Homét(X)(F,G) = lim←−
(
Homét(X)(F0, G) ⇒ Homét(X)(F1, G)

)
.

But pullback preserves finite limits, and we have already seen that (3.1) holds when F is free, so
we have what we need:

g−1 Homét(X)(F,G) = g−1 lim←−
(
Homét(X)(F0, G) ⇒ Homét(X)(F1, G)

)
= lim←−

(
Homét(X′)

(
g−1F0, g

−1G
)
⇒ Homét(X′)

(
g−1F1, g

−1G
))

= Homét(X′)

(
g−1F, g−1G

)
.

Thus, the espace étalé of Homét(X)(F,G) represents HomSch/X(F,G).

To complete the proof of the theorem, we now observe that the espace étalé of
π∗Homét(X)(F,G) represents HomSch/S(F,G). Indeed, for any g : S′ → S, we have

HomSch/S(F,G)(S′) = Hom
(
g−1F, g−1G

)
= Γ

(
S′, π∗Homét(X′)

(
g−1F, g−1G

))
= Γ

(
S′, π∗g

−1 Homét(X′)(F,G)
)

by (3.1)

= Γ
(
S′, g−1π∗Homét(X)(F,G)

) by proper base change
[SGA4-3, Théorème 5.1(i)] .

This completes the proof.

2The notation in (3.1) adheres pedantically to our convention for the subscript of Hom (see Section 1). In other
settings the “sheaf Hom” on the small étale site might be denoted by Hom or Hom.
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4. The left adjoint to pullback for étale sheaves

Throughout this section, π : X → S will be flat and locally of finite presentation, with reduced
geometric fibers. It was shown in [Wis16, Theorem 4.5] that, under these conditions, the pull-
back functor π−1 for étale sheaves has a left adjoint, π!. In this section, we make some further
observations about this functor.

We will use the notation Gét for the espace étalé of an étale sheaf G.

Lemma 4.1. For any étale sheaf F on X, the fiber of π!F over a geometric point s of S is π0(F ét
s ),

where F ét
s is the fiber of F ét over s.

Proof. Since π! commutes with arbitrary change of base [Wis16, Corollary 4.5.1], we may assume
that S is the spectrum of an algebraically closed field. Since π−1(G)ét = Gét×S X for any étale
sheaf G on S, we have

Hom
(
F, π−1G

)
= Hom

(
F ét, Gét×

S
X
)

= Hom
(
π0

(
F ét/S

)
, Gét

)
.

Thus, π0(F ét/S) and π!(F )ét represent the same functor, hence are isomorphic.

For the next few statements, we will use the notation πN! for the left adjoint to π−1 in the
category of integral monoids [Wis16, Proposition 4.7], because this functor does not agree with
π! upon passage to the underlying sheaf of sets. In later sections, we will only be interested in
πN! and not in π!, so we will discard the superscript from the former.

The functor π−1 does commute with passage from commutative monoids to their underlying
sets, so it follows formally that its left adjoint respects passage from sets to their freely generated
monoids: for any sheaf of sets F on X, we have

πN! (NF ) = Nπ!(F ) ,

where we have written NF for the monoid freely generated by F .

Lemma 4.2. (i) If F is an étale sheaf of integral monoids on X, then πN! F is generated by π!F .

(ii) The functor πN! preserves surjections.

Proof. Let G ⊂ πN! F be the submonoid generated by π!F . Then F → π−1πN! F factors:

F → π−1π!F → π−1G ⊂ π−1πN! F .

Of course, the first map is just a morphism of sheaves of sets, but the composition is a monoid
homomorphism, so upon applying πN! again, we get a commutative diagram

πN! F
// πN! π

−1G //

��

πN! π
−1πN! F

��
G // πN! F .

Adjunction implies that the composition πN! F → πN! F is the identity, from which it follows that
G→ πN! F is surjective. This proves the first claim.

For the second, consider a surjection H → F of sheaves of integral monoids. Then π!H → π!F
is surjective, and π!F generates πN! F , so the image of π!H in πN! F generates πN! F . Therefore,
πN! H → πN! F is surjective.
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Uniqueness of minimal morphisms

Lemma 4.3. Let i : U → X be the inclusion of an open subset such that U s ⊂ Xs is dense for
every geometric point s of S.

(i) For any étale sheaf of sets F on X, the map π!i!i
−1F → π!F is surjective.

(ii) For any étale sheaf of integral monoids F on X, the homomorphism πN! i
N
! i
−1F → πN! F is

surjective.

Proof. We begin with the statement about sheaves of sets. Since π! commutes with base change
and surjectivity can be checked on the stalks, it is sufficient to assume that S is the spectrum of
an algebraically closed field. By Lemma 4.1, we have

π!F = π0

(
F ét
)
,

π!i!i
−1F = π0

(
i−1F ét

)
.

But X is locally connected (since it is locally of finite type over a field) and i−1F ét ⊂ F ét is a
dense open subset, so π0(i−1F ét) surjects onto π0(F ét).

Now, we prove the statement about monoids. As before, let NF be the sheaf of monoids
freely generated by the underlying sheaf of sets of F ; note that NF → F is surjective. Consider
the commutative diagram

πN! i
N
! i
−1NF

∼

��

Nπ!i!i
−1F // Nπ!F

∼
πN! NF

��
πN! i

N
! i
−1F // πN! F .

The upper arrow is surjective by the first part of the lemma, and Lemma 4.2 implies that the
right arrow is surjective, so the bottom arrow is surjective as well.

5. Construction of minimal monoids

We recall the notation and main construction of [Wis16]. A simple example of this construction
can be found in Section 8.

Recall our assumptions from Section 2, to which we add that

(iii) π is flat with reduced geometric fibers and

(iv) π∗MS →MX is integral.

We also specify a type, u.

We think of fibered categories over LogSch as fibered categories over Sch via the projection
LogSch → Sch. Thus, if H is a fibered category and S is a scheme, the notation H(S) refers
to the category of all pairs (MS , ξ) where MS ∈ LogSch(S) is a logarithmic structure on S and
ξ ∈ H(S,MS).

In order to describe more concretely the particular choice of H that will be of interest to
us, we introduce some notation. Let f : T → S be a morphism of logarithmic schemes, and set
Y = X ×S T . For any logarithmic structure P on X, we write f∗P for the logarithmic structure
on Y such that (Y , f∗P ) = (X,P ) ×S T in the category of (not necessarily fine) logarithmic
schemes; that is, f∗P is obtained by pushing out f−1P along the morphism π−1f−1MS → π−1MT

and taking the associated logarithmic structure.
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Define H = HomLogSch/S(M,MX)u. This is the fibered category over LogSch/S whose fiber
over f : (T,MT )→ (S,MS) is the set of morphisms of logarithmic structures

f∗M → f∗MX

on X ×S T that commute with the structural maps from f∗π∗MS = π∗MT and such that the
induced map

f∗Mgp/f∗π∗Mgp
S → f∗Mgp

X /f∗π∗Mgp
S

coincides with the pullback f∗u of the type u. Note that X ×S T is the underlying scheme of
X ×S T because X is integral over S.

We will often wish to refer to objects of the moduli space H with some additional fixed
structure. For example, to fix a logarithmic base scheme T , we write H(T ); to fix the underlying
scheme T of T and its characteristic monoid NT (but not the logarithmic structure NT ), we
write H(T ,NT ).

It was shown in [Wis16, Theorem 1.1] that if X is proper over S, then H is representable
by an algebraic space H with a logarithmic structure MH , that is locally of finite presentation
over S. By a theorem of Gillam, H(S) ⊂ H(S) may be characterized as the subcategory of
minimal objects (see [Gil12] or [Wis16, Appendix B]). This category is equivalent to a set by
[Wis16, Corollary 5.1.1], which shows that minimal objects have no nontrivial automorphisms.

We will be particularly interested in the S-points of H, so we introduce some additional
notation for handling them. For any morphism of logarithmic structures MS → NS , we write
MX → NX for morphism of logarithmic structures onX obtained by pushout along the morphism
π∗MS →MX :

π∗MS
//

��

MX

��
π∗NS

// NX .

(5.1)

In other words, (X,NX) = X ×S(S,NS).

Then H(S) is the category of pairs (MS → NS ,M
ϕ−→ NX), where NX is as above and and

M → NX is a morphism of logarithmic structures commuting with the maps from π∗MS . Such
an object is generally abbreviated to (NS , ϕ).

We now recall the construction of the logarithmic structure of H from [Wis16]. This can
be done without explicit reference to the underlying space of H: given an S-point (NS , ϕ)
of H, there is a corresponding map α : S → H; there must therefore be a logarithmic struc-
ture α∗MH on S and a homomorphism of logarithmic structures α∗MH → NS ; we build the
logarithmic structure α∗MH . This is known as the minimal (or basic) logarithmic structure
associated with (NS , ϕ).

In fact, what we do is find a sheaf of monoids (a quasilogarithmic structure, in the language of
[Wis16, Definition 1.2]) QS on S such that α−1MH is a quotient of QS . We recall the construction
of QS .

First, we form a fiber product:

Rgp
0 = Mgp ×

Mgp
X/S

Mgp
X . (5.2)

The first map in the product is the type u, and the second is the tautological projection. The
fiber product comes with two inclusions of π−1Mgp

S , one from each factor, and we take Rgp to
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be their coequalizer. Then, we define the submonoid R ⊂ Rgp to be the smallest submonoid
containing π−1MS such that the pushout RX in diagram (5.3)

π−1MS
//

��

MX

��
R // RX

(5.3)

contains the image of M under the tautological map (see [Wis16, Section 3.1] for the construction
of this map). Next, we consider the pushout

π!π
−1MS

//

��

π!R

��
MS

// QS .

(5.4)

It was shown in [Wis16, Section 4.2] that if (NS , ϕ) ∈ H(S), then there is a unique homomorphism
of sheaves of monoids, commuting with maps from MS and inducing ϕ : M → NX :

QS → NS . (5.5)

Pulling back the projection NS → NS and the map NS → OS induces a sheaf of monoids QS

on S and a homomorphism QS → OS . This is not always a logarithmic structure on S (see, for
example, the case of logarithmic points in Section 8), so we pass to the associated logarithmic
structure to get α∗MH .

We record several basic consequences of the construction.

Lemma 5.1. (i) Qgp
S /M

gp
S ' π!R

gp/π!π
−1Mgp

S ' π!

(
Rgp/π−1Mgp

S

)
.

(ii) Rgp/π−1Mgp
S ' R

gp
0

/(
π−1Mgp

S × π
−1Mgp

S

)
'Mgp/π−1Mgp

S .

(iii) The sharpening of QS → NS is α−1MH .

(iv) If MX/S = 0, then R = M , canonically.

Proof. Passage to the associated group is a left adjoint and therefore preserves cocartesian dia-
grams. Therefore, diagram (5.4) remains cocartesian upon passage to the associated groups. It is
then an easy exercise with universal properties to verify that the quotients along the horizontal
direction are isomorphic. This gives the isomorphism on the left side of statement (i); for the
right side, we observe that π! is a left adjoint, hence respects quotients.

For statement (ii), observe that to go from the middle term to the left one, we quotient both
Rgp

0 and π−1Mgp
S × π−1Mgp

S by the antidiagonal copy of π−1Mgp
S . To go from middle to right,

we use the fiber product construction of Rgp
0 in (5.2) and quotient by the right copy of π−1Mgp

S .

For statement (iii), first recall that the sharpening of QS → NS is the minimal quotient Q′S
of QS through which the map to NS factors as a sharp homomorphism. It is constructed by
dividing QS by the set of elements that map to 0 in NS .

Now, QS is, by construction, an extension of QS by O∗S . By definition, the associated loga-
rithmic structure Qa

S of QS fits into a cocartesian diagram:

exp−1O∗S //

��

O∗S

��
QS

// Qa
S .
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But note that exp−1O∗S = γ−1N∗S , where γ : QS → NS is the tautological map. Dividing every-
thing by O∗S yields another cocartesian diagram:

γ−1(0) //

��

0

��
QS

// Qa
S .

On the other hand, this is precisely the cocartesian diagram used to sharpen QS → NS .

For statement (iv), observe that when MX/S = 0, the fiber product (5.2) becomes a product:

Rgp
0 = Mgp × π−1Mgp

S , so equalizing the two copies of π−1Mgp
S recovers Mgp. Chasing the

definitions3 in [Wis16, Section 3.1], one discovers that the map Mgp → RX = Mgp is the
identity under this identification, and therefore that R = M .

6. Minimal characteristic monoids

We maintain the assumptions of Section 2 and the additional assumptions of Section 5. Recall
that by our notational conventions, H(S) consists of all choices of logarithmic structure NS on
S and all ϕ ∈ H(S,NS).

Lemma 6.1. Let R be constructed as in Section 5. If the relative characteristic of X/S is gener-
ically trivial on every geometric fiber of X over S, then for any (NS , ϕ) ∈ H(S), the canonical
map π!R→ NS is sharp.

Proof. Since the construction of π!R commutes with change of base, we can reduce to the case
where S is the spectrum of an algebraically closed field. By Lemma 4.3, there is a surjection
π!i!i

−1R→ π!R, where i is the inclusion of the dense open subset where MX/S = 0. It is sufficient

to show that π!i!i
−1R → NS is sharp. We can therefore reduce to the case where MX/S = 0,

globally, by replacing X with the dense open subset on which the characteristic monoid vanishes.

In that case, R = M (Lemma 5.1(iv)) and the map π!R→ NS is induced by adjunction from
the map

ϕ : M → NX = π−1NS .

The equality on the right holds because MX/S = 0. But now by Lemmas 4.1 and 4.2(i), any

a ∈ π!M is the image of a sum of local sections ai of M defined over connected U i that are
étale over X. If a =

∑
ai maps to 0 in NS , then all ai map to 0 in NS since NS is sharp (as

it is the characteristic monoid of a logarithmic structure). This means that ai maps to 0 under
ϕ : M → π−1NS . But ϕ underlies the morphism of logarithmic structures ϕ : M → π∗NS , hence
is sharp. Therefore, all of the ai must be 0, so π!R→ NS is sharp.

Corollary 6.2. Under the hypotheses of the lemma, if (NS , ϕ) ∈ H(S), then NS = QS .

Proof. By Lemma 5.1(iii), the monoid NS is the sharpening of QS → NS , so the point is to
show that QS → NS is sharp. We already know that π!R → NS is sharp by the lemma. When
X has connected geometric fibers over S, this implies the corollary since in that case π!R = QS .

3The reader who is so inclined may prefer to observe that R and M → RX (where RX is the pushout of π−1MS →
MX along π−1MS → R) satisfy a universal property and that M and id: M → M visibly satisfy this universal
property when MX/S = 0.
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In general, we can proceed geometric fiber by geometric fiber and assume that S is the
spectrum of an algebraically closed field. If X = ∅, the conclusion is obvious. Otherwise, the
map π!π

−1MS →MS is surjective, which implies that π!R→ QS is surjective as well. Therefore,
the sharpness of π!R→ NS implies the sharpness of QS → NS , as required.

The corollary implies that all objects of H(S) of the same type u have the same character-
istic monoid. This greatly simplifies the analysis of Hu(S). In fact, the following lemma gives
a complete characterization of Hu(S,NS) for any fixed characteristic monoid NS .

Lemma 6.3. Assume that S is the spectrum of an algebraically closed field. If Hu(S,NS) is
nonempty, then it is isomorphic to the quotient groupoid[

Hom
(
Mgp/π−1Mgp

S ,O
∗
X

)/
Hom

(
Ngp

S /M
gp
S ,O

∗
S

)]
.

The map Hom(NS/MS ,O∗S) → Hom(M/π−1MS ,O∗X) used to construct the quotient is ob-
tained from the canonical maps

π−1O∗S → O∗X ,

Mgp/π−1Mgp
S → Ngp

X /M
gp
X ' π

−1Ngp
S /π

−1Mgp
S ,

the latter of which is induced from ϕ and the cocartesian diagram (5.1).

Proof. We need to see how many ways there are to choose (NS , ϕ) ∈ Hu(S) with the same
fixed characteristic monoid NS . Holding NS fixed, any two choices of ϕ will differ by a uniquely
determined homomorphism M → O∗X that vanishes on π−1MS . Therefore, for NS fixed, the
choices of ϕ form a torsor under Hom(M/π−1MS ,O∗X).

Since S is the spectrum of an algebraically closed field, there is a unique choice of NS (up to
nonunique isomorphism) once NS is fixed. Making such a choice, we can now identify Hu(S,NS)
with the quotient of Hom(M/π−1MS ,O∗X) by the automorphism group of NS fixing NS and MS .
That automorphism group is precisely Hom(NS/MS ,O∗S), by the same calculation we made
above.

Putting these two lemmas together, we discover first from Lemma 6.1 that if Hu(S) 6= ∅, then
the characteristic monoid of any object of Hu(S) is QS . Then Lemma 6.3 implies that Hu(S)

may be identified with the quotient of Hom(Mgp/π−1Mgp
S ,O∗X) by

Hom
(
Qgp

S /M
gp
S ,O

∗
S

)
= Hom

(
π!R

gp/π!π
−1Mgp

S ,O
∗
S

)
(Lemma 5.1(i))

= Hom
(
Rgp/π−1Mgp

S , π
−1O∗S

)
= Hom

(
Mgp/π−1Mgp

S , π
−1O∗S

)
(Lemma 5.1(ii)) .

We will therefore be able to conclude that the quotient H(S) is trivial once we prove

Hom
(
Mgp/π−1Mgp

S ,O
∗
X

)
= Hom

(
Mgp/π−1Mgp

S , π
∗O∗S

)
.

In other words, we must show that every homomorphism

Mgp
X /π

−1Mgp
S → O

∗
X

factors through π−1O∗S . That will be done in the next section.
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7. Units

Theorem 7.1. Suppose that X is reduced, that X is proper over S, and that M is a coherent
logarithmic structure on X. Then any homomorphism M → O∗X factors through π−1O∗S .

Remark. Theorem 7.1 is obvious in the special case where Mgp is generated by global sections,
since maps M → O∗X correspond to global sections of O∗X .

For any scheme X, let U ⊂ O∗X be the étale subpresheaf 4 whose sections over an étale
V → X consist of all f ∈ O∗X(V ) such that, for every valuation ring R with field of fractions K
and every commutative diagram

SpecK
ϕ //

��

V

��
SpecR // X ,

(7.1)

the restriction ϕ∗f of f to SpecK lies in R∗. The idea is that U (V ) is the sheaf of units in O∗X(V )
that have no zeroes or poles on the closure of V .

Lemma 7.2. The presheaf U defined above is a sheaf in the étale topology.

Proof. As U is a subpresheaf of a sheaf, it is separated. We need to show that every local section
of O∗X that lies locally in U is in fact in U . Suppose that we have an étale cover Wi → V and
that f is a section of O∗X(V ) whose restriction to each Wi lies in U (Wi). We check that f lies
in U (V ).

To that end, suppose that R is a valuation ring with field of fractions K and that we have
a commutative diagram (7.1). Then, there is some Wi whose image in V contains the image
of SpecK. Let K1 be the residue field of a finite type point of Vi ×V SpecK. Since K1 is finite
over K, there is a unique extension of the valuation of K to K1. Let R1 be its valuation ring.
We have a commutative diagram

SpecK1
//

��

Vi

��
SpecR1

// X .

As f ∈ U (Vi), we deduce that the image of f in K1 lies in R∗1. But R∗1 ∩K = R∗, so f ∈ U (V )
as well.

Lemma 7.3. Suppose that M is a coherent logarithmic structure on X. Then any homomorphism
of sheaves of monoids M → O∗X factors through U .

Proof. Let α : M → O∗X be a homomorphism. Consider a section f ∈ M(V ) for some étale
V → X. We must show that for any commutative diagram (7.1), the image of ϕ∗α in K∗ lies
in R∗. We can therefore replace X with SpecR and V with SpecK. Since K∗ and R∗ are sheaves
in the étale topology on SpecR (to be more precise, O∗SpecR and j∗O∗SpecK are sheaves, where j
is the inclusion of the generic point), we can work étale-locally in X and assume that M has
a global chart. Then, the image of α coincides with the image of the global sections of M under α,
and any global section of M maps to Γ(X,O∗X) = R∗.

4I do not know whether it is necessary to work in the étale topology, or if the sheaf is induced from the Zariski
topology.
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Lemma 7.4. When π : X → S is proper and X is reduced, the natural inclusion π−1O∗S ⊂ U is
a bijection.

Proof. Suppose that f is a section of U over an étale map V → X. We can assume that V is
quasicompact. Regard f as a morphism from X to Gm ⊂ P1, let V be the closure of the graph
of f in X ×P1 (with its reduced structure), and let f : V → P1 be the projection. For any point
q of V , we can choose a valuation of OV whose center is q and whose generic point lies in V ; let
R be the valuation ring. Then, by the definition of U , the restriction of f to SpecR lies in R∗.
In particular, f(q) 6= 0,∞. Therefore, f factors through Gm ⊂ P1. This holds for any q ∈ V , so
f ∈ Γ(V ,O∗

V
). But V is reduced and proper over S, so Γ(V ,O∗

V
) = Γ(V , π−1O∗S). And as V is

reduced (since it is étale over X and X is reduced), we have V ⊂ V as a scheme and f is the
restriction of f to V . Thus f ∈ Γ(V, π−1O∗S), as required.

Proof of Theorem 7.1. By Lemma 7.3, any homomorphism M → O∗X factors through U . But
because X is reduced and proper over S, Lemma 7.4 implies U = π−1O∗S .

Proof of Theorem 2.2. By Corollary 6.2, any (NS , ϕ) ∈ Hu(S) must have NS = QS . Then by
Lemma 6.3, if there are any objects of H(S) with characteristic monoid QS , then they are
parameterized by the quotient[

Hom
(
Mgp/π−1Mgp

S ,O
∗
X

)/
Hom

(
Qgp

S /M
gp
S ,O

∗
S

)]
. (7.2)

The chain of equalities at the end of Section 6 and Theorem 7.1 imply that

Hom
(
Qgp

S /M
gp
S ,O

∗
S

)
= Hom

(
Mgp/π−1Mgp

S ,O
∗
X

)
,

so the quotient (7.2) is trivial.

8. A counterexample: Logarithmic points

It is perhaps easiest to appreciate how the criterion of Theorem 1.1 works by studying why
quasifiniteness fails in an example where the criterion does not apply.

We consider the moduli space of logarithmic points valued in the standard logarithmic point,
considered by Abramovich, Chen, Gillam, and Marcus [Gil12, ACGM10]: Let k be the spectrum
of an algebraically closed field, let S = Spec k and MS = 0, and let X and Y both be the
standard logarithmic point over k, both regarded as logarithmic schemes over S. The space we
are interested in is HomLogSch/S(X,Y ). Since the underlying map of schemes X → Y must be
the identity, this may be identified with HomLogSch/S(M,MX), where M = MY = MX = N×k∗.

An S-point of this moduli space is simply a map of logarithmic structures M →MX , and our
choices are determined by where the generator (1, 1) goes. That gives N× k∗ for the S-points.

We could also look at the construction of the minimal monoid associated with one of these
maps. Following the algorithm from Section 5, we should form Rgp = Mgp×MX/S

Mgp
X . Since MS

is trivial, this is just Mgp. (There is an additional quotient by Mgp
S in the algorithm which does

not change anything since MS = 0.) Then we identify the smallest submonoid R ⊂ Rgp such
that RX = M ×N contains the image of M under the tautological map (id, u) : M →Mgp × Z
(here u is the type). This submonoid is obviously M itself, so M is the minimal characteristic
monoid.

In order to obtain an actual logarithmic structure, we need to assume that u came from an
actual logarithmic map over some (S,NS). This induces a map M → NS since M is minimal
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on the level of characteristic monoids (see Section 5). This gives a quasilogarithmic structure
(see [Wis16, Definition 1.2]) by pulling back NS to M , but in order to get a genuine logarithmic
structure, we must also sharpen the map M → NS ; that is, we must divide M by the preimage
of 0.

In our example, we are working over (S,O∗S), so that NS = 0. Therefore, the sharpening of
the minimal quasilogarithmic structure is trivial.

The main observation of this paper was thus that the sharpening process is responsible for the
failure of quasifiniteness. More precisely, when the sharpening process does not change anything,
there is at most one choice (up to unique isomorphism) of a minimal object (at least if the domain
is proper). Indeed, Corollary 6.2 and Lemma 6.3 show that (under an assumption of properness)
the automorphism group of the minimal quasilogarithmic structure QS as an extension of its
characteristic monoid by O∗S—but not respecting the map to OS—precisely cancels the choices of
maps M → QX . This automorphism group agrees with the automorphism group of the minimal
logarithmic structure exactly when QS is the minimal logarithmic structure, and this occurs
when the map π!R→ NS is sharp (Lemma 5.1(iii)).

Thus, the analysis of the fiber of the moduli space of logarithmic maps comes down to the
question of whether the minimal quasilogarithmic structure QS is already a logarithmic structure.
Lemma 6.1 shows that a sufficient condition is that the relative characteristic monoid MX/S be
generically trivial.
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