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A filling-in problem and moderate degenerations

of minimal algebraic varieties

Shigeharu Takayama

Abstract

We study a family of minimal algebraic varieties over an open variety and consider
conditions which imply the existence of a compactification with a mildly singular limit
fiber. We solve a filling-in problem posed by Wang.

1. Introduction

The topic discuss in this paper is the existence or non-existence of a “much better” good minimal
model for a given fiber space f : X → Y whose general fiber has a good minimal model. A good
minimal model f ′ : X ′ → Y of X over Y consists of a birational map X 99K X ′ over Y and a total
space X ′ with only canonical singularities, with a relatively semi-ample canonical divisor KX′ and
with some other properties; see [Fuj16a, § 3] or Definition 2.1. In particular, the total space X ′

and general fibers X ′y are nice varieties. The expression “much better” means, informally, a
mildness of the singularities of a special fiber of f ′. Our main technical result is as follows.

Theorem 1.1. Let f : X → Y be a projective surjective morphism with connected fibers between
normal quasi-projective varietiesX and Y . Suppose that f : X → Y is weakly semi-stable ([AK00,
Definition 0.1] or Definition 2.2) and that there exists a good minimal model f ′ : X ′ → Y of X
over Y . Let 0 ∈ Y be a point, and let X0 =

⋃
i∈I Fi be the decomposition into irreducible

components of the fiber of f over 0. Suppose that for every large and divisible integer m > 0,
the plurigenera equality

∑
i∈I Pm(Fi) = Pm(Xy) holds for a general point y ∈ Y .

Then the fiber X ′0 of f ′ over 0 is birational to an irreducible component, say F1, of X0 by
the birational map X 99K X ′, and other components Fi (i ∈ I \ {1} if |I| > 2) are uniruled and
contained in the stable base locus of KX : Fi ⊂ SBs(KX). Moreover, X ′0 is normal with canonical
singularities at worst and KX′0

is semi-ample, and Pm(F1) = Pm(X ′0) = Pm(Xy) holds for every
integer m > 0 and a general point y ∈ Y .

Here for a proper variety V , the m-genus Pm(V ) is defined by that of any smooth birational
model Ṽ ; that is, Pm(V ) = h0

(
Ṽ ,O

Ṽ
(mK

Ṽ
)
)
. Moreover, if V has canonical singularities at worst,

Pm(V ) = h0(V,OV (mKV )) holds for any integer m > 0 [Nak04, II, Lemma 2.11]. We note that
by [Tak07, Theorem 1.2], the inequality

∑
i∈I Pm(Fi) 6 Pm(Xy) holds for every integer m > 0
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and a general point y ∈ Y . So the plurigenera equality condition is an extreme case. The property
Fi ⊂ SBs(KX) means that Fi is contained in the zero locus of any s ∈ H0(X,OX(mKX)) for
any integer m > 0. The proof depends on an analysis of relative good minimal models by Fuji-
no [Fuj16a] and the lower semi-continuity of plurigenera under deformations [Tak07]. It would
be interesting to compare with [Fuj11] and [Tak08], where the case of Kodaira dimension zero
over a curve is discussed. Here is a simpler statement.

Corollary 1.2. Let f : X → Y be a smooth projective morphism with connected fibers between
smooth quasi-projective varieties X and Y . Suppose that there exists a good minimal model
f ′ : X ′ → Y of X over Y . Then f ′ is flat, and every fiber of f ′ is normal and has canonical
singularities at worst. In particular, if one fiber Xy is of general type, then the existence of
a good minimal model f ′ : X ′ → Y of X over Y is known, and KX′y becomes semi-ample and big
for every y ∈ Y .

Corollary 1.2 seems to be quite reasonable and is expected. We will then apply Theorem 1.1
to a filling-in problem posed by Wang [Wan03], which is a major motivation to establish Theo-
rem 1.1. The problem asks whether for a given fiber space f : X → C over a pointed curve C with
0 ∈ C whose nearby fibers Xt (t 6= 0) are all smooth and good minimal, the special fiber X0 has
canonical singularities at worst after possibly a finite base change and a birational modification
along the special fiber if a possibly degenerate Kähler metric gm on C\{0} is incomplete at 0 ∈ C.
The metric gm relates to the curvature of a Hermitian metric on f∗(⊕mi=1OX(iKX/C))|C\{0}. To
state our next result more precisely, let us recall the following definition.

Definition 1.3. Let f : X → C be a projective surjective morphism with connected fibers from
a normal quasi-projective variety X to a smooth affine curve C with a point 0 ∈ C. We set
Co = C \ {0} and Xo = f−1(Co) and suppose that Xo is smooth and f : Xo → Co is smooth.
We let Xt = f∗t be the scheme-theoretic fiber of t ∈ C and suppose dimXt = n.

(1) The vector bundle (f∗OX(KX/C))|Co (to be more precise, it should be f∗OXo(KXo/Co))
admits a natural fiberwise L2-metric, say h, which is given by

ht(ut, vt) =

∫
Xt

(−1)n
2/2ut ∧ vt

for t ∈ Co and ut, vt ∈ H0(Xt,OXt(KXt)) = (f∗OX(KX/C))t. By Griffiths [Gri70], the cur-
vature of h is semi-positive in the sense of Griffiths. In particular, the curvature of deth on
det(f∗OX(KX/C))|Co ,

ω1 =

√
−1

2π
∂∂ log deth ,

is a semi-positive (1, 1)-form on Co and can be regarded as a possibly degenerate Kähler metric
on Co. The pseudo-metric ω1 is called the quasi-Hodge metric on Co in [Wan03] and denoted
by gH or g1. We prefer the normalizing constant

√
−1/2π; cf. [Wan03, beginning of Section 2,

p. 59].

(2) [Wan03, Definition 3.1]. We suppose that KX is Q-Cartier and suppose that there exists
a divisor D ∈ |mKX/C | which is smooth over Co for some divisible integer m > 0. Let π : Y → X
be the (normalized) cyclic cover obtained by taking the mth root of D; see [EV92, § 3] or Item 3.8
below. Let fY = f ◦ π : Y → C be the induced morphism, and let Y o = f−1

Y (Co). As we will
see, π∗OY o(KY o) = ⊕mi=1OXo(iKXo), and hence fY ∗OY o(KY o/Co) = f∗(⊕mi=1OXo(iKXo/Co)) is
non-zero. We obtain the pseudo-metric ω1 on Co for fY : Y → C, and then define the mth
pseudo-metric ωm,D for f : X → C associated with D ∈ |mKX/C | to be ω1 for fY : Y → C.
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The pseudo-metric ωm,D is called the mth quasi-Hodge metric on Co in [Wan03, Definition 3.1],
where it is denoted by gm (and “D” is omitted).

Here are some additional explanations. We actually want to discuss quantities attached to
f : Xo → Co, not to f : X → C. The metric h in Definition 1.3(1) is defined for the smooth proper
morphism f : Xo → Co without referring to its compactification f : X → C. Using classical
Hodge theory due to Schmid [Sch73], Wang [Wan03, Theorem 2.1, Remark 2.2] observed that
the pseudo-metric ω1, and hence any ωm,D, either has Poincaré growth or is incomplete at 0 ∈ C.
As for Definition 1.3(2), this pluricanonical version of Definition 1.3(1) is introduced because the
direct image f∗OXo(KXo/Co) may be zero, and because even if it is non-zero, the geometric
genus of the general fibers (or a variation of Hodge structures) contains only little information in
general. The existence of such D ∈ |mKX/C | in Definition 1.3(2) can be confirmed, for example in
the case that f : X → C is relatively good minimal and m is large and divisible, so that mKX is
Cartier and |mKX | is base-point free, possibly after replacing C by a smaller affine neighborhood
of 0 ∈ C. This is the case we will actually deal with.

With these definitions in mind, our main result can be stated as follows (see Theorem 4.1 for
a more precise statement).

Theorem 1.4. Let f : X → C be as in Definition 1.3, and suppose that any smooth fiber Xt

(t ∈ Co) has semi-ample canonical bundle. Then the following three conditions are equivalent,
after possibly a finite base change and a birational modification along the special fiber (for
example, after taking a semi-stable reduction and passing to a good minimal model):

(1) The special fiber X0 has canonical singularities at worst, and KX0 is semi-ample.

(2) The pseudo-metric ωm,D on Co is incomplete at 0 ∈ C for every large and divisible integer
m and every general D ∈ |mKX/C |.

(3) For every integer m > 0, the plurigenera equality
∑

i∈I Pm(Fi) = Pm(Xt) holds for any
t ∈ Co, where X0 =

∑
i∈I Fi is the decomposition into irreducible components.

Wang [Wan03, Proposition 1.3] proved the implication (1)⇒ (2) of Theorem 1.4, namely that
the existence of a geometrically nice model implies a differential-geometric property, and posed
the converse as a problem. He also proposed an approach to attack the implication (2) ⇒ (1),
namely to consider the condition in (3) and use the minimal model program; see [Wan03, § 3].
Our strategy for the proof of Theorem 1.4 is as follows. We can easily deduce that conditions (1)
and (3) are equivalent by virtue of Theorem 1.1. To obtain the implication (2) ⇒ (1), we shall
suppose to the contrary that conditions (3) and (1) do not hold (even after taking a semi-
stable reduction and passing to a good minimal model). Then H0(X0,OX(mKX)|X0) is strictly
bigger than ⊕i∈IH0(Fi,OFi(mKFi)), where X0 =

∑
i∈I Fi is the decomposition into irreducible

components. As is well known, the fiberwise L2-metrics such as h in Definition 1.3(1) have
singularities arisen from not only the singularities of the fiber X0, but also the difference between
H0(X0,OX(mKX)|X0) and ⊕i∈IH0(Fi,OFi(mKFi)). We actually estimate a divergence of the
fiberwise L2-metric h in Proposition 4.7. We can then deduce that the curvature forms, such as
ω1 and ωm,D, are still singular at 0 ∈ C and in fact are complete at 0 ∈ C, as we already know
possible types of asymptotics of ω1 and ωm,D at 0 ∈ C by [Wan03, Theorem 2.1, Remark 2.2],
[Yos10].

The origin of Wang’s problem comes from the studies of degenerations of elliptic curves,
abelian varieties and K3 surfaces; these are all nowadays classical. In the case of degenerations
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of curves with genus > 2, he confirmed that a smooth filling-in is always possible [Wan03, The-
orem 1.4] as an analogue of those three classically known cases. However, it is known (refer to
[Wan03, Theorem 1.5]) that it is too much to expect that one can fill in a family with smooth X0

in the general case in the situation of Theorem 1.4; that is, one needs to allow at least mild singu-
larities on X0. For an interesting special case when KXt = OXt for t ∈ Co, that is, degenerations
of Calabi–Yau type manifolds, this problem has recently been confirmed by Tosatti [Tos15], the
author [Tak15] and Zhang [Zha16, § 2]. This special case is particularly interesting because of
further interactions with Kähler–Einstein geometry, Donaldson–Sun’s theory on the Gromov–
Hausdorff convergence of a certain class of Kähler manifolds [DS14], and maybe more. We also
expect these interactions in the case of the present paper. It would be an interesting future
problem.

2. Simultaneous minimal models

In this section, we discuss the regularity of a special fiber of a relative good minimal model and
prove Theorem 1.1. We first recall some basic definitions.

Definition 2.1 (Good minimal model, see [Fuj16a, § 3] for more details). Let f : X → Y be a
projective surjective morphism of normal quasi-projective varieties with connected fibers. Sup-
pose that X has canonical singularities at worst. A normal variety X ′, a morphism f ′ : X ′ → Y
and a rational map ϕ : X 99K X ′ over Y are called a minimal model of X over Y if

(1) X ′ is Q-factorial,

(2) f ′ is projective,

(3) ϕ is birational and ϕ−1 has no exceptional divisors,

(4) KX′ is f ′-nef, and

(5) a(E,X) < a(E,X ′) for every ϕ-exceptional divisor E ⊂ X, where a(E,X) is the discrepancy
of E over X [KM98, Definition 2.22].

Furthermore, if KX′ is f ′-semi-ample, then X ′ is called a (relative) good minimal model of X
over Y .

In particular, minimal models X ′ have only canonical singularities. We refer to [Kol13] for
singularities in the minimal model program, such as canonical singularities [Kol13, § 2.1] (or
[KM98, § 2.3]) and semi-log-canonical singularities [Kol13, § 5.2].

Definition 2.2 (Weakly semi-stable, [Fuj16a, Theorem 4.4], [AK00, Definition 0.1]). The mor-
phism f : X → Y as in Definition 2.1 is said to be weakly semi-stable if

(1) Y is smooth,

(2) there exist toroidal embeddings without self-intersection (UX ⊂ X) and (UY ⊂ Y ) such
that UX = f−1(UY ),

(3) all the fibers of f are reduced, and

(4) f : (UX ⊂ X)→ (UY ⊂ Y ) is toroidal and equi-dimensional.

A weakly semi-stable morphism f : X → Y is said to be semi-stable if X is smooth.

We refer to [AK00] for more technical terms on toroidal geometry. If f is weakly semi-stable,
it follows that X has rational Gorenstein singularities at worst [AK00, § 6] (in particular, it has
canonical singularities at worst [KM98, Corollary 5.24]).
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We next recall two main technical tools in the proof of Theorem 1.1. The first one deals
with basic properties of the good minimal model f ′ : X ′ → Y starting from a weakly semi-stable
f : X → Y ; it was obtained by Fujino [Fuj16a] (some key properties were already obtained by
Abramovich–Karu [AK00, § 6]).

Lemma 2.3. Let everything be as in Theorem 1.1.

(1) [Fuj16a, Theorem 4.4], see also [Fuj16b, Step 3, p. 262, lines 20–21]. The total space X
has only rational Gorenstein singularities. Let y ∈ Y be an arbitrary point, and let C be a
smooth curve passing through y such that C = H1 ∩H2 ∩ · · · ∩HdimY−1, where every Hi

is a general smooth ample Cartier divisor on Y . Then XC = X ×Y C → C is also weakly
semi-stable [Kar00, Lemma 2.12], and X ′C = X ′ ×Y C is normal and has only canonical
singularities.

(2) [Fuj16a, Remark 4.3]. The morphism f ′ : X ′ → Y is equi-dimensional and flat. For every
y ∈ Y , the scheme-theoretic fiber X ′y of f ′ has only semi-log-canonical singularities (which
are at least reduced), and OX′(mKX′)|X′y ∼= OX′y(mKX′y) for every integer m > 0. In
particular KX′y is Q-Cartier and semi-ample.

(3) [Fuj16a, § 4, Proof of Theorem 1.6, Step 3]. For every integer m > 0, the dimension
h0(X ′y,OX′(mKX′)|X′y) is independent of y ∈ Y . We also note that h0(X ′y,OX′y(mKX′y)) =

h0(Xy,OXy(mKXy)) = Pm(Xy) for general y ∈ Y .

Lemma 2.3(2) implies the flatness of good minimal models f ′ and the semi-ampleness of
every KX′y in Theorem 1.1, Corollary 1.2 and Theorem 1.4.

The second technical tool is an extension of pluricanonical forms. Our proof of Theorem 1.1
will show that the invariance of plurigenera Pm(Xy) of the fibers [Siu98, Siu02] (see also [Kaw99,
Nak04, Pău07, Tak07]) controls the fibers of f ′. We will formulate it in a general form. We may
denote the pluricanonical bundle K⊗mX by mKX by an abuse of notation.

Theorem 2.4 ([Tak07, Theorem 3.1]). Let X be a complex manifold, ∆ = {|t| < 1} the unit
disk in C (or an open Riemann surface) and f : X → ∆ a projective surjective morphism with
connected fibers. Assume that the central fiber X0 has its prime decomposition in a form of
X0 =

∑
i∈I Fi +

∑
j∈J kjF

′
j such that F :=

∑
i∈I Fi is a disjoint union of smooth divisors, where

the kj > 1 are integers. Let m be a positive integer and s ∈ H0(F,mKF ) = ⊕i∈IH0(Fi,mKFi).
Then s ∧ (dt)m ∈ H0(F,mKX |F ) can be extended to an element of H0(X,mKX). In particular,∑

i∈I Pm(Fi) 6 Pm(Xt) holds for a general fiber Xt.

Let us explain the wedge product ∗ ∧ (dt)m in the statement. We regard the coordinate
function t on ∆ as a holomorphic function on X via f : X → ∆. We have a holomorphic 1-form
dt ∈ H0(X,Ω1

X) with some zeros on X0. On F , more precisely on every Fi (i ∈ I), we have a sheaf
homomorphism Φ: KF → KX |F defined by taking the wedge product with dt as follows. Let n+1
be the dimension of X. Let us take local coordinates z1, . . . , zn, w of X such that F = {w = 0}
and that t = ζ̃w for a holomorphic function ζ̃ = ζ̃(z1, . . . , zn, w). Then dt = ζ̃dw + wdζ̃. In
these local coordinates, the divisor X0 − F =

∑
j∈J kjF

′
j =: F ′ on X is defined by ζ̃, and the

divisor (X0 − F )|F = F ′|F on F is defined by ζ = ζ(z1, . . . , zn) := ζ̃(z1, . . . , zn, 0). For a local
holomorphic n-form s = h(z1, . . . , zn)dz1∧· · ·∧dzn on F , we take an arbitrary extension s̃ of s as
a local holomorphic n-form on X. We can write it as s̃ = h̃(z1, . . . , zn, w)dz1∧· · ·∧dzn+(n-forms
including dw) for a local holomorphic extension h̃ of h. Then, by noting that w = 0 on F , we
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can define Φ: KF → KX |F by

Φ(s) = (s̃ ∧ dt)|F = ζ · h · (dz1 ∧ · · · ∧ dzn ∧ dw)|F .

We shall also write Φ(s) = s∧ dt by an abuse of notation. We can see, by the local computation
above, that Φ has a zero, namely has degeneracy along the divisor F ′|F (= {ζ = 0} locally). The
intrinsic form of Φ is as follows. As X0 = F +F ′ ∼ 0 (that is, the divisor is linearly equivalent to
zero), the adjunction formula KF = (KX +F )|F tells us KF = KX |F −F ′|F . Hence, there exists
a natural homomorphism KF → KX |F given by a product with a section of H0(F,OF (F ′|F ))
vanishing exactly along F ′|F . This Φ: KF → KX |F induces other sheaf homomorphisms and
linear maps of cohomology groups. For example, for every integer m > 0, we have an injection
H0(F,mKF )→ H0(F,mKX |F ) defined by s 7→ s∧ (dt)m. If we take s ∈ H0(F,mKF ) and write
s = h(z1, . . . , zn)(dz1 ∧ · · · ∧ dzn)⊗m locally on F , then it is (with the same symbol)

Φ(s) = (s̃ ∧ (dt)m)|F = ζm · h · (dz1 ∧ · · · ∧ dzn ∧ dw)⊗m|F .

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We set J = {i ∈ I; κ(Fj) > 0}. Here, for a proper variety V , the Kodaira

dimension κ(V ) is defined to be that of any smooth birational model Ṽ of V . As κ(Xy) > 0
for a general y, we have

∑
i∈I Pm(Fi) = Pm(Xy) 6= 0 for some m > 0. It also implies that J is

non-empty.

Step 1. We recall a uniruledness criterion, which is a particular case of [Kaw91, Theorem 1]
mentioned in that theorem as a prototype. An irreducible component F of a fiber Xy of f is
uniruled if F is contained in the exceptional locus of a divisorial contraction or in a flipping
contraction by the KX -minimal model program (MMP) over Y to obtain ϕ : X 99K X ′. As every
component Fj (j ∈ J) is not uniruled, Fj is not contracted by the process to obtain ϕ : X 99K X ′.
In particular, ϕ|Fj gives a birational map of Fj as Fj is mapped birationally in each step.
Let F ′j ⊂ X ′0 be the irreducible component birational to Fj (notice that f and f ′ have equi-
dimensional and reduced fibers). If we can prove X ′0 =

⋃
j∈J F

′
j , then other components Fi

(i ∈ I \ J) are contracted by the process to obtain ϕ : X 99K X ′, and then they are uniruled.

Step 2. Since our assertion is local over Y , we may suppose that Y is affine and KY is
trivial. We take a general smooth affine curve C passing through 0 ∈ Y as in Lemma 2.3(1). Let
us denote the induced morphisms by g : Z := X ×Y C → C and g′ : Z ′ := X ′ ×Y C → C. The
special fiber Z ′0 of g′ over 0 is Z ′0 = X ′0. We know Z ′0 ⊃

⋃
j∈J F

′
j , at least. We take a log-resolution

π : Z+ → Z ′ of the pair (Z ′, Z ′0) such that strict transforms of irreducible components of Z ′0 are
mutually disjoint. Let g+ = g′ ◦ π : Z+ → C be the induced morphism:

Z+ π−−−−→ Z ′ Zyg+ yg′ yg
C C C .

The birational map ϕ : X 99K X ′ induces a birational map Z 99K Z ′. We have the decomposition
into irreducible components of the special fiber Z+

0 = π∗Z ′0 = F+ + M +
∑

k ckEk, where
F+ =

∑
j∈J F

+
j and F+

j is the strict transform of F ′j , the component M is the strict transform
of Z ′0 −

∑
j∈J F

′
j (with coefficient 1 if it is non-empty), the Ek are π-exceptional prime divisors

and the ck are non-negative integers. We will eventually show that M = 0 in Step 3 and |J | = 1
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in Step 4.

Step 3. We shall show that Z ′0(= X ′0) =
⋃
j∈J F

′
j . We suppose to the contrary that there

exists an irreducible component M ′0 ⊂ Z ′0 other than the F ′j , and let M+
0 be the strict transform

of M ′0.

AsKZ′ = KX′ |Z′ is g′-semi-ample (and Z ′ has canonical singularities at worst, Lemma 2.3(1)),
there exist a large and sufficiently divisible integer m > 0 and a section s ∈ H0(Z+,mKZ+) such
that s 6≡ 0 on M+

0 . On the other hand, by Theorem 2.4, every element of (⊕j∈JH0(F+
j ,mKF+

j
))⊕

H0(M+
0 ,mKM+

0
) can be extended to an element of H0(Z+,mKZ+) in an appropriate manner.

In particular, every element of (⊕j∈JH0(F+
j ,mKF+

j
)) ⊕ {0} can be extended to an element of

H0(Z+,mKZ+). These sections are different from the one s ∈ H0(Z+,mKZ+) such that s 6≡ 0
on M+

0 . We can also see that Bs |mKZ+ | ⊂ Exc (π) for any m > 0.

Let α : H0(Z+,mKZ+) ⊗H0(C,OC) OC → g+
∗ (mKZ+) ∼= g′∗(mKZ′) be the naturally induced

homomorphism. The sheaf g′∗(mKZ′) is locally free on C and of rank Pm(Xy), where y ∈ C is an
arbitrary general point. Our previous argument shows that the map α at 0 ∈ C (and hence at
nearby y ∈ C) has rank at least

∑
j∈J Pm(F+

j )+1. As y ∈ C(⊂ Y ) is general, Pm(Z+
y ) = Pm(Xy)

holds since Z+
y and Xy are birational and have only canonical singularities. As Fj is birational

to F ′j and F+
j , one has Pm(Fj) = Pm(F+

j ) and by assumption
∑

j∈J Pm(Fj) = Pm(Xy) for

y ∈ C(⊂ Y ) general. This contradicts the inequality Pm(Xy) >
∑

j∈J Pm(F+
j ) + 1.

Step 4. We shall show that Z ′0(= X ′0) is normal, which in particular implies |J | = 1. By Lem-
ma 2.3(2), the fiber Z ′0 is semi-log-canonical; in particular, it is demi-normal [Kol13, Definition-
Lemma 5.10]. A demi-normal scheme is normal if and only if it is regular in codimension 1 [Kol13,
Definition 5.1]. Hence, we focus on codimension 2 subvarieties of Z ′ contained in Z ′0. A canonical
singularity in a codimension 2 generic point is (i) smooth, or (ii) an ADE-type singularity, in
view of Lemma 2.6(1) below. Suppose to the contrary that Z ′0 is singular in codimension 1, and
take an irreducible component B of Sing(Z ′0) with dimB = n − 1, where n = dimX − dimY .
As Z ′ has canonical singularities at worst, it can happen along the generic point of B that either
(i) Z ′ is smooth, or (ii) Z ′ is an ADE-type singularity, in view of Lemma 2.6(1). Let U be an
arbitrary open neighborhood of the generic point of B in Z ′; then U is a Zariski-open subset of
Z ′ such that dim(B \ U) = dimB − 1 and Z ′ \ U contains Sing(Z ′0) \B. We are only interested
in the generic point of B and hence may shrink U to a smaller Zariski-open subset having the
same properties.

Let m > 0 be a large and divisible integer such that mKZ′ is Cartier and base-point free. We
treat the cases (i) and (ii) separately depending on the type of singularities of Z ′ along B.

(i) We choose the resolution π : Z+ → Z ′ in Step 2 as follows. We first take a partial res-
olution π1 : Z1 → Z ′ as the blow-up of Z ′ along B. We note that Z ′0 has semi-log-canonical
singularities at worst, and that a semi-log-canonical singularity in codimension 1 is an ordinary
node. Hence, if we blow up Z ′ along B, then the strict transform of Z ′0 is separated on the inverse
image of U (possibly shrinking U a bit). We then take a further log-resolution π2 : Z+ → Z1 of
the pair (Z1, π∗1Z

′
0) such that π2 is isomorphic over π−1

1 (U). We take π = π1 ◦ π2 : Z+ → Z ′.

By adjunction, we have KZ+ = π∗KZ′ + E1 over U , where E1 is the unique π-exceptional
prime divisor with π(E1) = B. Then, by the base-point freeness of mKZ′ , we can find a section
s ∈ H0(Z+,mKZ+) such that the zero divisor of s|π−1(U) is exactly mE1 ∩ π−1(U) (by shrink-
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ing U if necessary). On the other hand, we have Z+
0 = F+ + 2E1 over U , where F+ is given at

the end of Step 2 (note that the semi-log-canonical singularity in codimension 1 is an ordinary
node, which gives the coefficient 2). We also see that F+ ∩ E1 6= ∅.

Then by Theorem 2.4 again, every element of ⊕j∈JH0(F+
j ,mKF+

j
) can be extended to an

element of H0(Z+,mKZ+). Let W ⊂ H0(Z+,mKZ+) be the subspace generated by the sections
obtained by the extensions from ⊕j∈JH0(F+

j ,mKF+
j

). On the other hand, if an irreducible com-

ponent F+
1 of F+ intersects with E1, we can see that every element of W vanishes at least 2m

times along F+
1 ∩E1 or vanishes identically on F+

1 . In fact, by the construction of the extension
in Theorem 2.4, every element in W vanishes along {ζm = 0} at least, and {ζ = 0} = 2(F+

1 ∩E1),
which itself is a consequence of the decomposition Z+

0 = F+ + 2E1. Thus s 6∈ W . Then by the
dimension-counting argument as in Step 3, we obtain a contradiction.

(ii) We choose the resolution π : Z+ → Z ′ in Step 2 as in Lemma 2.6(2) (that corresponds to
π : Y → X there). We have KZ+ = π∗KZ′ over U . Then, by the base-point freeness of mKZ′ , we
can find a section s ∈ H0(Z+,mKZ+) such that s|π−1(U) has no zeros on π−1(U) (by shrinking U

if necessary). On the other hand, we have Z+
0 = F+ + E over U for a non-zero π-exceptional

divisor E (which may not be prime, but the precise form of Ered is well known depending on the
ADE type). We see that F+ ∩ E 6= ∅.

Let W ⊂ H0(Z+,mKZ+) be the subspace generated by the sections obtained by the exten-
sions from ⊕j∈JH0(F+

j ,mKF+
j

). If an irreducible component F+
1 of F+ intersects with E, we

can see that every element of W vanishes along F+
1 ∩Ered, at least (this holds for the extension

in Theorem 2.4). Thus s 6∈ W . Then by a dimension-counting argument as in Step 3, we obtain
a contradiction.

Step 5. We shall show that the normal variety Z ′0 = X ′0 (= F ′, say) has canonical singulari-
ties at worst. Recall that F+ ⊂ Z+ is the strict transform of F ′. We know thatKF ′ is Q-Cartier by
Lemma 2.3(2). If F ′ has worse singularities than canonical ones, we have KF+ ∼Q ν

∗KF ′+E−D,
where ν = π|F+ : F+ → F ′ is a resolution of singularities (we can suppose that ν is a log-
resolution of F ′), and where E and D are effective Q-divisors on F+, both ν-exceptional and
with D 6= 0.

Let us take an open subset U ′ ⊂ F ′ such that ν : F+ → F ′ is biregular over U ′ and
codimF ′(F

′ \ U ′) > 2. For every σ ∈ H0(F+,mF+), the restriction σ|ν−1(U ′) can be seen, via
ν−1(U ′) ∼= U ′, as an element of H0(U ′,mKF ′). As F ′ is normal, we have H0(U ′,mKF ′) =
H0(F ′,mKF ′). We thus obtain a natural injection H0(F+,mKF+) → H0(F ′,mKF ′) for any
m > 0 by “pushing down.” Let us take τ ∈ H0(F ′,mKF ′) for a large and divisible m > 0.
The pull-back ν∗τ ∈ H0(F+, ν∗(mKF ′))

( ∼= H0(F+, ν∗(mKF ′)+mE) = H0(F+,mKF+ +mD)
)

defines an element of H0(F+,mKF+) if and only if ν∗τ ∈ H0(F+, ν∗(mKF ′)) vanishes along mD.

As KX′ is f ′-semi-ample, (mKX′)|F ′ = mKF ′ (see Lemma 2.3(3)) is base-point free for m
large and sufficiently divisible. Thus there exists an element of H0(F ′,mKF ′) which (does not
vanish identically along ν(D) and hence) does not extend to an element of H0(F+,mKF+). Then
we have h0(F+,mKF+) < h0(F ′,mKF ′). However, this is impossible, because on one hand, we
have h0(F+,mKF+) = Pm(F+) = Pm(Xy) for general y ∈ C by our assumption in Theorem 1.1
and on the other hand, we have Pm(Xy) = h0(X ′0,mKX′0

) = h0(F ′,mKF ′) for any y ∈ C by
Lemma 2.3(3).
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Step 6. We shall finally show that Fi ⊂ SBs(KX) for i 6= 1. As KZ = KX |Z , we have
SBs(KZ) ⊂ (SBs(KX))|Z . Given that Z0 =

⋃
i∈I Fi, it is enough to show that

⋃
i 6=1 Fi ⊂

SBs(KZ).

Let $ : Z̃ → Z be a log-resolution of singularities such that the special fiber of g ◦$ : Z̃ → C
is Z̃0 =

∑
i∈I F̃i + E, where F̃i is the strict transform of Fi and E is an effective divisor on Z̃

whose support is $-exceptional. We can take $ such that F̃i ∩ F̃j = ∅ for i, j ∈ I and i 6= j.

We suppose to the contrary that there exist an integer m > 0 and sZ ∈ H0(Z,mKZ) such
that sZ |F2 6≡ 0. Then we obtain s

Z̃
∈ H0(Z̃,mK

Z̃
) such that s

Z̃
|
F̃2
6≡ 0. On the other hand, by

Theorem 2.4, we can extend every section s1 ⊕ 0 ∈ H0(F̃1,mKF̃1
)⊕

(
⊕i 6=1 H

0(F̃i,mKF̃i
)
)

with

s1 ∈ H0(F̃1,mKF̃1
) to an element of H0(Z̃,mK

Z̃
). As we already know that F̃1 is birational to X ′0

and Pm(F̃1) = Pm(Xy) for y ∈ Y general, we can derive a contradiction by a dimension-counting
argument, as before.

A weak converse of Theorem 1.1 holds in the following sense. The following argument, based
on a uniruledness criterion in [HM07], also gives an alternative approach to Step 1 in the proof
of Theorem 1.1.

Proposition 2.5. Suppose that f : X → Y is weakly semi-stable and that there exists a good
minimal model f ′ : X ′ → Y of X over Y . Let 0 ∈ Y be a point, and let X ′0 =

⋃
`∈LG

′
` be the

decomposition into irreducible components of the fiber of f ′ over 0. Suppose κ(G′`) > 0 for any
` ∈ L.

Then the fiber of f over 0 is X0 =
⋃
`∈LG` ∪

⋃
λ∈Λ Fλ, with irreducible components G`

birational to G′` by the birational map ϕ : X 99K X ′ and uniruled components Fλ.

Proof. We take a general smooth curve C ⊂ Y passing through 0 as in Lemma 2.3(1). Let
g : Z := X×Y C → C and g′ : Z ′ := X ′×Y C → C be the induced morphisms. We take a common
resolution of singularities Z+ of Z and Z ′ sitting in the following commutative diagram:

Z ′
µ′←−−−− Z+ µ−−−−→ Zyg′ yg+ yg

C C C .

Let G+
` ⊂ Z+ be the strict transform of G′`. If dimµ(G+

` ) < dimG+
` , then G+

` is uniruled by
[HM07, Corollary 1.5], which is impossible. Hence dimµ(G+

` ) = dimG+
` . As one can choose µ

such that it is biregular on a Zariski-open subset U ⊂ Z with codimZ(Z \U) > 2, the morphism
G+
` → µ(G+

` ) is birational. We let F` = µ(G+
` ). These F` are mutually different divisors in Z. In

fact, if F1 = F2, for example, we have µ−1(F1∩U) = µ−1(F2∩U). As µ−1(Fi∩U) is a non-empty
open subset of G+

i , we can conclude that G+
1 = G+

2 . We also note that
⋃
`∈L F` ⊂ X0. We take

an irreducible component F of X0 other than G` = ϕ∗(G
′
`)s and let F+ ⊂ Z+ be the strict

transform. Then µ′(F+) ⊂ X+
0 , but it is different from G`. Hence F+ is µ′-exceptional, and

therefore F+ (as well as F ) is uniruled, again by [HM07, Corollary 1.5].

It can happen that f : X → Y is semi-stable and good minimal but that X0 =
⋃
i∈I Fi with

Pm(Xy) >
∑

i∈I Pm(Fi) for all m > 0 and general y ∈ Y . This happens, for example, when f is
a relatively minimal elliptic fibration over a curve and X0 =

⋃
i∈I Fi is a cycle of projective lines

P1 (a degeneration of type Ib in Kodaira’s classification).
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We close this section by proving a general lemma, which can be seen as a very weak version
of simultaneous crepant resolutions of ADE-type surface singularities.

Lemma 2.6. Let X be an n-dimensional quasi-projective variety with canonical singularities,
and let B ⊂ X be an irreducible subvariety. Suppose dimB = n− 2 and that B is an irreducible
component of SingX. Let |H| be a very ample linear system of Cartier divisors on X, and let
S = H1 ∩ · · · ∩Hn−2 be a surface obtained as a complete intersection of n− 2 general members
in |H|.

(1) There exists a Zariski-open subset U ⊂ X which intersects B and has the property that
S ∩ U has ADE-type singularities at B ∩ S ∩ U and its ADE-type is independent of S and
the points in B ∩ S ∩ U . (The intersection B ∩ S ∩ U may be not one point but a finite
number of points.)

(2) There exists a log-resolution of singularities π : Y → X such that the induced morphism
π−1(S∩U)→ S∩U is the minimal resolution of the ADE-type singularities (S∩U,B∩S∩U),
and KZ = π∗KX over U , that is, Kπ−1(U) = π∗KU , where U ⊂ X is a Zariski-open set as
in item (1).

Proof. Let α : Z → X be a log-resolution of singularities such that α is an isomorphism over
X \ SingX, and let {Eλ}λ∈Λ be the set of all α-exceptional prime divisors. We write IB · OZ =
OZ(−

∑
i∈I miEi) for a subset I ⊂ Λ with integers mi > 0, where IB · OZ (sometimes written

as α−1IB · OZ) is the inverse-image ideal sheaf of IB ⊂ OX (see [Har77, II, Definition following
Example 7.12.1]). We can write KZ =Q α

∗KX +
∑
aλEλ with aλ ∈ Q>0.

We consider a Zariski-open subset U ⊂ X satisfying the following properties: B ∩ U 6= ∅,
B ∩ U is smooth, B ∩ U = SingU , U ∩ α(Eλ) = ∅ for any λ ∈ Λ with α(Eλ) 6= B, and U
is Gorenstein (note that a canonical singularity is Gorenstein in codimension 2). Exceptional
divisors Eλ with α(Eλ) 6= B are actually irrelevant in our argument. Hence, we will assume
I = Λ (there might be an i ∈ I such that α(Ei) 6= B). We can also suppose, to simplify our
argument, that U is affine, KU is a principal divisor, and |H||U is a linear system of principal
divisors. We can further suppose that every morphism Ei → B over U (if Ei ∩ α−1(U) 6= ∅)
is surjective, smooth of relative dimension 1. (The morphism

∑
Ei → B over U may be called

a “relative normal crossing,” Ei ∩ Ej → B is finite étale, and Ei ∩ Ej ∩ Ek = ∅ over U . But we
do not know whether Ei → B has connected fibers over U .)

As S is general, S̃ = α−1(S) is smooth by Bertini’s theorem (α−1(S) is in fact a scheme-
theoretic complete intersection of n− 2 general members of π∗|H|). It is known that S is Goren-
stein canonical and hence has ADE-type singularities along B ∩ S (we refer to [Ish14, Corol-
lary 7.3.2] in general). Moreover, by adjunction, K

S̃
= α∗SKS +

∑
aiEi|S̃ as in the proof of

[Ish14, Proposition 7.3.1]. Here we let αS : S̃ → S be the induced morphism. We actually have
KS = KX |S and K

S̃
= KZ |S̃ over U . By Bertini’s theorem, we can suppose that “over U ,”

every Ei|S̃ is non-empty and smooth (if Ei ∩ α−1(U) 6= ∅) but may not be irreducible. We take

an arbitrary point b ∈ B ∩ S ∩ U . We look at the collection {α−1
S (b) ∩ Ei; i ∈ I} of smooth

αS-exceptional curves in S̃ whose connected components are all isomorphic to P1 and contracted
to the point b. We especially look at the set {(α−1

S (b)∩Ei,mi); i ∈ I with ai = 0}. We recall that

(IB ·OZ)|
S̃

= O
S̃

(−
∑
miEi|S̃). The induced resolution αS : S̃ → S may not be the minimal one,

but, thanks to the classification of the ADE-type singularities ([Ish14, Theorem 6.5.1], [KM98,
Theorem 4.20]), the set of αS-exceptional curves with the null KS-discrepancy, that is, ai = 0,
with its multiplicity mi characterizes the ADE-type of the singularity (S, b). These curves (which
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are given by (X,B)) are independent of the general S and the point b ∈ B ∩ S ∩ U . This is our
first assertion (1).

For assertion (2), we run a KZ-MMP for α : Z → X over X, where α : Z → X is a log-
resolution as above. We can run it because general fibers of α (it is a point) have good minimal
models. By replacing U in statement (1) with a smaller Zariski-open subset, we can suppose
that we do not have flipping contractions over U . There may be some divisorial contractions.
The image of the contracted divisors must be B over U (we could suppose α : Z → X to be
isomorphic over U \B). Let π : Y → X be a minimal model. Then Y has terminal singularities.
In particular, Y is smooth in codimension 2, and hence by replacing U with a smaller Zariski-open
subset (respecting B), we may suppose that Y is smooth over U .

We now claim that KY = π∗KX over U . Otherwise, we would have KY = π∗KX + F
over U with all irreducible components of F non-zero effective, π-exceptional, and π(F ) = B
(KX = 0 over U , in fact). By taking S ⊂ X general and letting πS : T := π−1(S) → S, this
would give a resolution of singularities of ADE-type singularities (S,B) which is not crepant;
KT = π∗SKS + F |T and F |T is non-zero effective over S ∩ U . Hence, KT is not πS-nef [Ish14,
Theorem 6.5.1]. We note that KT = KY |T over U . This implies that KY is not π-nef, which
leads to a contradiction. We also obtain that KT = π∗SKS , and in particular πS : T → S is the
minimal resolution of S [Ish14, Theorem 6.5.1].

We next show that π : Y → X gives a log-resolution of B over U ; namely, we show that
the ideal IB · OZ defines a divisor with simple normal crossing support over U . The double
dual (IB · OY )∗∗ ⊂ OY is a reflexive sheaf of rank 1 on Y , and hence can be expressed as
OY (−

∑
jmjFj) for some prime Weil divisor Fj on Y and integers mj > 0. Moreover, on W :=

π−1(U), which is smooth, (IB · OY )∗∗ is invertible. We can suppose π(Fj) = B if Fj ∩W 6= ∅.
We have an exact sequence

0→ IB · OY → (IB · OY )∗∗ → Q→ 0 ,

where the left injection is the natural one and Q is the cokernel with dim SuppQ 6 n − 2. We
consider the minimal resolution πS : T → S as above.

If π(SuppQ) = B, then (IB ·OY )|T ⊂ OT is not exactly an ideal sheaf of an effective divisor,
because of an exact sequence

(IB · OY )|T → OT (−
∑
j

mjFj |T )→ Q|T → 0 ,

where Q|T is non-zero and dim SuppQ|T = 0. This contradicts the fact that (IB · OY )|T corre-
sponds to the exceptional divisor of πS : T → S (given by π−1

S mb·OT for every point b ∈ B∩S∩U).
Hence, we have Q = 0 over U (by shrinking U) and therefore IB · OY ∼= OY (−

∑
jmjFj) on W .

We next show that the divisor
∑
Fj is normal crossing over U , by shrinking U . If not, the

ideal sheaf (IB · OY )|T ⊂ OT cannot correspond to an effective divisor with normal crossing
support on T . However, we already know that the exceptional curves of the minimal resolution
πS : T → S have normal crossing support. Hence,

∑
Fj is normal crossing over U .

Finally, we show that
∑
Fj is simple normal crossing over U ; that is, every Fj is smooth

on W . It is enough to show that every Fj has no self-intersection on W . If it has, we then have
an exceptional curve of πS : T → S with self-intersection. But this is not the case. (We do not
know whether every morphism Fj → B over U has connected fiber.)

The above π : Y → X may not be a resolution of X. We then modify Y further along Y \W
and obtain a log-resolution as in assertion (2).
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3. A filling-in problem, I

We shall discuss the filling-in problem as stated in Theorem 1.4 in this and the next sections.
This section is devoted to some preliminaries.

Setup 3.1. (1) Let X be a normal quasi-projective variety and C a smooth affine curve with
a special point 0 ∈ C, and let f : X → C be a projective surjective morphism with connected
fibers. In particular, KC = OC . Let X0 := f∗(0) =

∑
i∈I niFi be the primary decomposition of

the special/central fiber, which may be non-reduced. The symbol t will also stand for a local
coordinate of C centered at 0. We may replace C by a smaller neighborhood of 0.

(2) Suppose that Xo := X \f−1(0) is smooth, that f is smooth on Xo and that Xt := f−1(t)
has semi-ample canonical bundle KXt for any t ∈ Co := C \ {0}. As every general fiber Xt is
a good minimal model, a good minimal model of X over C exists by [HX13, Theorem 2.12] (see
also [Fuj16a, Theorem 3.3]).

Wang [Wan03, Proposition 1.3] proved the implication (1) ⇒ (2) of Theorem 1.4 and posed
the converse as a problem. His results are roughly summarized as follows.

Theorem 3.2 (Wang). Let f : X → C be as in Setup 3.1 with (however) C = ∆ a disc in C.

(1) [Wan03, Theorem 1.1(2)]. Suppose that f : X → C is semi-stable with X0 =
∑

i∈I Fi
and pg(Xt) 6= 0 for t ∈ Co, where pg stands for the geometric genus. Then gH(= ω1 in
Definition 1.3) is incomplete at 0 ∈ C if and only if pg(Xt) =

∑
i∈I pg(Fi) for t ∈ Co.

(2) [Wan03, Theorem 1.1(3), Corollary 2.4]. If X0 has Gorenstein canonical singularities, then
0 ∈ C is at finite g1 distance; that is, ω1 is incomplete at 0 ∈ C (if f∗KXo/Co 6= 0).

(3) [Wan03, Proposition 1.3]. If X0 has canonical singularities and KXt semi-ample for any
t 6= 0, then 0 ∈ C is at finite gm(= ωm,D in Definition 1.3) distance for all m such that gm
is defined.

In [Wan03, Propositions 1.2 and 1.3], assumptions on the singularities of the total space X
and on the semi-ampleness of the canonical divisor KX0 of the central fiber X0 are missing. In
the course of our preparations toward Theorem 1.4, we will recall and complete the proof of
[Wan03, Proposition 1.3] as Proposition 3.10, under correct assumptions.

To obtain the converse implication (2) ⇒ (1) of Theorem 1.4, following the proposal in
[Wan03, § 3], we look at a condition on the invariance of plurigenera type defined as follows.

Definition 3.3. Let f : X → C and X0 =
∑

i∈I niFi be as in Setup 3.1. Let m > 0 be a positive
integer. We say that f : X → C has the property (Pm) if

∑
i∈I Pm(Fi) = Pm(Xt) for t ∈ Co

general.

We shall state a few basic properties and remarks related to this property (Pm). We know,
for example by [Tak07, Theorem 1.1], that if X0 has canonical singularities at worst, then f has
the property (Pm) for any m > 0. If f : X → C is an elliptic fibration of a smooth surface X
with a multiple fiber X0 = n1F1 for a smooth elliptic curve F1, then f has the property (Pm),
but X0 can be non-reduced.

Lemma 3.4. Let f : X → C and f ′ : X ′ → C ′ be morphisms fitting Setup 3.1 with special points
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0 ∈ C and 0′ ∈ C ′. Suppose that we have the following commutative diagram:

X ′
τ−−−−→ Xyf ′ yf

C ′
σ−−−−→ C ,

where σ : C ′ → C is a finite morphism with σ(0′) = 0, and where the morphism τ : X ′ → X is
generically finite and X ′s → Xσ(s) is birational if s ∈ C ′ is general. Let m > 0 be an integer.

(1) If f has the property (Pm), then so does f ′.

(2) Suppose C ′ = C, that σ : C ′ → C is the identity map (then τ : X ′ → X is birational), and
that X has canonical singularities at worst. Then f has the property (Pm) if and only if f ′

does.

Proof. We let X ′0′ := f ′∗(0′) =
∑

j∈J `jGj be the primary decomposition of the special fiber.
For any general s ∈ C ′, we have the identity Pm(X ′s) = Pm(Xσ(s)) and an inequality Pm(X ′s) >∑

j∈J Pm(Gj) by [Tak07, Theorem 1.2].

(1) For every component Fi of X0, there exists a component Gj of X ′0′ such that τ : Gj → Fi is
surjective and hence generically finite. To see Pm(Gj) > Pm(Fi) when τ : Gj → Fi is generically
finite, it is enough to work on smooth models, in which case the pull-back of pluricanonical forms
is injective and yields the expected inequality. Thus we can deduce

∑
j∈J Pm(Gj) >

∑
i∈I Pm(Fi)

and our first assertion.

(2) Let Gj be a τ -exceptional component. Then it is uniruled by [HM07, Corollary 1.5], and
in particular Pm(Gj) = 0 (we can allow “divisorial log terminal” singularities of X to apply
[HM07, Corollary 1.5]). Let Gj be a non-τ -exceptional component. By virtue of Zariski’s main
theorem, τ is isomorphic in codimension 1 near Gj , and, therefore, τ induces a birational map to
a component Fi. Hence, we obtain

∑
j∈J Pm(Gj) =

∑
i∈I Pm(Fi) and our second assertion.

We can generalize Theorem 1.1 slightly if the base is a curve. We do not assume f to be
weakly semi-stable, and, in particular, its fibers can be non-reduced, unlike in Theorem 1.1.

Corollary 3.5. Let f : X → C be as in Setup 3.1, and let X0 := f∗(0) =
∑

i∈I niFi. Suppose
that f has the property (Pm) for every large and divisible integer m > 0. Then there exists an
irreducible component of X0, say F1, such that Pm(F1) = Pm(Xt) holds for every integer m > 0
and a general point t ∈ C, and other components Fi (i ∈ I \ {1}) are uniruled (if |I| > 2).

Proof. By Lemma 3.4, a semi-stable reduction f̃ : X̃ → C̃ of f has the property (Pm) for every
large and divisible integer m > 0. Then by Theorem 1.1 for f̃ , the special fiber of f̃ has a
unique component F̃1 such that Pm(F̃1) = Pm(X̃s) for s ∈ C̃ general and other components are
uniruled. Because of the existence of the dominant morphism X̃ → X, we can suppose that all
Fi (i ∈ I \ {1}) are uniruled after relabeling. We can then easily deduce our assertion.

We add a remark for future reference. If we further take a good minimal model f̃ ′ : X̃ ′ → C̃
of X̃ over C̃, we obtain that the special fiber X̃ ′

0̃
(where 0̃ ∈ C̃ is a point mapped to 0 ∈ C) has

canonical singularities and K
X̃′

0̃

is semi-ample.

We prepare some lemmas, which can be stated in a slightly more general setting than
Setup 3.1. We refer to [KM98, Definition 2.34] for the singularities of pairs such as Kawamata
log terminal (klt), purely log terminal (plt) and log canonical (lc).
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Lemma 3.6. Let X be a normal variety such that the pair (X, 0) has klt singularities, and let |L|
be a base-point free linear system of Cartier divisors on X.

(1) Let 0 < ε < 1 be a rational number. Then the pair (X, εD) has klt singularities at worst
for general D ∈ |L|.

(2) Suppose further that there exists a Cartier divisor X0 ⊂ X such that (X,X0) is lc. Then
(X,D +X0) is lc for general D ∈ |L|.

Proof. Let D ∈ |L| be a general member.

(1) By [KM98, Lemma 5.17(1)], every connected component of D is normal and has klt
singularities. By an inversion of adjunction [KM98, Theorem 5.50(1)], the pair (X,D) is plt
near D and of course klt on X \D. We have applied [KM98, Theorem 5.50(1)] with S a connected
component of D and B = 0. Then (X, εD) is klt on X by decreasing the total discrepancy a bit.

(2) By [KM98, Lemma 5.17(1)], we see that D is klt and (D,X0|D) is lc. Then by [KM98,
Theorem 5.50], the pair (X,D +X0) is lc near D and hence lc on X.

Lemma 3.7. Let X be a normal variety such that the pair (X, 0) has klt singularities. Suppose
thatKX is semi-ample, and take an integerm > 0 such thatmKX is Cartier and the linear system

|mKX | is base-point free. Let D ∈ |mKX | be a general member, let Y := Spec
(
⊕m−1
i=0 ω

[−i]
X

)
, and

let π : → X be the cyclic cover obtained by taking the mth root of D (see Item 3.8). Then Y
has canonical singularities at worst and KY = π∗(mKX), which in particular implies that KY is
Cartier and the linear system |KY | is base-point free. Moreover, given a Cartier divisor X0 ⊂ X
such that the pair (X,X0) is lc, one can take D ∈ |mKX | such that (Y, Y0) is lc, where Y0 = π∗X0,
and that D does not contain any irreducible components of the singular locus SingX0 of X0. We
will refer to this property as “D ∈ |mKX | is (X,X0)-general.”

3.8. Let us recall the definition of the cyclic covering π : Y → X (or πD : Y → X) associated
with D in the setting of Lemma 3.7. This construction itself has nothing to do with KX and

can be carried out for any torsion-free sheaf of rank 1. We let ω
[i]
X = OX(iKX) for every integer

i; equivalently, ω
[i]
X is the double dual of ω⊗iX and ω

[−i]
X is the dual of ω

[i]
X for i > 0. Then

Y = Spec
(
⊕m−1
i=0 ω

[−i]
X

)
→ X is given by the following OX -algebra structure on the sheaf

A = ⊕m−1
i=0 ω

[−i]
X . We take a section s ∈ H0(X,ω

[m]
X ) whose zero divisor is D. We regard s as an

element of Hom(OX , ω[m]
X ) and then put an OX -algebra structure on A with multiplication given

(if i+ j > m) by

ω
[−i]
X ⊗ ω[−j]

X → ω
[−i−j]
X ⊗OX

id⊗s−−−→ ω
[−i−j]
X ⊗ ω[m]

X
∼= ω

[−i−j+m]
X .

It has the property that π∗OY = ⊕m−1
i=0 ω

[−i]
X . (To be more precise, if we let µ : Ỹ → Y be the

normalization of Y and π̃ = π ◦ µ : Ỹ → X be the induced finite morphism, then we actually
have π̃∗OỸ = A and hence Ỹ = SpecA (= Y ) as in [EV92, Claim 3.10]. The point is that A is
reflexive and that we can suppose SingD ⊂ SingX for D ∈ |mKX | general.)

As soon as KY = π∗(mKX) is established, we then have π∗OY (KY ) = π∗(π
∗OX(mKX)) =

OX(mKX)⊗ π∗OY = ⊕mi=1OX(iKX) = ⊕mi=1ω
[i]
X and

π∗OY (`KY ) = ⊕mi=1OX((m(`− 1) + i)KX)

in general for every integer ` > 0. We refer to [KM98, Definitions 2.52 and 5.19] and [EV92, § 3]
for more details.
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Proof of Lemma 3.7. We set DY = (π∗D)red = π−1(D). Then π∗D = mDY . We also have the
Hurwitz-type formulas

KY +DY = π∗(KX +D) , KY = π∗KX + (m− 1)DY , KY = π∗
(
KX +

m− 1

m
D
)
.

Every relation initially holds on π−1(Xreg) and then holds on Y . In particular, KY = π∗(mKX).
As the pair (X, ((m− 1)/m)D) is klt by Lemma 3.6, the adjunction formula KY = π∗(KX +
((m− 1)/m)D) implies that the pair (Y, 0) is klt by [KM98, Proposition 5.20(4)]. As KY is
Cartier, Y in fact has canonical singularities at worst.

By Lemma 3.6, the pair (X,D +X0) is lc and, in particular, (X, ((m− 1)/m)D +X0) is lc.
We know KY + Y0 = π∗(KX + ((m− 1)/m)D +X0). Thus by [KM98, Proposition 5.20(4)], the
pair (Y, Y0) is lc.

The following lemma is a variant of the inversion of adjunction [KM98, Theorem 5.50] and
must be well known to experts. We refer to [Kol13, § 5.2] for semi-log-canonical singularities.

Lemma 3.9. Let X be a normal variety with Q-Cartier canonical divisor KX , and let S ⊂ X be
an effective Cartier divisor. If S is semi-log-canonical, then the pair (X,S) is lc near S (that is,
lc on a neighborhood of S).

Proof. By definition [Kol13, Definition-Lemma 5.10], the divisor S is demi-normal (see [Kol13,
Definition 5.1] for the definition). We know (KX +S)|S = KS by [Kol13, Proposition 4.5(4),(5)].
Let π : S → S be the normalization, and let D ⊂ S be the conductor subscheme (see [Kol13, 5.2,
p. 189] for the definition). We have π∗KS ∼Q KS +D by [Kol13, (5.7.5)]. On the other hand, by
[Kol13, (4.2.9)], there exists an effective Q-divisor DiffS(0) on S such that π∗((KS + S)|S) ∼Q
KS +DiffS(0) holds. As (KX +S)|S = KS , we see that DiffS(0) ∼Q D. In fact, by the uniqueness
property in [Kol13, (4.2.7)] and [Kol13, (5.7.4)], we have DiffS(0) = D. By definition [Kol13,
Definition-Lemma 5.10], the divisor S is semi-log-canonical if and only if (S,D) is lc (at least
in our setting). Thus (S,DiffS(0)) is lc, and then (X,S + 0) is lc near S by the inversion of
adjunction [Kol13, Theorem 4.9(2)].

We now recall and complete the proof of [Wan03, Proposition 1.3], that is, the implication
(1) ⇒ (2) of Theorem 1.4

Proposition 3.10 ([Wan03, Proposition 1.3]). Suppose in Setup 3.1 that X0 has canonical
singularities. Then, after possibly a finite base change and a birational modification along the
special fiber, gm,D is incomplete at 0 ∈ C for every large and divisible integer m and every
general D ∈ |mKX/C |. If we further suppose that KX0 is semi-ample, then we do not need to
take finite base changes nor birational modifications along the special fiber.

Proof. We note that X has canonical singularities at worst by [Kaw99]. If KX0 is semi-ample,
then f : X → C is a good minimal model. If KX0 is not semi-ample, we change the model as
follows. We note that f has the property (Pk) for every k > 0 by [Tak07, Theorem 1.2] and that
Corollary 3.5 can be applied. Hence, by Lemma 3.4 and (the remark in the proof of) Corollary 3.5,
we may suppose that f : X → C itself is a good minimal model after possibly a finite base change
and a birational modification along the special fiber.

We take a large and divisible integer m such that mKX/C is Cartier and |mKX/C | is base-
point free. We take a general member D ∈ |mKX/C | and let π : Y → X be the cyclic cover
associated with D and fY := f ◦ π : Y → C. By Lemma 3.7, the variety Y has Gorenstein
canonical singularities and KY = π∗(mKX). Let Y0 be the special fiber of fY over 0 ∈ C, and
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let π : Y0 → X0 be the induced morphism. As X0 has canonical singularities and |mKX0 | =
|mKX/C |X0 | is base-point free, by Lemma 3.7 again, Y0 has Gorenstein canonical singularities
and KY0 = π∗(mKX0).

Recall that fY ∗OY (`KY/C) = ⊕mi=1f∗OX((m(` − 1) + i)KX/C) and H0(Y0,OY0(`KY0)) =
⊕mi=1H

0(X0,OX0((m(`− 1) + i)KX0)) for every integer ` > 0. We notice that every fiber near Y0

(including Y0) has canonical singularities and f has the property (Pk) for all k > 0. This in
particular implies that fY has the property (P`) for all ` > 0. Now, P1(Yt) = pg(Yt) > 0 for
general t ∈ C. Then by [Wan03, Corollary 2.4], we see that ω1(= gH) for Y → C is incomplete
at 0 ∈ C. Then by the definition of ωm,D for X → C, the pseudo-metric ωm,D is incomplete at
0 ∈ C.

We add a supplement to [Wan03, Corollary 2.4]. We will not use it in this paper.

Lemma 3.11. Suppose in Setup 3.1 that X0 is normal and has canonical singularities at worst
and pg(Xt) > 0 for general t ∈ C. Then 0 ∈ C is at finite distance to a point t ∈ Co with
respect to gH(= ω1); that is, ω1 is incomplete at 0 ∈ C. Note that we do not suppose that X0 is
Gorenstein here.

Proof. We know pg(X0) = pg(Xt) for general t ∈ C, for example by [Tak07, Theorem 1.1]. If
we take a semi-stable reduction f ′ : X ′ → C ′ of f , by the invariant cycle theorem [Wan03, proof
of Theorem 2.3], we have pg(Xs) =

∑
i∈I pg(F

′
i ), where X ′0 =

∑
i∈I F

′
i is the decomposition

into irreducible components of the special fiber of f ′. We are saying that f ′ : X ′ → C has the
property (P1). Then by [Wan03, Theorem 2.3], we obtain our assertion.

4. A filling-in problem, II

We shall prove Theorem 1.4 in this section. Because of the nature of our problem in Theorem 1.4,
we can actually suppose that f : X → C is semi-stable. We can take a finite morphism σ : C ′ → C
from a pointed smooth curve (C ′, 0′) with σ(0′) = 0 and a resolution of singularities α : X̃ ′ →
X ′ := X ×C C ′ of X ′ such that the induced family f

X̃′ : X̃
′ → C ′ becomes semi-stable around

0′ ∈ C ′ and the special fiber X̃ ′0′ is simple normal crossing. We shall consider f
X̃′ : X̃

′ → C ′

around 0′ ∈ C ′ instead of f : X → C from the beginning. The following theorem is a precise
version of Theorem 1.4.

Theorem 4.1. Suppose in Setup 3.1 that X is smooth and that the special fiber X0 =
∑

i∈I Fi
of f : X → C over 0 is reduced and simple normal crossing. Then the following conditions are
equivalent:

(1) For any good minimal model f ′ : X ′ → C of X over C, the special fiber X ′0 has only
canonical singularities.

(1′) There exists a good minimal model f ′ : X ′ → C of X over C whose special fiber X ′0 has
only canonical singularities.

(2) For any integer m that is large and divisible with respect to f and any general D ∈
|mKX/C |, the pseudo-metric ωm,D is incomplete at 0 ∈ C. (See below for the terminology.)

(2′) There exists a good minimal model f ′ : X ′ → C of X over C such that for any integer
m > 0 with mKX′ Cartier and |mKX′ | base-point free, there exists a general member
D ∈ |mKX′/C | such that the pseudo-metric ωm,D for f ′ : X ′ → C is incomplete at 0 ∈ C.
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(3) For any integer m > 0, the morphism f has the property (Pm); namely,
∑

i∈I Pm(Fi) =
Pm(Xt) holds for t ∈ Co general.

(3′) For any large and divisible integer m, the morphism f has the property (Pm).

Let us explain the terminology in statement (2) (in which the semi-stability of f is irrelevant).
We say that an integer m > 0 is large and divisible with respect to f if there exists a good minimal
model f ′ : X ′ → C such that mKX′ is Cartier and |mKX′ | is base-point free. For such m, we say
that D ∈ |mKX/C | is general if there exists a good minimal model f ′ : X ′ → C such that mKX′ is
Cartier and |mKX′ | is base-point free and if there exists a general member D′ ∈ |mKX′/C | which
corresponds to D. The correspondence of D and D′ is as follows. As X and X ′ are birational
by a process of the minimal model program and both have canonical singularities, we have
H0(X,mKX) ∼= H0(X ′,mKX′) for every m > 0, with isomorphism induced by the birational
map between X and X ′. Then D is mapped to D′. Hence, D ∈ |mKX/C | is general in the usual
sense of algebraic geometry at least.

It is clear that the implications (1) ⇒ (1′), (2) ⇒ (2′) and (3) ⇒ (3′) in Theorem 4.1 hold.
We also have the implication (3′) ⇒ (1) by Theorem 1.1. If we suppose condition (1′), then
f ′ : X ′ → C has the property (Pm) for any m > 0 by [Tak07, Theorem 1.2]. Then by point (2)
of Lemma 3.4, the minimal model f has the property (Pm) for any m > 0; that is, condition (3)
holds. Hence, conditions (1), (1′), (3), (3′) are equivalent. By [Wan03, Proposition 1.3], that is,
Proposition 3.10, we have the implication (1) ⇒ (2). Hence, it is enough to show that condi-
tion (2′) implies one of conditions (1), (1′), (3), (3′). We shall show that condition (2′) implies
condition (3′) by establishing the following alternative.

Proposition 4.2. Let f : X → C be as in Theorem 4.1. Let m > 0 be a fixed integer and suppose
that there exists a good minimal model f ′ : X ′ → C of X over C such that mKX′ is Cartier
and |mKX′ | is base-point free. Then either f has the property (Pm), or ωm,D for f ′ : X ′ → C is
complete at 0 ∈ C for any D ∈ |mKX′/C | which is (X ′, X ′0)-general in the sense of Lemma 3.7
for the special fiber X ′0 ⊂ X ′ of f ′.

This proposition immediately shows the implication (2′) ⇒ (3′) of Theorem 4.1.

Proof of the implication (2′) ⇒ (3′) of Theorem 4.1. We suppose to the contrary that condition
(3′) does not hold. We take any good minimal model f ′ : X ′ → C of X over C and any integers
M > 0 and m0 > 0. Then we have to show that there exists an integer m such that m > M ,
m0|m (that is, m/m0 is an integer), mKX′ is Cartier and |mKX′ | is base-point free but ωm,D is
complete at 0 ∈ C for any D ∈ |mKX′/C | which is (X ′, X ′0)-general in the sense of Lemma 3.7
for the special fiber X ′0 ⊂ X ′ of f ′.

We take an integer m′ > 0 such that m′KX′ is Cartier and |m′KX′ | is base-point free. As
statement (3′) does not hold, there exists an integer m such that m > M and (m′m0)|m but the
property (Pm) does not hold for f and hence does not hold for f ′ by Lemma 3.4. For this m,
it follows by Proposition 4.2 that ωm,D is complete at 0 ∈ C for any D ∈ |mKX′/C | which is
(X ′, X ′0)-general in the sense of Lemma 3.7.

The rest of this section is devoted to proving Proposition 4.2. We first recall necessary material
for the proof. The property in Theorem 4.1(2) and (2′) is a property of the direct image f∗KX/C

after a covering of X. A basic fact due to Griffiths [Gri70] and Fujita [Fuj78] is that the vector
bundle (f∗KX/C)|Co endowed with the fiberwise L2-metric, say h, over Co has Griffiths semi-
positive curvature and h extends as a singular Hermitian metric on f∗KX/C with Griffiths semi-
positive curvature. This is the formulation in [PT18], but Fujita already essentially observed
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this. We first recall what is happening on f∗KX/C in the semi-stable case. We quote results of
Yoshikawa in the simplest form which will be sufficient in our argument (and which might have
been known before by Wang [Wan03, Theorem 2.1, Remark 2.2]). His argument relies on basic
results in Hodge theory by Schmid [Sch73] and direct computations. We implicitly suppose that
f∗KX/C is non-trivial.

Proposition 4.3 ([Yos10, Section 2.2]). Suppose in Setup 3.1 that f : X → C is semi-stable. Let
{u1, . . . , ur} be a local frame of f∗KX/C at 0 ∈ C, that is, f∗KX/C = ⊕ri=1OCui at 0 ∈ C, and
let h(t) = (hij(t)) on Co, where hij = h(ui, uj), be the matrix representation of h with respect
to this basis. Then, there exist real analytic functions with r × r Hermitian matrices as values
Am(t) ∈ Cω(C,Herm(r)) for 0 6 m 6 n = dimX − 1, with

h(t) =

n∑
m=0

Am(t)(− log |t|)m .

Moreover, by defining the functions am(t) ∈ Cω(C,R), for 0 6 m 6 nr, as

deth(t) =

nr∑
m=0

am(t)(− log |t|)m ,

one has am(0) 6= 0 for some 0 6 m 6 nr.

We then introduce an invariant `0 in the expression of deth(t) above:

`0 = max{i; 0 6 i 6 nr, ai(0) 6= 0} .

Proposition 4.4 ([Yos10, Theorem 1.1 or 4.1)]. Suppose in Setup 3.1 that f : X → C is semi-
stable. The curvature form of the line bundle det(f∗KX/C)|Co has the following asymptotic
behavior as t→ 0:

(ω1 =)

√
−1

2π
∂∂ log deth(t) =

(
`0

|t|2(− log |t|)2
+O

(
1

|t|2(− log |t|)3

))√
−1dt ∧ dt .

In the setting of Proposition 4.3, we have `0 = 0 if and only if deth(t) is bounded as t→ 0.
By Proposition 4.4, in the case `0 = 0, the pseudo-metric ω1 satisfies

ω1 = O
( 1

|t|2(− log |t|)3

)√
−1dt ∧ dt ,

and therefore it is automatically incomplete. In the case `0 > 0, the pseudo-metric ω1 is quasi-
isometric to (|t|2(− log |t|)2)−1

√
−1dt∧ dt, the so-called Poincaré growth, which is complete (see

also [Wan03, Theorem 2.1, Remark 2.2]). Hence, in our problem, it is important to see the
(un)boundedness of deth(t) as t → 0. This is further reduced to an estimate of fiberwise L2-
norms of one section (without a semi-stability condition).

Lemma 4.5. Let f : X → C be as in Setup 3.1. Suppose that there exists a u ∈ H0(C, f∗KX/C)
such that h(u, u)(t) is unbounded as t→ 0. Then deth(t) is unbounded as t→ 0.

Proof. By Griffiths and Fujita, the fiberwise L2-metric h on (f∗KX/C)|Co extends as a singular
Hermitian metric on the vector bundle f∗KX/C with Griffiths semi-positive curvature. In our
setting, h is smooth on Co and may be singular at 0 ∈ C at most. Moreover, it can only have
0 < deth 6 +∞, because deth = e−ϕ around 0 ∈ C for a plurisubharmonic (psh for short)
function ϕ on a neighborhood of 0 ∈ C.
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On the other hand, up to multiplying u by a suitable power of t−1, one may assume that u
is non-zero at t = 0 (namely, u does not vanish identically along X0 viewed as an element of
H0(X,KX/C)) and that h(u, u)(t) is unbounded as t→ 0. Then, Lemma 4.5 follows directly from
Lemma 4.6(3) below, which gives an abstract property of singular Hermitian vector bundles with
semi-definite curvature.

We recall briefly the definition of singular Hermitian metrics (refer to [BP08, § 3, p. 357] or
[PT18, § 2]). Let E = B × Cr be a trivial vector bundle on a unit ball B in Cn. A singular
Hermitian metric h on E is a measurable map h : B → Herm(r) to the space of all r × r
Hermitian matrices such that 0 < deth < +∞ almost everywhere on B. The metric h is said to
have Griffiths semi-negative curvature if log h(u, u) is psh on U for any open set U ⊂ B and any
u ∈ H0(U,E). The metric h is said to have Griffiths semi-positive curvature if the dual metric h∗

has Griffiths semi-negative curvature.

Lemma 4.6. Let h = (hij) be a singular Hermitian metric on a trivial vector bundle E on a unit
ball B in Cn as above. Let U ⊂ B be a smaller ball.

(1) Suppose that h has Griffiths semi-negative curvature. Then there exists a constant M > 0
such that |hij | 6 M on U for any entry. Let 0 6 λ1(x) 6 λ2(x) 6 · · · 6 λr(x) < +∞
be the eigenvalues of h(x) at each point x ∈ B. Then we have λr(x) 6 rM on U and
λ1(x) > (rM)1−r deth(x) on U .

(2) Suppose that h has Griffiths semi-positive curvature. Then there exists a constant
M ′ > 0 (independent of x ∈ U \ {deth = +∞}) such that λ1(x) > 1/(rM ′) and λr(x) 6
(rM ′)r−1 deth(x) on U \ {deth = +∞}, where 0 6 λ1(x) 6 λ2(x) 6 · · · 6 λr(x) < +∞ are
the eigenvalues of h(x) at x ∈ B \ {deth = +∞}. (In fact, λ1(x) > 0.)

(3) Suppose that h has Griffiths semi-positive curvature. Suppose that there is a constant A > 0
such that deth 6 A on U \{deth = +∞}. Then there is a constant A′ > 0 such that |hij | 6
A′ on U \ {deth = +∞} for any entry of h. In particular, if u1, . . . , ur ∈ H0(B,E) are such
that E = ⊕ri=1OBui and if h11 = h(u1, u1) is unbounded from above on U \ {deth = +∞},
then deth is unbounded from above on U \ {deth = +∞}.

Proof. (1) By definition, log h(u, u) is psh on B for any u ∈ H0(B,E). In particular, h(u, u)
is non-negative and psh on B, and hence it is also locally bounded from above. Thus there
exists a constant M ′ > 0 such that hii 6 M ′ on U . As h(x) is positive semi-definite, we have
|hij(x)|2 6 hii(x)hjj(x) for every i, j. This proves the first assertion.

Given a matrix P = (pij) ∈ M(r,C), we denote by M := max{|pij |; 1 6 i, j 6 r} the
maximum of the absolute value of its entries. Then we have |λ| 6 rM for any eigenvalue of P .
Note that deth = λ1λ2 · · ·λr 6 λ1(rM)r−1 at every x ∈ U .

(2) Take the dual and apply statement (1) as long as deth∗ 6= 0.

(3) We shall discuss this only on U \ {deth = +∞}. By statement (2) and the inequality
deth 6 A, we have trh(x) = λ1(x) + · · · + λr(x) 6 r(rM ′)r−1A. As h(x) is positive definite,
we have 0 < hii(x) < trh(x) and |hij(x)|2 6 hii(x)hjj(x) for every i, j. We then obtain our
bound.

We now go back to the discussion of Proposition 4.2. We suppose in Proposition 4.2 that f
does not have the property (Pm). Then by Lemma 3.4, the minimal model f ′ also does not
have the property (Pm). In particular, X ′0 has a singularity worse than canonical thanks to the
equivalence of statements (1), (1′), (3), (3′) of Theorem 4.1. But still, X ′0 has semi-log-canonical
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singularities by Lemma 2.3(2). As X ′0 is demi-normal [Kol13, Definition-Lemma 5.10], the scheme
X ′0 is normal if and only if X ′0 is regular in codimension 1. Recall that the singularity type in
codimension 1 of a semi-log-canonical variety is an ordinary node [Kol13, Definition 5.1]. So we
can take a point Q′ ∈ X ′0 such that

(i) X ′0 is non-normal and Q′ is a general point in SingX ′0 which is an ordinary node around
there, or

(ii) X ′0 is normal and Q′ is a non-canonical singularity of X ′0.

We note that the pair (X ′, X ′0) is lc by Lemma 3.9 as X ′0 is semi-log-canonical. We take any
general D ∈ |mKX′/C | which is (X ′, X ′0)-general in the sense of Lemma 3.7, and let π : Y → X ′

be the mth root of D as in Lemma 3.7. We can suppose that D does not contain Q′ and can
suppose that the induced family fY := f ′ ◦ π : Y → C with 0 ∈ C satisfies Setup 3.1. Then we
shall show the following.

Proposition 4.7. Suppose in Proposition 4.2 that f does not have the property (Pm). Let
D ∈ |mKX′/C | be a general member, π : Y → X ′ the mth root of D and fY = f ′ ◦ π : Y → C
be the induced morphism (as above). Then there exist a section u ∈ H0(C, fY ∗KY/C), an open
neighborhood C1 ⊂ C of 0 ∈ C and a constant A > 0 such that

h(u, u)(t) > A(− log |t|)

holds for any t ∈ C1 \ 0.

Remark 4.8. The variety Y in Proposition 4.7 has Gorenstein canonical singularities, |KY | is
base-point free, and the pair (Y, Y0) is lc by Lemma 3.7. As the map π : Y → X is unramified
around over Q′, the scheme Y0 has the same property at every point of π−1(Q′) as X ′0 has at Q′.
In particular, we can take a point Q ∈ Y0 such that

(i) Y0 is non-normal and Q is a general point in Sing Y0 which is an ordinary node around
there, or

(ii) Y0 is normal and Q is a non-canonical singularity of Y0.

Assuming Proposition 4.7 for the moment, we can prove Proposition 4.2 and hence Theo-
rem 4.1, as shown below.

Proposition 4.9. In Proposition 4.7, the pseudo-metric ω1 for fY : Y → C (that is, ωm,D for
f ′ : X ′ → C) is complete at 0 ∈ C. In particular, Proposition 4.2 holds.

Proof of Proposition 4.9. We apply a semi-stable reduction theorem for fY : Y → C. We take
a finite morphism σ : C ′ → C from a pointed smooth curve (C ′, 0′) with σ−1(0) = 0′ and a reso-
lution of singularities α : Ỹ ′ → Y ′ := Y ×C C ′ of Y ′ such that the induced family f

Ỹ ′ : Ỹ
′ → C ′

becomes semi-stable and the special fiber is simple normal crossing. We can suppose that α is
biregular on Y ′ \ f−1

Y ′ (0′). Let us consider the induced diagram

Ỹ ′ Y ′ = Y ×C C ′ Y

C ′ C ′ C .

α

f
Ỹ ′ fY ′

τ

fY

σ

Note that Y ′ and fY ′ are smooth over C ′ \ 0′. We can further see that Y ′ is normal, fY ′ is lc
(refer to [KM98, Definition 7.1]) and KY ′/C′ = τ∗KY/C (see the proof of [KM98, Lemma 7.6]).
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In particular, Y ′ has canonical singularities at worst [KM98, Lemma 7.2], the divisor KY ′ is
Cartier and |KY ′ | is base-point free. Moreover, Y ′0′ = Y0 by construction. Thus the properties of
fY : Y → C mentioned in Remark 4.8 are preserved by a finite base change. Namely, fY ′ : Y

′ → C
inherits the properties in Remark 4.8. We apply Proposition 4.7 for f

Ỹ ′ : Ỹ
′ → C ′ and use

Proposition 4.4 (thanks to Lemmas 4.5 and 4.6). We note that ω1 for fY ′ : Y
′ → C ′ and ω1

for f
Ỹ ′ : Ỹ

′ → C ′ are the same. Then we see that ω1 (say ω̃′1) for f
Ỹ ′ : Ỹ

′ → C ′ is complete at
0′ ∈ C ′. We also note that ω̃′1 = σ∗ω1 on C ′ \ {0′}. Thus the completeness of ω1 at 0 ∈ C for

fY : Y → C and the completeness of ω̃′1 at 0′ ∈ C ′ for f
Ỹ ′ : Ỹ

′ → C ′ are equivalent by the finite
base change σ. Thus ω1 for fY : Y → C is complete at 0 ∈ C.

Proof of Proposition 4.7. We shall write by f : Y → C instead of fY and let Y0 =
∑

i∈I Fi.
We note that Y0 is reduced as π is generically étale over X0. We will not use f : X → C and
X0 =

∑
i∈I Fi in the proof. We have a special point Q ∈ Y0.

Step 1. We first prepare to compute fiberwise integrals. We take a log-resolution α : Ỹ → Y
of the pair (Y, Y0) such that α is biholomorphic over Y \ Y0. Let F̃ =

∑
i∈I F̃i be the strict

transform of Y0, which is a disjoint union of smooth divisors. We set f̃ = f ◦ α : Ỹ → C and
let Ỹ0 = f̃∗(t = 0) = F̃ +

∑
j∈J pjEj , where the Ej are α-exceptional prime divisors and the

pj > 0 are integers. We also have K
Ỹ /Y

= K
Ỹ
− α∗KY =

∑
j∈J kjEj with non-negative integers

kj > 0. Here we recall that Y has Gorenstein canonical singularities. We let ki = 0 (i ∈ I) and

F̃ =
∑

i∈I piF̃i with pi = 1 formally.

Step 1.1. We take a small open neighborhood U of Q ∈ Y and a local frame η ∈ H0(U,KY ).
We also take a point Q̃ ∈ α−1(Q) ⊂ Ỹ and local coordinates w = (w1, . . . , wn, wn+1) in Ỹ centered
at Q̃, which are defined on an open subset containing W = {w ∈ Cn+1; |wi| 6 1 for any 1 6 i 6
n + 1}, which satisfies α(W ) ⊂ U . The point Q̃ will be specified later. We can assume without
loss of generalities that, on W ,

t = f̃(w) = wp11 w
p2
2 · · ·w

pn+1

n+1 ,

α∗η = (Jacα)dw1 ∧ · · · ∧ dwn+1 = wk11 · · ·w
kn+1

n+1 dw1 ∧ · · · ∧ dwn+1 ,

where the pj and kj are non-negative integers as we indicated above.

As the pair (Y, Y0) is lc, if we write K
Ỹ

+ F̃ = α∗(KY + Y0) + E with an α-exceptional
E =

∑
j∈J ejEj , then ej > −1 for all j. In particular, if Ej = {wj = 0}, then ej = kj − pj > −1.

We rewrite this formula as K
Ỹ

+ D = α∗(KY + Y0) with D =
∑
d`D` := F̃ − E. If d` < 0,

then D` is one of the Ej and hence D` is α-exceptional. In this sense, α∗D defines an effective
divisor. It is clear that −(K

Ỹ
+D) = −α∗(KY + Y0) is α-nef and α-big as α is birational. Then

by the connectedness lemma [KM98, Theorem 5.48], the divisor
∑

i;di>1Di = F̃ +
∑

ej=−1Ej is

connected in a neighborhood of α−1(Q).

(i) Suppose that Y0 is non-normal and Q is a general point of Sing Y0. Then α|
F̃

: F̃ → Y0

is finite morphism around Q, and in fact (α|
F̃

)−1(Q) consists of two different points and is, in

particular, disconnected. By the connectedness lemma above,
∑

i;di>1Di = F̃ +
∑

ej=−1Ej is

connected in a neighborhood of α−1(Q). Thus there exist irreducible components F̃i and Ej such

that F̃i ∩ Ej ∩ α−1(Q) 6= ∅.
(ii) Suppose that Y0 is normal and Q is a non-canonical singularity of Y0. Then F̃ is a smooth

model of Y0, and K
F̃

= α∗KY0 +E|
F̃

by adjunction. As Y0 is not canonical at Q, there exists an
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irreducible component Ej such that F̃ ∩ Ej ∩ α−1(Q) 6= ∅ and ej < 0, that is , ej = −1. This is
a connectedness lemma in principle, though the connectedness lemma is not used directly.

In both cases (i) and (ii), we can take irreducible components F̃i and Ej with ej = −1 such

that F̃i∩Ej∩α−1(Q) 6= ∅. We now specify a point Q̃ ∈ α−1(Q) by requiring Q̃ ∈ F̃i∩Ej∩α−1(Q).

We then retake our local coordinate w = (w1, . . . , wn, wn+1) on W ⊂ Ỹ such that F̃i = {wn+1 =
0} and Ej = {wn = 0}. In particular, Q̃ ∈ {wn = wn+1 = 0}, pn+1 = 1 and pn > 0.

As f̃ is flat, f̃(W ) contains an open neighborhood of t = 0. We take a point t ∈ f̃(W ) \ 0.
Then the smooth fiber Ỹt ∩W can be regarded as the graph of a function

wn+1 = G(w1, . . . , wn) =
t

wp11 · · ·w
pn
n

of (w1, . . . , wn). We set W ∗t ={(w1, . . . , wn) ∈ Cn; |wj | 6 1 if pj = 0, 2−1/(n−1)pj 6 |wj | 6 1 if
pj 6= 0 and 1 6 j 6 n − 1, |2t|1/pn 6 |wn| 6 1}. We note that (w1, . . . , wn, G(w1, . . . , wn)) ∈
Ỹt ∩W if (w1, . . . , wn) ∈W ∗t . In fact, we see that |t/(wp11 · · ·w

pn
n )| 6 1 for (w1, . . . , wn) ∈W ∗t .

Step 1.2. By the relation f̃∗dt/f̃(w) =
∑n+1

j=1 pj(dwj/wj), we have the equality dwn+1 =

(wn+1/f̃(w))f̃∗dt modulo dw1, . . . , dwn. Then we can write

α∗η = (Jacα)dw1 ∧ · · · ∧ dwn+1

=
wn+1

f̃(w)
(Jacα)dw1 ∧ · · · ∧ dwn ∧ f̃∗dt .

To be more precise, if we let

σ =
wn+1

f̃(w)
(Jacα)dw1 ∧ · · · ∧ dwn ,

then σ is holomorphic on W \ Ỹ0 and (α∗η)|
W\Ỹ0 = σ ∧ f̃∗dt holds. We note that

wn+1

f̃(w)
(Jacα) =

n∏
j=1

w
kj−pj
j = wk1−p11 · · ·wkn−1−pn−1

n−1 w−1
n .

Then we have ∫
Ỹt∩W

(−1)n
2/2σ ∧ σ =

∫
Ỹt∩W

n∏
j=1

|wj |2(kj−pj)
n∧
j=1

√
−1dwj ∧ dwj

>
∫
W ∗t

n∏
j=1

|wj |2(kj−pj)
n∧
j=1

√
−1dwj ∧ dwj .

The last integral is estimated from below by a product of∏
16j6n−1, pj=0

∫
|wj |61

|wj |2(kj−pj)
√
−1dwj ∧ dwj ,

∏
16j6n−1, pj 6=0

∫
2
− 1

n−1
1
pj 6|wj |61

|wj |2(kj−pj)
√
−1dwj ∧ dwj and

∫
|2t|1/pn6|wn|61

|wn|−2
√
−1dwn ∧ dwn .

The former two integrals are estimated from below by a constant A′ > 0 depending only on kj ,
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pj , n. The third integral is∫∫
|2t|1/pn6r61, 06θ62π

2rdrdθ

r2
= 4π

(
− log |2t|1/pn

)
.

Thus there exist a neighborhood C1 of 0 ∈ C and a constant A > 0 independent of t ∈ C1 \ 0
such that ∫

Ỹt∩W
(−1)n

2/2σ ∧ σ > A(− log |t|)

holds for any t ∈ C1 \ 0.

Step 2. We now complete the proof of Proposition 4.7. As |KY | is base-point free, we can take
a section η ∈ H0(Y,KY ) which gives a local frame of KY around Q. By a choice of a trivialization
dt ∈ H0(C,KC) of KC , we identify H0(Y,KY/C) ∼= H0(Y,KY ). We take u ∈ H0(Y,KY/C)
which corresponds to η ∈ H0(Y,KY ) via this identification. Then u(dt) = η ∈ H0(Y,KY ).
Here we regard H0(C, f∗KY/C) as Hom(KC , f∗KY ), and hence regard u as a homomorphism
u : KC → f∗KY and u(dt) ∈ H0(C, f∗KY ) = H0(Y,KY ). Then

h(u, u)(t) >
∫
Ỹt∩W

(−1)n
2/2σ ∧ σ > A(− log |t|)

holds as in the statement.
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