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ABSTRACT

We consider degenerations of complex projective Calabi—Yau varieties and study the
singularities of L2, Quillen and BCOV metrics on Hodge and determinant bundles. The
dominant and subdominant terms in the expansions of the metrics close to non-smooth
fibers are shown to be related to well-known topological invariants of singularities,
such as limit Hodge structures, vanishing cycles and log-canonical thresholds. We also
describe corresponding invariants for more general degenerating families in the case of
the Quillen metric.

1. Introduction

In this article, we study the singularities of several natural metrics on combinations of Hodge-
type bundles, for degenerating families of complex projective algebraic varieties. In particular,
we provide topological interpretations of invariants associated with logarithmic singularities of
these metrics. Our original motivation was a metrical approach to the canonical bundle formula
for families of Calabi-Yau varieties [Kaw98, FM00, Amb04, Kol07]. The first instance of this
formula goes back to Kodaira [Kod64, Theorem 12] and describes the relative canonical bundle
of an elliptic surface in terms of a positive modular part and some topological invariants of the
singular fibers. We were thus naturally led to the study of Hodge-type bundles, their metrics and
behavior close to singular fibers.

As a matter of motivation, a classical example to keep in mind is the Hodge bundle f.wx/gs
for a family of compact Riemann surfaces f: X — S, endowed with its canonical L?-metric or
a Quillen metric on its determinant bundle (cf. Section 3.1). The latter topic is the main focus of
the work of Bismut-Bost [BB90]. In the semi-stable case, they describe the singularities and the
curvature current of the Quillen metric on the determinant of the Hodge bundle. In the special
case where S is the unit disk and there is a unique singular fiber Xy at 0 € S, the principal part
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METRICS ON HODGE BUNDLES

of the curvature current is of the form

# sing(Xo)
12

where Jp is the Dirac current at 0 and #sing(Xp) is the number of singular points in the
fiber Xj.

In this article, we study analogues of this phenomenon for L?-metrics on Hodge bundles for
Calabi—Yau families (Theorem A), for Quillen metrics on determinant bundles (Theorem B) and

for the so-called BCOV metric, which has found applications in mirror symmetry, for Calabi—Yau
3-folds (Theorem C).

To state our contributions, for the purpose of this introduction, we suppose that f: X — S
is a flat, projective map of complex manifolds of relative dimension n, where S is the unit disk
with parameter s. We suppose the fibers X = f~1(s) connected and smooth for s # 0 (we say
that f is generically smooth). We also assume that X carries a fixed Kéahler metric. We denote
the relative canonical bundle by Ky /5 := Kx ® KSTI.

50)

THEOREM A. Suppose that the general fiber of f: X — S is Calabi—Yau, that is, has a trivial
canonical bundle. Let n be a local holomorphic frame of the line bundle f,Kx/g. Then if we

define
[ o
Xs

—10g||17||2:alog\s|2—ﬁlog{log|8|2‘+O(1) as s—0,

I

2 _
”77”3 - (27‘(’)"

we have

where a and 8 have the following properties:

(i) The value of av is given by a = 1—cx,(f) € [0,1)NQ. Here cx,(f) is the log-canonical thresh-
old of (X, —B, Xo) along Xo, where B is the divisor of the evaluation map f*f.(Kx/s) —
Kx/s. Moreover, exp(2mia) is the eigenvalue of the semi-simple part of the monodromy
acting on the graded piece Gr'y HJ! = of the middle limit Hodge structure of X — §.

(ii) The integer 8 = 0(X, Xo) € [0,n]NN is the degeneracy index of (X, X), computed through
the geometry of the special fiber and Kx 5. Moreover, 8+ n is the mixed Hodge structure
weight of the 1-dimensional space Gr'y HJ! .

(iii) If X — S is birational to a model Z — S, where Z is normal with Kz locally free, and Zy
has at worst canonical singularities, then o = 3 = 0 and the L?-metric is continuous.

This statement summarizes the results in Section 2. Observe that the negative logarithm
square of the norm is the potential of the first Chern form of the corresponding holomorphic
Hermitian line bundle. On the smooth locus, the curvature of the L?-metric is the Kihler form
of the modular Weil-Petersson metric. Hence, Theorem A indicates the necessary correction of
the Hodge bundle such that the L?-metric becomes good in the sense of Mumford. A special case
of the third point is morphisms with isolated ordinary quadratic singularities, in which case the
L?-metric is continuous.

Versions of Theorem A have already appeared in the work of other authors, in slightly differ-
ent forms. The third point is proved by Wang in [Wan97, Proposition 2.3 with Corollary 1.2] (see
also [RZ11, Theorem B.1] in the appendix by Gross) and in fact a converse is proven by Tosatti
in [Tos15, Theorem 1.1]. As a special instance of canonical singularities, we mention the case of
ordinary quadratic singularities when n > 2. The degeneracy index and log-canonical threshold
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have also been announced by Halle-Nicaise [HN12, Theorem 6.2.2] and detailed in [HN18, The-
orem 3.3.3]. In the context of ¢-adic cohomology, they establish the analogous relationship as in
the theorem above. There is also related work of Berman [Berl6, Section 3| on the asymptotics
of L?-metrics in terms of log-canonical thresholds. More recently, Boucksom-Jonsson [BJ17]
studied asymptotics of volume forms in relationship with non-archimedean limits. Actually, the
argument we provide for the asymptotics in terms of cx,(f) and §(X, Xo) is a specialization of
the computations in [BJ17] and was communicated to us by S. Boucksom, whom we warmly
thank.

In Sections 3 and 4, we shift our interest to the determinant line bundle endowed with
a Quillen-type metric, instead of the direct image of the relative canonical bundle endowed with
the L%-metric. The main feature is that, after normalizing the metric, this bundle still detects the
variation in moduli in its smooth part and has a degeneration mainly governed by the singular
fibers and weakly depending on their germs of embedding. Now, suppose that V is a Hermitian
vector bundle on X, and let A(V')g be the determinant of the cohomology of V', equipped with
the Quillen metric. This has a singularity at 0, and our aim is to provide a topological measure of
it. If o is a local holomorphic frame of A\(V'), then Yoshikawa [Yos07] proves, in our formulation,

— log ||a||2Q = (/X V(X/S, V)> log|s|*> + R(s) as s—0, (1.1)

where Y(X/S,V) is a certain cohomology class (Definition 3.6) and R(s) is a continuous function
of s. In this article, we study and generalize this class for families of varieties over a general pa-
rameter space S whose total space X is not necessarily smooth. This uses and underlines the Nash
blowup instead of the Gauss morphism. The latter was actually introduced by Bismut [Bis97] and
then further exploited by Yoshikawa [Yos07]. Our approach allows us to study the class Y(X/S,V)
from the point of view of Fulton’s intersection theory, which exhibits functoriality properties to
the effect that we can use moduli space arguments in computations. For the formulation of the
theorem, for simplicity, let V' be the trivial line bundle and set Y (X/S) = [ x, Y(X/S5,V).

THEOREM B. Suppose that X — S is a family over a disk, with X not necessarily smooth.
(i) If X — S admits only isolated singularities in the special fiber X and is locally a hyper-
surface in an S-smooth variety, then

(_1)n+1
m Z (,UXO,x + ,UX,:c) )
z€Xo

Y(X/S) =

where 1x 0 and jix, 0 denote the Milnor numbers of the hypersurface singularities.
(ii) If X is a family of hypersurfaces in P" parametrized by S, then

_1\n+1
vxss) = o | @),

where cﬁ‘il(ﬂ x/s) denotes the localized top Chern class of X — S.

(iii) If X — S is a family of K3 or abelian surfaces, with X smooth and Kx trivial, the same
formula holds. One can conclude that
—1
Y(X/8) = 55 (x(Xoo) = x(X0)) -
In fact, for general families X — S with X smooth, we have the fundamental relation

[ i0s) = (" () — (X))

Xo
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The expression x(Xs) — x(Xo) is the total dimension of the vanishing cycles of the family, that
is, the difference between the topological Euler characteristic of the special fiber X and that of
a general fiber X.

The developments abutting to Theorem B are the object of Section 3. We stress here that
the intersection-theoretic approach is well suited to other geometric settings. For instance, in
the “arithmetic situation” (that is, S is the spectrum of a discrete valuation ring of mixed
characteristic), the Yoshikawa class can still be defined and may be seen as a discriminant,
meaning a measure of bad reduction. An example of this principle was studied by the first author
in [Eri16] and applied in the study of Quillen metrics on degenerating Riemann surfaces [Eril3].
This was a source of inspiration for the present work.

In Section 4, we turn our attention to a particular combination of Hodge-type bundles. For
a smooth family f: X — S, one can consider the vector bundles RY f*Qg( ¢ coming from the
Hodge filtration on relative de Rham cohomology. Taking weighted determinants of these vec-
tor bundles, one introduces the BCOV line bundle (named after Bershadsky—Cecotti-Ooguri—
Vafa [BCOV94])

n n
Aocov = QM) TP = &) det (R0, ) TV
p=0 P,q=0

Following Fang-Lu—Yoshikawa [FLY08], after a suitable rescaling of the Quillen metric on Agcov,
one defines the BCOV metric. For a family of Calabi—Yau varieties, this is independent of the
initially chosen Kéhler metric, and its curvature is given by the modular Weil-Petersson form.
Therefore, it is an intrinsic invariant of the family. As [FLYO08] illustrates, for applications to
mirror symmetry in physics, it is important to determine the singularities of the BCOV metric
under degeneration. Hence, let us now assume that f: X — S is only generically smooth. The
line bundle Agcov (initially defined on the smooth locus) has a natural extension to S, called the
Kaéhler extension, Whi~ch we denote by Agcov. Then, the BCOV metric on Agcov can be seen as
a singular metric on Agcoy. The last statement of this introduction summarizes our results on
the singularities of the BCOV metric on Agcov.

THEOREM C. Suppose that Kx is trivial. Let n be a local holomorphic frame of XBCOV.

(i) The asymptotic expansion of the BCOV metric is

X
—log ||77||2BCOV = apcov log |s|2 — X(moo)ﬁlog ’ log |5|2‘ +0(1) as s—0.
Here
In? +11n+2 a
Qpcov = —T(X(Xoo) - X(XO)) + EX(XOO)v

and « and 3 are as in Theorem A. In particular, agcov is expressed in terms of vanishing
cycles and the topological Euler characteristic of a general fiber.

(ii) If the monodromy action on HJ}  is unipotent (for example, if f is semi-stable), then apcov
further simplifies to

In? +11ln + 2
Qpcov = _T(X(Xoo) - X(XO)) .

(iii) If f has only isolated ordinary quadratic singularities and n > 2, then

g1 9%+ 11n +2

51 # sing(Xo),

Qpcov = (_1)
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so that
g1 9%+ 1ln +2

51 #sing(Xo) log|s|? + O(1).

—log ||77||2Bcov =(-1)

Such families with trivial canonical bundle are commonly known as Kulikov families, named
after work of Kulikov on semi-stable degenerations of K3 surfaces [Kul77]|. Examples in other
dimensions are known to exist [KN94, Leel0]. Another situation of Kulikov families is when f has
relative dimension n > 2 and presents only isolated singularities, so that the Kulikov assumption
in the third point of Theorem C is automatic. In fact, we provide a general closed formula for the
logarithmic divergence, without any assumption on Kx. In any event, Theorem C describes the
necessary correction to the BCOV metric on Agcov in order to obtain a Mumford-good Hermitian
metric.

The expression of apcoy in part (iii) for ordinary quadratic singularities was first observed
by Yoshikawa (private communication with the authors). Our approach is based on independent
ideas, relying on the general expression in part (i) and the fact that a = § = 0 for these types
of singularities.

2. Degeneration of L?-metrics on the Hodge bundle

2.1 Background on the Hodge bundle for Calabi—Yau and Kulikov families

Let f: X — S be a proper flat morphism with connected fibers of dimension n from a complex
manifold X to a smooth complex curve S. We will refer to such a map as a family. Assume that f
is generically smooth (or submersive) with respect to the Zariski topology. The relative cotangent
sheaf Qx/g (or sheaf of relative Kéhler differentials) then fits into a short exact sequence

t
0= 125 L 0y = Qx5 — 0. (2.1)

The exactness on the left is guaranteed by the generic smoothness assumption. The relative
canonical bundle is defined to be

Ky/s:=Kx® f*Kg".
It coincides with A"{2x /g at the points where f is submersive.
Now, assume that the smooth fibers of f have trivial canonical bundle. Then the direct image
sheaf f.(Kx/,s), the Hodge bundle, is locally free of rank 1. Indeed, it is a torsion-free sheaf on

a smooth curve, and hence locally free. Moreover, on a Zariski-dense open subset of 5, it has
rank 1. The evaluation map of line bundles

ev: f*fu(Kx/s) = Kx/s (2.2)

is an isomorphism over smooth fibers, by base change, and is injective. We denote its zero divisor
by B. By construction, B is a divisor supported in the singular fibers of f and depends on the
model X. The injectivity of the evaluation map implies that B is effective. With this notation,
we have the relation

Kx;s = f"f«(Kx/s) ® Ox(B). (2.3)

We observe that the (local) relative canonical divisor B cannot contain any full fibers of f. For
this, let s be a local parameter on the curve S centered at a point 0. Let n be a local section
of fo(Kx) on an open set U of S, not divisible by s in f.(Kx). If the zero divisor B of ev
contained the whole fiber Xo, then (ev f*n)/s would be a form in Kx(f~*(U)). But it is not of
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the form ev f*u for some p in f(Kx)(U), which contradicts the surjectivity of ev on the open
tube (f~1U).

In the case where B is trivial, we call f: X — § a Kulikov family. Kulikov models are in
general difficult to describe. For families of K3 surfaces, Kulikov [Kul77] established the existence
of such models in the semi-stable case. In arbitrary dimension, examples are obtained by the
smoothing of suitable normal crossings varieties [KN94, Leel0]. Finally, we remark that if the
special fiber has at least two components, their intersection is part of the f-singular locus Z and
any component therein is of dimension at least n +1 —2 = n — 1. Hence, if Z is of dimension at
most n — 2, then any singular fiber Xy is necessarily irreducible and reduced. We infer that B is
empty in this case. A particular instance of this fact is given by morphisms of relative dimension
n > 2 and isolated singularities.

2.2 Log-canonical threshold, degeneracy index and the singularities of the L?-metric

Let f: X — S be a generically smooth family between complex manifolds, of relative dimen-
sion n, where S is a curve. Assume that the smooth fibers of f have a trivial canonical bundle, so
that f.(Kx/s) is a line bundle. On the smooth locus in S, this line bundle affords an intrinsic L2,
or Hodge, metric. If n is a non-vanishing n-form on a smooth fiber X, then

forl

If 17 extends to a trivialization of f.(Kx,g) in a neighborhood of s, then ||n|[12 s changes smoothly
with s. The question is to analyze the behavior of the L?-metric close to the singular locus of f
in S. For the sake of simplicity, from here on, we assume that .S is a disk centered at 0 and that
there is at most a singular fiber at 0.

1
2 _
”77HL275 - (277)”

The formation of f.(Kx/g) is invariant under blowups along regular centers in the special
fiber. Therefore, for the purpose of analyzing the L?-metric, we may assume (after a Hironaka
resolution) that the singular fiber of f: X — S decomposes into irreducible components a;FE},
with E; smooth, meeting with normal crossings

XO = ZajEj .

We write the zero divisor of the evaluation map (2.2) in the form B = ) (b; — 1)E;. Following
Kollar [Kol97, Section 8, especially Definition 8.1] (see also Berman [Ber16, Section 3.4, especially
Proposition 3.8]), we define the log-canonical threshold of (X, —B, Xy) along X by

b
cx,(X,—B, Xp) = min <]> .
i\
As in [Kol97], we will allow the abuse of notation cx,(f) for cx,(X,—B, Xp). In addition, we
define

b .
b(X, Xp) := max{jjj ‘ NsE; #0and Vj € J, L = ex, (X, —B,Xo)} :
aj
Notice that b(X, Xp) — 1 is the degeneracy index 0(X, Xp) defined by Halle-Nicaise [HN12,
Definition 6.2.1].
The log-canonical threshold and the degeneracy index govern the asymptotic of the L?-metric
close to the singular locus.

PROPOSITION 2.1. Let n be a holomorphic frame of f«Kx/s. Then the L?-metric on [+Kx/s
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degenerates as
—log HnH%g = (1—cx,(f))log \3\2 — (b(X,Xp) — 1) log ‘ log |s]2} +0(1) as s—0,
where s is the local coordinate on S.

Proof. The isomorphism Kx, g = detQx/s = det({2x/f*{s) on the smooth part of f yields a
description of the map

[ Ks®Kxg— Kx, [frds®[u]w ffdsAu.
Rewrite the relation (2.3) as
["Ks® f*ful(x/s = Ox(—B) ® Kx . (2.4)

Choose a point zg € Xo. Set J(zg) := {j | o € E;}. Choose local coordinates (21,22, ..., 2Zn41)
on X centered at xg such that for j € J(x¢), the divisor Ej is given by z; = 0 and the map f
can be written, locally around xg, as

fi(z1,22,. ., 2n41) > s = H z;-lj.
j€J(zo)

The isomorphism (2.4) shows the existence of an open covering (U,) of X by coordinate charts
and invertible holomorphic functions f, such that on U,,

bj—1
frds Nev(n) = fo H zj “dzi Ndzg A ANdznga
jeJ (o)
We choose a partition of unity (¢,) built from an open covering of X where the previous sim-

plifications hold. Choose a jo € J(xo) such that bj, /aj, = min () (b;j/a;), and note that

dzy Ndzo N -~ Ndzpy1 = (—1)]0%70]0**8 ANdzy ANdzg N\ -+ A deofl VAN de0+1 A ANdzpyr -
Q5o S
We introduce the change of variables z; = ei/%e for j € J(xg) and 2z, = rpei® for k €
{1,...,n+ 1} J(xo). The set of integration is defined by |2;| < 1 and ;¢ 50z 25 237 = s, in other
words, by pj <0,0< 7, <1, and 3 ¢ y(,0) 4505 = arg(s) and Y- c j,0) 5 = log| |. We have

fe(Gaf*(ids A dS) A " ev(n) A ev(n))

2 _
||¢a77s||L2(X ) ids A ds
!fa ) -
(2 (2m)7|s|2 / Pa 2 H | j|2b] 2’Zj0|2‘d21’2|d22|2 T ’dzjo—1’2|dzjo+1|2 T ’dzn-f—l’z
) s| |aj,|
jeJ(zo)
. / e I |fa(2)]” [1 /e [ dosdp, 11 riedredf,
7r 8\ JGJ 20) ’ J’ j€J(z0) jeJ(x0)—jo ked{l,...,m+1}—J(x0)

= C|5|2(bjo/ajo—1)/ balfal2)? H 6(217]'/@]'_217]'0/@]'0)03'dpldpz o dpjo—1dpjor1 - dppia -
pi=log | jed(o)

Adding those estimates for the different o and neglecting bounded terms, we derive the desired
estimate

b;
—10g||ns|!Lz—<1—mm( )>log182—ﬁ{3 # jo
J (Z]

748
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Remark 2.2. Now, consider the particular case where X — S is semi-stable. Then a; = 1 for
all ¢ and since the divisor B does not contain a whole fiber (see Section 2.1), there is at least
one index i with b; = 1. We conclude that cx,(f) = min;(b;/a;) = 1. If the family is moreover a
Kulikov model, then b; = 1 for all 7. In this case, it follows that b(X, X¢) is simply the maximal
number of intersecting components in the special fiber.

2.3 The L2-metric and semi-stable reduction

Let us now examine the change of the L2-metric under semi-stable reduction. We consider a semi-
stable reduction diagram

y . x

|

TLS,

where g is a semi-stable family, p is the finite morphism ¢ — s = t¢ and F' a generically finite
morphism. From [MT09, Lemmas 3.3 and 4.2], we know that (g.(Ky/r), L?) embeds isometri-
cally into (p* f.(Kx/s), p*L?). A local frame ¢ for g.(Ky,r) hence relates to a local frame 7
for f.(Kx/s) through

E=1t"p"n,
where a can be recovered by the formula
: <P*f*(KX/S)>
a=dim¢c | ———— ) .
g*<KY/T) 0

From the previous proposition, we get the following statement.

PROPOSITION 2.3. The asymptotic of the L?-metric on f«(Kx/g) is of the shape

1
_10g‘|77”2:alog|s|2—ﬁlog‘log|s|2‘ +C+0 )
log |s|
where

o =

SIS

*f (K
L e (Pf( x/5)
e

9-(Ky)r) >0 and ff=b(X, Xo) —1="b(Y,Yo) —1.

Remark 2.4. The fact that the metric has the above shape, with @ = 0 in the semi-stable case,
is already stated in [Yos10, Theorem 6.8].

2.4 The L?-metric via variation of Hodge structures

Let f: X — A be a proper Kahler morphism with connected fibers of dimension n from a complex
manifold X to the complex unit disk A, which is a holomorphic submersion on A*. We suppose
that the special fiber is a normal crossings divisor and that the equation for f is locally given
by s = 2" ---z.*, where s is the standard parameter on A. Denote the smooth part of f by
X = f7YAX) — A*. Let v be the monodromy operator of the local system R™fXC, and let
Y = Yu¥s = VsYu be its Jordan decomposition, where 7, is unipotent and ~s semi-simple.

The aim of this section is to prove the following statement.
PROPOSITION 2.5. With the previous notation, suppose furthermore that h™° = 1. Then,

(i) exp(2mia) = exp(—2micx,(f)) is the eigenvalue of 7y, acting on Gr'p H! = F"H[

lim lim?’
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(ii) n + B is the weight of the 1-dimensional space Gr'y H{! .

Remark 2.6. The result seems to be known and is announced in [HN12, Theorem 6.2.2(2)]
and detailed in [HN18, Theorem 3.3.3]. The authors of those papers have informed us that
the methods amount to the usage of Steenbrink’s constructions of the logarithmic relative de
Rham complex. Our method of proof is based on a (nowadays standard) combination of Deligne
extensions of local systems and Schmid’s construction of the limit mixed Hodge structure.

Proof. Denote the differentiable manifold underlying a general fiber of f by X.,. We will use the
correspondence between an element Q in H"(X,C) and the corresponding multi-valued flat
section @ of the local system R"™fXC. Let p = exp(2mi—): H — A* be the universal covering of
the punctured unit disk, and for 7 € H, set s = exp(27i7). Set I' = N+S with N = (1/27i) log v,
and S = (1/27i) log ~ys, where for S, we have fixed the branch of the logarithm having imaginary
part in [0, 27). Hence, S has eigenvalues in [0, 1).

Let f,...,fx be a basis of H"(X,C). The corresponding multi-valued flat basis satisfies
filt + 1) =~fi(7). If we define the twisted sections

e; 1= s_Ffi = exp(—2mitD) f;,

then we have e;(7 + 1) = ¢;(7). The Deligne canonical extension H"™ of R"fXC ® Opx, also
called the upper extension due to the choice of the logarithm, is defined to be the locally free
Oa module generated by the e;. The Gauss—Manin connection on R"fXC ® Oax extends to
a regular singular connection on H". Its residue is readily computed in the basis (e;) and seen

to coincide with —T.

We denote by Hj the limit (mixed) Hodge structure on H"(X,C), the cohomology of
a general fiber. By construction, H{}  is equipped with a decreasing filtration FPH" (X, C),
the Hodge filtration, and an increasing filtration Wy H" (X, C), the weight filtration built from
the nilpotent operator N. Moreover, H! may be identified with the fiber of H"™ at 0, with
monodromy action given in terms of the residue exp(2mil') of the Gauss-Manin connection.

By the nilpotent orbit theorem [Sch73], and as shown by Kawamata [Kaw82, Lemma 1],
fo(Bxya) = e f (Kxxax) NH™,

where ¢: A* — A is the inclusion. We can therefore write a local frame 7 for f.(Kx/a) as
n=">_ mni(s)ei(s) =Y _ mi(s)exp(=2mitT) fi,

where the 7; are local holomorphic functions. In this case, the corresponding limit of the twisted
period is Qs := >, 1:(0)e; € F"HJ!, .

Let ¢ be the integer such that Q.. belongs to W, but not to W;_;. By the construction
of the weight filtration, the nilpotent operator N maps W, to Wy_o. The semi-simple part s
(and hence S) acts on H{ as a mixed Hodge structure operator [Ste77, Theorem 2.13]. Write
w; = exp(2mi);), where \; is a non-increasing sequence of rational numbers in [0, 1), for the
sequence of eigenvalues of vs acting on Wy/W,_;. Choose a basis (e;) of H{  adapted to the

filtration W. Hence, Qs can be decomposed as

Q. =Q"+Q,
where QT := 3~ g;je;, Se; = \je; + €} and Q' and the € belong to Wy_1. As 7, respects the
Hodge filtration on H"(X s, C), and as h™° = 1, we know that F"H" (X, C) is an eigenspace
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for S, with eigenvalue, say, A. From the freeness of (e;), it follows that for each j, either ¢; =0
or \j = A, so that

S(Q") =XxQ") +Q",
where Q" € Wy_;.
We denote the intersection form on R™fXC by I and let C' be the Weil operator such that
I(Cv,v) is positive. As the coefficients n; are holomorphic,

/ i""n(s) An(s) = 1(Cn(s),n(s)) = I(Ce ™ Quo(s), T Qoo (s)) (1 + O((s])) -

By the SL(2)-orbit theorem [Sch73, Theorem 6.6], that gives the asymptotic of the orbit of
elements in W,, the leading contribution comes from elements in W, not in W,_q:

I(Ce™ ™™ Qu(s),e 2T Qug(s5)) = I(Ce ™™ QT (s),e=2mTQH(s)) (1 + O(Im(r) ™))
= |5]72>‘I(0672W”NQ+,W) (1 + O(Im (7’)71)) )
Now, for the principal nilpotent orbit 7% (s) := e 72N Q¥ the quantity
I(Cn*(s), 77 (5)) = [(Ce2M™NQT e 2mrNQF) = [(Celm MmN QT )
is a polynomial P(Im(7)) of degree u in Im(7), whose leading term is

U @ oneg,gF)
!

(compare with [Wan97, Section 1]). The degree p is the order of the nilpotent operator N acting
on Q7. Hence, by the polarized condition [CK82, (2.10)], and because Qo, and Q™ differ by an
element in Wy_q, it is exactly the order of the nilpotent monodromy operator N acting on the
limit twisted period Quc.

The asymptotic of the L2-norm is therefore —log ||n(s)||2, ~ Alog|s|> — plog|log|s|?|. O
Remark 2.7. In the unipotent case, and with the notation as in the proof of Proposition 2.5,

from ||n(s)||3. = P(—(1/2m)log|s|) + p1(7), we infer that the curvature of (m.(Kx/s), L?) (that
is, the Weil-Petersson metric) has Poincaré growth

c (PY-PP eme)N . ( a o
dd® (- log ||17(7')H%2) = < P2+ () ) idr AN dT ~ ((Im7)2 + p4(7')) idr A\ dT,

where the p are functions which, together with all their derivatives, exponentially decrease to

zero as Im(7) tends to 400, with rate of decay independent of Re(7).

Recall that a variety Z has canonical singularities if Z is normal and the canonical divisor Kz
is Q-Cartier, and if for any resolution of singularities pu: Z' — Z, the divisor Kz — p*Ky is
effective. It follows that if Kz is Cartier, then pu, Ky ~ Kz. If g: Z — A is such that Zy has
canonical singularities, then so does Z [Kaw99]. Hence, if u: X — Z is any desingularization,
and we have f = gu with Kz locally free, then fiKy/A = g+Kz/a-

ProprosSITION 2.8. Let f: X — A be as at the beginning of this section, and suppose that
[ XX — A* admits a model g: Z — A such that Z is normal with Ky locally free and
that Zy has only canonical singularities. Then o = 5 = 0.

Proof. Let pu: X' — Z be a normal crossings resolution and X{§ = ) a;E;, where Ey = %
is the strict transform of Zy. Let n € Kz/o correspond to an element trivializing g.Kz/A ~
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Gutts K x1/a. The divisor of p*n is then the divisor of the evaluation map for X ' we denote it
by B = > (bi — 1)E;. Since Zj is normal and connected, it is integral, and since the evaluation
map g*g«Kz/A — Kz/a cannot contain an entire fiber, it must be an isomorphism. It follows
that by = 1. By [Ste88, Theorem 2], if Z; has rational singularities, then for any exceptional
E;, we have b; — 1 > a;. In characteristic zero, when the canonical sheaf is locally free, rational
and canonical singularities are equivalent concepts, and since by adjunction Kz (Zp)|z, ~ Kz, is
locally free, we infer that for any exceptional E;, we have b;/a; > 1+ 1/a; > 1. Moreover, for the
non-exceptional component Z), the ratio bg/ag is 1, so it follows immediately from Proposition 2.1
that « = 5 =0. O

Recall that (X, z) — (A,0), for z € X, is an ordinary quadratic singularity if, locally on X,
the map can be written as a germ of a holomorphic function f: (C™,0) — (C,0) such that 0
is an isolated singularity of the level set f = 0 and the Hessian of f at 0 is invertible. Such
singularities can all be diagonalized to the form sz = 0. When n > 2, they are examples of
canonical singularities, and Kx ~ Ox because since the singular fiber is reduced and irreducible,
the relative canonical divisor is zero, as seen at the end of Section 2.

COROLLARY 2.9. Suppose that n > 2 and f: X — A has only ordinary quadratic singularities
in Xg. Then a = 8 = 0.

Remark 2.10. Proposition 2.8 and Corollary 2.9 imply that if Xy has only canonical singularities,
or if X is smooth and X has only isolated ordinary quadratic singularities, then the L?-metric
is continuous.

3. Degeneration of the Quillen metric

3.1 Background on Quillen metrics

3.1.1 Grothendieck—Riemann—Roch in codimension 1. Let f: X — S be a smooth projective
morphism of complex algebraic manifolds. We denote by A.(S) Fulton’s intersection-theoretic
Chow groups [Ful98]. Let V' be an algebraic vector bundle on X. The Grothendieck-Riemann—
Roch theorem with values in Chow groups is an identity of characteristic classes

ch(RfiV) = fu(ch(V) Td(Tx,s)) € A«(S)q-

The relation is also valid in de Rham cohomology. In this section, we focus on the “codimension 1
part” of the Grothendieck—Riemann—Roch formula. With values in Chow groups, this is written

1
a(REV) = fu ch(V) Td(Txs))" .
The first Chern class of Rf.V equals the first Chern class of the determinant of the cohomology

det Rf.V, also denoted by A(V'). It can be defined by the theory of Knudsen—-Mumford [KMT76].
Contrary to the individual relative cohomology groups, it is compatible with base change.

3.1.2 Quillen metrics and the curvature formula. Suppose for simplicity that X admits
a Kahler metric, with Kéahler form w, which we fix once and for all. If V is equipped with
a smooth Hermitian metric h and T'x,g with the restriction of the Kéahler metric, then the
Grothendieck—Riemann—Roch formula in codimension 1 can be lifted to the level of differential
forms. This is achieved by means of Chern—Weil theory and the theory of the Quillen metric.

Let us briefly recall the definition of the Quillen metric. Let s €S, and consider the fiber
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of A(V) at s:

A(V)s = X det HP (X, V|x,) "

P
By Hodge theory, and depending on the Hermitian metric h and the Kéahler form w restricted
to X, the cohomology groups HP(X,,V|x,) carry L2-type metrics (using the Dolbeault res-
olution and harmonic representatives). Hence, A(V)s has an induced metric that we still call
L?-metric and that we write hrz2 s This family of metrics is in general not smooth in s, due
to possible jumps in the dimensions of the cohomology. Let T'(s) be the holomorphic analytic
torsion attached to (V,h) and (Tx/g,w):

n

T(s) =) (—1)’plogdet AP
p=0

Here, we denoted by AY* the §-Laplacian acting on A% (V) (that is, (0, p)-forms on X, with
values in V|x,) and depending on the fixed Hermitian data. Also, det AP denotes the zeta-

regularized determinant of AP (restricting to strictly positive eigenvalues). The Quillen metric
on \(V)s is defined by

hqs = (expT'(s))hr2 .
This family of metrics is smooth in s. The resulting smooth metric on A(V) is called the Quillen
metric, and we write hg to refer to it. Observe that while the L?-metric is defined using only
harmonic forms (hence zero eigenforms for the Laplacians), the Quillen metric involves the whole
spectrum of the Dolbeault Laplacians.
The curvature theorem of Bismut-Gillet-Soulé [BGS88a, BGS88b, BGS88c| is the equality
of Chern—Weil differential forms on S

c1(A(V), hq) = fo(ch(V, h) Td(Txs5,w)) .

By taking cohomology classes, one reobtains the Grothendieck—Riemann—Roch formula in de
Rham cohomology.

3.1.3 The Quillen metric close to singular fibers. As a matter of motivation, we now review
Yoshikawa’s results [Yos07] on the degeneration of the Quillen metric in a slightly simplified
form.

Let f: X — S be a generically smooth, flat and projective morphism of complex algebraic
manifolds. Therefore, with respect to the previous setting, we allow for singular fibers. We assume

that S is 1-dimensional and f has a unique singular fiber. Recall the Gauss map from the regular
locus of f to the space P(T'X) of rank 1 quotients of T'X defined by

p: X =Y ->P(TX), x—T,X/kerdf,.

It is described in coordinates, through the isomorphism of P(7T'X) with the space P(Q2x @ T'S) =
P(TX ® Qg) of lines in Qx ® T'S, by

n

v: X =% = PQx @TS), z— Y

i=0

where (z;) is a local coordinate system on X and s is a local coordinate on S. Consider the ideal
sheaf 7y, := (((8s o f)/02)(x)) on X locally generated by the coefficients of df. We resolve
the singularities of ¢ and v seen as meromorphic maps on X by blowing up the ideal Zy,. Let
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q: X — X be any desingularization of the blowup of this ideal and F its exceptional divisor. We
have a diagram

P(TX) P(Qx ® TS) ri] = [85;4” (a:)]
%ﬁ J(p /y¢ Jp / lIT Ip
70y gl e L

By construction, we see that v*Orxgsag(l) = Og(—FE). Together with the isomorphism
P(TX) - P(TX ®g), this gives for the resolution z of u

Orx(1) = ¢ TS © Og(~E) (3.)
The tautological exact sequence on P(7'X) hence pulls back on X to
01U = ¢TX L% ¢ TS © Og(—E) - 0,

where U denotes the tautological hyperplane subbundle. With these preliminaries at hand, we
can now state the following result.

THEOREM 3.1 (Yoshikawa [Yos07]). Fix a Kéahler metric hx on X. Let (V,h) be a holomorphic
Hermitian vector bundle on X. On the smooth locus, equip the determinant line bundle \(V')
with the corresponding Quillen metric.

(i) Let o be a local holomorphic frame for A(V') near the singular point s = 0. Then

. TdO«(-E) -1
lo 02:</Td U X *chV)lo s>+ R(s) as s—0,

where R(s) is a continuous function of s.
(ii) The curvature current is given, in a neighborhood of s = 0, by
TdOy(—FE) -1
c1t(MV), hg) = fo(ch(V,h) Td(Tx /g, h (1’1)</Td~*U X

where the first term on the right of the equality is L} (S) for some p > 1 and dy is the
Dirac current at 0.

() ) oo

(iii) Denote minus the coefficient of the logarithmic singularity by k. Then the Quillen metric
uniquely extends to a good Hermitian metric on the Q-line bundle A(V)) ® O(—« - [0]).

Remark 3.2. The third claim in the theorem is only implicitly stated in [Yos07]. In fact, it is
proven that the potential of the curvature current of the Hermitian metric in part (iii) is of the
form ¢(t) +¢(t). Here ¢ is smooth and ¢ is a finite sum of functions of the form |s|?" (log |s|)*g(t),
where r € QN(0, 1], the exponent k > 0 is an integer and g is smooth. This function and its deriva-
tives satisfy the estimates in the definition of a good metric in the sense of Mumford [Mum?77].

3.2 The Nash blowup

We proceed to develop an intersection-theoretic approach to Yoshikawa’s theorem. Instead of the
theory of the Gauss map and the resolution of the Jacobian ideal, we introduce the Grassmannian
scheme and the Nash blowup. Throughout, we use the intersection theory of Fulton [Ful98]. The
advantage of our construction is that our objects naturally exhibit a functorial behavior and that
it allows for a better understanding of the topological term in Theorem 3.1 (cf. Definition 3.6).
We recover and expand concrete computations of Yoshikawa.
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Let us say a word about the category where we place our arguments. We work in the category
of schemes over C, mostly to be in conformity with the literature. However, the relevant argu-
ments should be applicable in the analytic category, using relative singular cohomology instead
of bivariant Chow groups.

3.2.1 On the Jacobian ideal. Let f: X — S be a projective, flat, generically smooth mor-
phism of integral Noetherian schemes over C, of relative dimension n.

Define the Jacobian ideal Jac(X/S) as the annihilator of A""'Qy/g. Assume from now on
that X is locally a hypersurface in an S-smooth scheme Y of dimension n+ 1. This is the case of
hypersurfaces in PY, but also the case when X and S are smooth over C and S is 1-dimensional
(consider the graph of the morphism). Locally on X, we have an exact sequence

0— Ix/T% imy/s'X — Qx5 — 0, (3.2)

where the ideal Zx of X in Y is generated by an element F'. If one chooses (étale) local coordinates
Yo, --->Yn on Y, then Jac(X/S) is the Ox-ideal generated by 0F/0y; for j = 0,...,n. Observe
that this is, by definition, the first Fitting ideal of {2x,g. This local description shows that the
Jacobian ideal is indeed the ideal defining the singular locus of the structure morphism f. For
example, if f: H — Ip’g is the tautological family of hyperplane sections in some smooth complex
projective variety X, then the Jacobian ideal just corresponds to the scheme parametrizing
singular sections.

3.2.2 On the Nash blowup. We still work locally on X. Locally, we denote by Y a smooth S-
scheme containing X as a hypersurface. Let Gr,,(§2y/g) be the Grassmannian of rank n quotients
of Qy/g, and let X --» Gry, y/g be the rational map defined by = +— (v, Qx/g,), called the

Gauss map. The schematic closure X of the image of this morphism is by definition the Nash
blowup of 2x,g and has the universal property that an S-morphism ¢: 7" — X such that no
component of 7" has image contained in V(Jac(X/S)) corresponds to a surjection Qy,. 7 — &,

where £ is locally free of rank n on X7. Denote the obvious map by 7n: X > X. As Grn(Q2x/s),
understood as a Quot-scheme, is a closed subscheme of Gry(fy/g), an equivalent definition,
independent of the choice of the ambient space Y, is given by the closure of the X/S-smooth
locus in Gr, (Qx / 5). These constructions are summarized in the following diagram:

X(—) Grn(QX/S)C—> Grn(QY/S)

Gauss - -

\/

This gives another interpretation of the Gauss map, considered by Yoshikawa. Actually, suppose
that f: X — § is a morphism of complex analytic manifolds, with S of dimension 1. Consider the
graph I'y: X — S x X. Then the projection on S from ¥ = S x X is smooth, and the map X" C
Gr, Qx5 — Gr, Q2x from the f-smooth locus is given by z +— [QXXS/S’QE =Qx e~ QX/SJ:].
This is simply a dual version of the usual Gauss map.

ﬁ
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3.2.3 Comparison with the resolution of the Jacobian ideal. The Grassmannian construction,
namely the Nash blowup, and the blowup of X along the Jacobian ideal, actually coincide. This
is useful in that both properties of blowups (structure of the exceptional divisor) and Grassman-
nians (existence of a universal locally free quotient and functoriality) can be simultaneously used.

LEMMA 3.3 (see also [Pie79]). If X is locally a hypersurface in an S-smooth scheme, then the
blowup of V(Jac(X/S)) in X is the Nash blowup of X.

Proof. Denote by b: X" — X the blowup of X along Z := V(Jac(X/S)) and by n: X — X the
Nash blowup of Qx/g. To construct a morphism from X "to X , we have to construct a rank n
locally free quotient of Qx/,  x/x = 0"Qx/s. It is enough to show that the Gauss map locally
extends to X', since local extensions are separated, hence unique. Locally, the ideal Zx of X in
some smooth S-scheme Y is defined by an equation F'in Oy . Locally on X', the ideal b* Jac(X/S)
is a free ideal Ox/(—F) generated by an element u that is not a zero divisor. The differential b*dF
can then be written uV for a uniquely determined nowhere-vanishing section V" in b*Qy, Six From
the sequence (3.2) and the equality V' = “b*dF/u”, we infer that

k d 1 >k k
0— (V"Ix/I%) © Ox/(E) 3 b Qs = Qs /V (3.3)
gives a locally well-defined locally free quotient b*Q2x /g — b*Qy, S|x /V.

To construct a morphism from X to X' , by the universal property of blowing up, we have to
show that the Jacobian ideal Jac(X/S) becomes locally principal on X. Consider the following
diagram on X , where the bottom line comes from the tautological sequence on Grn(Qy/ 5), the
middle line comes from (3.2), the sheaf M is the kernel of the rank n quotient n*(Q2 x/s — @ and
C is the fiber product of n*Qy /g and M over n*Qx/g:

A Tx T3 C M 0

|

/ﬁ*Ix/Ig( *)ﬁ*QY/S‘X _— ﬁ*QX/S —0

|

0 N P Qys Q 0

0.

We infer an induced map C' — N. As C' is a fiber product, a diagram chasing provides an inverse
map N — C, so that C is necessarily an invertible sheaf. The sheaf @ being locally free, the
Fitting ideal of n*(2x /g is that of M, which is locally generated by the coefficient of the map
n*Zx/I% — C between two invertible sheaves. By the functoriality of Fitting ideals, the pull-
back by 7m of the Jacobian ideal is locally principal. The two constructed maps are inverse to
each other over X, so that we can identify b: X’ — X and n: X - X. O

Thanks to the lemma, on the blowup X’ of X along the Jacobian ideal, there is a universal
locally free quotient b*Qx/s — @ (coming from the Grassmannian interpretation). We now
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consider its kernel. Let E be the exceptional divisor of the blowup b: X’ — X, giving rise to the
Cartesian diagram

E——X'

b

Z2,X .
In the following lemma, L’f* is the ith left-derived inverse image under a morphism f. Recall
that it is the sheaf defined by taking the ith cohomology of the pull-back by f of a locally free

resolution. Note that the sheaf {2x/g admits locally free resolutions by the local hypersurface
hypothesis. The lemma is to be compared with the dual of (3.1) restricted to E.

LEMMA 3.4. Let Lg be the kernel of the universal locally free quotient b*Qy ;g — Q. Then Lg
is a locally free sheaf of rank 1 on E. There is a canonical isomorphism

Lg ~b"L'iy0x/5 @ Ox/(E) .
Furthermore, if f: X — S is a morphism of smooth algebraic varieties, then Lg ~ O(E)g.

Proof. That Lg is supported on E is immediate by construction. From the proof of the previous
lemma, locally on X, there is a diagram of exact sequences

0 0 0
K “— (Ix/I%) ® Ox/(E) Ly 0

J( d®1

Q Q

0 0.

Because the differential d: Zx /7% — Qy /s vanishes on Z, the induced map b*Tx /% — b*Qy /s
vanishes on E as well. Moreover, the morphism d ® 1 remains injective after restricting to E. It
follows that a|p vanishes identically, and hence there is an isomorphism

Lp ~ (b*IX/Ig()'E@OX,(E)W. (3.4)
This shows that Lg is locally free of rank 1. Now we claim that there is an isomorphism
(b*ZX/I_%{)'E ~b* Ly Qy)s . (3.5)

First of all, it is clear that (b*IX /Z)Q()| g = bty (IX /1)2() Second, from the long exact sequence
associated with i7, applied to (3.2), we derive
L'iyQx s ~ iy (Ix/T%) -

The claim follows. Hence (3.4) and (3.5) give rise to an isomorphism as in the statement. One
can check that it does not depend on the (local) choice of Y, so that it is a canonical isomorphism
and globalizes. This completes the proof of the first claim.
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For the second assertion, it is enough to specialize the previous argument with ¥ = X x §.
In this case, it is immediate that Zx /I)z( = f*Qg. Since f is generically smooth and S is 1-
dimensional, the singular locus of f in S is 0-dimensional. We thus see that

Lli*ZQX/S ~iy(Ix/Ix) = (foiz)*(Qs)

is a trivial line bundle. O

3.3 The Yoshikawa class

3.3.1 Definition and properties of the Yoshikawa class. The previous notation and assump-
tions regarding the morphism f: X — S are still in force. In particular, X is locally a hypersurface
in a smooth S-scheme, Z denotes the singular locus, the Nash blowup along Z is b: X' — X
and F is the exceptional divisor. We now digress on localized characteristic classes in the the-
ory of Chow groups. This formalism, combined with the previous observations on Nash blowups,
reveals useful to arrive at a conceptual explanation of the topological term in Yoshikawa’s asymp-
totics. To be consistent with the literature on intersection theory and Chow groups (cf. Fulton’s
[Ful9g], especially the relative setting of Chapter 20), from now on, we assume that S is reg-
ular, for instance Spec R with R a discrete valuation ring. Also, we will make extensive use of
the theory of localized Chern classes. We refer the reader to [Ful98, Chapter 18.1] for the main
construction of localized Chern classes of generically acyclic complexes, using the Grassmannian
graph construction. We also cite [Abb00, Section 3] and [KS04, Section 2], which recast the main
properties of the localized Chern classes of generically acyclic complexes in the form that will be
used here.

Recall that a bivariant class ¢ € A(X — Y) is a rule that assigns, to every Y-scheme, say Y,
a homomorphism

c: A(Y) — A(X)),
where X’ is the base change of X to Y’. This homomorphism is subject to several compatibilities

(proper push-forward, flat pull-back and intersection product). We refer to [Ful98, Chapter 17]
for the precise formulation of these.

Suppose that we are given a multiplicative characteristic class T', corresponding to a power
series T'(x) € 1 + zQ[z]. Thus, with a vector bundle £ on X it associates homomorphisms on
Chow groups T'(€): A(X)g — A«(X)g, and with a bounded complex of vector bundles £®
it associates the homomorphism [ 7(£%)(-Y°, compatible with pull-backs. Let b: X’ — X be
the Nash blowup of the morphism f: X — S, with exceptional divisor E. On X', there is the
universal locally free quotient b*Q2x,g — Q. Because X is locally a hypersurface in a smooth
S-scheme, this is quasi-isomorphic to a three-term complex of vector bundles. It is acyclic off
the exceptional divisor E. Thus, following [Ful98, Chapter 18.1], there are localized bivariant
Chern classes cf(b*QX/S — Q) € A(E — X'), for i > 0. Consequently, the class T'(b*Qx/s —
Q) —1=T(b*Qy/s)T(Q)"" — 1 admits a refinement as a bivariant Chern class. Indeed, T itself
can be expressed as a power series in the Chern classes ¢;, and the refinement to a bivariant
class is obtained by replacing c¢; by CZ-E in this power series representation. This refinement will
be denoted by

TP (b* Qx5 — Q) € A(E — X')g,

or simply TF to simplify the notation. If [X'] € A.(X’') is the cycle class of X', then TF
sends [X'] into A(E)g. The usual notation for this class is 7 N [X']. We will later be interested
in the top-degree terms of such classes.
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The following lemma computes 7% N [X’] in terms of characteristic classes depending only

on O(FE).
LEMMA 3.5. Assume that the base S is 1-dimensional.

(i) As a bivariant class, ¢;(L'i}Qy/g) vanishes for i > 1. In particular, we have an equality of
bivariant classes
c1(Lg) = c1(O(E)g) -
(ii) The bivariant class T¥ satisfies the formula
T(OE -1
TP [X'] = (H)”j) n [E])
c1(O(E) k)
in A.(E)g.

(iii) The bivariant class T” also satisfies the formula

T(0(B)] )
2 (OB)]p) ) Nl

Proof. For the first item, under our running assumptions on X (locally hypersurface hypothesis,
f generically smooth and S 1-dimensional and regular), the proof of [KS04, Lemma 5.1.3] can
be adapted mutatis mutandis for ¢« = 1. For ¢ > 2, the statement follows from the fact that
L'i3Qy g is a line bundle. The equality ¢1(Lg) = c¢1(O(E) ) then follows from Lemma 3.4.

T(Qp)(TF N[X']) =T (Li*b"Qx/s) (1

For the second claim, by a deformation to the normal cone argument with respect to the closed
immersion E — X', we can assume that i: £ — X’ is the section of a projection p: X’ — E. In
this case, since p.i, = Id, the direct image i: A.(F) — A.(X') is necessarily injective. Moreover,
for any localized Chern class as in the statement,

i (TP (0" Qx5 = Q) N[X']) = (T(H* Qx5 — Q) — 1) N [X'].
On X', we have the tautological sequence
O—>LE—>b*QX/S—>Q—>O.

Now, Lg is a line bundle on E by Lemma 3.4. Since i: E — X’ is a retraction, the line bundle
L = p*Lg on X’ extends Lg and there is an exact sequence

0—L(-FE)—>L—Lg—0.
We thus have a quasi-isomorphism of complexes

[L(—=FE) — L] ~ [b*Qx /5 — Q]
-1 0 0 1

Consequently,
(T(b*Qxys = Q) = )N [X] = (T(L(-E) = L) = 1) N [X]
= (T(L)T(L(-EB))"' - 1) n[X].
The class T(L)T(L(—FE))~! — 1 is naturally divisible by ¢ (O(E)). We can thus rewrite
T(L)T(L(-E)~" -1
c1(O(E))

Finally, by Lemma 3.4, we also know that Lg = Lli*ZQX/S ® O(E)|g, and hence by the first
item, we infer ¢;(Lg) = c1(O(E)|g). Plugging this relation into (3.6), we arrive at the desired

(T(L)T(L(-E) ' - 1)n[X] = NI[E]. (3.6)
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equality
T<0< >|E> -1

)

N[E].
(0

The final claim follows the same lines (and notation) as the second, and the completely formal

computations
i(T(Q)NTP N [X']) = T(Q)(T(b*Qx/s)T(Q) ™! — 1) N[X]
=T (" Qx/s) N (1= T(Q)T(b*Qx) ") N[X]
=T(b"Qx/s) N (1= T(L(-E))T(L)~) N[X]. [
Recall that Td* is the multiplicative characteristic class determined by (—z)/(1 — e_(_“"‘)) =

x/(e® —1). We next define the Yoshikawa class, inspired by Theorem 3.1. We keep the assump-
tions of the introduction of this chapter.

DEFINITION 3.6 (Yoshikawa class). Let f: X — S be a projective, flat, generically smooth
morphism of integral Noetherian schemes over C, of relative dimension n with singular locus
iz: Z — X. Let V be an algebraic vector bundle on X. Given a birational and proper morphism
7 X = X of integral schemes, with a surjection 7*Qx,g — & for some vector bundle £ of
rank n, define the Yoshikawa class as the cycle class

V(X/S,V) = ch(izV) - m(Td*(€)p) Td* P (7" Qx5 = €) N [X]) € Au(Z)q,
where D := 7=1(Z). For the trivial sheaf, we denote it by J(X/S).

PROPOSITION 3.7 (Independence). The Yoshikawa class is independent of the choice of a bira-
tional morphism 7: X — X and a surjection m*Qy ;5 — £.

Proof. The first assertion follows from the existence of the moduli of rank d quotients of Qy /.
Indeed, any datum as in the statement can be compared to the universal case on the Nash
blowup: there exist a morphism to the Nash blowup ¢: X — X’ and a commutative diagram

0" b* Ny /g =—=1"Qx/g
' Q—"—E&,

where the left-most vertical arrow is induced from the universal surjection on the Nash blowup.
Moreover, we observe that
Lo*b* Qx5 = ¢ 0" Qx5 -

Indeed, since X is Noetherian and is locally a hypersurface in an S-smooth scheme, Qx5 admits a
two-term resolution by locally free sheaves 0 — Fy; — F» — Qx5 — 0. Notice that the pull-back
0 — b"F1 — b"Fy — b"Qx /5 — 0 is still exact, since the left-most map is generically injective
on an integral scheme and hence globally injective. Repeating the argument with ¢ establishes
the relationship. We can then invoke the very construction of the localized Chern classes and the
projection formula [Abb00, 3.1, p. 31, especially (C})]. O

Yoshikawa’s theorem works with a smooth desingularization of the Gauss map. The above
proposition hence proves the following statement.

COROLLARY 3.8. Under the hypotheses of Theorem 3.1, the degree of Y(X/S, V') is the coefficient
of the logarithmic singularity of the Quillen metric as in (1.1).
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Remark 3.9. We expect that the hypothesis of smooth total space X can be weakened with
the same conclusion on the logarithmic singularity of the Quillen metric. This is one of the
motivations of our treatment of the Yoshikawa class.

PROPOSITION 3.10 (Functoriality). Suppose given a Cartesian diagram

Xr-2 X

I, b

T35 ,
where f’ is a generically smooth morphism of integral schemes and p: T — S is a locally complete
intersection morphism. Then p'Y(X/S,V) = V(X7 /T,p"* V), where p' denotes the refined Gysin

morphism associated with p.

Proof. Let Z' be the Jacobian scheme of the morphism f’. By the functoriality of Fitting ideals,
the scheme Z’ is the base change of Z to T and there is a canonical isomorphism (X7)" — (X')r
for the Nash blowups. In particular, it is legitimate to drop the parentheses in the notation.
Factoring T' — S as the composition of a smooth morphism and a regular closed immersion, we
can treat each case separately. They are similar, but the smooth case is simpler, so we suppose
henceforth that T — S is a regular closed immersion of constant codimension d. Now, consider

the Cartesian diagrams
X, — X'

[, |

Xr—2 X

| |

T7T—S.

Any bivariant class TP with respect to E — X satisfies p'(T? N [X]) = T N p'[X'] (see [Ful9s,
Section 17.1, axiom (C3)]), and clearly p'[X’] = [X/]. Moreover, we have an induced Cartesian
diagram

E——E

]
7 —— 7
XT — X
Then, as the refined Gysin maps commute with proper push-forward [Ful98, Theorem 6.2],
' (TF N [X}) = p'ma (TE N [X]).

This implies the statement. O

3.3.2 Computations of the Yoshikawa class. In the following proposition, we show that the
Yoshikawa class can be written in terms of Segre classes (cf. [Ful98, Chapter 4]). In the particular
case of isolated singularities and regular total space, the formula reduces to a classical topolo-
gical invariant of those: the Milnor number. Recall that for a germ of an isolated hypersurface
singularity (Y,0) determined by f = 0 for a germ of a holomorphic map f: (C"*1,0) — (C,0),
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the Milnor number is defined as

C{z0,---,2n}
((9f/(9z0, e ,8f/8zn) '
In this setting, the Milnor number depends only on (Y,0) and not on the choice of smoothing
function f.

py,0 = dimg (3.7)

The following results are a cohomological refinement of Yoshikawa’s formulas [Yos98, Yos07].

PROPOSITION 3.11. Let f: X — S be as before. Suppose that S is 1-dimensional and b: X' — X
is the Nash blowup with exceptional divisor E.
(i) The Yoshikawa class fulfills the equality
1)k+1

V(X/S) = Td"(izx/s) HZTQ)U n—k(Z) ,
k=0

where s,_(Z) = (—=1)kb,(E*) € A,_;(Z) is a Segre class.
(ii) IfY is a smooth projective variety and X — S is a family of hypersurfaces in Y x S, then
)k—i—l

T 2) snfk(Z) :

Y(X/S) = Td*(y|z) ﬁz (%

(iii) Suppose that X — S is the germ of a family over a disk S = Spec C{s}, locally a hyper-
surface in a smooth S-scheme, admitting only isolated singularities in the special fiber Xo;

then
( 1)n+1
deg V(X/S) = ——= Y (ixe + Hxoe) -
(n+2)!
xeXo
In particular, if X is regular, then
n+1
deg Y(X/$) = > Hxoa
+ 2 ‘ z€Xp

Remark 3.12. In the third statement, the Milnor number 1y, , is well defined since (Xo,x) is
locally a hypersurface in C*+1.

Proof. As in the proof of Proposition 3.7, one can show that

Moreover, by Lemma 3.5(a) and the observation, we have L iy§lx/s = 0 for j > 2 since there
exists a local free resolution of length 2 of {2x/g. The natural morphism Li3{x/g — 1€ x5 hence
has a kernel quasi-isomorphic to L'i% x/s, whose Chern classes are trivial by Lemma 3.5(a).
We conclude that we have the relation ¢;(Li%$x,5) = ¢;(i3Qx/s) by the Whitney formula for
Chern classes. With this understood, the first formula is a direct computation using the third
claim in Lemma 3.5 and the projection formula.
For the second formula, by (3.2) applied with ¥ x .S in place of Y, we see that i7Qx/g = Qy 7.
For the third property, we can suppose that f: X — S has an isolated singularity at a single
closed point x in the special fiber Xo. Furthermore, i7{x,5 is supported on a 0-dimensional
space, and its Todd class is necessarily 1. We then have, by the established formulas,
(_1)n+1

] degso(Z).

deg Y(X/S) = m
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The rest of the argument closely follows [Tei74, Chapter II, Proposition 1.2]. Because X — S is
Cohen—Macaulay and the singularity is isolated, the degree of the Segre class so(Z) is computed
by the colength of the Jacobian ideal [Ful98, Example 4.3.5(c)]. To compute the colength of the
Jacobian ideal, we can reduce to the case of a germ (X,0) — (A, 0), where (X,0) C (C"T1 x A, 0)
is defined by g = g(20, - ., 2n,s) = 0, with A the unit disk. Introduce the curve I" determined by
the ideal (0g/0zp,...,09/0zy,). The colength of the Jacobian ideal is then given by

C{z0y...,2n,s} _y
(g,@g/azo,...,f)g/@zn)

where the right-hand side denotes the intersection number of {g = 0} and I'. Denote the normal-
ization map by 7: I' = I'. By the projection formula, we have ¢g-I' = 7*¢-I'". For its computation,
for z; € 7r_1(0), choose a local coordinate s; and denote the canonical discrete valuation at x;
by v;. The intersection number is then given by

m*g T = Zvi(ﬂ*g) .
Notice that for a function h vanishing on z;, we have v;(0h/0s;) = v;(h) — 1. By the chain rule,
we find that
or*g . (0g\ Or*s «( 09\ 0"z  , (0g\ Or*s
852' - <88> 8Si +Z7T (E)zl 8Si - % 8Si '
We conclude that
L or*g (.« (9g [ Ors
vi(m g)—v@< 05, >+1—v1 <7r <68>> + v < 05 >+1
= <7T* <g§>> +v;i(7*s),

from which we find g-T' = 0g/0s-T'+ s-T'. These are Milnor numbers as defined in (3.7), which
proves the statement. In the special case where X is moreover regular, px , = 0 for every point
zeX. O

dim¢ )

The following lemma will be useful in some computations with the Yoshikawa class. As an
example is of use, we refer to Theorems 3.14 and 3.16 below.

LEMMA 3.13. Let f: X — S be a germ of a fibration over the unit disk, with regular total
space X. Then

deg en(Qp) = deg i1 (Qxys) N [X] = (=1)" (x(Xo0) = Xx(X0)) »
where Z C X is the singular locus of f, X is a general fiber and x is the topological Euler
characteristic.

Proof. For the equality
deg e/ 1 (Qxys) N [X] = (-1)" (x(Xo0) — X(X0)) ,

we observe that
deg Cg+1(QX/S) N [X] = deg C§i1(QX/S) N [X]
and then we refer to [Ful98, Example 14.1.5].

For the first equality, we recall from Lemma 3.4 the tautological exact sequence on the Nash
blowup X'

0—Lg—b"Qx/s—Q—0.
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By the Whitney formula for localized Chern classes [Abb00, Proposition 3.1(b)] and the vanishing
property in Lemma 3.5(a), we have

1 (0" Qxy5) N [X'] = en(Qp) (¢f (Lp) N [X']) = eu(Q)p) N [E].-

On the other hand, we apply the projection formula of localized Chern classes with respect to
proper morphisms [Abb00, 3.1, (C}), p. 31], which implies

deg ey (b Qxys) N [X'] = deg ey (Qx/5) N [X] .

We complete the proof by combining the last two equalities. O

3.3.3 The Yoshikawa class for families of hypersurfaces. Recall that the discriminant or
dual variety of a smooth variety Y C PV is a variety Ay C PV parametrizing the hyperplanes
H € PN such that Y N H is singular. Here Y N H is regarded as a scheme. In many interesting
cases, Ay is a hypersurface. Let us mention the case of the d-Veronese embedding P* C PV. In
this case, Ay parametrizes singular hypersurfaces of degree d in P™.

We denote the universal family of hyperplane sections of Y by F': H — PN. The F-singular
locus can be described as the projective bundle ]P)(Ny/IP:N) over Y, where N denotes the normal
bundle of Y C PV . Indeed, a singular point in a hyperplane section is nothing but a hyperplane H
and a point y € YN H such that T, H C T),P" contains T,Y", so that H corresponds to a vector in
P(Ny/PN7y), the projectivized normal bundle of Y C P" at y. Hence the F-singular locus is just
the projectivized normal bundle of Y C PV [GKZ08, Chapter 1, Section 3A, p. 27]. In particular,
Ay, being the image of P(Ny pn) in PV is irreducible.

THEOREM 3.14. Suppose that f: X — S is a family of hyperplane sections of a smooth complex
projective variety Y C PN of dimension n + 1, over a regular base S. Let Z be the singular
scheme of f. Then the codimension n + 1 component of Y(X/S) is given by

(n+1) _ (_1)n+1 Z
Consequently,
_1\n+1
degY(X/8) = oo [ eft@s nix.

Remark 3.15. In the context of Theorem 3.14, when X is regular and S is 1-dimensional, one can
see that f has at most isolated singularities. Then, according to the theorem and Lemma 3.13,
the degree of the Yoshikawa class is given by the change of Euler characteristics or, equivalently,
the vanishing cycles. This is compatible with Proposition 3.11(c) since the sum of the Milnor
numbers equals the number of vanishing cycles.

Proof. For the first point, by Proposition 3.10 and the analogous functoriality for ¢Z +1(Q2x/9) N
[X], it is enough to prove that
+1
(nt1) _ (D" 4
when X — S is the universal situation H — PV with Z = P(N).
We start by proving that

[Z] = Cf-q-l(QH/JPN) N[H],
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and later we will relate the Yoshikawa class to [P(IV)]. Consider the resolution
O(=H) = Qy ypn spvigy = Qg py — 0.
It determines a section o of 0y, pn /BN (#)2 whose schematic zero locus is Z. This is of maximal

codimension n+ 1 in #; hence by [Ful98, Proposition 14.1(c)], the corresponding localized Chern
class is given by [Z]. All in all, we conclude that we have

(2] = e i1 (Qyyem ® OH)e) = 1 (Qayypn)

where the last equality is easily checked from the very construction of the localized Chern classes
through the Grassmannian graph construction (see [Abb00, Section 3] and use that O(H))y is
invertible; hence tensoring by it induces an isomorphism on Grassmannians and does not alter
the construction in [Abb00]).

Now, we compute the (N — 1)-dimensional component of the Yoshikawa class in the universal
situation. First, we observe that the codimension n + 1 component y(’H /PN ) is concentrated on
the (N — 1)-dimensional irreducible subscheme Z, and hence is a multiple thereof:

Y(H/PV) Y = 2]

for some rational number m. Second, we determine the coefficient m by “evaluating” on a point.
For this, let b: H' — H be the Nash blowup. The induced map E — Z has the structure of a
projective bundle of rank n. As in the proof of Lemma 3.5, write the Yoshikawa class as

s 1 —Td*(Lg(—FE))Td*(Lg)™*
b, <Td (Li*b* Q) ( O ) n [E]> ,

where i is the closed immersion of E into H'. Let k: p — Z be any (closed) point of Z, necessarily
a closed regular immersion of codimension N — 1. Then we have a Cartesian diagram

n K
P* ——

N

p*k>Z.

Then as k*[Z] = [p], it is enough to compute k*Y(H/PY). We obviously have that

K0 LYig" Qyp pn = UK Lliz* Qy o
is a trivial line bundle over a point. Therefore, by Lemma 3.4, we find A" Lg = O(E)pn = O(—1).
Furthermore, b,k* = b',k’* and we conclude that the pull-back of the Yoshikawa class is given
by [pn (1 = Td*(O(=1))"1)e1(O(—1))!. This further simplifies to
(D" aO@)" (="t

m = deg K" Y(H/PY) = o = oy

The consequence

_1\n+1
deg V(X/S) = ((nl%-)2)'/x 01 (Qx/s) N [X]

follows by the properties of localized Chern classes and the fact that c,f_‘ﬁl(Q x/s) is supported
on the singular locus Z. O

3.3.4 The Yoshikawa class for Kulikov families of surfaces. 'We now look at a germ of a Ku-
likov family over a disk, f: X — S. We assume that X is regular, that f has relative dimension 2
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and a unique singular fiber over 0, and finally that the relative canonical sheaf Ky is trivial.
Observe that we do not require the general fiber to be a K3 surface; hence we also allow it to be
an abelian surface.

THEOREM 3.16. The Yoshikawa class of a Kulikov family as above satisfies
-1
deg V(X/S) = 5 [x(Xoo) = x(X0)]
Proof. Let b: X’ — X be the Nash blowup, with universal quotient bundle ) and exceptional

divisor E. A direct computation using Lemma 3.5(b) shows that the degree is given by

deg V(X/S) = /E _CI(Q)CI(O(E)Z (@) - Q)

(3.8)

Recall the exact sequence

0= Lg—b"Qx/s = Q—0,
which together with Lemma 3.5(a) implies

a(b"Kx/slp) N [X'] = c1(O(B)|p) N [X] + 1 (Qle) N [X].
But by the Kulikov assumption, Kx/g is trivial, and therefore
c1(O(E)|g) N[X'] = —a1(Qlp) N [XT].
Plugging this relation into (3.8), we find
c
deg V(X/S) = — / 2(Q)
g 24

We conclude by Lemma 3.13. O

4. Degeneration of the BCOV metric

In this section, we will consider families of Calabi—Yau varieties and their BCOV line bundles.
More precisely, we will study the BCOV metric introduced by [FLY08] and its asymptotic be-
havior under degeneration. We will use the results in the preceding sections to show that the
singularity is governed by topological invariants, especially vanishing cycles in the case of Kulikov
families.

For the rest of this section, let f: X — S be a generically smooth flat projective morphism
of complex algebraic manifolds with connected fibers and dim S = 1. We suppose that the non-
singular fibers are n-dimensional Calabi—Yau varieties, in the sense that their canonical bundles
are trivial. We suppose that X has a fixed Kéhler metric hx.

4.1 The BCOYV line bundle and metric
We define the BCOV line bundle. First, assume that f is smooth. Then, put

Socor @ys) = M @) ) = @ A

0<p<n 0<p<n
= @ (det Rif(2 )
0<p,q<n

In general, the sheaves Q’;( g are only coherent sheaves on X and not locally free. To extend the
BCOV line bundle from the smooth locus to the whole base S, it is useful to introduce the so-
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called Kahler resolution of Qg( g involving the locally free sheaves O and f*Q?q. Equivalently,
we apply the left-derived functor LAP to {2x,g. This is achieved by simply applying the exterior
power functors to the exact sequence (2.1) defining the relative cotangent sheaf. For each 0 <
p < n, we obtain a complex

Qg(/s: (f*Qs)®p RN (f*QS>®p*1 ® QX SO (f*QS) ® Qé)(_l N Qil;( .

The Kahler extension )\BCOV(%) of the BCOV line bundle on the smooth locus is then
defined to be
p

—~ e~ n . B o i i
Aocov(05) = A( D <—1>pp9§/s) = Q@ QU 2s) A ) T

0<p<n p=0 j=0

For smooth f, and depending on the Kéhler metric hx, the BCOV line bundle carries a combi-
nation of Quillen metrics. We now introduce the BCOV metric, following [FLY08, Definition 4.1],
but phrased differently.

DEFINITION 4.1. (i) The function A(X/S) € C*(S) is locally given by the formula

-1 n+1 2
AC/S) = sl exp { E 1 (10g (T o) .

Here, nx is a nowhere-vanishing global section of Kx (which exists locally relative to the base)
and ny/g is the Gelfand-Leray residue form of nx with respect to f, namely the section of
[+«(Kx/s) determined by nx = nx/g A f*(ds), for some local coordinate s on S.

(ii) The BCOV metric on )\BCOV(QB(/S) is

h’BCOV — A(X/S)hQ B
where hq is the Quillen metric depending on hx.

The following statement describes the singular behavior of the BCOV metric when the mor-
phism f: X — S is only supposed to be generically smooth.

ProPOSITION 4.2. Let f: X — S be a generically smooth family of Calabi—Yau varieties of
dimension n. Assume that there is at most one singular fiber of equation s = 0. We denote by «
and 3 the coefficients encoding the asymptotics of the L?>-metric in Proposition 2.3.

(i) Choose a local holomorphic frame ¢ for the Kidhler extension )\BCOV(KT‘;//S). Set

Td* O (E) - e(P—1)c1 (05 (E))

Qpcov _ZZ/E <p<_1)j Td*Q Cl(o)}(E)) q Ch(Q?X)>

where X' % X is the Nash blowup of f, E its exceptional divisor, () the tautological
quotient vector bundle on X' and B the divisor of the evaluation map (2.2). Then the
asymptotic of the BCOV norm of ¢ as s — 0 is

|2 _ X(Xoo)
12

—log||5]|2cov = ncov log|s Blog ! log \s|2’ + continuous.
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(ii) The BCOV metric uniquely extends to a good metric (in the sense of Mumford) on the

—~

Q-line bundle )\BCOV(QB(/S) ® O(—agcov]0]). It has an LP (p > 1) potential

—(x(Xo0)/12) Blog|log |s|?| + continuous.

(iii) Suppose that f: X — S is smooth and is the restriction of a Kuranishi family under a
classifying map t. Then the curvature form of the BCOV metric agrees with the pull-back
of the Weil-Petersson form

X(Xoo)

13 wowp .

€1 ()\BCOV (QB(/S)7 hBCOV) -

Proof. The first equality is the conjunction of the asymptotic formulas of the Quillen metric and
computations and asymptotics of the term A(X/S). The Quillen part is covered by Theorem 3.1
and [FLY08, Theorem 5.4]. For A(X/S), we compute
xX(X —1)"t! .
tog ACX/$) =X tog 12+ T 0 ). (6o (I ) en(@)
(="

+ gy (£ o) (0" log (ldf ) en (@) -

The asymptotic of the first term is given by that of the L?-metric, established in Proposition 2.3,
—log ||17X/S||%2 = alog|s|? — B(log | log |s|2|) + continuous .

The second term and the third terms have asymptotics given by [Yos07, Lemma 4.4 and Corol-
lary 4.6],

(7000 1o (Inx )en(@) = [ cal@) ) tolsf + contimaons

(f o b)«(b*log (||df[|*)cn(Q)) = (/E cn(Q)> log |s|? + continuous .

For the first equality, we have used div(nx) = B, and for the second equality, we have used that
the zero locus of df is exactly the singular locus Z and E = b~!(Z). We obtain the final form by
applying the formula [, c,(Q) = (—1)"(x(Xo) — x(X0))

The second part of the proposition is a consequence of the first. Indeed, by Theorem 3.1, it is
enough to provide Mumford-good estimates on the continuous rests of the formulas above. But
they are also as in Remark 3.2, by the same [Yos07, Lemma 4.4], and hence good in the sense of
Mumford.

The third part is [FLY08, Theorem 4.9]. O

4.2 Computation of agcov

The asymptotic formulas provided by [FLYO08, Theorem 5.4] and Proposition 4.2 above are
cumbersome, and the relation to topological invariants (for instance vanishing cycles) is not
clear. We next show that several simplifications and cancellations occur in the expression defi-
ning agcoy. We rewrite it solely in terms of the characteristic classes ¢,(Q), ¢1(Q)cn—1(Q) and
c1(b*Kx)cn—1(Q). We derive consequences for Kulikov-type families.

Recall that b: X’ — X denotes the Nash blowup of the morphism f: X — S, with excep-
tional divisor F and universal quotient bundle ). We focus on the combination of characteristic
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classes

w:=Td"(Qlp) > > p(—1)!(Td*(O(E)|p) — ch(O(E)| )" ch (b*W|g) N [X].
p=0 ;=0

To simplify the discussion, we remove the N[X’] from the notation. In the definition of agcov,
the class w contributes through
/ w
e ca(OEB)|r)

Because of the division by ¢;(O(E)|g) and since E is a divisor in X', we only seek a simple
expression for the degree n + 1 part of w. A priori, we know that this component has to be a
multiple ¢;1(O(E)|g).

The starting point is to restrict the universal exact sequence

0—>LE—>b*QX/S—>Q—>O

to the exceptional divisor. Because @ is locally free, the restriction of the sequence to F remains
exact. Moreover, we observe that E lies above the singular locus Z of the morphism f: X — 5,
and hence b*Qx/s|r = b*Qx|E. Therefore, we obtain an exact sequence

0—>LE—>b*QX|E—>Q|E—>O. (4.1)

We also recall from Lemma 3.5 that Lg is a line bundle on E and that as bivariant classes with
values in A.(FE), the relation ¢1(Lg) = c1(O(E)|g) holds. Taking exterior powers in (4.1) and
replacing ¢1(Lg) by ¢1(O(E)g), we find

ch (b*% | ) = ch (AQ|g) + ch (M 1Q|x) ch(O(E)|g),

with the convention A7~1Q = 0 for j = 0. From now on, to lighten the notation, we also remove
the restriction to F from the notation, by saying instead that a given relation holds on FE.
Therefore, on E, we can write w = 19 + 1, where

9= (T (Q)(TA"O(E)) Y p(~1)’ (ch(A/Q) +ch (AV'Q) ch(O(E)))

0<j<p<n

and the class 9 is defined to be the rest. Actually, after a simple telescopic sum, 1’ simplifies to
¥ = —Td*(Q Zp P ch(APQ).

We now work on the class w.

LEMMA 4.3. The class 9 is the sum of three contributions

o= =D e, @)en(0 () + et

92 = ~10(Q) Tar(O(B) Y (-1 1D aig o),
=0

92 = ~10(Q Ta* (OB Y1y 29D i)
=0

where hct is a shortcut for “higher-codimension terms.”
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Proof. The proof is elementary and relies on the property [Ful98, Example 3.2.5]

n

Td*(Q) Y (—1)P ch(APQ) = (—1)"cn(Q) (4.2)
p=0
and the power-series expansions of Td*(O(FE)) and ch(O(E)) in ¢1(O(E)). O

The relation (4.2) and the expressions for the classes ¢ and ¢ motivate the following definition.

DEFINITION 4.4. For a vector bundle F' of rank r, we define
P(F) = Td*(F) S (~1)? ch(APF) (= (—1)"er(F)),
p=0
P/(F) = Td"(F) Y (~1)’p ch(AF)

p=0

=l

P'(F) = Td*(F) (-1)?1’(7’2_1) ch(APF).
0

p

As the notation suggests, the classes P'(F') and P”(F') are to be seen as the first and second
derivatives of P(F'). More precisely, the following holds.
LEMMA 4.5. The classes P, P' and P" satisfy

P(F®G)=P(F)P(G),
P(F&G)=P(F)P(G)+ P(F)P(Q),
P"(F®G)=P'(F)P(G)+ P'(F)P'(G) + P(F)P"(G).

In particular, given line bundles L1, ..., L,, we have
'
P(Li® &L, = ZP(Ll)"'P/(Li)"'P(Lr),
i=1

P'(Li®---©L)= > P(L)---P(L)---P'(L;)--P(L).

1<i<j<r

Proof. The first part is an easy computation using the multiplicativity of Td* with respect to
direct sums of vector bundles and the multiplicativity of ch with respect to tensor products of
vector bundles. The conclusion for direct sums of line bundles requires the observation P”(L) = 0
for a line bundle L. O

In terms of P’ and P”, the classes ¥ and 3 are
V'=-P(Q), Y3=-Td(O(E))P"(Q).
For 15, an easy computation gives the string of equalities,
¥z = (P'(Q) + P"(Q)) ch(O(E)) Td* (O(E))
= (P(Q) + P"(Q))er(O(E)) + P'(Q) Td*(O(E)) — I3 + het
= P(Q) (5a(0() + 150 (OE)) + PQe(OE) ~ta =~ +het. (43)

To conclude, we thus have to extract the codimension n — 1 and n parts of the class P'(Q) and
the codimension n class of P"(Q).
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LEMMA 4.6. (i) For the first derivative class, we have

P/(Q) = (~1)"ea-1(Q) + (~1)" 5 n(Q) + het,
(ii) For the second derivative class, we have
3n—5 1
P = (1" ) + (-1 e (@ (@).

Proof. By Lemma 4.5 and the splitting principle, we can suppose that @) splits into a direct sum
of line bundles L1, ..., L,.

For the first item, we use the formula for P/(L; & ---&® L;,) in Lemma 4.5. For this, we recall

P(L;) = —c1(L;) from (4.2) and observe that
1 1
P'(Li) = P(Li) = Td"(L;) = =1 = Se1(Li) — Ecl(Li)z + het.
After an elementary computation, one concludes by taking into account

(@ =ar(ln) - er(Ln), (@ = (L) er(Ly) - -er(Ln).
=1

For the second item, we proceed similarly. We first compute

1 1 1
P,(Ll)Pl(L) = *Cl(Li)Cl(L') + 761([”,)2 + fcl(L‘)Q + het .
7y 7712 12

Hence, we obtain

P//(Q)(n) _(_1)nn(n8_ 1)Cn(Q)
D el (Lol en(La)
i<j
F DS ea(l) - aa(T) e (L) en(En)
i<j
But we observe
ch(Ll)"'Cl(Li)2"’Cl/(\Lj)"'Cn(Ln) +ch(L1)“‘Cl/(\Li)"‘Cl(Lj)Q"‘Cl(Ln)
= (e1(Ln) + -+ (L)) Y er(Ln) - er(La) -+ e1(Ln) —ner(Ly) -+ ex (L)
=1
= c1(Q)en-1(Q) — nen(Q) -
All in all, we conclude
PR = (-1 M5 () 4 (-1 L e (@enn (@) 0
PROPOSITION 4.7. The class w satisfies
w nt1 9% + 11n =D" [ ..
foaetams ~ 0 @ S e @)

Proof. We collect the identities in Lemma 4.3, the expression (4.3) for ¢2 and the values provided
by (4.1). We then observe that ¢i(O(F)|g) + c1(Q|r) = c1(b*Kx|g), as follows from (4.1) and
c1(Lg) = c1(O(E)|g). This concludes the proof. O
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COROLLARY 4.8. Suppose that Kx is trivial on the singular locus Z. Then

w In? + 11n
/E c1(O(E)|E) Y (X(Xo0) — x(X0)) -

In particular, if f has isolated singularities, then

w 9n? + 11n
S A N A ..
/ECI<O(E>‘E) ( ) 24 x;g HXo,

Proof. By applying the projection formula, one infers
[ rakia@= [ aEbe Q.
E Z

By assumption, Ky is trivial on Z, and hence this intersection number vanishes. We then apply
the formula

(—1)" /E (@) = X(Xa0) — x(X)

In the case of isolated singularities, the difference of topological Euler characteristics is known
to be the sum of the Milnor numbers (3.7) of the singularities. Precisely, we have

X(Xoo) = x(Xo0) = (=)™ Y pixge- (4.4)
z€Xo
This concludes the proof. ]
COROLLARY 4.9. The coefficient agcov is given by
In? +11n+2 « -1H"
Qpcov = ——(X(Xoo) - X(XO)) + —x(Xoo) + D) / Cn(QX/S) .
24 12 12 Jg

Proof. Notice that
b er(Kx)en-1(Q) N[E] = cn1(Q) Ner(b"B) N [E] = cp1(Q) Ner(E) N [b"B]

in the Chow group of the special fiber of X’ — S. This is a consequence of the commutativity
of intersection classes of Cartier divisors [Ful98, Section 2.4] and the definition of ¢; of a line
bundle. Moreover, from Lemma 3.5(a), we have ¢1(Lg) = c1(O(E)g). Applying Chern classes
on the tautological exact sequence on the Nash blowup, we deduce from the Whitney formula

cn(07x/9) N [0"B] = ¢n(Q) N [0"B] + cn1(Q)er (E) N [b"B] .

Observe that ¢, (b*Qx/g) = b*cn(Q2x/s) because Qx/g admits a two-term locally free resolution
and b is birational. Applying the projection formula, we finally find

[ ratne@= [ a@g - [ a@.

E B b*B

We finish the proof by plugging this relation into Proposition 4.7 and by the very definition
Of ABcov- D

To sum up, we conclude by restating Proposition 4.2(a) for Kulikov families.

THEOREM 4.10. Let f: X — S be a generically smooth family of Calabi—Yau varieties of dimen-
sion n, with a unique singular fiber of equation s = 0. Assume that X is a Kulikov family, in
other words, that B = () (for example, if Kx is trivial). Choose a local holomorphic frame & for

the Kéhler extension )\BCOV(%).
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Then the asymptotic of the BCOV norm of ¢ is

_ X '
—log [|5[cov = ancov log|s|* — X(l;o)ﬁlog | log \5\2‘ + continuous
9?4+ 11n + 2 «a
= |- ({(Xx) = X(X0)) + 5 x(Xoo) | log |s]”
24 12
X(Xoo)

D Blog |log |s|?| + continuous,

where o and 3 are as in Proposition 2.3.

COROLLARY 4.11. If n > 2 and f: X — S has only isolated ordinary quadratic singularities,
then
g1 9%+ 11 +2

5i # sing(X) log |s|* + continuous.

~log [|5]|3cov = (1)
Proof. We observed in Section 2.1 that a Calabi—Yau degeneration with isolated singularities is
automatically Kulikov. From Theorem 4.10 together with Corollary 2.9, Remark 2.10 and (4.4),
we obtain that the dominant term is a weighted sum of Milnor numbers. For an isolated ordinary
quadratic singularity, each such Milnor number is 1. O
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