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Gushel–Mukai varieties:

Classification and birationalities

Olivier Debarre and Alexander Kuznetsov

Abstract

We perform a systematic study of Gushel–Mukai varieties—quadratic sections of linear
sections of cones over the Grassmannian Gr(2, 5). This class of varieties includes Clifford
general curves of genus 6, Brill–Noether general polarized K3 surfaces of genus 6, prime
Fano threefolds of genus 6, and their higher-dimensional analogues.

We establish an intrinsic characterization of normal Gushel–Mukai varieties in terms
of their excess conormal sheaves, which leads to a new proof of the classification theorem
of Gushel and Mukai. We give a description of isomorphism classes of Gushel–Mukai
varieties and their automorphism groups in terms of linear-algebraic data naturally
associated with these varieties.

We carefully develop the relation between Gushel–Mukai varieties and Eisenbud–
Popescu–Walter (EPW) sextics introduced earlier by Iliev–Manivel and O’Grady. We
describe explicitly all Gushel–Mukai varieties whose associated EPW sextics are iso-
morphic or dual (we call them period partners or dual varieties, respectively). Finally,
we show that in dimension 3 and higher, period partners or dual varieties are always
birationally isomorphic.

1. Introduction

This article is devoted to the investigation of the geometry of a class of varieties which we call
Gushel–Mukai varieties, or GM varieties for short, which are dimensionally transverse intersec-
tions of a cone over the Grassmannian Gr(2, 5) with a linear space and a quadratic hypersurface,
all defined over a field k of characteristic 0.

Smooth GM varieties are isomorphic either to quadratic sections of a linear section of
Gr(2, 5) ⊂ P9 (ordinary GM varieties) or to double covers of a linear section of Gr(2, 5) branched
along a quadratic section (special GM varieties). Their dimension is at most 6.

GM varieties first appeared in the classification of complex Fano threefolds: Gushel showed
in [Gus83] that any smooth prime complex Fano threefold of degree 10 is a GM variety. Mukai
later extended in [Muk89] Gushel’s results to higher-dimensional smooth Fano varieties of coin-
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dex 3, degree 10, and Picard number 1, to Brill–Noether general polarized K3 surfaces of de-
gree 10, and to Clifford general curves of genus 6 (see Section 2.3 for the definitions).

In Section 2, we give an intrinsic characterization of normal GM varieties in terms of their
twisted excess conormal sheaf (Theorem 2.3). In particular, we show that the (rational) map
from a GM variety to Gr(2, 5) is given by the sections of this rank 2 sheaf, hence is canonical.
Developing this observation, we define GM data sets (Definition 2.5) as sets of linear-algebraic
objects required to define a GM variety. We show that there is a functorial bijection (induced
by an equivalence of appropriately defined groupoids) between the set of all normal polarized
GM varieties and a suitable set of GM data (Theorem 2.9). We also describe the automorphism
group of a normal polarized GM variety in terms of the associated GM data (Corollary 2.11).

Using this intrinsic characterization of GM varieties, we prove an extension of Mukai’s clas-
sification results (Theorem 2.16): any normal, locally factorial, complex projective variety X of
dimension n > 3 with terminal singularities and codim(Sing(X)) > 4, together with an ample
Cartier divisor class H such that KX ∼lin−(n − 2)H, Hn = 10, and Pic(X) = ZH, is a GM
variety.

In contrast with the smooth case, a singular GM variety may have arbitrarily high dimension;
besides the two smooth types discussed above (ordinary and special), there are also quadric
bundles of arbitrary dimensions over a linear section of Gr(2, 5), whose discriminant locus is
a quadratic section. However, if one restricts to locally complete intersection (lci) GM varieties,
one gets the ordinary and special types only. In particular, their dimension is again at most 6,
and the theory becomes very much parallel to that of smooth GM varieties.

We end Section 2 by studying geometric properties of GM varieties. We define the Grass-
mannian hull MX of a GM variety X as the intersection of the cone over Gr(2, 5) in which X
sits with the linear span of X, so that X is a quadratic section of MX . We show that when X
is ordinary with dim(X) > 3 and codim(Sing(X)) > 4, the scheme MX is smooth, and when
X is special with codim(Sing(X)) > 4, the scheme MX is a cone over a smooth variety M ′X
(Proposition 2.22). We also discuss the singularities of MX for smooth ordinary GM curves and
surfaces. We study the special features of lci GM varieties, we explain the relations between the
two types (ordinary and special), and we construct a (birational) involution on the class of lci
GM varieties which exchanges ordinary and special varieties.

In Section 3, we discuss a relation between complex GM varieties and Eisenbud–Popescu–
Walter (EPW) sextics [EPW01, OGr06]. An EPW sextic is a hypersurface of degree 6 in the
projectivization P(V6) of a 6-dimensional vector space V6 which depends on the choice of a La-
grangian subspace A ⊂

∧
3V6. EPW sextics have many wonderful properties which were thor-

oughly investigated by O’Grady. A relation between GM varieties and EPW sextics was discov-
ered by Iliev–Manivel in [IM11]. They showed that if V6 is the space of quadrics through an
ordinary 5-dimensional GM variety X in the projective embedding defined by the ample gen-
erator H of Pic(X), one can construct a Lagrangian subspace A(X) ⊂

∧
3V6 and a hyperplane

V5(X) ⊂ V6; conversely, given a general Lagrangian subspace A ⊂
∧

3V6 and a general hyperplane
V5 ⊂ V6, one can reconstruct a 5-dimensional GM variety XA,V5 .

We suggest an extension of the Iliev–Manivel construction which works for all lci GM va-
rieties (of both types—ordinary and special—and in all dimensions). Formally, this is done by
associating with an lci GM data set another set which we call an extended Lagrangian data set.
This is a quadruple (V6, V5, A,A1), where A ⊂

∧
3V6 is a Lagrangian subspace and A1, which

encodes the type of the GM data, is a Lagrangian subspace in a fixed 2-dimensional symplectic
space. In Theorem 3.6, we show that when the base field k is quadratically closed (k = k1/2),
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there is a bijection between the set of isomorphism classes of lci GM data sets and the set of
isomorphism classes of extended Lagrangian data sets.

Concatenating this construction with the construction in Section 2, we obtain a diagram

lci GM
varieties

� �Theorem 2.9 // lci GM data
(W,V6, V5, L, µ,q, ε)

Theorem 3.6
extended

Lagrangian data
(V6, V5, A,A1)

where the objects in the boxes are taken modulo isomorphisms. Restricting ourselves to ordinary
GM varieties simplifies the picture: A1 becomes redundant, so we can restrict to triples (V6, V5, A)
which we simply call Lagrangian data sets, the bijection becomes functorial and works over
arbitrary fields, and the diagram above simplifies (see Theorem 3.10) to an inclusion

ordinary lci
GM varieties

� � // Lagrangian data
(V6, V5, A)

The correspondence between lci GM varieties and extended Lagrangian data sets has many
remarkable properties. One of the most impressive is a criterion for the smoothness of the GM
variety XA,A1,V5 constructed from an extended Lagrangian data set (V6, V5, A,A1), which shows
in particular that if dim(XA,A1,V5) > 3, smoothness is equivalent to an explicit property of the
Lagrangian subspace A ⊂

∧
3V6 (that it contains no decomposable vectors; see Section B.1) and

does not depend on the hyperplane V5 ⊂ V6 (Theorem 3.16).

We spend some time discussing the structure of lci GM varieties associated with the same
Lagrangian subspace A ⊂

∧
3V6, but with different choices of A1 and hyperplane V5 ⊂ V6. As

was already mentioned, A1 just encodes the type of the GM variety, and switching the type of A1

results in switching the type of the GM variety. We show that for fixed (A,A1), the dimension
of XA,A1,V5 depends only on which stratum of the EPW stratification of the space P(V ∨6 ) the
hyperplane V5 belongs to (extending again the results of Iliev and Manivel).

If dim(XA,A1,V5) = dim(XA,A′
1,V

′
5
), we say that the GM varieties XA,A1,V5 and XA,A′

1,V
′
5

are
period partners. One of the main results of this article is that smooth period partners of dimension
n > 3 are birationally isomorphic (Theorem 4.7 and Corollary 4.16). In particular, no smooth
GM varieties of dimension n > 3 are birationally rigid (Corollary 4.17).

We also introduce a notion of duality for GM varieties. Given a Lagrangian subspace A
in
∧

3V6, its orthogonal complement A⊥ ⊂
∧

3V ∨6 is also Lagrangian; the choice of a line V1 ⊂ V6

(which can be considered as a hyperplane in V ∨6 ) and an arbitrary choice of A′1 allow us to
construct a GM variety XA⊥,A′

1,V1
. If dim(XA⊥,A′

1,V1
) = dim(XA,A1,V5), we say that the GM

varieties XA⊥,A′
1,V1

and XA,A1,V5 are dual. Our second main result is that smooth dual GM
varieties of dimension n > 3 are birationally isomorphic (Theorem 4.20).

The birational isomorphisms relating period partners are generalizations of conic transfor-
mations, and those relating dual varieties are generalizations of line transformations [DIM12].
In relation with birationalities for dual varieties, we define another interesting geometric object
associated with GM varieties: a special hypersurface of degree 4 in Gr(3, 6). Like the EPW sex-
tic, this hypersurface is defined as a special Lagrangian intersection locus; the two play similar
roles. We call the special hypersurface the EPW quartic and suspect that it may have interesting
geometry. These quartics are investigated in more details in [IKKR17].
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For the reader’s convenience, we gathered some of the material we need in the main body
of this article in three appendices. In Appendix A, we introduce excess conormal sheaves for
intersections of quadrics, discuss how they change under simple geometric operations (taking
cones and hyperplane and quadratic sections), and compute them for the Grassmannians Gr(2, 5)
and Gr(2, 6). In Appendix B, we recall the definition of EPW sextics and their main properties.
Most of the results there are extracted from a series of articles of O’Grady. In Appendix C,
we discuss the classical relation between the Lagrangian geometry of a symplectic vector space
and the projective duality of quadrics. We also define a notion of isotropic reduction in this
context which is very useful for the description of the various quadratic fibrations associated
with Gushel–Mukai varieties.

One of the motivations for this research was an attempt to construct a moduli space for
GM varieties. The unified and extended constructions we introduce here should be important
ingredients to attack the moduli problem. We plan to do this in a forthcoming article.

In another, companion, article [DK16], we show that period partners of even dimensions have
isomorphic primitive middle Hodge structures and describe this Hodge structure in terms of the
associated EPW sextic.

In a joint work [KP16] of the second author with Alexander Perry, we discuss derived cate-
gorical aspects of GM varieties.

1.1 Notation and conventions

All schemes are separated of finite type over a field k. For simplicity, we will always assume that k
is a subfield of C, although many of our results remain valid in positive characteristics. A k-
variety is a geometrically integral scheme (separated of finite type) over k. We usually abbreviate
“local(ly) complete intersection” as “lci.”

We write ∼lin for linear equivalence of divisors.

Given a vector space V , we denote by V ∨ the dual space and, given a vector subspace U ⊂ V ,
we denote by U⊥ ⊂ V ∨ its orthogonal complement, that is, the space of linear functions on V
vanishing on U .

Given a vector space V , we denote by P(V ) its projectivization, that is, the variety of lines
in V . Given a line V1 ⊂ V , we write [V1], or even V1, for the corresponding point of P(V ). More
generally, we denote by Gr(k, V ) the Grassmannian of k-dimensional subspaces in V and, given
a subspace Vk ⊂ V , we write [Vk], or even Vk, for the corresponding point of the Grassmannian.
Analogously, we denote by Fl(k1, . . . , kr;V ) the flag variety of chains of subspaces in V of dimen-
sions k1 < · · · < kr. Finally, given a vector bundle E on a scheme X, we denote by PX(E ) its
projectivization, that is, the scheme of lines in fibers of E over X.

Let W be a vector space, and let X ⊂ P(W ) be a subscheme. For a point x ∈ X, we
write TX,x for the embedded tangent space of X at x. For any vector space K, we denote by
CKX ⊂ P(W ⊕K) the cone over X with vertex P(K) and by C◦KX the punctured cone, that
is, C◦KX = CKX r P(K).

Given closed subschemes X1, X2 ⊂ P(W ), we say that the intersection X1 ∩ X2 is dimen-
sionally transverse if Tor>0(OX1 ,OX2) = 0 (this condition is also known as Tor-independence).
When X1 and X2 are both Cohen–Macaulay, this condition is equivalent to

codimx(X1 ∩X2) = codimx(X1) + codimx(X2)

for any closed point x ∈ X1 ∩X2 (where the codimensions are in P(W )). When X2 ⊂ P(W ) is
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a hypersurface, the intersection X1 ∩X2 is dimensionally transverse if and only if no associated
point of X1 is contained in X2.

2. The geometry of Gushel–Mukai varieties

2.1 Intrinsic characterization of GM varieties

In the introduction, we defined a GM variety as a dimensionally transverse intersection of a cone
over Gr(2, 5) with a linear subspace and a quadratic hypersurface.

More precisely, let V5 be a k-vector space of dimension 5, and consider the Plücker embedding
Gr(2, V5) ⊂ P(

∧
2V5). Let K be an arbitrary k-vector space. Consider the cone

CKGr(2, V5) ⊂ P
(∧

2V5 ⊕K
)

with vertex P(K), and choose a vector subspace W ⊂
∧

2V5 ⊕K and a subscheme Q ⊂ P(W )
defined by one quadratic equation (possibly zero).

Definition 2.1. The scheme

X = CKGr(2, V5) ∩P(W ) ∩Q (2.1)

is called a GM intersection. A GM intersection X is a GM variety if X is geometrically integral
and

dim(X) = dim(W )− 5 > 1 . (2.2)

When X is a GM variety, Q is a quadratic hypersurface and CKGr(2, V5) ∩ P(W ) and Q
are Gorenstein subschemes of P(W ); hence their intersection X is dimensionally transverse. In
particular, a GM variety is always Gorenstein.

A GM variety X has a canonical polarization, the restriction H of the hyperplane class
on P(W ); we will call (X,H) a polarized GM variety.

Definition 2.2. An isomorphism of polarized GM varieties between (X,H) and (X ′, H ′) is
a pair (φ, ψ), where φ : X ∼−→X ′ is an isomorphism of varieties and ψ : OX(H) ∼−→φ∗OX′(H ′)
an isomorphism of line bundles. We consider the set of all polarized GM varieties as a groupoid,
with this notion of isomorphism.

We denote by Aut(X,H) the group of automorphisms of a polarized GM variety and by
AutH(X) its image in Aut(X). There is an exact sequence

1→ Gm → Aut(X,H)→ AutH(X)→ 1 , (2.3)

where the subgroup Gm ⊂ Aut(X,H) acts trivially on X and by dilations on OX(H).

The definition of a GM variety is not intrinsic. The following theorem gives an intrinsic
characterization, at least for normal varieties (note that a GM variety is normal as soon as it is
non-singular in codimension 1). A key ingredient is the excess conormal sheaf, which is defined
over k, for any variety which is an intersection of quadrics (see Appendix A).

Recall that a coherent sheaf F is simple if Hom(F ,F ) = k.

Theorem 2.3. A normal polarized projective variety (X,H) of dimension n > 1 is a polarized
GM variety if and only if all the following conditions hold:

(a) We have Hn = 10 and KX = −(n− 2)H; in particular, X is Gorenstein.
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(b) The polarization H is very ample and the vector space

W := H0(X,OX(H))∨

has dimension n+ 5.

(c) The variety X is an intersection of quadrics in P(W ) and the vector space

V6 := H0(P(W ),IX(2)) ⊂ S2W∨

of quadrics through X has dimension 6.

(d) The twisted excess conormal sheaf UX := EN ∨
X(2H) of X in P(W ) is simple.

Proof. We first prove that conditions (a)–(d) are satisfied by normal GM varieties. Let X be
such a variety, defined by (2.1), with dim(X) = n and dim(W ) = n+ 5.

(a) Since the degree of CKGr(2, V5) is 5 and the degree of Q is 2, the dimensional transversality
implies that the degree of X is 10. Let dim(K) = k. The canonical class of CKGr(2, V5) is
−(5+k)H. On the other hand, the codimension of W in

∧
2V5⊕K is (10+k)−(n+5) = 5+k−n;

hence the canonical class of X is

KX = (−(5 + k) + (5 + k − n) + 2)H = −(n− 2)H .

(b) The very ampleness of H is clear. By (2.2), it is enough to show H0(X,OX(H)) = W∨.
We use the resolution

0→ O(−5)→ V ∨5 ⊗ O(−3)→ V5 ⊗ O(−2)→ O → OCKGr(2,V5) → 0

of the cone CKGr(2, V5) in P(
∧

2V5 ⊕K). Restricting it to P(W ), tensoring with the resolution
0 → O(−2) → O → OQ → 0 of the quadric Q, and using the dimensional transversality of the
intersection, we obtain the resolution

0→ O(−7)→ (V ∨5 ⊕ k)⊗ O(−5)→ (V5 ⊗ O(−4))⊕ (V ∨5 ⊗ O(−3))

→ (V5 ⊕ k)⊗ O(−2)→ O → OX → 0 (2.4)

of X in P(W ). Twisting it by O(1), we get H0(X,OX(H)) = H0(P(W ),OP(W )(1)) = W∨

(since dim(W ) = n + 5 > 6, the only other term that could contribute is the term O(−6) at
the very beginning; the contribution is non-zero only for n = 1, but it actually contributes to
H1(X,OX(H))).

(c) The resolution (2.4) implies that X is an intersection of quadrics. Furthermore, twisting
the resolution by O(2), we see that H0(P(W ),IX(2H)) = V5 ⊕ k is 6-dimensional.

(d) To prove that UX is simple, we may assume k = C.

Assume n = 1. By condition (a), we have deg(KX) = 10, so X is a smooth curve of genus 6.
Moreover, by conditions (b) and (c), its canonical class KX = H is very ample and its canonical
model is an intersection of quadrics; hence X is not hyperelliptic, nor trigonal, nor a plane quintic.
Mukai constructs in [Muk93, Section 5] a stable vector bundle of rank 2 on X and proves that it
embeds X into the cone CGr(2, 5) over Gr(2, 5) with vertex a point and that X is an intersection
CGr(2, 5)∩P5 ∩Q. A combination of Proposition A.7 and Lemmas A.4, A.5 and A.6 then shows
that Mukai’s bundle is isomorphic to the twisted excess conormal bundle UX , which is therefore
stable, hence simple.

We finish the proof by induction on n: assume n > 2, and let X ′ ⊂ X be a dimensionally
transverse, normal hyperplane section of X, so that X ′ is a GM variety of dimension n − 1
and UX′ is simple by the induction hypothesis. Applying the functor Hom(UX ,−) to the exact
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sequence

0→ UX(−H)→ UX → UX |X′ → 0

and using pullback-pushforward adjunction and the isomorphism UX′ ' UX |X′ (Lemma A.5),
we obtain an exact sequence

0→ Hom(UX ,UX(−H))→ Hom(UX ,UX)→ Hom(UX′ ,UX′) .

If dim(Hom(UX ,UX)) > 1, the simplicity of UX′ implies Hom(UX ,UX(−H)) 6= 0. On the other
hand, an analogous argument produces an exact sequence

0→ Hom(UX ,UX(−2H))→ Hom(UX ,UX(−H))→ Hom(UX′ ,UX′(−H)) = 0 ,

which implies Hom(UX ,UX(−2H)) 6= 0. Iterating the argument, we see that for all k > 0, we
have Hom(UX ,UX(−kH)) 6= 0. This is possible only if UX has zero-dimensional torsion. But it
has not since, by (A.1), it is a subsheaf of V6 ⊗ OX and X is integral.

We now prove that conditions (a)–(d) are also sufficient.

Let X be a normal projective variety with a Cartier divisor H which satisfies properties
(a)–(d) of Theorem 2.3. Consider the spaces W and V6 of respective dimensions n + 5 and 6,
defined by conditions (b) and (c). Since V6 is a space of quadrics in W , it comes with a map

q : V6 → S2W∨ .

Consider the twisted excess conormal sheaf UX . Its restriction UXsm to the smooth locus Xsm

of X is locally free of rank 2. Since the rank of the conormal sheaf N ∨
Xsm/P(W ) is 4, we compute,

using the exact sequence (A.1),

det(UXsm) ' det(NXsm/P(W )(−2H)) ' det(NXsm/P(W ))(−8H)

' OXsm(−8H −KP(W )|Xsm +KXsm) ' OXsm(−8H + (n+ 5)H − (n− 2)H)

' OXsm(−H) .

Set L := H0(Xsm,
∧

2UXsm(H)); by the above isomorphism and the normality of X, this vector
space is 1-dimensional, and we have a canonical isomorphism

L⊗
∧

2U ∨
Xsm

= OXsm(H) . (2.5)

Dualizing the embedding UXsm ↪→ V6 ⊗ OXsm and taking its wedge square, we get a surjection∧
2V ∨6 ⊗ OXsm �

∧
2U ∨

Xsm
. Taking into account (2.5), we obtain a linear map

L⊗
∧

2V ∨6 → H0(Xsm,OXsm(H)) = H0(X,OX(H)) = W∨

(we again use the normality of X to identify sections on X and on Xsm) and by duality a linear
map µ : L⊗W →

∧
2V6. This map can be factored through an injection µ̄ : L⊗W ↪→

∧
2V6 ⊕K

for some vector space K. The maps

Xsm ↪→ P(W ) ' P(L⊗W ) ↪→ P
(∧

2V6 ⊕K
)
99K P

(∧
2V6

)
and

Xsm → Gr(2, V6) ↪→ P
(∧

2V6

)
,

where the map Xsm → Gr(2, V6) is induced by the embedding UXsm ↪→ V6 ⊗ OXsm , are given by
the same linear system; hence they agree. This shows X ⊂ CKGr(2, V6) and Xsm ⊂ C◦KGr(2, V6),
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so by Proposition A.3, we have a commutative diagram

0 // (V6 ⊗UXsm)/ S2UXsm
//

��

∧
2V6 ⊗ OXsm

//

��

det(V6)⊗ µ̄∗N ∨
Gr(2,V6)(2) //

��

0

0 // L−2 ⊗ det(V6)⊗UXsm
// L−2 ⊗ det(V6)⊗ V6 ⊗ OXsm

// L−2 ⊗ det(V6)⊗N ∨
Xsm

(2) // 0 ,

where the top row comes from the pullback to Xsm of the excess conormal sequence of Gr(2, V6)
(see Proposition A.8) and we twisted everything by det(V6). The left vertical arrow induces
a morphism λ′ : V6 ⊗UXsm → L−2 ⊗ det(V6)⊗UXsm .

By condition (d), the sheaf UX is simple. Therefore UXsm is simple as well: the sheaf UX is
torsion free; hence any endomorphism of UXsm extends to an endomorphism of UX . Therefore,
λ′ is given by a linear form

λ : V6 → L−2 ⊗ det(V6) .

Since λ′ vanishes on S2UXsm , the image of UXsm in V6 ⊗ OXsm (via the sequence (A.1)) is
contained in Ker(λ) ⊗ OXsm . Moreover, the middle vertical map in the commutative diagram
above is given by v1 ∧ v2 7→ λ(v1)v2 − λ(v2)v1.

Let us show that the form λ is non-zero. If λ = 0, the middle vertical map in the diagram is
zero, which means that all the quadrics cutting out CKGr(2, V6) contain P(W ); in other words,
P(W ) ⊂ CKGr(2, V6). Therefore, P(W ) is a cone over P(W ′) ⊂ Gr(2, V6), with vertex a subspace
of K. The map Xsm → Gr(2, V6) induced by UXsm therefore factors through P(W ′); that is,
the vector bundle UXsm is a pullback from P(W ′) of the restriction of the tautological bundle
of Gr(2, V6) to P(W ′). We show that this is impossible.

There are two types of linear spaces on Gr(2, V6): the first type corresponds to 2-dimensional
subspaces containing a given vector and the second type to those contained in a given 3-subspace
V3 ⊂ V6. If W ′ is of the first type, the restriction of the tautological bundle to P(W ′) is isomorphic
to O ⊕ O(−1); hence UXsm ' OXsm ⊕ OXsm(−H). In particular, it is not simple, which gives
a contradiction. If W ′ is of the second type, the embedding UX → V6 ⊗ OX factors through
a subbundle V3 ⊗ OX ⊂ V6 ⊗ OX . Recall that V6 is the space of quadrics passing through X
in P(W ). Consider the scheme-theoretic intersection M of the quadrics corresponding to the
vector subspace V3 ⊂ V6. Since the embedding of the excess conormal sheaf factors through
V3 ⊗OX , the variety X is the complete intersection of M with the three quadrics corresponding
to the quotient space V6/V3. But the degree of X is then divisible by 8, which contradicts the
fact that it is 10 by condition (a).

Thus λ 6= 0 and V5 := Ker(λ) is a hyperplane in V6. It fits in the exact sequence

0→ V5 → V6
λ−−→ L−2 ⊗ det(V6)→ 0 ,

which induces a canonical isomorphism

ε : det(V5)
∼−−→ L⊗2 .

Moreover, the composition UX ↪→ V6 ⊗ OX
λ−−→ L⊗2 ⊗ det(V6) ⊗ OX vanishes on Xsm, hence

on X as well. This shows that the embedding UX ↪→ V6 ⊗ OX factors through V5 ⊗ OX .

We now replace V6 with V5 and repeat the above argument. We get a linear map

µ : L⊗W →
∧

2V5

and an embedding µ̄ : L ⊗ W ↪→
∧

2V5 ⊕ K which induce embeddings X ⊂ CKGr(2, V5) and
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Xsm ⊂ C◦KGr(2, V5). The commutative diagram

0 // UXsm
//

��

V5 ⊗ OXsm
//

��

µ̄∗N ∨
Gr(2,V5)

//

��

0

0 // UXsm
// V6 ⊗ OXsm

// N ∨
Xsm

// 0

of Proposition A.3 (we use ε to cancel out the twists by det(V ∨5 ) and by L2 in the top and bottom
rows) then shows that inside the space V6 of quadrics cutting out X in P(W ), the hyperplane V5

is the space of quadratic equations of Gr(2, V5), that is, of Plücker quadrics.

As the Plücker quadrics cut out the cone CKGr(2, V5) in P(
∧

2V5⊕K), they cut out the inter-
section CKGr(2, V5) ∩P(W ) in P(W ). Since X is the intersection of six quadrics by condition (c),
we finally obtain

X = CKGr(2, V5) ∩P(W ) ∩Q , (2.6)

where Q is any non-Plücker quadric (corresponding to a point in V6 r V5), so X is a GM
variety.

A consequence of Theorem 2.3 is that being a GM variety is a geometric property. Recall
that the base field k is by assumption a subfield of C. We denote by XC the extension of scalars
from k to C, and by HC the induced polarization of XC.

Corollary 2.4. A normal polarized variety (X,H) is a polarized GM variety if and only if
(XC, HC) is.

Proof. One direction is clear from the definition, so we only have to check that if (XC, HC) is GM,
so is (X,H). We show that if the conditions of Theorem 2.3 are satisfied for (XC, HC), they are
satisfied for (X,H) as well. The only property for which this is not completely obvious is the
equality KX = −(n− 2)H, but that follows from the injectivity of the map Pic(X)→ Pic(XC),
which holds since X is integral and projective.

We introduce some more terminology. Given a GM variety X defined by (2.1), the twisted
excess conormal sheaf UX that was crucial for the proof of Theorem 2.3 will be called its
Gushel sheaf. As we showed in the proof, the projection of X from the vertex P(K) of the
cone CK Gr(2, V5) defines a rational map X 99K Gr(2, V5), and the Gushel sheaf UX is isomorphic
(on the smooth locus of X) to the pullback under this map of the tautological vector bundle
on Gr(2, V5). The map X 99K Gr(2, V5) is thus determined by UX and is canonically associated
with X. We call this map the Gushel map of X.

2.2 GM data sets

In the course of the proof of Theorem 2.3, we associated with any normal polarized GM variety
vector spaces W , V6, V5, L and maps q, µ, ε. We axiomatize these as follows.

Definition 2.5. A GM data set (W,V6, V5, L, µ,q, ε) of dimension n (over k) consists of

• a k-vector space W of dimension n+ 5,

• a k-vector space V6 of dimension 6,

• a k-hyperplane V5 ⊂ V6,

• a k-vector space L of dimension 1,

• a k-linear map µ : L⊗W →
∧

2V5,
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• a k-linear map q : V6 → S2W∨,

• a k-linear isomorphism ε : det(V5)
∼−→ L⊗2,

such that the following diagram commutes:

V5
� � //

ε

∼

��

V6

q
��

L⊗2⊗
∧

4V ∨5
S2µ∨

// S2W∨ .

(2.7)

In other words, q(v)(w1, w2) = ε(v ∧ µ(w1) ∧ µ(w2)) for all v ∈ V5 and w1, w2 ∈W .

Definition 2.6. An isomorphism of GM data sets between GM data sets (W,V6, V5, L, µ,q, ε)
and (W ′, V ′6 , V

′
5 , L

′, µ′,q′, ε′) is a triple of k-linear isomorphisms ϕW : W → W ′, ϕV : V6 → V ′6 ,
and ϕL : L→ L′, such that

ϕV (V5) = V ′5 , ε′ ◦
∧

5ϕV = ϕ⊗2
L ◦ ε ,

and the following diagrams commute:

V6

ϕV

��

q
// S2W∨

V ′6
q′
// S2W ′∨ ,

S2ϕ∨
W

OO L⊗W

ϕL⊗ϕW

��

µ
//
∧

2V5∧
2ϕV

��

L′ ⊗W ′ µ′
//
∧

2V ′5 .

In particular, the automorphism group of a GM data set (W,V6, V5, L, µ,q, ε) is the subgroup of
GL(W )×GL(V6)×Gm of elements (gW , gV , gL) such that

gV (V5) = V5 , det(gV |V5) = g2
L ,

(
S2g∨W

)
◦ q ◦ gV = q ,

(∧
2gV

)
◦ µ = µ ◦ (gL ⊗ gW ) .

We consider the set of all polarized GM data sets as a groupoid, with this notion of isomorphism.

Lemma 2.7. The collection (W,V6, V5, L, µ,q, ε) associated by Theorem 2.3 with a normal po-
larized GM variety (X,H) is a GM data set. The association

(X,H) 7−→ (W,V6, V5, L, µ,q, ε)

is a fully faithful functor from the groupoid of normal polarized GM varieties to the groupoid
of GM data sets; that is, any isomorphism of polarized GM varieties induces an isomorphism of
the associated GM data sets and vice versa. Moreover, this association works in families.

Proof. In the course of the proof of Theorem 2.3, we showed that the subspace V5 ⊂ V6 of quadrics
through X cuts out CKGr(2, V5)∩P(W ) in P(W ). Thus, these quadrics are restrictions to P(W )
of the Plücker quadrics. This is equivalent to the commutativity of (2.7), so the constructed data
forms a GM data set.

Let (φ, ψ) be an isomorphism of polarized GM varieties between (X,H) and (X ′, H ′). We
denote by (W ′, V ′6 , V

′
5 , L

′, µ′,q′, ε′) the GM data for X ′. The isomorphism (φ, ψ) induces an iso-
morphism between W and W ′, and also between V6 and V ′6 . Moreover, it induces an isomorphism
between the excess conormal sheaves of X and X ′, and an isomorphism between L and L′, com-
patible with the isomorphisms (2.5). These isomorphisms are compatible with the hyperplanes V5

and with the maps q, µ, and ε, hence provide an isomorphism of the associated GM data sets.
Moreover, the composition of isomorphisms of polarized GM varieties corresponds to the com-
position of the corresponding isomorphisms of GM data sets. This proves the functoriality.

24



Gushel–Mukai varieties

Conversely, an isomorphism of GM data sets includes an isomorphism ϕW : P(W )→ P(W ′)
which induces an isomorphism of polarized GM varieties between X and X ′. This proves that
the functor is fully faithful.

Finally, given a flat family X → S of normal projective varieties with a Cartier divisor H
on X such that each fiber of the family satisfies the conditions of Theorem 2.3, the same
construction provides vector bundles W , V6, V5, and L on S (in the definition of V6, W , and L ,
one should replace global sections with pushforwards to S) and morphisms q : V6 → S2W ∨,
µ : L ⊗W →

∧
2V5, and ε : det(V5)

∼−→ L ⊗2. This shows that the association works in families.

The following lemma characterizes the image of the functor. Let (W,V6, V5, L, µ,q, ε) be
a GM data set. For each vector v ∈ V6, we have a quadratic form q(v) ∈ S2W∨, and we denote
by Q(v) ⊂ P(W ) the subscheme it defines (a quadratic hypersurface when q(v) 6= 0).

Lemma 2.8. If (W,V6, V5, L, µ,q, ε) is a GM data set of dimension n,

X = X(W,V6, V5, L, µ,q, ε) :=
⋂
v∈V6

Q(v) ⊂ P(W ) (2.8)

is a GM intersection of dimension at least n. It is a GM variety if and only if X is integral of
dimension n.

Proof. Lift the map µ : L⊗W →
∧

2V5 to an embedding µ̄ : L⊗W ↪→
∧

2V5⊕K for some K (for
example, one can take K = Ker(µ)). It follows from the commutativity of (2.7) that for v ∈ V5,
the quadrics Q(v) are the restrictions to P(W ) = P(L ⊗W ) of the cones (with vertex P(K))
over the Plücker quadrics in P(

∧
2V5) with respect to the embedding µ̄. Since the intersection of

the Plücker quadrics is Gr(2, V5), this implies⋂
v∈V5

Q(v) = CKGr(2, V5) ∩P(W ) (2.9)

and, for any v ∈ V6 r V5, we have

X = CKGr(2, V5) ∩P(W ) ∩Q(v) .

This is a GM intersection, which is a GM variety if and only X is integral of dimension n.

Theorem 2.9. The constructions of Lemmas 2.7 and 2.8 are mutually inverse and define an
equivalence of groupoids between

• the groupoid of all normal polarized GM varieties (X,H) of dimension n and

• the groupoid of all GM data sets (W,V6, V5, L, µ,q, ε) of dimension n such that the GM
intersection X(W,V6, V5, L, µ,q, ε) is n-dimensional, integral, and normal.

This equivalence induces an injection from the set of isomorphism classes of normal polarized
GM varieties into the set of isomorphism classes of GM data sets and also works in families.

Proof. Let (X,H) be a GM variety, and let (W,V6, V5, L, µ,q, ε) be the associated GM data. We
saw during the proof of Theorem 2.3 that one can write X as in (2.6). Comparing with (2.9), we
obtain X(W,V6, V5, L, µ,q, ε) ' X. Conversely, start with a GM data set (W,V6, V5, L, µ,q, ε),
and set X := X(W,V6, V5, L, µ,q, ε). Applying to X the construction of Theorem 2.3, one gets
the original GM data set back. The functoriality and the fact that the equivalence works in
families are clear from the construction.
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Remark 2.10. The proof of Lemma 2.8 shows that if X is a normal polarized GM variety, one
can always assume K = Ker(µ). Thus, a normal GM variety with GM data (W,V6, V5, L, µ,q, ε)
can be written as

X = CKer(µ)(Gr(2, V5) ∩P(µ(W ))) ∩Q(v)

for any v ∈ V6 r V5.

Recall that Aut(W,V6, V5, L, µ,q, ε) is a subgroup of GL(W )×GL(V6)×Gm.

Corollary 2.11. Let (X,H) be a normal polarized GM variety, with associated GM data
(W,V6, V5, L, µ,q, ε). There exist an isomorphism

Aut(X,H) ' Aut(W,V6, V5, L, µ,q, ε)

of algebraic groups and an exact sequence

1→ Gm → Aut(W,V6, V5, L, µ,q, ε)→ AutH(X)→ 1 .

Proof. Follows from Theorem 2.9 and (2.3).

2.3 Mildly singular GM varieties

In this section, we give a simpler intrinsic characterization of mildly singular GM varieties which
will allow us to extend the Gushel–Mukai classification.

We say that a smooth projective curve X of genus 6 is Clifford general if XC is not hyperel-
liptic, nor trigonal, nor a plane quintic.

Proposition 2.12. A smooth projective curve is a GM curve if and only if it is a Clifford general
curve of genus 6. Equivalently, its canonical model is an intersection of six quadrics in P5.

Proof. This follows from Theorem 2.3 combined with the Enriques–Babbage theorem [ACGH85,
Section III.3].

An analogous characterization holds for GM surfaces. Following Mukai ([Muk02, Defini-
tion 3.8] (with a misprint in the English translation), [JK04, Definition 10.1], [GLT15, Defi-
nition 1.3]), we say that a complex polarized K3 surface (S,H) is Brill–Noether general if

h0(S,D)h0(S,H −D) < h0(S,H)

for all divisors D on S not linearly equivalent to 0 or H. When H2 = 10, this is equivalent,
by [JK04, Proposition 10.5], to the fact that |H| contains a Clifford general smooth curve
(by [GL87], all smooth curves in |H| are then Clifford general).

Proposition 2.13. A smooth projective surface X is a GM surface if and only if XC is a Brill–
Noether general polarized K3 surface of degree 10.

Proof. By Corollary 2.4, we may assume k = C. If X is a smooth GM surface, we have KX = 0
by Theorem 2.3(a), and the resolution (2.4) implies H1(X,OX) = 0; hence X is a K3 surface.
Moreover, a general hyperplane section of X is a GM curve, hence a Clifford general curve
of genus 6; hence X is Brill–Noether general. The other direction is proved in Theorem 2.16
below.

If X is a GM variety, any integral hyperplane section of X is also a GM variety. We are going
to show that the converse is also true under some additional assumptions. We start with the
following result.
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Lemma 2.14. If (X,H) is a normal polarized GM variety, it is projectively normal; that is, the
canonical maps

SmH0(X,OX(H))→ H0(X,OX(mH))

are surjective for all m > 0.

Proof. Take any integer m, and consider the twist

0→ OP(W )(m− 7)→ OP(W )(m− 5)⊕6 → OP(W )(m− 4)⊕5 ⊕ OP(W )(m− 3)⊕5

→ OP(W )(m− 2)⊕6 → OP(W )(m)→ OX(mH)→ 0

by O(m) of the resolution (2.4). We want to show that the map on global sections induced by
the rightmost map is surjective. This holds because, P(W ) being a projective space of dimen-
sion n + 4 > 5, the cohomology spaces H1(P(W ),OP(W )(m − 2)), H2(P(W ),OP(W )(m − 3)),
H2(P(W ),OP(W )(m − 4)), H3(P(W ),OP(W )(m − 5)), and H4(P(W ),OP(W )(m − 7)) all van-
ish.

Proposition 2.15. Let (X,H) be a normal polarized variety of dimension n > 2 such that
KX = −(n−2)H and H1(X,OX) = 0. If there is a hypersurface X ′ ⊂ X in the linear system |H|
such that (X ′, H|X′) is a normal polarized GM variety, (X,H) is also a polarized GM variety.

Proof. Let us verify the conditions of Theorem 2.3. Condition (a) is true by our assumptions,
since Hn = H ·Hn−1 = (H|X′)n−1 = 10. Furthermore, X ′ is projectively normal by Lemma 2.14.
Using [Isk77, Lemma 2.9], we conclude that X is also projectively normal. Since H is ample, it
is very ample by [Mum70, § 1, p. 38]. The exact sequence

0→ OX → OX(H)→ OX′(H)→ 0

and the assumption H1(X,OX) = 0 imply

h0(X,OX(H)) = h0(X ′,OX′(H)) + 1 = n+ 5 .

This proves condition (b), and [Isk77, Lemma 2.10] proves condition (c). Finally, since UX′ is
simple (because X ′ is a GM variety), the argument from the proof of Theorem 2.3(d) proves
that UX is also simple.

Theorem 2.16. Let X be a normal, locally factorial, complex projective variety of dimension
n > 1, with terminal singularities and codim(Sing(X)) > 4, together with an ample Cartier
divisor H such that KX ∼lin−(n− 2)H and Hn = 10. If we assume that

• when n > 3, we have Pic(X) = ZH;

• when n = 2, the surface X is a Brill–Noether general K3 surface;

• when n = 1, the genus 6 curve X is Clifford general;

then X is a GM variety.

We will prove a partial converse to these statements in Lemma 2.29 below.

To prove the theorem, we verify that a general hyperplane section of X satisfies the same
conditions, then use induction on n.

Lemma 2.17. Let X be a normal complex projective variety of dimension n > 3 with terminal
singularities, codim(Sing(X)) > 4, and with an ample Cartier divisor H such that Hn = 10 and
KX ∼lin−(n− 2)H.
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The linear system |H| is very ample, and a general X ′ ∈ |H| satisfies the same conditions as X:
the variety X ′ is normal with terminal singularities, codim(Sing(X ′)) > 4 and, if H ′ := H|X′ ,
we have (H ′)n−1 = 10 and KX′ ∼lin−(n− 3)H ′.

Proof. By [Ale91, Proposition 1-1], the linear system |H| is non-empty, and by [Mel99, Re-
mark 2.6], a general X ′ ∈ |H| is normal with terminal singularities. Moreover, (H ′)n−1 = 10 and,
by the adjunction formula,

KX′ = (KX +H)|X′ ∼lin−(n− 3)H|X′ .

Since X has terminal singularities, we have H1(X,OX) = 0 by the Kawamata–Viehweg vanishing
theorem; hence the linear series |H ′| is just the restriction of |H| to X ′, and the base loci of |H|
and |H ′| are the same. Taking successive linear sections, we arrive at a linear section Y of
dimension 3 with terminal singularities, KY ∼lin−HY , and H3

Y = 10.

Assume that some x ∈ Sing(X) is in the base locus of |H|. That point x is then on X ′, and,
since a Cartier divisor is necessarily singular at a singular point of the ambient variety, x is also
singular on X ′. Repeating that argument, we see that x is singular on the threefold Y and still
a base point of |HY | = |H||Y . Again, all divisors in |HY | are singular at x; hence we are in one
of the two cases described in [Mel99, Theorem 2.9]. Since H3

Y 6= 10 in both of these cases, we
get a contradiction. Therefore, Sing(X) ∩Base(|H|) = ∅; hence, by Bertini’s theorem, Sing(X ′)
still has codimension at least 4 in X ′ and eventually, Y is smooth.

If Pic(Y ) = ZHY , the pair (Y,HY ) is projectively normal by [IP99, Corollary 4.1.13]. If not,
we use the Mori–Mukai classification of smooth Fano threefolds Y with Picard number at least 2
([MM83], [IP99, Chapter 12]) and see that there is only one family with anticanonical degree 10:
Y must be a divisor of bidegree (3, 1) in P3 × P1, and the pair (Y,HY ) is again projectively
normal.

A repeated use of [Isk77, Lemma 2.9] then implies that in all cases, (X,H) is projectively
normal; hence H is very ample by [Mum70, § 1, p. 38].

Lemma 2.18. Let (X,H) be a polarized complex variety of dimension n > 2 which satisfies the
hypotheses of Theorem 2.16. A general element of |H| then satisfies the same properties.

Proof. First, assume n > 3. By Lemma 2.17, we only need to prove that a general X ′ ∈ |H| is
locally factorial and that Pic(X ′) is generated by H ′ := H|X′ . Let Cl(X) be the group of Weil
divisors on X, modulo linear equivalence. Since |H| is very ample (Lemma 2.17), restriction of
divisors induces, by [RS06, Theorem 1], an isomorphism

Cl(X) ∼−→Cl(X ′) .

Since X is normal and locally factorial, the canonical inclusion ZH = Pic(X) ↪→ Cl(X) is an
isomorphism. It follows that the canonical inclusion Pic(X ′) ↪→ Cl(X ′) is also an isomorphism;
that is, X ′ is locally factorial and Pic(X ′) is generated by H ′.

When n = 2, the varietyX is a smooth Brill–Noether general K3 surface with a polarizationH
of degree 10; hence a general element of |H| is a smooth Clifford general curve of genus 6.

When n = 3, the variety X is a smooth Fano threefold with Pic(X) ' Z. By [IP99, Corol-
lary 4.1.13], it is an intersection of quadrics. Any smooth hyperplane section S of X is a degree 10
smooth K3 surface which is still an intersection of quadrics. A general hyperplane section of S
is still an intersection of quadrics, hence is a Clifford general curve. This proves that S is Brill–
Noether general.
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We can now prove Theorem 2.16.

Proof of Theorem 2.16. We use induction on n. The case n = 1 was proved in Proposition 2.12,
so we assume n > 2. A general hyperplane section X ′ of X has the same properties as X by
Lemma 2.18, hence is a GM variety by the induction hypothesis. On the other hand, we have
H1(X,OX) = 0: this follows from the Kawamata–Viehweg vanishing theorem for n > 3 and from
the fact that X is a K3 surface for n = 2. By Proposition 2.15, we conclude that X is a GM
variety.

Remark 2.19. If we relax the conditions on the Picard group or on the singularities of X, the
conclusion of Theorem 2.16 may be false. Indeed, a general divisor of bidegree (3, 1) in P3 ×P1

is an example of a smooth Fano threefold of coindex 3 and degree 10 which is not an intersec-
tion of quadrics. Further counterexamples can be found in [PCS05]: one is the threefold T7 in
Theorem 1.6 of that article, which can be defined as the anticanonical image of the blow-up of
a quartic double solid in a line [PCS05, Example 1.11]. It has one ordinary double point, hence
has terminal Gorenstein singularities, but is not locally factorial because it is the image of a non-
trivial small contraction. Its Picard number is 1, and |−KT7 | is very ample of degree 10 and
projective dimension 7, but T7 is not an intersection of quadrics. In particular, the conclusion of
Theorem 2.16 is definitely false for it.

2.4 Grassmannian hulls

We fix some more terminology and notation. Given a normal polarized GM variety (X,H) of
dimension n, we consider the GM data set (W,V6, V5, L, µ,q, ε) constructed in Lemma 2.7 and
define the Grassmannian hull of X by

MX :=
⋂
v∈V5

Q(v) = CKGr(2, V5) ∩P(W ) ,

where the second equality is (2.9). Since dim(X) = n, the intersection CKGr(2, V5) ∩ P(W ) is
dimensionally transverse and MX is a variety of degree 5 and dimension n+ 1, defined over the
field k. Moreover, by Lemma 2.8, we have

X = MX ∩Q(v)

for any v ∈ V6 r V5. Since X is irreducible, so is MX .

When µ is not injective, the Grassmannian hull is a cone. It is convenient to consider also
the dimensionally transverse intersection

M ′X := Gr(2, V5) ∩P(µ(W )) .

In terms of M ′X , the structure of a GM variety can be described as follows.

Lemma 2.20. Let X be a GM variety with associated GM data (W,V6, V5, L, µ,q, ε). Denote
K := Ker(µ) and k := dim(K), choose v ∈ V6 r V5, and set Q := Q(v).

(a) If k = 0, we have X = M ′X ∩Q.

(b) If k > 0, let X̃ be the blow-up of X with center P(K) ∩Q ⊂ X. The map µ then induces
a regular map µ̃ : X̃ →M ′X which is generically a (k−1)-dimensional quadric bundle if P(K) 6⊂ Q
or a Pk−1-bundle if P(K) ⊂ Q.

Proof. The first part is evident, since M ′X = MX when K = 0. For the second part, note that the
blow-up of the cone MX = CK(M ′X) at its vertex P(K) is a Pk-bundle over M ′X . The blow-up
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of X along X ∩P(K) = P(K) ∩Q(v) is the same as the proper preimage of X. In particular, it
comes with a regular map X̃ →M ′X .

If P(K) 6⊂ Q, the proper preimage coincides with the total preimage. Hence its fibers are
intersections Pk ∩ Q; that is, generically, they are quadrics of dimension k − 1. If P(K) ⊂ Q,
the general fiber of the total preimage of X is a quadric Q ∩Pk which contains the hyperplane
P(K) = Pk−1. Therefore, the general fiber of the proper preimage is the residual hyperplane.

Later on, we will give more details for the case k = 1 and P(K) 6⊂ Q.

In this article, we are mostly interested in the case of smooth GM varieties. However, for
many questions, the condition codim(Sing(X)) > 4 is almost as good as smoothness. Keeping
in mind possible applications of singular GM varieties, we keep the above assumption as long as
possible.

Lemma 2.21. Let (W,V6, V5, L, µ,q, ε) be a GM data set of dimension n. If the associated GM
intersection (2.8) is a GM variety X of dimension n with codim(Sing(X)) > 4, we have

dim(µ(W )) > min{7, n+ 4} .

Proof. As in the proof of Lemma 2.8, we can write X as in (2.1) with K = Ker(µ). Then, P(K)
is contained in the singular locus of CKGr(2, V5)∩P(W ); hence P(K)∩Q(v) is contained in the
singular locus of X. It has dimension at least (n + 5) − r − 2 = n + 3 − r, where r := rank(µ).
Thus the condition codim(Sing(X)) > 4 implies that either n+ 3− r < 0 or n+ 3− r 6 n− 4.
The first is equivalent to r > n+ 4 and the second to r > 7.

Proposition 2.22. Let X be a GM variety of dimension n with codim(Sing(X)) > 4. If n > 3
or Ker(µ) 6= 0, the variety M ′X is smooth. Otherwise (if n 6 2 and Ker(µ) = 0), the variety M ′X
is equal to MX and has finitely many rational double points.

Proof. We begin with a useful observation. Let W0 ⊂
∧

2V5 be a linear subspace. Assume that
M ′ := Gr(2, V5) ∩ P(W0) is a dimensionally transverse intersection. Viewing elements of the
orthogonal complement W⊥0 ⊂

∧
2V5
∨ as skew-symmetric forms on V5, one has (see, for example,

[PvdV99, Corollary 1.6])

Sing(M ′) = P(W0) ∩
⋃

ω∈W⊥
0 r{0}

Gr(2,Ker(ω)) . (2.10)

If dim(W0) = 10, then M ′ = Gr(2, V5) is smooth. If dim(W0) = 9, either a generator ω of W⊥0
has rank 2 and Sing(M ′) is a 2-plane, or else M ′ is smooth. If dim(W0) = 8, either some
ω ∈ W⊥0 has rank 2, in which case Gr(2,Ker(ω)) is a 2-plane contained in the hyperplane ω⊥,
whose intersection with P(W0) therefore contains a line along which M ′ is singular, or else M ′

is smooth. Finally, if dim(W0) 6 7, we have dim(M ′) 6 3. It follows that in all cases, either M ′

is smooth or codim(Sing(M ′)) 6 3.

Now, let X be a GM variety such that M ′X is singular. By the above observation, we have
codim(Sing(M ′X)) 6 3. Since X = CKer(µ)M

′
X ∩Q(v) for any v ∈ V6 r V5 (see Remark 2.10) and

codim(Sing(X)) > 4, the only possibility is that Q(v) does not intersect the cone over Sing(M ′X).
As Q(v) is an ample hypersurface, this is only possible if Ker(µ) = 0 and Sing(M ′X) is finite. In
this case, M ′X = MX has dimension 2 or 3; hence n 6 2, so we are in the second case of the
proposition.

It remains to show that in that case, the only singularities of MX are rational double points.
If n = 1, we have dim(W ) = 6 and MX = Gr(2, V5) ∩ P(W ) is a normal surface (it is lci
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with finite singular locus). The restriction map H0(P(W ),OP(W )(1)) → H0(MX ,OMX
(1)) is

bijective, since its composition with the injectionH0(MX ,OMX
(1))→ H0(X,OX(1)) is. It follows

that MX is linearly normal. If it is a cone with vertex w, it is contained in Gr(2, V5)∩TGr(2,V5),w

(intersection with a tangent space), which is a 4-dimensional cone with vertex w and span
TGr(2,V5),w ' P6. Since MX spans the 5-dimensional P(W ), it is a hyperplane section of this
cone, but this contradicts the fact that MX is a surface.

So the quintic surface MX is not a cone; hence it is a del Pezzo surface [Dol12, Proposi-
tion 8.1.6 and Definition 8.1.5]. This implies that the singularities of MX are rational double
points [Dol12, Theorem 8.1.11].

When n = 2, the singular points of the threefoldMX are rational double points, since a general
hyperplane section through such a point has this property, by the case n = 1.

Remark 2.23. Given a general singular linear section M ′ of Gr(2, V5) of dimension n+ 1 > 4, one
checks that a general quadratic section of M ′ is singular in codimension 3 and its singularities
are canonical but not terminal.

The following elementary result is useful for checking that Grassmannian hulls are smooth,
dimensionally transverse intersections.

Proposition 2.24. Let W0 ⊂
∧

2V5 be a linear subspace. Set M := Gr(2, V5) ∩ P(W0) and
M ] := Gr(2, V ∨5 ) ∩ P(W⊥0 ). Then M is a smooth, dimensionally transverse intersection if and
only if M ] has the same property. In that case, if moreover both M and M ] are non-empty, one
has dim(M) + dim(M ]) = 2.

Proof. The scheme M is a smooth, dimensionally transverse intersection at a point w ∈ M
if and only if TGr(2,V5),w and P(W0) span P(

∧
2V5). This is not the case exactly when there

exists a hyperplane H ⊂ P(
∧

2V5) containing both TGr(2,V5),w and P(W0). The pair (w,H) then
belongs to the incidence variety of Gr(2, V5), whose projective dual is Gr(2, V ∨5 ). It follows that
the point H⊥ ∈ P(

∧
2V ∨5 ) is in Gr(2, V ∨5 ) and that the hyperplane w⊥ contains TGr(2,V5),H⊥ .

Since w ∈ P(W0), we also have w⊥ ⊃ P(W⊥0 ), so that M ] = Gr(2, V ∨5 )∩P(W⊥0 ) is not a smooth,
dimensionally transverse intersection at H⊥.

Remark 2.25. Let X be a GM variety of dimension n > 3 with codim(Sing(X)) > 4. By
Lemma 2.21, we have dim(µ(W )) > 7. By Proposition 2.22, the variety M ′X is smooth of di-
mension 6− codim(µ(W )) > 3. Proposition 2.24 therefore says that (M ′X)] is empty (that is, the
space µ(W )⊥ ⊂

∧
2V ∨5 contains no forms of rank 2).

For smooth GM curves, (M ′X)] is never empty. For smooth GM surfaces, (M ′X)] may be
non-empty. We finish this subsection with a discussion of these two cases.

Let X be a smooth GM curve. As we will explain in more detail in Section 2.5, either M ′X is
a smooth elliptic quintic curve in P(µ(W )) = P4, there is a double cover X → M ′X (so that X
is bielliptic), MX is the cone over M ′X and (M ′X)] is isomorphic to M ′X , or else MX = M ′X is
a quintic del Pezzo surface in P(µ(W )) = P5.

Mukai remarked [Muk93, Theorem 5.1(2)] that (M ′X)] has a simple geometric interpretation
as the set of all g1

4, that is, movable linear systems of degree 4 on X. This allows us to recover
a classical result without appealing to the description of del Pezzo quintics as blow-ups of the
projective plane (compare with [She89, Proposition 4]).
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Proposition 2.26. Let X be a smooth complex GM curve. The Grassmannian hull MX is
smooth; that is, X is the intersection of a smooth quintic del Pezzo surface with a quadric, if
and only if X has exactly five distinct g1

4.

Proof. As we just explained, X is the intersection of a smooth quintic del Pezzo surface with
a quadric if and only if M ′X is a smooth (quintic) surface. By Proposition 2.24, this is the
case if and only if (M ′X)] is a smooth scheme of dimension 0. On the other hand, the scheme
W 1

4 (X) parametrizing the g1
4 on X either is infinite, in which case X is bielliptic, or has length 5.

The proposition therefore follows from Mukai’s remark [Muk93, Theorem 5.1(2)] that there is
a bijection between the sets (M ′X)] and W 1

4 (X).

Let (X,H) be a smooth GM surface. As in the case of curves, M ′X may be singular. By
Proposition 2.22, this may happen only when µ is injective. By Proposition 2.24, the variety
MX = M ′X is then a singular threefold and (M ′X)] is non-empty. This has strong consequences
for X.

More precisely, one can show that (M ′X)] is non-empty if and only if the Gushel bundle can
be written over C as an extension

0→ OXC
(−h2)→ UXC

→ OXC
(−h1)→ 0 ,

where h1 and h2 are divisors on XC such that

h2
1 = 0 , h1h2 = 4 , h2

2 = 2 , h1 + h2 = H

(compare with [GLT15, Lemma 1.5]). In particular, the Picard number of XC must be strictly
greater than 1.

2.5 Locally complete intersection GM varieties

In the rest of the article, we mostly deal with GM varieties which are lci. This condition can be
described in terms of GM data sets.

Definition 2.27. A GM data set (W,V6, V5, L, µ,q, ε) is called lci if

• either Ker(µ) = 0, in which case the data set is called ordinary ;

• or dim(Ker(µ)) = 1 and the point of P(W ) corresponding to the subspace Ker(µ) ⊂ W
does not lie on the quadric Q(v) for any v ∈ V6 r V5, in which case the data set is called
special.

Proposition 2.28. A normal GM variety is lci if and only if its canonically associated GM data
set is lci. In particular, a normal lci GM variety can be written in the form (2.1) with dim(K) = 1.

Proof. Since Gr(2, V5) is not a complete intersection, the non-lci locus of the cone CKGr(2, V5)
is precisely its vertex P(K). Since a GM variety X is a dimensionally transverse intersection
(see (2.1)), it is lci if and only if it does not contain points of P(K), that is, if and only if
X∩P(K) = P(Ker(µ))∩Q(v) is empty. The latter condition can be rephrased as dim(Ker(µ)) 6 1
and in case of equality, the corresponding point is not in Q(v).

The next lemma will usually be applied to smooth GM varieties, but as usual we prove it
under a weaker assumption. In this form, it is a partial converse to Theorem 2.16.

Lemma 2.29. Let (X,H) be an lci polarized complex GM variety of dimension n > 3. If
codim(Sing(X)) > 4, the variety X is locally factorial and Pic(X) = ZH. In particular, the
polarization H is the unique GM polarization on X; hence AutH(X) = Aut(X).
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Proof. By [Gro05, XI, corollaire 3.14], the variety X is locally factorial. It remains to show that
Pic(X) = ZH. First, assume n = 3, so that X is smooth. By Theorem 2.3, the variety X is
a Fano variety of degree 10 and is an intersection of quadrics. As we already mentioned in the
proof of Lemma 2.17, the only Fano threefold of degree 10 and Picard number greater than 1
is not an intersection of quadrics. This proves the claim for n = 3. When n > 3, we proceed
by induction: a general hyperplane section X ′ of X satisfies the same properties and restriction
induces an injection Pic(X) ↪→ Pic(X ′) [Gro05, XII, corollaire 3.6].

For any lci GM variety X, the Gushel sheaf UX is locally free (we will call it the Gushel
bundle) and the Gushel map X → Gr(2, V5) is regular. Moreover, we are in exactly one of the
following cases:

• The map µ : W →
∧

2V5 is injective, the Gushel map is a closed embedding, we have
MX = M ′X , and (2.1) can be rewritten as

X = Gr(2, V5) ∩P(W ) ∩Q(v) ,

so that X is a quadratic section of MX . These GM varieties will be called ordinary. For these
varieties,

dim(X) = dim(W )− 5 6 dim
(∧

2V5

)
− 5 = 5 .

• The kernel of µ has dimension 1, the Gushel map induces a double covering X �M ′X , and
MX = CM ′X . These GM varieties will be called special. For these varieties,

dim(X) = dim(W )− 5 6 dim
(∧

2V5

)
+ 1− 5 = 6 .

A special GM variety comes with a canonical involution: the involution of the double covering
X �M ′X .

Let us make an observation. Let (W,V6, V5, L, µ,q, ε) be an lci GM data set, and set

W1 := Ker(µ) ⊂W , W0 := W/W1 . (2.11)

Furthermore, let µ0 : W0 ↪→
∧

2V5 be the embedding induced by µ.

Proposition 2.30. For any lci GM data set (W,V6, V5, L, µ,q, ε), there is a unique splitting of
the canonical exact sequence 0→W1 →W →W0 → 0, that is, a direct sum decomposition

W = W0 ⊕W1 , (2.12)

such that the map q decomposes as

q = q0 + q1 , where q0 : V6 → S2W∨0 and q1 : V6 → S2W∨1 . (2.13)

Proof. If the data set is ordinary, we have W1 = 0 and W0 = W , and there is nothing to prove.
If W1 is non-zero, it is 1-dimensional. Let w1 ∈ W1 be any non-zero vector, and choose an
arbitrary v ∈ V6 r V5. Since the data set is lci, the quadric Q(v) does not pass through the
point w1 ∈ W1; hence the linear form q(v)(w1,−) ∈ W∨ does not vanish on w1 and gives a
decomposition W = W0 ⊕ W1 such that q(v) ∈ S2W∨0 ⊕ S2W∨1 ⊂ S2W∨. By (2.7), we have
q(V5) ⊂ S2W∨0 ; hence the decomposition of W does not depend on the choice of v, and the
image of q is contained in S2W∨0 ⊕ S2W∨1 ⊂ S2W∨. We let q0 and q1 be the summands of q
corresponding to this direct sum decomposition.

Remark 2.31. One can prove the same result as in Proposition 2.30 after replacing the lci con-
dition by the assumption that for v /∈ V5, the restriction to W1 := Ker(µ) ⊂W of the quadratic
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form q(v) is non-degenerate (this assumption does not depend on the choice of v). The proof is
the same: W0 is defined as the orthogonal of W1 in W with respect to q(v).

Corollary 2.32. Let (X,H) be a normal, lci, polarized GM variety. The kernel of the canonical
morphism AutH(X) → PGL(V6) is trivial if X is ordinary and is generated by the canonical
involution of X if X is special.

Proof. By Corollary 2.11, the group AutH(X) is a quotient of the group

Aut(W,V6, V5, L, µ,q, ε) ⊂ GL(W )×GL(V6)×Gm

of automorphisms of its associated GM data set. Such an automorphism g = (gW , gV , gL) maps
to the identity in PGL(V6) if its component gV is scalar. Its actions on V5, on

∧
2V5, and hence

on W0 ⊂
∧

2V5, are then also scalar. For ordinary varieties X ⊂ P(W0), the action of such a g
on X is therefore trivial.

For special varieties, since the direct sum decomposition W = W0 ⊕W1 is canonical, it is
preserved by gW , and since W1 is 1-dimensional, gW acts by multiplication on each summand, by
scalars t0 and t1. Then g acts by multiplication by t−2

0 on S2W∨0 and by t−2
1 on S2W1. Since the

map q : V6 → S2W∨0 ⊕ S2W∨1 commutes with the action of g, and the action of g on V6 is scalar,
we get t−2

0 = t−2
1 . Thus t1 = ±t0; hence g acts on P(W ) either identically or by a reflection with

respect to P(W0), that is, by the canonical involution of X.

For a special GM variety X of dimension n > 2, the branch locus X ′ of the Gushel map
X �M ′X is the dimensionally transverse intersection of M ′X with a quadric, so it is an ordinary
GM variety. This leads to an important birational operation on the set of all GM varieties:
interchanging ordinary and special varieties. We formulate this operation on the level of GM
data.

Lemma 2.33. If (W,V6, V5, L, µ,q, ε) is a special lci GM data set, (W0, V6, V5, L, µ0,q0, ε) is an
ordinary lci GM data set.

Conversely, let (W0, V6, V5, L, µ0,q0, ε) be an ordinary lci GM data set. Let W1 be a 1-
dimensional vector space, choose an isomorphism V6/V5 ' S2W∨1 , and let q1 be the composition
V6 → V6/V5 → S2W∨1 . Then (W0 ⊕W1, V6, V5, L, µ0,q0 + q1, ε) is a special lci GM data set.

If the field k is quadratically closed, that is, if k = k1/2, these operations define a bijection
between the sets of isomorphism classes of special and ordinary GM data sets, respectively.

Proof. The first part is obvious. For the second part, note that different choices of an isomorphism
V6/V5 ' S2W∨1 produce isomorphic GM data sets (via the isomorphism defined by gV = idV ,
gW = idW0 +

√
t idW1 , gL = idL for an appropriate t ∈ k).

When k = k1/2, this bijection can be interpreted as a bijection between isomorphism classes
of special and ordinary lci GM varieties. We will denote by Xord the ordinary lci GM intersection
associated with a given special lci GM variety X and by Xspe the special lci GM intersection
associated with a given ordinary lci GM variety X. We define the opposite Xopp of an lci GM
variety X by

Xopp :=

{
Xord if X is special,

Xspe if X is ordinary.
(2.14)
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3. GM varieties, Lagrangian data sets, and EPW sextics

Eisenbud–Popescu–Walter (EPW) sextics are special hypersurfaces of degree 6 in P(V6) which
can be constructed from Lagrangian subspaces A ⊂

∧
3V6. The definition and main properties of

EPW sextics can be found in Appendix B. A relation between GM varieties and EPW sextics
was found in [IM11]. In this section, we develop the approach of Iliev and Manivel and extend
their construction to include both ordinary and special varieties.

3.1 The discriminant locus

The easiest way to relate an EPW sextic to a GM variety is via the discriminant locus. Let (X,H)
be a normal polarized GM variety of dimension n as in Definition 2.1. By Theorem 2.3, the
space V6 of quadrics in P(W ) containing X is 6-dimensional. We define D̃isc(X) as the sub-
scheme of P(V6) of singular quadrics containing X. It is either P(V6) or a hypersurface of degree

dim(W ) = n+ 5, and in the latter case, the multiplicity in D̃isc(X) of the hyperplane P(V5) of
(restrictions of) Plücker quadrics is at least the corank of a general such quadric, which is at least

dim(W )− 6 = n− 1. We define the discriminant locus Disc(X) as follows: if D̃isc(X) = P(V6),
we set Disc(X) = P(V6); otherwise (and we will see in Corollary 3.19 that this is almost always
the case), we set

Disc(X) := D̃isc(X)− (n− 1)P(V5) . (3.1)

This is a sextic hypersurface in P(V6).

Theorem 3.1 (Iliev–Manivel). Let X be a general (smooth and ordinary) complex GM variety
of dimension n ∈ {3, 4, 5}. The discriminant locus Disc(X) ⊂ P(V6) is an EPW sextic.

The result is proved in [IM11, Proposition 2.1 and Lemma 2.2] for general GM fivefolds by
explicitly constructing a Lagrangian A ⊂

∧
3V6 such that Disc(X) = YA (see also [OGr08a,

Proposition 2.18]). This construction extends to general GM varieties of dimensions 3, 4, and 5
[IM11, Proposition 2.4]. In the next section, we present a version of this construction which works
better in families and allows us to treat at the same time both ordinary and special GM varieties.
In particular, in Proposition 3.18, we give an extension of Theorem 3.1.

For the time being, we examine the discriminant locus of GM curves and relate the discrim-
inant locus of a GM variety to that of its opposite as defined in (2.14).

Proposition 3.2. Let X be a smooth GM curve. The discriminant locus Disc(X) is a reduced
sextic hypersurface and

• if X is ordinary, Disc(X) is geometrically integral and normal;

• if X is special (that is, bielliptic), Disc(X) is the union of the Plücker hyperplane P(V5)
and a geometrically integral quintic hypersurface.

Proof. We may assume k = C. A local calculation shows that the Zariski tangent space to
D̃isc(X) at a point corresponding to a quadric Q ⊂ P(W ) ' P5 containing X has dimension
greater than 4 if and only if

(a) either Q has corank 1 but its vertex is on X;

(b) or else Q has corank > 2 (hence rank 6 4).

Case 1: The curve X is ordinary. In case (a), the quadric Q must be a Plücker quadric,
because otherwise, X would be equal to MX ∩Q and would be singular at the vertex of Q. But
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corank 1 quadrics with vertex at w ∈ X are in one-to-one correspondence with smooth quadrics
containing the projection of MX from w. This projection is a del Pezzo surface of degree 4, hence
is the base locus of a pencil of quadrics in P4. Therefore, these quadrics form an open subset in
a ruled surface with base X.

We now examine case (b). The locus of quadrics of rank at most 4 containing X was studied
extensively in [AH81]. It contains five 2-planes (one for each g1

4 on X, counted with multiplicities;
[AH81, (5.10)]) of Plücker quadrics and one more irreducible surface which comes from the
singular points of the theta divisor of the Jacobian of X, that is, from the g1

5 on X.

All in all, this proves that the singular locus of Disc(X) has dimension 2. It follows that
Disc(X) is an integral normal sextic hypersurface.

Case 2: The curve X is bielliptic. In case (a), the quadric Q must again be a Plücker
quadric. It is then also singular at the vertex of MX , hence cannot be of corank 1. So case (a) is
impossible.

Plücker quadrics are all singular at the vertex and have general corank 1; hence P(V5) is
a reduced component of Disc(X). Write Disc(X) = P(V5)+D, where D is a quintic hypersurface
not containing P(V5). Then Sing(Disc(X))∩P(V5) = P(V5)∩D corresponds to singular quadrics
containing the quintic elliptic curve M ′X , and this was proved [AH81, discussion above (5.6)] to
be an integral quintic hypersurface. It follows that D is also an integral quintic hypersurface.

Lemma 3.3. Let X be a special lci GM variety with associated ordinary variety Xord. Then
Disc(X) = Disc(Xord).

Proof. Let (V6, V5, L,W, µ,q, ε) be the GM data associated with X. Let W = W0 ⊕W1 be the
canonical direct sum decomposition of Proposition 2.30, and let q = q0+q1 be the decomposition
of q. By Lemma 2.33, the ordinary GM variety Xord is determined by q0 : V6 → S2W∨0 . In
particular, the rank of q(v) is the sum of the ranks of q0(v) and q1(v). By Lemma 2.33, the
map q1 vanishes on V5 and induces an isomorphism V6/V5 ' S2W∨1 . Therefore, the rank of q(v)
equals the rank of q0(v) for Plücker quadrics, and increases by 1 for non-Plücker quadrics, which
means that the corank of Plücker quadrics increases by 1, and the corank of non-Plücker quadrics
stays the same. This shows the lemma.

3.2 GM data and Lagrangian data

In this section, we construct, following [IM11], a bijection between the set of lci GM data and
the set of what we call (extended) Lagrangian data.

Consider a 6-dimensional vector space V6, and endow the space
∧

3V6 with the canonical
det(V6)-valued symplectic form given by the wedge product.

Definition 3.4. A Lagrangian data set is a collection (V6, V5, A), where

• V6 is a k-vector space of dimension 6,

• V5 ⊂ V6 is a hyperplane,

• A ⊂
∧

3V6 is a Lagrangian subspace.

An isomorphism of Lagrangian data sets between (V6, V5, A) and (V ′6 , V
′

5 , A
′) is a linear isomor-

phism ϕ : V6
∼−→V ′6 such that ϕ(V5) = V ′5 and (

∧
3ϕ)(A) = A′.

A natural extension of the Iliev–Manivel construction gives a bijection between the set of
isomorphism classes of Lagrangian data sets and the set of isomorphism classes of ordinary
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GM data sets. Using the bijection of Lemma 2.33, one can also use Lagrangian data sets to
parameterize all special GM data sets. However, to deal simultaneously with ordinary and special
GM varieties, one needs a generalization of the Iliev–Manivel construction. We suggest such a
generalization; it uses an additional Lagrangian subspace which encodes the type of a GM variety.

To lighten the notation (and for forward compatibility), we set

L := (V6/V5)∨ (3.2)

and endow the space k ⊕ L with the canonical L-valued symplectic form. Note that the group
GL(L) ' Gm acts naturally on the Lagrangian Grassmannian LGr(k⊕ L) ' P1.

Definition 3.5. An extended Lagrangian data set is a collection (V6, V5, A,A1), where (V6, V5, A)
is a Lagrangian data set and A1 ⊂ k⊕ L is a Lagrangian subspace.

An isomorphism of extended Lagrangian data sets between (V6, V5, A,A1) and (V ′6 , V
′

5 , A
′, A′1)

consists of an isomorphism between (V6, V5, A) and (V ′6 , V
′

5 , A
′) and an element t ∈ Gm such that

t(A1) = A′1.

The GL(L)-action on the line LGr(k⊕L) ' P1 has three orbits. To simplify the notation, we
choose a coordinate on this line such that

• the subspace k ⊂ k⊕ L corresponds to the point {∞} ∈ P1;

• the subspace L ⊂ k⊕ L corresponds to the point {0} ∈ P1.

The points {0} and {∞} are two of the GL(L)-orbits, and the point {1} ∈ P1 is in the third
orbit. To simplify the notation, we will sometimes write A1 =∞, A1 = 0, and A1 = 1 instead of
A1 = k, A1 = L, and A1 6= k, L, respectively.

Theorem 3.6. For any field k, there is a functor (defined in the proof) from the groupoid of lci
GM data sets to the groupoid of Lagrangian data sets. It induces a bijection between the set of
isomorphism classes of ordinary GM data sets and the set of isomorphism classes of Lagrangian
data sets.

If k is quadratically closed, the functor extends to a bijection between the set of isomorphism
classes of lci GM data sets and the set of isomorphism classes of extended Lagrangian data sets
with A1 6=∞.

Remark 3.7. The construction of GM data sets can also be applied to Lagrangian data sets
with A1 = ∞; however, the GM data set obtained from this is not lci, and the lci condition is
crucial for the inverse construction, since we need the canonical decomposition W = W0⊕W1 of
Proposition 2.30.

Before describing the construction, we need one more piece of notation. The canonical pro-
jection

λ : V6 → V6/V5 = L∨

defines, by the Leibniz rule, for all p > 1, maps λp :
∧
pV6 →

∧
p−1V5 ⊗ L∨. They fit into exact

sequences

0→
∧
pV5 ↪→

∧
pV6

λp−−−→
∧
p−1V5 ⊗ L∨ → 0 .

Proof of Theorem 3.6. We start by explaining how to construct a GM data set from an extended
Lagrangian data set. After that, we explain the inverse construction and discuss its functoriality.
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Let (V6, V5, A,A1) be an extended Lagrangian data set. We use the notation (3.2), and we
choose an arbitrary isomorphism

ε : det(V5)
∼−−→ L⊗2 .

Consider the maps

A ↪−→
∧

3V6
λ3−�
∧

2V5 ⊗ L∨ ,

A1 ↪−→ k⊕ L
pr1−� k .

Let W0 and W1 be their respective images, so that we have canonical factorizations

A −�W0
µ0
↪−→

∧
2V5 ⊗ L∨ ,

A1 −�W1
µ1
↪−→ k

(defining the maps µ0 and µ1). We set

W = W0 ⊕W1 , µ = µ0 ⊕ µ1 .

We have, by definition,

Ker(A�W0) = A ∩
∧

3V5 , Ker(A1 �W1) = A1 ∩ L .

It remains to define the map q : V6 → S2W∨. For this, we first define

q̃0 : V6 ⊗ S2A→ k , q̃0(v)(ξ1, ξ2) := −ε(λ4(v ∧ ξ1) ∧ λ3(ξ2)) ,

q̃1 : V6 ⊗ S2A1 → k , q̃1(v)(x1, x
′
1, x2, x

′
2) := λ(v)x1x

′
2 .

It is not immediately clear that q̃0(v) and q̃1(v) are symmetric in their arguments; we will show
later that this follows from the Lagrangian property of A and A1, so the above definition makes
sense.

For each v ∈ V6 and i ∈ {0, 1}, the kernel of the quadratic form q̃i(v) contains the kernel
of the projections A � W0 and A1 � W1. Indeed, if ξ2 ∈ A ∩

∧
3V5, we have λ3(ξ2) = 0;

hence q̃0(v)(ξ1, ξ2) = 0 for any ξ1 ∈ A. Analogously, if (x1, x
′
1) ∈ L, that is, x1 = 0, then

q̃1(v)(x1, x
′
1, x2, x

′
2) = 0 for any (x2, x

′
2) ∈ A1. This means that q̃i(v), considered as a map

S2A → k or S2A1 → k, factors through S2Wi and thus defines a quadratic form qi(v) ∈ S2W∨i .
We finally define

q = q0 + q1 : V6 → S2W∨0 ⊕ S2W∨1 ⊂ S2W∨ .

Let us show that (W,V6, V5, L, µ,q, ε) is a GM data set. It only remains to check that q is
symmetric (a fact which we already used a couple of times) and that the relation (2.7) holds.

For the symmetry of q, we use the Lagrangian-quadratic correspondence (see Appendix C).
We set V = V0 ⊕ V1 :=

∧
3V6 ⊕ (k⊕ L), a Z/2-graded vector space endowed with the L-valued

symplectic form

ω((ξ, x, x′), (η, y, y′)) = ε(λ6(ξ ∧ η)) + yx′ − xy′ . (3.3)

Take v /∈ V5, so that λ(v) 6= 0, and consider the Z/2-graded Lagrangian direct sum decomposition

V =
(∧

3V5 ⊕ L
)
⊕
((
v ∧

∧
2V5

)
⊕ k

)
. (3.4)

Since Â := A⊕A1 ⊂ V is another Z/2-graded Lagrangian subspace, the corresponding quadratic
form (as defined in Proposition C.1) evaluated on elements (ξ1, x1, x

′
1), (ξ2, x2, x

′
2) ∈ Â is

ω(pr1(ξ1, x1, x
′
1), pr2(ξ2, x2, x

′
2)) (its symmetry follows from the Lagrangian property of Â; see
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the proof of Proposition C.1). For the decomposition (3.4), the projections are given by

pr1(ξ1, x1, x
′
1) = (λ(v)−1λ4(v ∧ ξ1), x′1) ∈ (

∧
3V5)⊕ L ,

pr2(ξ2, x2, x
′
2) = (λ(v)−1v ∧ λ3(ξ2), x2) ∈ (v ∧

∧
2V5)⊕ k .

Substituting these into (3.3), we obtain the form q̃0 + q̃1 up to a rescaling by λ(v). It follows that
for v /∈ V5, the forms q̃i(v) and qi(v) are symmetric. By continuity, the same is true for v ∈ V5.
On the other hand, for v ∈ V5 (so that λ(v) = 0), we have q̃1(v) = 0 and

q̃0(v)(ξ1, ξ2) = −ε(λ4(v ∧ ξ1) ∧ λ3(ξ2)) = ε(v ∧ λ3(ξ1) ∧ λ3(ξ2)) .

By the definition of µ, this implies

q(v)(w1, w2) = q0(v)(w1, w2) = ε(v ∧ µ0(w1) ∧ µ0(w2)) ,

which proves (2.7) (and gives another proof of the symmetry of q(v) for v ∈ V5).

Let us also show that this GM data set is lci. We have W1 = 0 if A1 = L and W1 = A1

otherwise. But the quadratic form q̃1 on A1 is non-trivial unless A1 = L or A1 = k. So the only
case where W1 6= 0 and q1 = 0 simultaneously (the non-lci case) is the case A1 = k, which is
excluded from our consideration.

Finally, if we rescale ε by t ∈ k×, the map q0 will also be rescaled by t, while the other
data will not change. But the action of the element (ϕV , ϕW , ϕL) ∈ GL(V6)×GL(W )×GL(L)
defined by ϕV = t idV , ϕW = idW0 +

√
t idW1 , ϕL = t2idL precisely realizes such a rescaling (this

is the only place where we use the assumption k = k1/2; note, however, that it is unnecessary
if W1 = 0, that is, for ordinary GM data sets). This means that different choices of ε produce
isomorphic GM data sets.

We now explain the inverse construction. Let (W,V6, V5, L, µ,q, ε) be a GM data set. Let
W = W0⊕W1 and q = q0 + q1 be the canonical direct sum decompositions of Proposition 2.30.
Choose an arbitrary embedding

µ1 : W1 ↪→ k ,

consider the maps

V5 ⊗W ⊗ L
f1
//
∧

3V5 ⊕ L⊕ (V6 ⊗W ⊗ L)
f2
//

f3
��

W∨ ⊗ L

∧
3V6 ⊕ (k⊕ L) = V

(3.5)

defined by

f1(v ⊗ w ⊗ l) = (−v ∧ µ0(l ⊗ w), 0, v ⊗ w ⊗ l) ,
f2(ξ, x′, v ⊗ w ⊗ l)(w′) = ε(ξ ∧ µ0(w′)) + µ1(w′)⊗ x′ + q(v)(w,w′)⊗ l ,

f3(ξ, x′, v ⊗ w ⊗ l) = (ξ + v ∧ µ0(l ⊗ w), l ⊗ λ(v)µ1(w), x′) ,

(note that λ(v) ∈ V6/V5 = L∨, so l ⊗ λ(v) ∈ k), and define

Â := f3(Ker(f2)) ⊂ V .

We will check below that Â ⊂ V is a graded Lagrangian subspace.

We introduce gradings on the terms of (3.5) as follows. On the leftmost and the rightmost
terms, the grading is induced by the direct sum decomposition W = W0 ⊕W1; in the middle
column,

∧
3V5⊕ (V6⊗W0⊗L) and

∧
3V6 are the even parts, while L⊕ (V6⊗W1⊗L) and k⊕L
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are the odd parts. The gradings are preserved by all the maps. In particular, Â is a direct sum
Â = A⊕A1 with A ⊂ V0 =

∧
3V6 and A1 ⊂ V1 = k⊕ L.

Note that f2 ◦ f1 = 0 and f3 ◦ f1 = 0. The second equality is obvious, and the first follows
from q(v)(w,w′) = ε(v ∧ µ(w) ∧ µ(w′)) for all v ∈ V5 and w,w′ ∈ W , a reformulation of (2.7).
These equalities imply

Â = f3

(
Ker

(
Coker(f1)

f2−−→W∨
))
.

Since the third component of f1 is the natural embedding V5 ⊗W ⊗ L→ V6 ⊗W ⊗ L, choosing
a vector v0 ∈ V6 r V5 splits this map, and we can rewrite Â as the vector space fitting into the
exact sequence

0→ Â→
(∧

3V5 ⊕ L
)
⊕ (v0 ⊗W ⊗ L)→W∨ ⊗ L→ 0 , (3.6)

which coincides with the exact sequence (C.3), written for the Lagrangian decomposition (3.4)
with v = v0. Moreover, the embedding of Â into V induced by f3 coincides with the embedding
discussed in the line after (C.3). So Lemma C.2 proves that Â is Lagrangian.

Finally, we check how the constructed extended Lagrangian data set depends on the choice
of µ1. The even part (with respect to the Z/2-grading) of (3.5) does not depend on this choice,
hence the same is true for A. This shows that the constructed Lagrangian data set (V6, V5, A) does
not depend on choices and is functorial (an isomorphism of GM data sets induces an isomorphism
of the associated Lagrangian data sets).

On the other hand, a simple computation shows that A1 = L (that is, A1 corresponds to the
point 0 ∈ P1) if and only if W1 = 0; moreover, A1 = k (that is, A1 corresponds to the point
∞ ∈ P1) if and only if W1 6= 0 and q1 = 0 (which is the non-lci case); otherwise, A1 corresponds
to a point of P1 r {0,∞}. From this, it is clear that different choices of µ1 produce isomorphic
extended Lagrangian data sets.

The two constructions we explained are mutually inverse; this follows from Lemma C.2. This
proves the existence of a bijection (if the field k is quadratically closed) between the sets of
isomorphism classes of lci GM data sets and extended Lagrangian data sets .

It remains to show that for any field k, we have a bijection between the sets of isomorphism
classes of ordinary GM data sets and Lagrangian data sets. For this, note that the conditions
A1 = L and W1 = 0 are equivalent and that the map from the set of isomorphism classes of
Lagrangian data sets to the set of isomorphism classes of GM data sets is well defined for any
field k. The latter follows from the observation that when W1 = 0, a rescaling of ε by t ∈ k×

can be realized by an automorphism ϕV = t, ϕW = 1, and ϕL = t2 of GM data sets; hence the
isomorphism class of the obtained GM data set does not depend on the choice of ε.

Remark 3.8. The functor between the groupoid of ordinary GM data sets and the groupoid of
ordinary GM data sets defined in Theorem 3.6 is not an equivalence. First, it takes an auto-
morphism (gV , gW , gL) = (1,−1,−1) to the identity automorphism of the associated Lagrangian
data set, hence is not faithful; second, to lift an automorphism gV of the Lagrangian data set
associated with a given ordinary GM data set (W,V6, V5, L, µ,q, ε) to an automorphism of that
GM data set, one has to extract a square root of det(gV |V5) (to define gL).

Remark 3.9. One can generalize Theorem 3.6 by weakening the lci assumption for GM data sets
as in Remark 2.31, but one then has to further modify the definition of Lagrangian data set. To
be more precise, fix a vector space K, consider the symplectic space V1(K) := K ⊕ (K∨ ⊗ L)
with the canonical L-valued symplectic form (with the isomorphism relation for Lagrangian
subspaces A1 ⊂ V1(K) induced by the natural action of the group GL(K) on V1(K)), and define
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K-Lagrangian data sets as quadruples (V6, V5, A,A1), where A ∈ LGr(V0) and A1 ∈ LGr(V1(K)).
Then, there is a bijection between the set of isomorphism classes of K-Lagrangian data sets such
that A1 ∩ K = 0 and the set of isomorphism classes of GM data sets such that q(v)|Ker(µ) is
non-degenerate for (all) v /∈ V5 and dim(Ker(µ)) 6 dim(K).

3.3 GM varieties and Lagrangian data sets

As explained in the introduction, the constructions of Theorems 2.9 and 3.6 can be combined as
follows.

Theorem 3.10. With each normal, lci polarized GM variety (X,H), one can associate a canon-
ical (functorially depending on (X,H)) Lagrangian data set (V6, V5, A) and also an extended
Lagrangian data set (V6, V5, A,A1) with A1 defined up to a Gm-action.

Conversely, with any Lagrangian data set, one can associate a canonical (functorially depend-
ing on the data) ordinary GM intersection and also, if the field k is quadratically closed, a special
GM intersection defined up to an isomorphism.

These two constructions are mutually inverse.

Proof. Starting with (X,H), we apply Theorem 2.9 to obtain a GM data and Theorem 3.6 to
obtain a Lagrangian data set (V6, V5, A) which depends functorially on (X,H). Moreover, we saw
in the proof of Theorem 3.6 that the orbit of A1 depends only on the type of X.

Conversely, assume that a Lagrangian data set is given. We apply Theorem 3.6 and obtain
a GM data set. The choice of ε involved in the construction affects q0, the even part of the
family of quadrics cutting out X in P(W ), by scalar multiplication. In particular, the ordinary
GM intersection associated with this data set does not depend on this choice. However, the
associated special GM intersection is uniquely determined if the field is quadratically closed, but
only up to isomorphism. For functoriality, note that given an isomorphism of Lagrangian data
sets, one can choose ε and ε′ in a compatible way; the construction of Theorem 3.6 then provides
an isomorphism of the corresponding GM data sets, which by Theorem 2.9 gives an isomorphism
of the corresponding GM varieties.

It is clear that the constructions are mutually inverse.

Using this, one can give a criterion for GM varieties to be isomorphic and describe the
automorphism group of a GM variety in terms of the associated Lagrangian data set. Consider
the group

PGL(V6)A,V5 :=
{
g ∈ PGL(V6) |

(∧
3g
)
(A) = A, g(V5) = V5

}
(3.7)

of automorphisms of P(V6) stabilizing A and V5.

Corollary 3.11. Let (X,H) and (X ′, H ′) be normal, lci polarized GM varieties, with corre-
sponding Lagrangian data sets (V6, V5, A) and (V ′6 , V

′
5 , A

′).

(a) Any isomorphism φ : (X,H) ∼−→(X ′, H ′) induces an isomorphism V6
∼−→V ′6 which takes V5

to V ′5 and A to A′.

(b) Conversely, if either X and X ′ are both ordinary, or they are both special and k is quadrat-
ically closed, every isomorphism V6

∼−→V ′6 that takes V5 to V ′5 and A to A′ is induced by an
isomorphism between (X,H) and (X ′, H ′).

(c′) If (X,H) is ordinary, AutH(X) ' PGL(V6)A,V5 .
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(c′′) If (X,H) is special, there is an exact sequence

0→ Z/2→ AutH(X)→ PGL(V6)A,V5 → 1 .

Proof. Part (a) follows from Theorem 3.10 and part (b) is also explained in the proof of that
theorem. This implies that the image of the morphism AutH(X) → PGL(V6) is PGL(V6)A,V5
and parts (c′) and (c′′) then follow from Corollary 2.32.

When we use Theorem 3.10 for a normal, lci (polarized) GM variety X, we denote by W , V6,
V5, A, A1, etc., the associated vector spaces; to emphasize the dependence of the data on the
original variety, we sometimes write W (X), V6(X), V5(X), A(X), A1(X), etc.

Conversely, given an extended Lagrangian data set (V6, V5, A,A1), we denote by XA,A1,V5 the
corresponding GM intersection (usually the vector space V6 will be fixed, so we exclude it from
the notation). Sometimes, we will write XA,0,V5 for the GM intersection corresponding to A1 = L,
write XA,1,V5 for the GM intersection corresponding to the choice A1 6= L and A1 6= k, and write
XA,∞,V5 for the GM intersection corresponding to A1 = k. The meaning of this notation is
explained by the following lemma.

Lemma 3.12. Let (V6, V5, A) be a Lagrangian data set such that X := XA,0,V5 , with the choice
A1 = L, is a GM variety. Then X is ordinary, XA,1,V5' Xspe is the double covering of MX

branched along X (hence is a special GM variety), and XA,∞,V5 is the cone over X with vertex
a point.

Proof. If A1 = L, we have W1 = Im(A1 → k) = 0; hence X is ordinary. If A1 6= L and A1 6= k,
the space W1 is 1-dimensional and q1 induces an isomorphism V6/V5 ' S2W∨1 . By Lemma 2.33,
we have XA,1,V5 = Xspe.

Finally, if A1 = k, the space W1 is 1-dimensional but q1 = 0. Therefore, XA,∞,V5 is cut out
in the cone over MX by one equation q0(v) = 0 (where v is any vector in V6 r V5), hence is the
cone over X.

The construction of a GM intersection XA,A1,V5 is quite involved. However, some of its ge-
ometric properties can be read off directly from A, A1, and V5. The next proposition explains
this.

Proposition 3.13. Let X = XA,A1,V5 be the GM intersection associated with an lci Lagrangian
data set (V6, V5, A,A1) (in particular, A1 6=∞).

(a) We have

W (X)0 = A/
(
A ∩

∧
3V5

)
, W (X)1 = A1/(A1 ∩ L) ,

W (X)⊥0 = A ∩
∧

3V5 , W (X)⊥1 = A1 ∩ L .

(b) For v ∈ V6 r V5, we have

Ker(q(v)) = A ∩
(
v ∧

∧
2V5

)
. (3.8)

(c) If X is a GM variety, we have

dim(X) =

{
5− dim

(
A ∩

∧
3V5

)
if A1 = 0 ,

6− dim
(
A ∩

∧
3V5

)
if A1 = 1 .

(3.9)

Proof. (a) The first line is just the definition of W0 and W1 in the proof of Theorem 3.6. For
the second line, note that W (X) = W (X)0 ⊕W (X)1 is the image of the Lagrangian subspace
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Â = A ⊕ A1 by the projection to the second summand of the direct sum decomposition (3.4).
Hence its annihilator is the intersection of Â with the first summand.

(b) By Proposition C.1, the kernel of the quadratic form q̃(v) on Â is the direct sum
(
Â ∩

(
∧

3V5⊕L)
)
⊕
(
Â∩ ((v∧

∧
2V5)⊕k)

)
. The quadratic form q(v) is induced by taking the quotient

with respect to the first summand; hence its kernel is the second summand. Since A1 6= k by the
lci assumption, it is equal to the right side of (3.8).

(c) If X is a GM variety, we have dim(X) = dim(W (X))−5. On the other hand, by part (a),
we have

dim(W (X)0) = 10− dim
(
A ∩

∧
3V5

)
, dim(W (X)1) = 1− dim(A1 ∩ L) .

Combining these, we get (3.9).

In the next proposition, we discuss the relation between the Lagrangian data set of a GM
variety X and that of a hyperplane section. Such a hyperplane section is given by a linear
function on the space W (X) = W (X)0 ⊕W (X)1. Moreover, by Proposition 3.13(a), we have an
identification W (X)∨0 =

∧
3V5/(A∩

∧
3V5). Any linear function on W (X)0 can therefore be lifted

to an element of
∧

3V5.

Proposition 3.14. Let X be a normal, lci GM variety, and let (V6, V5, A) be the corresponding
Lagrangian data. Let X ′ ⊂ X be a hyperplane section of X which is also normal and lci, and let
η0 ∈

∧
3V5 be a lift of the even part of the equation of X ′. The Lagrangian data set of X ′ is then

isomorphic to (V6, V5, A(X ′)), where

(a) if X ′ has the same type as X, we have A(X ′) = (A ∩ η⊥0 )⊕ kη0;

(b) if X is special and X ′ is ordinary, we have A(X ′) = (A ∩ η⊥)⊕ kη for some η ∈ A⊕ kη0;

(c) if X is special and X ′ = Xord, we have A(X ′) = A.

In particular, dim(A ∩A(X ′)) = 9 unless X is special and X ′ = Xord.

Proof. Let us show A ∩ η⊥0 ⊂ A(X ′). Consider the commutative diagram

0 // A(X ′) //
∧

3V5 ⊕W (X ′)0
(µ0,q(v0))

//
� _

α
��

W (X ′)∨0
// 0

0 // A //
∧

3V5 ⊕W (X)0
(µ0,q(v0))

//W (X)∨0
//

OOOO

0 ,

where the rows are the exact sequences (3.6) defining A and A(X ′), respectively, v0 ∈ V6 r V5

is a fixed vector, and we omit the L-factors for simplicity. The image of A ∩ η⊥0 under the
left bottom arrow is contained in

∧
3V5 ⊕ (W (X)0 ∩ η⊥0 ), hence in the image of α. Therefore,

by the commutativity of the diagram, it is in the kernel of the top right arrow. This proves
A ∩ η⊥0 ⊂ A(X ′) and in particular dim(A(X ′) ∩A) > 9.

Any Lagrangian subspace A′ containing A ∩ η⊥0 can be written as (A ∩ η⊥) ⊕ kη for some
η ∈ A⊕ kη0. This proves part (b). Furthermore, if X ′ has the same type as X, the odd part of
the equation of X ′ is zero, hence η0 ∈ W (X ′)⊥0 = A(X ′) ∩

∧
3V5 ⊂ A(X ′). Thus η0 ⊂ A(X ′),

hence η = η0, and part (a) follows. Finally, part (c) was already proved in Lemma 3.12.

3.4 Strongly smooth GM varieties

We say that a subspace A ⊂
∧

3V6 contains no decomposable vectors if (see Section B.1)

P(A) ∩ Gr(3, V6) = ∅ .
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The crucial Theorem 3.16 below shows, among other things, that when a Lagrangian subspace A
contains no decomposable vectors, the GM intersections XA,A1,V5 defined at the end of Section 3.2
are smooth GM varieties for all choices of A1 6= k and all choices of hyperplanes V5 ⊂ V6.

Recall that for any GM intersection X, we defined the schemes MX = CK Gr(2, V5) ∩P(W )
and M ′X = Gr(2, V5) ∩P(W0) (Section 2.4).

Definition 3.15. A GM variety X is strongly smooth if both intersections X and M ′X are
dimensionally transverse and smooth.

By Proposition 2.22, any smooth GM variety is strongly smooth except perhaps if it is an
ordinary GM surface or an ordinary GM curve. Also note that X is strongly smooth if and only
if Xopp is strongly smooth (unless X is a special GM curve, in which case Xopp = Xord is just
not defined).

Theorem 3.16. Assume k = C. Let (V6, V5, A,A1) be an extended Lagrangian data set with
A1 6=∞, and let X := XA,A1,V5 be the corresponding GM intersection. The following conditions
are equivalent:

(a) The GM intersection X is a strongly smooth GM variety.

(b) We have dim(A∩
∧

3V5) + dim(A1 ∩L) 6 5, the decomposable vectors in A are all in
∧

3V5,
and P(A ∩

∧
3V5) ∩ Gr(3, V5) is a smooth, dimensionally transverse intersection in P(

∧
3V5).

In particular, if dim(A ∩
∧

3V5) 6 3, the GM intersection X is a smooth GM variety if and only
if A contains no decomposable vectors.

Proof. Assume that condition (b) holds. By Proposition 3.13, we have W⊥0 = A ∩
∧

3V5, and
P(W⊥0 ) ∩ Gr(3, V5) is a smooth, dimensionally transverse intersection. By Proposition 2.24, so
is M ′X . Now, assume, to obtain a contradiction, that for v ∈ V6 r V5, the GM intersection
XA,A1,V5 = CKer(µ)M

′
X ∩Q(v) is not dimensionally transverse or is singular. In both cases, there

exists a point w ∈ CKer(µ)M
′
X ∩Q(v) such that the tangent space TQ(v),w contains TM ′

X ,w
.

As A1 6= k, we know by the proof of Lemma 3.12 that w cannot be the vertex of the cone.
SinceM ′X is smooth, TM ′

X ,w
is therefore the intersection of the tangent spaces to Plücker quadrics;

hence TQ(v),w coincides with TQ(v′),w for some v′ ∈ V5. Therefore, for some t ∈ k, the quadric
Q(v + tv′) is singular at w and, replacing v with v + tv′, we may assume that w is in the kernel
of q(v). By (3.8), this kernel is A∩(v∧

∧
2V5); therefore, v∧µ(w) ∈ A. Since µ(w) ∈M ′X , we have

µ(w) ∈ Gr(2, V5), so v ∧ µ(w) is a decomposable vector in A which is not in
∧

3V5, contradicting
condition (b). Therefore, XA,A1,V5 is a smooth GM variety (its dimension is at least 1 because of
the condition dim(A ∩

∧
3V5) + dim(A1 ∩ L) 6 5).

Conversely, assume that condition (a) holds. Since dim(X) > 1, we have dim(A ∩
∧

3V5) +
dim(A1 ∩ L) 6 5 by Proposition 3.13. Assume, again to obtain a contradiction, that A contains
a decomposable vector not in

∧
3V5. This vector can be written as v ∧ v1 ∧ v2, where v ∈ V6 r V5

and v1, v2 ∈ V5. As this vector is both in A and in v ∧
∧

2V5, it is by (3.8) in the kernel of q(v).
On the other hand, v1 ∧ v2 ∈ Gr(2, V5) and, as λ3(v ∧ v1 ∧ v2) = λ(v)v1 ∧ v2, it is also in P(W0).
So v1 ∧ v2 is in M ′X and is a singular point of the quadric Q(v). Hence it is a singular point of
X = CKer(µ)M

′
X ∩Q(v), contradicting condition (a). Finally, P(A∩

∧
3V5)∩Gr(3, V5) is a smooth,

dimensionally transverse intersection by Proposition 2.24, since M ′X = P((A∩
∧

3V5)⊥)∩Gr(2, V5)
is so by the definition of strong smoothness.

When dim(XA,A1,V5) > 3, smoothness is equivalent to strong smoothness by Proposition 2.22
and dim(A∩

∧
3V5) 6 3 by (3.9); hence the intersection P(A∩

∧
3V5)∩Gr(3, V5) is dimensionally
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transverse if and only if it is empty. Condition (b) is therefore equivalent to the absence of
decomposable vectors in A.

Remark 3.17. Let X be a strongly smooth complex GM variety, with associated Lagrangian
subspace A = A(X). Set ` := dim(A ∩

∧
3V5). Formula (3.9) then reads

` =

{
5− dim(X) if X is ordinary,

6− dim(X) if X is special.

Theorem 3.16 implies the following:

• If ` 6 3 (that is, dim(X) > 3 or X is an ordinary GM surface), A contains no decomposable
vectors. By Theorem B.2, the condition dim(A ∩

∧
3V ′5) 6 3 holds for all hyperplanes V ′5 ⊂ V6.

• If ` = 4 (that is, X is an ordinary GM curve or a special GM surface), A contains exactly
five decomposable vectors and they are all in P(

∧
3V5).

• If ` = 5 (that is, X is a special (bielliptic) curve), the decomposable vectors in P(A) form
a smooth elliptic quintic curve contained in P(

∧
3V5).

3.5 EPW sextics

For a GM variety X, we defined in Section 3.1 the discriminant locus Disc(X) ⊂ P(V6), which is
either a sextic hypersurface or the whole space. We now give a unified proof of a generalization
of Theorem 3.1 of Iliev and Manivel, proving that the schemes Disc(X) and YA(X) are equal.

Proposition 3.18. Let X be a normal, lci, polarized GM variety, and let (V6, V5, A) be the
corresponding Lagrangian data. If either YA or Disc(X) is a reduced hypersurface, we have
YA = Disc(X).

Proof. We have Ker(q(v)) = A ∩ (v ∧
∧

2V5) by (3.8); hence, by the definition of YA (see Defini-
tion B.1), we see that YA and Disc(XA,A1,V5) coincide as sets on the complement of P(V5). On
the other hand, each of YA and Disc(XA,A1,V5) is either a sextic hypersurface or P(V6). If one is
a reduced hypersurface, so is the other, and they are equal.

The following result was proved in [OGr12, Proposition 2.18] when X is a smooth ordinary
fivefold (it is then automatically strongly smooth).

Corollary 3.19. Let X be a strongly smooth complex GM variety. The subschemes YA(X) and
Disc(X) of P(V6) are equal, and they are reduced sextic hypersurfaces. They are also integral
and normal unless X is a bielliptic curve, in which case they are the union of a hyperplane and
an integral quintic hypersurface.

Proof. As in Remark 3.17, let us set ` := dim(A(X)∩
∧

3V5) (this is 5−dim(X) if X is ordinary,
and 6− dim(X) if X is special).

If ` 6 3, we saw in Remark 3.17 that A(X) contains no decomposable vectors; hence YA(X)

is an integral, normal sextic hypersurface whose singularities are described in Theorem B.2. By
Proposition 3.18, it is equal to Disc(X).

If ` = 4 and X is an ordinary GM curve, Disc(X) is a reduced hypersurface (Proposition 3.2).
By Proposition 3.18 again, it is equal to YA(X). If X is a special GM surface then, by Lemma 3.3,
its discriminant locus equals Disc(Xord), which is an ordinary GM curve, and the previous argu-
ment applies.

Finally, if ` = 5, then X is a special (that is, bielliptic) GM curve, and the statements follow
from Proposition 3.2 in the same way.
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The EPW sequence Y >l
A⊥ in P(V ∨6 ) is defined in (B.4).

Remark 3.20. Let X be a strongly smooth complex GM curve, with Plücker hyperplane V5 :=
V5(X) ⊂ V6 and associated Lagrangian A = A(X).

(1) When X is ordinary, V5 is a point of Y >4
A⊥ by Remark 3.17 and it is the only point.

Indeed, P(A) contains exactly five decomposable vectors
∧

3V3,1, . . . ,
∧

3V3,5, which are all in∧
3V5 (Remark 3.17). Moreover, by [AH81, (5.10)] or [OGr15, (2.3.2)], we have V5 = V3,i + V3,j

for all i 6= j. Assume that V ′5 ⊂ V6 is another hyperplane in Y >4
A⊥ , so that dim(A∩

∧
3V ′5) > 4. The

points of the scheme M ′ := P(A ∩
∧

3V ′5) ∩ Gr(3, V ′5) must be among V3,1, . . . , V3,5. This implies
V ′5 = V5 unless M ′ is a single point, say w := V3,1, with multiplicity 5. Since M ′ is a dimensionally
transverse intersection, one checks, using its Koszul resolution in Gr(3, V ′5) and Kodaira vanishing,
that its linear span is P(A ∩

∧
3V ′5). This implies P(A ∩

∧
3V ′5) ⊂ TGr(3,V ′

5),w. But the 3-plane

P(A∩
∧

3V ′5) must then meet the 4-dimensional Schubert cycle Gr(3, V ′5)∩TGr(3,V ′
5),w = C(P2×P1)

along a curve, which consists of decomposable vectors in P(A). This gives a contradiction.

(2) When X is special (that is, bielliptic), V5 is the only point of Y >5
A⊥ . Indeed, the set ΘA of

decomposable vectors in P(A) is a smooth elliptic curve contained in P(
∧

3V5) (Remark 3.17). If
V ′5 ⊂ V6 is another point of Y >5

A⊥ , the scheme P(A∩
∧

3V ′5)∩Gr(3, V ′5) has everywhere dimension at
least 1 and is contained in ΘA. These two schemes are thus equal, hence contained in Gr(3, V5)∩
Gr(3, V ′5) = Gr(3, V5 ∩ V ′5). Since the linear span of ΘA has dimension 4, this implies V5 = V ′5 .

By Corollary 3.11(b), the curve X is determined (up to isomorphism) by A(X) and the
hyperplane V5 ⊂ V6. In both cases, it is therefore uniquely determined by A(X). In fact, X is
also uniquely determined (up to isomorphism) by the sextic YA(X). When X is special, this is
because P(V5) is the only degree 1 component of YA(X) (Propositions 3.2 and 3.18). When X
is ordinary, the singular locus of YA(X) is the union of five planes (one for each decomposable
vector in A; see Remark 3.17 and (B.3)), an integral surface S coming from the singular locus of
the theta divisor of the Jacobian of X (see [AH81, Theorem 1.4]; one checks that it has degree 30
and is contained in Y >2

A(X)), and another irreducible surface of degree 10, also contained in Y >2
A(X).

Moreover, the intersection of S with each of these five planes is a plane sextic curve whose
normalization is X (this follows from [AH81, Section 5, footnote 1]).

When k = C, we can restate the results of Corollary 3.11 in terms of the EPW sextic YA(X).
The group PGL(V6)A,V5 was defined in (3.7); we also define

PGL(V6)YA,V5 :=
{
g ∈ PGL(V6) | g(YA) = YA, g(V5) = V5

}
. (3.10)

Proposition 3.21. Let (X,H) and (X ′, H ′) be normal lci complex polarized GM varieties, with
corresponding Lagrangian data sets (V6, V5, A) and (V ′6 , V

′
5 , A

′).

(a) Any isomorphism φ : (X,H) ∼−→(X ′, H ′) induces an isomorphism V6
∼−→V ′6 which takes V5

to V ′5 and YA to YA′ .

(b) If X is smooth and X and X ′ have same type and same dimension n > 3, every isomorphism
ϕ : V6

∼−→V ′6 that takes V5 to V ′5 and YA to YA′ is induced by an isomorphism between (X,H)
and (X ′, H ′).

(c) If X is smooth of dimension n > 3, we have PGL(V6)A,V5 = PGL(V6)YA,V5 and the group
Aut(X) is finite.

(d) If X is smooth of dimension n > 3, the group Aut(X) is trivial if X is very general ordinary
and Aut(X) ' Z/2 if X is very general special.

Proof. (a) This follows from Corollary 3.11 and the definition of YA.
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(b) By Theorem 3.16, the space A contains no decomposable vectors, while by Proposi-
tion B.8(b), we have (

∧
3ϕ)(A) = A′. Item (b) then follows from Corollary 3.11.

(c) The equality PGL(V6)A,V5 = PGL(V6)YA,V5 is proved by the argument in part (b). Fur-
thermore, AutH(X) = Aut(X) when X is smooth and dim(X) > 3 (Lemma 2.29). Therefore, to
show that Aut(X) is finite, it is enough by Corollary 3.11(c) to show that PGL(V6)A,V5 is finite.
But the latter is a subgroup of the group PGL(V6)A defined in (B.9), and that group is finite by
Proposition B.9(a).

(d) It is enough to show that PGL(V6)A = Aut(YA) is trivial for a very general Lagrangian
subspace A ⊂

∧
3V6. This is Proposition B.9(b).

Lengthy computations also show directly that for any smooth complex GM variety X of
dimension at least 3, one has H0(X,TX) = 0 (these computations were done in [DIM12, The-
orem 3.4] for ordinary GM threefolds and in [DIM15, Proposition 4.1] for GM fourfolds). We
recover the fact that the automorphism group of X, being discrete, is finite, as asserted in the
proposition.

3.6 Period partners

As we saw in the previous section, many properties of a GM variety depend only on A(X), the
even part of the corresponding Lagrangian subspace. More evidence will come further on.

Definition 3.22. Normal, lci GM varieties X1 and X2 are period partners if dim(X1) = dim(X2)
and there exists an isomorphism ϕ : V6(X1) ∼−→V6(X2) such that (

∧
3ϕ)(A(X1)) = A(X2).

Remark 3.23. The last condition in the definition implies ϕ(YA(X1)) = YA(X2). Conversely, assume
that the lci GM varieties X1 and X2 are such that dim(X1) = dim(X2) > 3, that there exists
an isomorphism ϕ : V6(X1) ∼−→V6(X2) such that ϕ(YA(X1)) = YA(X2), and that X1 is smooth.
Proposition B.8 then shows that X1 and X2 are period partners and that X2 is also smooth by
Theorem 3.16.

Period partners may have different types; an ordinary GM variety may be a period partner
of a special GM variety.

Remark 3.24. The name “period partners” suggests a relation with the period map. In the
article [DK16], we show that, indeed, smooth GM varieties of the same dimension are period
partners if and only if they are in the same fiber of an appropriately defined period map from
the moduli space of GM varieties to an appropriate period domain.

A major difficulty in realizing the program of the remark is the construction of the moduli
space of GM varieties. While this space is not available, we can formulate a naive description of
the fiber of the period map as follows. The dual EPW stratification is defined in (B.4) and the
group PGL(V6)A is defined in (B.9).

Theorem 3.25. Let X be a smooth GM variety of dimension n > 3 defined over a quadrati-
cally closed field, with corresponding Lagrangian data (V6, V5, A). There is a natural bijection
(defined in the proof) between the set of isomorphism classes of period partners of X and the
set
(
Y 5−n
A⊥ t Y 6−n

A⊥

)
/PGL(V6)A.

This theorem gives a precise answer to the question asked at the end of [IM11, Section 4.5].
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Proof. By Proposition 3.21, an lci GM variety X ′ is a period partner of X if and only if there
is an isomorphism ϕ : V6(X ′) ∼−→V6 such that (

∧
3ϕ)(A(X ′)) = A and ϕ(V5(X ′)) ∈ Y 5−n

A⊥ if X ′

is ordinary, or ϕ(V5(X ′)) ∈ Y 6−n
A⊥ if X ′ is special (by (3.9), this ensures the equality of the

dimensions). Since such an X ′ is automatically a smooth GM variety by Theorem 3.16, and the
isomorphism ϕ is defined up to the action of PGL(V6)A, this proves the lemma.

In Section 4, we show that over C, period partners are always birationally isomorphic. In
[DK16, Theorem 5.1], we show that they have the same primitive Hodge structure in the middle
cohomology (in case of even dimensions). Finally, in the joint work [KP16] of the second author
with Alexander Perry, we discuss a relation between derived categories of period partners.

3.7 Duality

We introduce here a notion of duality for GM varieties. It is similar in flavor to the notion of
period partnership, and we will see later that dual varieties share many geometric properties, as
do period partners.

Definition 3.26. Normal, lci GM varieties X and X ′ are called dual if dim(X) = dim(X ′) and
there exists an isomorphism ϕ : V6(X) ∼−→V6(X ′)∨ such that (

∧
3ϕ)(A(X)) = A(X ′)⊥.

The last condition in the definition implies ϕ(YA(X)) = YA(X′)⊥ . Conversely, as in Re-

mark 3.23, if dim(X) = dim(X ′) > 3, if there exists an isomorphism ϕ : V6(X) ∼−→V6(X ′)∨

such that ϕ(YA(X)) = YA(X′)⊥ , and if X is smooth, then X ′ is also smooth and dual to X.

Duality is a symmetric relation. Moreover, if X ′ and X ′′ are both dual to X, then they are
period partners. Analogously, if X ′ is dual to X and X ′′ is a period partner of X ′, then X ′′ is
dual to X.

One can give a description of all possible duals of a given GM variety analogous to the
description of the set of all period partners.

Theorem 3.27. Let X be a smooth GM variety of dimension n > 3 defined over a quadratically
closed field, with corresponding Lagrangian data (V6, V5, A). There is a natural bijection between
the set of isomorphism classes of its dual varieties and the set

(
Y 5−n
A t Y 6−n

A

)
/PGL(V6)A.

Proof. The proof is identical to that of Theorem 3.25.

Let X and X ′ be dual smooth GM varieties. Set V6 := V6(X), and choose an isomorphism
V6(X ′) ' V ∨6 such that A(X ′) corresponds to A(X)⊥. The hyperplane V5 := V5(X) ⊂ V6 gives a

line V ⊥5 ⊂ V ∨6 , and, conversely, the hyperplane V ′5 := V5(X ′) ⊂ V ∨6 gives a line V ′5
⊥ ⊂ V6. Since

V6 parameterizes quadrics cutting out X and V ∨6 parameterizes those cutting out X ′, these lines
define quadrics

Q(X) ⊂ P(W (X ′)) ⊂ P
(∧

2V ′5 ⊕ k
)

and Q(X ′) ⊂ P(W (X)) ⊂ P
(∧

2V5 ⊕ k
)
.

Also consider the quadrics

Q0(X) := Q(X) ∩P
(∧

2V ′5
)
⊂ P

(∧
2V ′5
)

and Q0(X ′) := Q(X ′) ∩P
(∧

2V5

)
⊂ P

(∧
2V5

)
.

Proposition 3.28. In the above setup, assume that the line V ′5
⊥ is not contained in the hyper-

plane V5 ⊂ V6. Then the duality between V6 and V ∨6 induces a duality between the spaces V ′5
and V5 under which the quadrics Q0(X) and Q0(X ′) are projectively dual.
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Proof. The first statement is obvious. For the second, choose generators v ∈ V ′5
⊥ ⊂ V6 and

v′ ∈ V ⊥5 ⊂ V ∨6 . By assumption, v /∈ V5 and v′ /∈ V ′5 . Consider the direct sum decomposition

V =
(∧

3V5 ⊕ L)⊕
((
v ∧

∧
2V5

)
⊕ k

)
.

The quadric Q(X ′) = Q(v) is the quadric corresponding to the Lagrangian subspace Â ⊂ V
via Proposition C.1, denoted there by QÂ2 . By Lemma C.3, the quadric Q0(X ′) is the result of
its isotropic reduction with respect to the isotropic subspace L ⊂ V. Therefore, Q0(X ′) is the
quadric corresponding to the Lagrangian subspace A ⊂ V0 =

∧
3V6 with respect to the direct

sum decomposition ∧
3V6 =

∧
3V5 ⊕

(
v ∧

∧
2V5

)
;

that is, Q0(X ′) = QA2 . The same argument shows Q0(X) = QA
⊥

2 for the direct sum decomposition∧
3V ∨6 =

∧
3V ′5 ⊕

(
v′ ∧

∧
2V ′5
)
.

Finally, note that the isomorphism
∧

3V6
∼−→
∧

3V ∨6 given by the symplectic form interchanges
the summands of these decompositions. To prove this, since the summands are Lagrangian, it
is enough to show that v′ ∧

∧
2V ′5 annihilates

∧
3V5 and that v ∧

∧
2V5 annihilates

∧
3V ′5 . This

follows from the fact that v′ annihilates V5 (by its definition) and that v annihilates V ′5 .

Since X and X ′ are dual, this isomorphism also takes A to A⊥, hence identifies QA
⊥

2 with
QA1 ⊂ P(

∧
3V5). The proposition follows, since the quadrics QA1 and QA2 are projectively dual by

Proposition C.1.

If k is quadratically closed, the variety X is determined by the quadric Q0(X ′): if X is
ordinary, we have X = Gr(2, V5) ∩ Q0(X ′), and if X is special, X = (Gr(2, V5) ∩ Q0(X ′))spe.
Analogously, X ′ is determined by the quadric Q0(X). Proposition 3.28 thus shows that projective
duality of quadrics governs duality of GM varieties.

Remark 3.29. One can also show that if X and X ′ are both special GM varieties, the duality
between V5 and V ′5 can be extended to a duality between

∧
2V5 ⊕ k and

∧
2V ′5 ⊕ k in such a way

that the quadric Q(X ′) ⊂ P(
∧

2V5⊕k) is projectively dual to the quadric Q(X) ⊂ P(
∧

2V ′5⊕k).

4. Rationality and birationalities

The goal of this section is to prove that smooth complex GM varieties X1 and X2 of dimen-
sion at least 3 which are either period partners in the sense of Definition 3.22 (so that the
Lagrangians A(X1) and A(X2) are isomorphic) or dual in the sense of Definition 3.26 (so that
A(X2) is isomorphic to A(X1)⊥) are birationally isomorphic.

The proof is based on the construction of two quadric fibrations. Although all dimensions
could be treated with our methods, we prefer, for the sake of simplicity, to first prove that all
smooth complex GM varieties of dimensions 5 and 6 are rational, and then concentrate on the
cases of dimensions 3 and 4, for which birationality is really meaningful.

4.1 The rationality of smooth, complex GM varieties of dimensions 5 and 6

The rationality of a general complex GM fivefold is explained in [Rot49, Section 5]. We give
a different argument, showing that all smooth GM fivefolds and sixfolds are rational.

Lemma 4.1. Any smooth complex GM variety of dimension 5 or 6 contains a smooth quintic
del Pezzo surface.

49



O. Debarre and A. Kuznetsov

Proof. Let (V6, V5, A) be a Lagrangian data set corresponding to such a variety X, and let
YA ⊂ P(V6) be the corresponding EPW sextic. By Theorem 3.16, the space A contains no
decomposable vectors. By Lemma B.6, there is a point v ∈ Y 2

A r P(V5), and by (3.8), the
corresponding quadric Q(v) ⊂ P(W ) has corank 2 and X = CGr(2, V5) ∩Q(v).

Let n := dim(X) ∈ {5, 6}. The quadric Q(v) has rank n+ 3 in Pn+4, hence has an isotropic
subspace I ⊂ W of dimension 2 + b(n+ 3)/2c = 6. Then P(I) ∩ X = P(I) ∩ CGr(2, V5) is a
quintic del Pezzo surface if the intersection is dimensionally transverse and smooth. We show
that this is true for a general choice of I.

The space of all Q(v)-isotropic 6-subspaces is OGr(4, n + 3), a smooth variety which we
denote by B. Let I ⊂ W ⊗ OB be the tautological bundle of 6-dimensional Q(v)-isotropic
subspaces over B, and let PB(I ) be its projectivization. It comes with a natural map PB(I )→
P(
∧

2V5 ⊕ k) induced by the embedding I ⊂W ⊗ OB ⊂ (
∧

2V5 ⊕ k)⊗ OB. The scheme

X = PB(I )×P(
∧2V5⊕k) CGr(2, V5)

maps to B, and the fibers are the intersections P(I) ∩X.

To show that the general fiber is dimensionally transverse and smooth, it is enough to show
that X is itself smooth of the expected dimension. For this, consider the second projection
X → CGr(2, V5). Since the fibers of PB(I ) over B are contained in Q(v), the image of X is
contained in CGr(2, V5)∩Q(v) = X. Moreover, the fiber of this projection over a point w ∈ X ⊂
P(W ) is the space of all Q(v)-isotropic 6-subspaces I ⊂W such that w ∈ I.

Since w cannot be in the kernel of Q(v) (otherwise, X would be singular), the space of such I
is parameterized by OGr(3, n + 1). All fibers of the projection X → X are therefore smooth of
the same dimension; hence X is smooth. As observed earlier, the general fiber of the projection
X → B is therefore a smooth quintic del Pezzo surface.

We can now prove the rationality of smooth GM fivefolds and sixfolds.

Proposition 4.2. Any smooth complex GM variety of dimension 5 or 6 is rational.

Proof. We use the notation of the previous proof. Let Q = Q(v) be a quadric of corank 2
in P(W ) such that X = CGr(2, V5)∩Q. Let I0 ⊂W be a general Q-isotropic 6-subspace, so that
S0 := P(I0) ∩X is a smooth quintic del Pezzo surface. Consider the linear projection

πS0 : X 99K Pn−2

from the linear span P(I0) of S0, where n = dim(X). A general fiber is also a quintic del Pezzo
surface. Indeed, the intersection of a general P6 containing P(I0) = P5 with X is a 2-dimensional
GM intersection containing the quintic del Pezzo surface S0. It is the union of S0 and a residual
quintic del Pezzo surface S (more precisely, the intersection of Q with this P6 is the union of P(I0)
and a residual space P(I), where I is another Q-isotropic 6-subspace, and S = P(I) ∩X).

The argument of the proof of Lemma 4.1 shows that for a general choice of S0, the general
fiber of πS0 is smooth. Hence the field of rational functions on X is the field of rational functions
on a smooth quintic del Pezzo surface defined over the field of rational functions on Pn−2.
But a smooth quintic del Pezzo surface is rational over any field by a theorem of Enriques
(see [She92]).

Remark 4.3. Let X be a smooth complex GM fourfold such that Y 3
A(X) r P(V5(X)) 6= ∅. The

same argument shows that X is rational. More generally, using Theorem 4.15, one can show
that X is rational as soon as Y 3

A(X) 6= ∅ (see [KP16, Lemma 6.7] for more details).
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4.2 The first quadric fibration

Let X be a smooth GM variety of dimension n > 3, with extended Lagrangian data (V6, V5, A,A1)
and GM data (W,V6, V5, L, µ,q, ε). By Theorem 3.16, the space A contains no decomposable vec-
tors. Consider the Gushel bundle UX and its projectivization PX(UX). The canonical embedding
UX ↪→ V5 ⊗ OX induces a regular map

ρ1 : PX(UX)→ P(V5) .

In Proposition 4.5, we prove that ρ1 is a quadric fibration and identify its discriminant locus.

Let W⊥0 = A∩
∧

3V5 be the even part of the space of linear equations of X. We consider W⊥0
as a subspace of the space

∧
2V ∨5 of skew forms on V5. Let

Σ1(X) ⊂ P(V5)

be the union of the kernels of all non-zero skew forms in the space W⊥0 . It can be described

in terms of the incidence correspondence ŶA and its two projections p : ŶA → YA ⊂ P(V6) and
q : ŶA → YA⊥ ⊂ P(V ∨6 ) (see (B.5)).

Lemma 4.4. We have Σ1(X) = p(q−1([V5])). In particular, Σ1(X) ⊂ YA ∩ P(V5). Moreover,
dim(Σ1(X)) 6 1 if n = 4, and dim(Σ1(X)) 6 2 if n = 3.

Proof. The lemma follows immediately from Remark B.4.

We now prove an analogue of Proposition 3.18.

Proposition 4.5. Let X be a smooth GM variety of dimension n > 3.

Over P(V5) r Σ1(X), the map ρ1 : PX(UX) → P(V5) is a relative quadratic hypersurface
in a Pn−2-fibration, whose fiber over a point v has corank k if and only if v ∈ Y k

A∩P(V5). In
particular, in P(V5) r Σ1(X), its discriminant locus is YA ∩ (P(V5) r Σ1(X)).

Over Σ1(X), the map ρ1 is a relative quadratic hypersurface in a Pn−1-fibration, whose fiber
over a point v has corank k if and only if v ∈ Y k+1

A .

Proof. Choose an arbitrary v0 ∈ V6 r V5, and let v ∈ V5. The fiber ρ−1
1 (v) is the set of V2 ⊂ V5

containing v which correspond to points of X. This is the intersection Q′(v) of the quadric
Q(v0) ⊂ P(W ) defining X with the subspace P

(
((v ∧ V5)⊕ k) ∩W

)
⊂ P(W ).

On the other hand, by the argument of Theorem 3.6, the quadric Q(v0) is the quadric cor-
responding to the Lagrangian subspace Â = A ⊕ A1 ⊂ V with respect to the Lagrangian de-
composition V = L1 ⊕ L2 of (3.4), with L1 =

∧
3V5 ⊕ L and L2 = (v0 ∧

∧
2V5) ⊕ k, under the

Lagrangian-quadratic correspondence of Appendix C (it is the quadric QÂ2 of Proposition C.1).
Therefore, the intersection

Q′(v) = Q(v0) ∩P
(
(v ∧ V5)⊕ k) ∩W

)
can be described by the isotropic reduction of Corollary C.4.

For this, we set L2 := (v0 ∧ v ∧ V5)⊕ k ⊂ L2, and we consider the isotropic subspace

Iv := L1 ∩ L⊥2 = v ∧
∧

2V5 ⊂ L1 .

According to Corollary C.4, the codimension in P(L2) of the span of the quadric Q′(v) is equal
to dim

(
(Â ∩ L1)/(Â ∩ Iv)

)
, and its kernel is equal to

(
Â ∩ (Iv ⊕ L2)

)
/(Â ∩ Iv), so it remains to

describe the intersections of Â with Iv, L1, and Iv ⊕ L2.
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First, we have Â∩ Iv = A∩ (v ∧
∧

2V5) ⊂ A∩
∧

3V5 = W⊥0 , where W⊥0 is the even part of the
space of linear equations of X. A skew form on V5, considered as an element of

∧
3V5, belongs to

v ∧
∧

2V5 if and only if v is in its kernel. This means that Â ∩ Iv is non-zero only for v ∈ Σ1(X),
and the intersection Â∩ Iv is then 1-dimensional, since otherwise the space A∩ (v∧

∧
2V5) would

contain decomposable vectors. Therefore,

dim(Â ∩ Iv) =

{
1 if v ∈ Σ1(X) ,

0 if v /∈ Σ1(X) .
(4.1)

Since the space Â∩L1 = W⊥ has dimension 6−n, the codimension of the span of Q′(v) in P(L2)
is 5 − n for v ∈ Σ1(X) and 6 − n for v /∈ Σ1(X). Since the dimension of P(L2) is 4, it follows
that Q′(v) is a quadratic hypersurface in Pn−1 or Pn−2, depending on whether v is in Σ1(X) or
not. Finally, we have

Iv ⊕ L2 =
((
v ∧

∧
2V5

)
⊕ (v0 ∧ v ∧ V5)

)
⊕ k = v ∧

∧
2V6 ⊕ k .

Therefore, the dimension of the intersection Â ∩ (Iv ⊕ L2) = A ∩ (v ∧
∧

2V6) is detected by the
position of v ∈ P(V6) with respect to the EPW stratification defined by A on P(V6). Taking into
account (4.1), we obtain that for v ∈ Y k

ArΣ1(X), the corank of Q′(v) is k, and for v ∈ Y k
A∩Σ1(X),

the corank of Q′(v) is k − 1 (this gives another proof of the inclusion Σ1(X) ⊂ YA).

4.3 The birationality of period partners of dimension 3

Let X1 and X2 be smooth complex GM threefolds. Assume that they are period partners, so
that they are constructed from Lagrangian data sets with the same V6 and A, but possibly differ-
ent Plücker hyperplanes V 1

5 ⊂ V6 and V 2
5 ⊂ V6 and possibly different Lagrangian subspaces A1

and A′1. The aim of this section is to prove that the varieties X1 and X2 are birationally isomor-
phic.

Consider the diagrams

PX1(UX1)

xx

ρ11
''

X1 P
(
V 1

5

)
,

PX2(UX2)
ρ21
ww &&

P
(
V 2

5

)
X2 ,

where ρ1
1 and ρ2

1 are the first quadratic fibrations associated with the threefolds X1 and X2

respectively. Denote by Σ1(X1) ⊂ YA ∩P(V 1
5 ) and Σ1(X2) ⊂ YA ∩P(V 2

5 ) the associated subsets
of the previous section. Assume moreover V 1

5 6= V 2
5 , set V4 := V 1

5 ∩ V 2
5 ⊂ V6, and restrict

everything to the common base P(V4). We get a diagram

X̃1

||

ρ̃11

$$

X̃2
ρ̃21

zz ##

X1 P(V4) X2 ,

where X̃i = PXi(UXi)×P(V 1
5 ) P(V4) and ρ̃i1 is the restriction of ρi1 to X̃i.

Lemma 4.6. For each i ∈ {1, 2}, the map X̃i → Xi is the blow-up of Xi∩CGr(2, V4). In particular,
X̃i is irreducible, generically reduced, and birational to Xi.

Proof. By definition, X̃1 = PX1(UX1) ×P(V5) P(V4) is a divisor in a smooth 4-dimensional va-

riety PX1(UX1); hence each irreducible component of X̃1 is at least 3-dimensional. The fiber of
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X̃1 → X1 over a point w ∈ X1 is a linear section of the fiber of PX1(UX1)→ X1, so it is a point
if UX1,w 6⊂ V4 and the line P(UX1,w) if UX1,w ⊂ V4. Therefore, the locus of non-trivial fibers is
X1 ∩ CGr(2, V4).

To show that the map X̃1 → X1 is the blow-up, it is enough by [Kuz16, Lemma 2.1] to check
that the intersection X1 ∩ CGr(2, V4) has dimension at most 1. Since X1 is cut out in CGr(2, V5)
by three hyperplanes and a quadric, the intersection X1 ∩CGr(2, V4) is also cut out in CGr(2, V4)
by three hyperplanes and a quadric; hence its dimension is at least 1 and its degree is at most 4.
But X1 is a smooth threefold with Pic(X1) = ZH, so by the Lefschetz theorem, it contains no
surfaces of degree less than H3 = 10; hence we have dim(X1 ∩ CGr(2, V4)) = 1.

The same argument works for X̃2 as well.

If X1 and X2 are non-isomorphic period partners, that is if A(X1) = A(X2), then by Theo-
rem 3.25, we have V5(X1) 6= V5(X2).

Theorem 4.7. Let X1 and X2 be smooth complex GM threefolds which are period partners,
that is, such that A(X1) = A(X2) and V5(X1) 6= V5(X2). Let V4 = V5(X1) ∩ V5(X2) ⊂ V6. Over
an open subset U ⊂ P(V4), there is an isomorphism (ρ̃1

1)−1(U) ' (ρ̃2
1)−1(U). In particular, X̃1 is

birationally isomorphic to X̃2 over P(V4), and X1 is birationally isomorphic to X2.

Proof. By Proposition 4.5, the morphism ρ1
1 : PX1(UX1) → P(V5(X1)) is, outside the locus

Σ1(X1) ⊂ P(V5) (which has dimension at most 2 by Lemma 4.4), a flat double cover branched
along the sextic YA ∩P(V5(X1)). The morphism ρ̃1

1 : X̃1 → P(V4) is obtained from ρ1
1 by a base

change.

If X̃1
g1−−→ X̄1

h1−−→ P(V4) is the Stein factorization of ρ̃1
1, then g1 is birational and X̄1 is

isomorphic to the restriction of Spec(ρ1
1∗OPX1

(UX1
)) to P(V4); hence h1 is the double cover of

P(V4) branched along YA ∩ P(V4) (note that YA ∩ P(V4) 6= P(V4) since X̃1, hence also X̄1, is
generically reduced).

The same argument shows that in the Stein factorization ρ̃2
1 : X̃2

g2−−→ X̄2
h2−−→ P(V4), the

map g2 is also birational and h2 is again the double covering branched along the same sextic
YA ∩P(V4).

Since the branch divisors coincide, X̄1 and X̄2 are isomorphic, and X̃1 and X̃2 are birationally
isomorphic. By Lemma 4.6, the threefolds X1 and X2 are birationally isomorphic as well.

Remark 4.8. One can explicitly decompose the birational transformation X1
∼
99KX2 into several

steps. The first half can be described as follows:

• The map X̃1 → X1 is the blow-up of the union X1 ∩ CGr(2, V4) = c1 ∪ c2 of two conics
intersecting in two points.

• The map X̃1 → X̄1 contracts all lines intersecting c1 ∪ c2 and all conics intersecting c1 ∪ c2

twice (these conics are σ-conics and correspond to points of Σ1 ∩P(V4)).

The second part can be described similarly. This transformation is very similar to the conic
transformation used in [DIM12, Theorem 7.4] to prove Theorem 4.7 when X1 is a general GM
threefold.

One can use the same idea to prove the birationality of period partners in any dimension
n > 3. It requires, however, a long and cumbersome analysis, so we decided to omit it. Instead,
we will use birationalities for dual GM varieties (proved later in this section) to establish the
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result in dimension 4 (Theorem 4.15). Since in dimensions n > 5, all smooth GM varieties are
rational, this shows that the result holds in all dimensions n > 3.

4.4 The second quadric fibration

Let X be a smooth GM variety of dimension n > 3. Instead of the Gushel bundle UX , we now
consider the quotient (V5 ⊗ OX)/UX , which we denote simply by V5/UX , its projectivization
PX(V5/UX), and the map ρ2 : PX(V5/UX)→ Gr(3, V5). In Proposition 4.10, we prove that ρ2 is
a quadric fibration and identify its discriminant locus.

Let, as before, W⊥0 = A ∩
∧

3V5 be the even part of the space of linear equations of X.
Considering its elements as skew forms on V5, we denote by

Σ>k2 (X) ⊂ Gr(3, V5) (4.2)

the set of all 3-dimensional subspaces V3 in V5 which are isotropic for all elements of some
k-dimensional space of these skew forms. As usual, set Σ2(X) := Σ>1

2 (X).

Finally, we will use the EPW sequence

Z>kA =
{
V3 ∈ Gr(3, V6) | dim

(
A ∩

(
V6 ∧

∧
2V3

))
> k

}
defined in (B.10) and set ZA := Z>1

A . This sequence plays the same role for the second quadratic
fibration as the EPW sequence of P(V6) plays for the first.

In the next lemma, we consider 1-dimensional subspaces V1 ⊂ V5 and identify the Grassman-
nian Gr(2, V5/V1) with the subscheme of Gr(3, V5) parameterizing all 3-dimensional subspaces
containing V1.

Lemma 4.9. For any smooth GM variety X of dimension n > 3, we have Σ2(X) ⊂ ZA∩Gr(3, V5).

Assume, moreover, that either n = 3 and X is ordinary, or n > 4. If V1 /∈ Σ1(X), we have
dim(Σ2(X) ∩ Gr(2, V5/V1)) 6 2.

Proof. Let V3 ∈ Σ2(X); that is, the subspace V3 is isotropic for some non-zero ω ∈ A ∩
∧

3V5,
considered as a skew form on V5. Then ω ∈

∧
2V3 ∧V5. It follows that V3 ∈ ZA, which proves the

first assertion of the lemma.

Let ω ∈ A ∩
∧

3V5 be non-zero. Since X is smooth of dimension at least 3, the Lagrangian A
contains no decomposable vectors; hence ω, viewed as a skew form on V5, has rank 4 and its
kernel is a 1-dimensional subspace K1(ω) ⊂ V5. Any 3-dimensional subspace V3 of V5 which is
isotropic for ω contains K1(ω); hence the set of such subspaces can be identified with the set
of 2-dimensional subspaces in V5/K1(ω) which are isotropic for the non-degenerate skew form
induced by ω, that is, with a 3-dimensional quadric LGr(2, 4).

It remains to describe which of these subspaces V3 contain V1. Since V1 is not in Σ1(X), it
projects onto a non-zero subspace V ′1 ⊂ V5/K1(ω). The subset of LGr(2, 4) consisting of subspaces
containing V ′1 is P(V ′⊥1 /V ′1) = P1. It follows that Σ2(X) ∩ Gr(2, V5/V1) is dominated by a P1-
fibration over P(A∩

∧
3V5). Since dim(A∩

∧
3V5) 6 2 for GM fourfolds and ordinary GM threefolds

(see (3.9)), the claim follows.

Proposition 4.10. Let X be a smooth GM variety of dimension n > 3.

Over Gr(3, V5) r Σ2(X), the map ρ2 : PX(V5/UX)→ Gr(3, V5) is a relative quadratic hyper-
surface in a Pn−3-fibration, whose fiber over a point U3 has corank k if and only if U3 ∈ ZkA. In
particular, in Gr(3, V5) r Σ2(X), its discriminant locus is ZA ∩ (Gr(3, V5) r Σ2(X)).

Over Σl
2(X), the map ρ2 : PX(V5/UX) → Gr(3, V5) is a relative quadratic hypersurface in

a Pn+l−3-fibration, whose fiber over a point U3 has corank k if and only if U3 ∈ Zk+l
A .
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Proof. We follow the proof of Proposition 4.5 and use the notation introduced therein. Choose
v0 ∈ V6 rV5, and let V3 ⊂ V5. The fiber ρ−1

2 (V3) is the set of V2 ⊂ V3 which correspond to points
of X. This is the intersection

Q′(V3) := Q(v0) ∩P
((∧

2V3 ⊕ k
)
∩W

)
,

so it can be described by the isotropic reduction of Corollary C.4.

For this, we let L2 := (v0 ∧
∧

2V3)⊕ k ⊂ L2, and we consider the isotropic subspace

IV3 := L1 ∩ L⊥2 =
(∧

3V5 ⊕ L
)
∩
(∧

2V3 ⊕ k
)⊥

= V5 ∧
∧

2V3 .

According to Corollary C.4, the codimension in P(L2) of the span of the quadric Q′(V3) is equal
to dim

(
(Â ∩ L1)/(Â ∩ IV3)

)
and its kernel is (Â ∩ (IV3 ⊕ L2))/(Â ∩ IV3). It remains to describe

the intersections of Â with IV3 , L1, and IV3 ⊕ L2.

We have Â∩ IV3 = A∩ (V5 ∧
∧

2V3) ⊂ A∩
∧

3V5 = W⊥0 . A skew form on V5, considered as an
element of

∧
3V5, is contained in the subspace V5 ∧

∧
2V3 if and only if V3 is isotropic for it. This

means that for V3 ∈ Σl
2(X), we have

dim
(
Â ∩ IV3

)
= l . (4.3)

Furthermore, the space Â ∩ L1 = W⊥ has dimension 6 − n; hence the codimension of the span
of Q′(V3) in P(L2) is 6 − n − l. Since the dimension of P(L2) is 3, it follows that Q′(V3) is
a quadratic hypersurface in Pn+l−3. Finally, we have

IV3 ⊕ L2 =
(
V5 ∧

∧
2V3

)
⊕
(
v0 ∧

∧
2V3

)
⊕ k = V6 ∧

∧
2V3 ⊕ k .

Therefore, the dimension of Â ∩ (IV3 ⊕ L2) = A ∩ (V6 ∧
∧

2V3) is detected by the position of
the space V3 ∈ Gr(3, V5) with respect to the stratification Z•A of Gr(3, V6) defined in (B.10).
Taking (4.3) into account, we deduce that for V3 ∈ ZkA ∩Σl

2(X), the corank of Q′(v) is k− l.

4.5 The birationality of dual varieties of dimension 4

Let X and X ′ be smooth dual GM varieties of the same dimension n > 3. This means that
they are constructed from dual Lagrangian data sets (V6, V5, A,A1) and (V ∨6 , V

′
5 , A

⊥, A′1). Set
V1 := V ′⊥5 ⊂ V6 and assume additionally

V1 ⊂ V5 (4.4)

(we will see later that the general case reduces to this one).

Remark 4.11. The condition (4.4) is symmetric with respect to X and X ′. Indeed, it can be
reformulated as the degeneracy of the restriction of the natural pairing V6 ⊗ V ∨6 → k to the
subspace V5 ⊗ V ′5 ⊂ V6 ⊗ V ∨6 .

The construction of birationalities is very similar to the one used in Section 4.3. Assume
n = 3 or n = 4, and consider the diagrams

PX(V5/UX)

xx

ρ2

((

PX′(V ′5/UX′)
ρ′2
vv ''

X Gr(3, V5) , Gr(3, V ′5) X ′ ,

where ρ2 and ρ′2 are the second quadric fibrations defined in Section 4.4, together with the
subsets Σ2(X) ⊂ ZA ∩Gr(3, V5) and Σ2(X ′) ⊂ ZA ∩Gr(3, V ′5). We have Gr(3, V5) ⊂ Gr(3, V6) and
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Gr(3, V ′5) ⊂ Gr(3, V ∨6 ) = Gr(3, V6), and, since (4.4) is satisfied, their intersection is

Gr(2, V5/V1) ' Gr(2, 4)

(it is empty if (4.4) does not hold). We restrict everything to the common base Gr(2, V5/V1) and
get a diagram

X̃

~~

ρ̃2

&&

X̃ ′
ρ̃′2
xx ""

X Gr(2, V5/V1) X ′ ,

(4.5)

where X̃ = PX(V5/UX)×Gr(3,V5)Gr(2, V5/V1) and ρ̃2 is the restriction of ρ2 to X̃, and analogously

for X̃ ′ and ρ̃′2.

Lemma 4.12. If

V1 /∈ Σ1(X) ∪ Y >n−1
A(X) , (4.6)

the map X̃ → X is the blow-up of X ∩CGr(1, V5/V1). In particular, X̃ is irreducible, generically
reduced, and birational to X. Analogous claims hold for X̃ ′.

Proof. The proof is analogous to that of Lemma 4.6. The fiber of the map X̃ → X over a point
w ∈ X is a point if V1 6⊂ Uw and P(V/Uw) ' P2 otherwise. The locus of non-trivial fibers
is therefore X ∩ CGr(1, V5/V1). Since X ⊂ CGr(2, V5) is an intersection of 6 − n hyperplanes
and a quadric, X ∩ CGr(1, V5/V1) is the intersection of 6 − n hyperplanes and a quadric in
CGr(1, V5/V1) = P4; hence its expected dimension is n− 3.

The dimension can jump if

• either one of the hyperplanes contains CGr(1, V5/V1), that is, V1 ∈ Σ1(X);

• or the quadric contains the intersection P(W )∩CGr(1, V5/V1) = Pn−2; this is equivalent to
V1 ∈ Y >n−1

A(X) by Proposition 4.5.

So, if (4.6) is satisfied, the dimension does not jump and dim
(
X ∩ CGr(1, V5/V1)

)
6 n − 3.

The exceptional set of X̃ → X has dimension at most n − 1 and thus cannot be an irreducible
component of X̃. It follows that X̃ is integral and the map X̃ → X is the blow-up of X ∩
CGr(1, V5/V1). The same argument works for X̃ ′.

Proposition 4.13. LetX andX ′ be smooth dual complex GM fourfolds satisfying (4.4) and such
that (4.6) holds for both X and X ′. Over a dense open subset U ⊂ Gr(2, V5/V1), there is an iso-
morphism ρ̃−1

2 (U) ' ρ̃′−1
2 (U). In particular, X̃ is birationally isomorphic to X̃ ′ over Gr(2, V5/V1),

and X is birationally isomorphic to X ′.

Proof. By Proposition 4.10, the morphism ρ2 : PX(V5/UX) → Gr(3, V5) is, outside of the locus
Σ2(X) ⊂ Gr(3, V5), a flat double cover branched along the quartic ZA ∩Gr(3, V5). The morphism
ρ̃2 : X̃ → Gr(2, V5/V1) is obtained from ρ2 by a base change. Outside of Σ2(X) ∩ Gr(2, V5/V1)
(which has dimension at most 2 by Lemma 4.9), ρ̃2 is therefore a double covering branched
along ZA ∩ Gr(2, V5/V1).

Let X̃
g−−→ X̄

h−−→ Gr(2, V5/V1) be the Stein factorization of ρ̃2. As in the proof of Proposi-
tion 4.7, we see that g is birational and h is the double cover branched along ZA ∩ Gr(2, V5/V1).

The same argument shows that in the Stein factorization ρ̃′2 : X̃ ′
g′−−→ X̄ ′

h′−−→ Gr(2, V5/V1),
the map g′ is also birational and h′ is again the double covering branched along the same quartic
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ZA∩Gr(2, V5/V1) (Lemma B.10). As the branch divisors coincide, X̄ is isomorphic to X̄ ′; hence X̃
and X̃ ′ are birationally isomorphic. By Lemma 4.12, we also have a birational isomorphism
between X and X ′.

Remark 4.14. Again, one can explicitly describe the resulting birational transformation. The map
X̃ → X is the blow-up of a σ-conic c = X ∩ CGr(1, V5/V1), and the map X̃ → X̄ contracts all
lines intersecting c (they are parameterized by the curve Z>2

A ∩Gr(2, V5/v
′)) as well as all conics

intersecting c twice (these conics are ρ-conics and correspond to points of Σ2(X)∩Gr(2, V5/V1)).
The second half of the transformation is analogous.

4.6 Combined birationalities

In this section, we combine birational isomorphisms from the previous sections to show that all
period partners and all dual varieties of any dimension n > 3 are birationally isomorphic. We
first deal with period partners.

Theorem 4.15. Any two smooth complex GM fourfolds which are period partners are bira-
tionally isomorphic.

Proof. Let X1 and X2 be smooth GM fourfolds obtained from the same Lagrangian subspace A
with no decomposable vectors, possibly different hyperplanes V 1

5 ⊂ V6 and V 2
5 ⊂ V6, and possibly

different subspaces A1
1 and A2

1. By Theorem 3.27, smooth ordinary GM fourfolds that are dual to
both X1 and X2 are parametrized by points V1 of the locus Y 1

A defined in (B.2). If we moreover
impose conditions (4.4) and (4.6) for both V 1

5 and V 2
5 , we need to take V1 in Y 1

A ∩P(V 1
5 ∩ V 2

5 ),
but not in Σ1(X1)∪Σ1(X2) (which has dimension at most 1 by Lemma 4.4). If YA ∩P(V 1

5 ∩V 2
5 )

has dimension at least 3, this is certainly possible; if it has dimension 2, it is a surface of degree 6,
whereas Y >2

A is an integral surface of degree 40 (Theorem B.2), so it is again possible.

We make this choice of V1, and we let X ′ be the corresponding GM fourfold, dual to both X1

and X2. By the choice of V1, condition (4.4) holds for both pairs (X1, X
′) and (X2, X

′); we
also have V1 /∈ Σ1(X1) ∪ Σ1(X2) ∪ Y >3

A by construction. Moreover, for each i ∈ {1, 2}, we have

(V i
5 )⊥ /∈ Σ1(X ′) (by Lemma 4.4, (V i

5 )⊥ ∈ Σ1(X ′) implies (V1, V
i

5 ) ∈ ŶA; hence V1 ∈ Σ1(Xi))
and V i

5 /∈ Y >3
A⊥ , because X1 and X2 are fourfolds. Thus condition (4.6) also holds for both pairs.

Applying Proposition 4.13, we conclude that X1 and X ′ are birationally isomorphic, and so
are X2 and X ′. This proves the theorem.

Corollary 4.16. Smooth complex period partners of the same dimension n > 3 are birationally
isomorphic.

Proof. For n = 3, this is Theorem 4.7; for n = 4, this is Theorem 4.15; for n > 5, this is
Proposition 4.2.

The following corollary was brought to our attention by Tommaso de Fernex.

Corollary 4.17. No smooth complex GM variety X of dimension n > 3 is birationally rigid:
there are smooth prime Fano varieties that are birationally isomorphic to, but not biregularly
isomorphic to, X.

Proof. By Theorem 3.25, there is a bijection between the set of isomorphism classes of pe-
riod partners of X and the set

(
Y 5−n
A⊥ t Y 6−n

A⊥

)
/PGL(V6)A. Since the group PGL(V6)A is finite

(Theorem B.9(a)), these sets are infinite. By Corollary 4.16, all these period partners of X are
birationally isomorphic to X. This proves the corollary.

57



O. Debarre and A. Kuznetsov

For threefolds, the assumption (4.6) is very restrictive; for instance, it rules out all ordinary
dual varieties. We replace it with the more flexible assumption

V1 ∈
(
Y 2
A ∩P(V5)

)
r Σ1(X) . (4.7)

The scheme X̃ ⊂ PX(V5/UX) discussed in Lemma 4.12 is then reducible. We describe its irre-
ducible components and the restriction of the map ρ̃2 to these components.

Lemma 4.18. Let X be a smooth ordinary GM threefold, and let V1 ⊂ V5 be a subspace such
that (4.7) holds. The scheme X̃ in (4.5) has two irreducible components: the proper preimage X̃1

of X and the total preimage X̃2 of a particular line M ⊂ X. The restriction of the map ρ̃2 to X̃2

is a birational isomorphism onto a Schubert hyperplane section of Gr(2, V5/V1).

Proof. The proof of Lemma 4.12 shows that the locus of non-trivial fibers of the projection
X̃ → X is X ∩ Gr(1, V5/V1), that is, the intersection in Gr(1, V5/V1) = P3 of two hyperplanes
and a quadric. Since V1 /∈ Σ1(X), the intersection of the hyperplanes is a line, which we denote
by M . Its intersection with the remaining quadric can be identified with the fiber of the first
quadric fibration over the point V1 ∈ P(V5). Therefore, under condition (4.7), its corank is 2;
hence it coincides with M . Since the non-trivial fibers of the projection X̃ → X are P2, the
preimage of M in X̃ has dimension 3, hence is an irreducible component of X̃, which we denote
by X̃2. The other irreducible component is the proper preimage X̃1 of X in X̃.

Since M is a line in Gr(1, V5/V1) = P(V5/V1), it can be written, as a subvariety of Gr(2, V5),
as M = {U2 ∈ Gr(2, V5) |V1 ⊂ U2 ⊂ V3} for some 3-dimensional subspace V3 ⊂ V5 containing V1.
From the definition of the fibers of the map X̃ → X, we get

X̃2 '
{

(U2, U3) ∈ Fl(2, 3;V5) |V1 ⊂ U2 ⊂ V3 and U2 ⊂ U3 ⊂ V5

}
.

The map ρ̃2 : X̃ → Gr(2, V5/V1) ⊂Gr(3, V5) takes a point (U2, U3) ∈ X̃2 to U3/V1 ∈ Gr(2, V5/V1),
hence maps X̃2 birationally onto the Schubert hyperplane section of Gr(2, V5/V1) of all 2-
dimensional subspaces intersecting V3/V1 non-trivially (in fact, X̃2 is a Springer-type resolution
of singularities of the Schubert hyperplane).

We now show that under assumption (4.7), we still have birational threefolds.

Proposition 4.19. Let X and X ′ be dual smooth ordinary complex GM threefolds. Assume
that V ′1 satisfies (4.7) for X and that V ⊥5 satisfies (4.7) for X ′. Then X and X ′ are birationally
isomorphic.

Proof. Let X̃ = X̃1 ∪ X̃2 and X̃ ′ = X̃ ′1 ∪ X̃ ′2 be the decompositions into irreducible components
of Lemma 4.18. Consider the maps ρ̃2 and ρ̃′2 outside of (Σ2(X) ∪ Σ2(X ′)) ∩ Gr(2, V5/V

′
1) (this

locus is 2-dimensional (Lemma 4.9), so it does not affect the birational geometry of X and X ′).

Over a point of Gr(2, V5/V
′

1) not in Σ2(X), the fiber of X̃ is, by Proposition 4.10, a quadric
in P0. It is non-empty if and only if the corresponding quadratic form is zero, that is, if its kernel
is non-zero. By Proposition 4.10 again, this happens precisely for points of ZA ∩ Gr(2, V5/V

′
1).

This means that away from Σ2(X) ∩ Gr(2, V5/V
′

1), the map ρ̃2 is an isomorphism from X̃ onto
ZA ∩Gr(2, V5/V

′
1). Analogously, away from Σ2(X ′)∩Gr(2, V5/V

′
1), the map ρ̃′2 is an isomorphism

from X̃ ′ onto ZA ∩ Gr(2, V5/V
′

1).

By Lemma 4.18, the components X̃2 and X̃ ′2 map birationally onto the Schubert hyperplanes
of Gr(2, V5/V

′
1) given by the 3-dimensional spaces V3 ⊂ V6 and V ′3 ⊂ V ∨6 corresponding to the lines

MV ′
1
⊂ X and MV ⊥

5
⊂ X ′, respectively. Let us show V ′3 = V ⊥3 , so that the Schubert hyperplanes

coincide.
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By the definition of the line MV ′
1
, the space V3 can be constructed as follows. Let

A ∩
(
V ′1 ∧

∧
2V6

)
= 〈v ∧ ξ1, v ∧ ξ2〉 ,

where v is a generator of V ′1 and ξ1, ξ2 ∈
∧

2V6. Let f ∈ V ∨6 be an equation of V5. Then V3 is
spanned by v and the contractions ξi(f,−). Analogously, if

A⊥ ∩
(
V ⊥5 ∧

∧
2V ∨6

)
= 〈f ∧ η1, f ∧ η2〉 ,

the space V ′3 is spanned by f and the contractions ηi(v,−) of ηi ∈
∧

2V ∨6 . To identify V ′3 with V ⊥3 ,
it is therefore enough to show

(ξi(f,−), ηj(v,−)) = 0

for all i, j ∈ {1, 2}. This follows from the equality

(v ∧ ξi, f ∧ ηj) = (ξi(f,−), ηj(v,−)) ,

which in turn follows from f(v) = 0.

We proved that X̃2 and X̃ ′2 are mapped by ρ̃2 and ρ̃′2 onto the same Schubert hyperplane

section H ⊂ Gr(2, V5/V
′

1). Since both X̃ and X̃ ′ map birationally onto the quartic hypersurface
ZA∩Gr(2, V5/V

′
1), it follows that this quartic has two components H and Z ′, where Z ′ is a cubic

hypersurface in Gr(2, V5/V
′

1) onto which both X̃1 and X̃ ′1 map birationally. Thus X̃1 is birational

to X̃ ′1, hence X is birational to X ′.

The birational isomorphism of Proposition 4.19 coincides with the transformation of X (with
respect to the line M) defined in [DIM12, Section 7.2].

We can now prove the main result of this section.

Theorem 4.20. Any two dual smooth complex GM varieties of the same dimension n > 3 are
birationally isomorphic.

Proof. We keep the same notation as above. For n > 5, the result is trivial by Proposition 4.2,
so we may assume n ∈ {3, 4}.

First, assume n = 4. As in the proof of Theorem 4.15, we may choose V ′′1 ⊂ V5 such that the
corresponding smooth GM fourfold X ′′ is dual to X. Then X is birationally isomorphic to X ′′

by Proposition 4.13, and X ′ and X ′′ are birationally isomorphic by Theorem 4.15; hence X is
birationally isomorphic to X ′.

Now, let X be a smooth GM threefold, and set A := A(X). By Lemma B.5, we can find
v ∈ P(V6) and V5 ⊂ V6 such that

v ∈ Y 2
A , [V5] ∈ Y 2

A⊥ , v ∈ V5 , and (v, V5) 6∈ (p× q)
(
ŶA
)
. (4.8)

Let X ′ be the ordinary GM threefold corresponding to the Lagrangian A and the Plücker hyper-
plane V5 ⊂ V6, and let X ′′ be the ordinary GM threefold corresponding to the Lagrangian A⊥

and the Plücker hyperplane v⊥ ⊂ V ∨6 .

Then X ′ is a period partner of X; hence X ′ is birational to X by Theorem 4.7. Furthermore,
X ′′ is dual to X ′, and the conditions of Proposition 4.19 are satisfied for the pair (X ′, X ′′) (the
last condition in (4.8) is equivalent to v /∈ Σ1(X ′) by Lemma 4.4). Therefore, X ′′ is birational
to X ′ by Proposition 4.19. Combining these two birationalities, we conclude that X ′′ is birational
to X. It remains to note that any other dual GM threefold of X is a period partner of X ′′, hence
is birational to X ′′ by Theorem 4.7.
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Appendix A. Excess conormal sheaves

Let W be a k-vector space, and let X ⊂ P(W ) be a closed k-subscheme which is an intersection
of quadrics; that is, the twisted ideal sheaf IX(2) on P(W ) is globally generated. Let

VX := H0(P(W ),IX(2))

be the space of quadrics through X. The canonical map VX ⊗ OP(W )(−2) → IX is surjective,
and its restriction to X induces an epimorphism VX ⊗OX(−2)� IX/I

2
X = N ∨

X/P(W ) onto the
conormal sheaf of X.

Definition A.1. The excess conormal sheaf EN ∨
X/P(W ) of an intersection of quadrics X ⊂ P(W )

is the kernel of the canonical map VX ⊗ OX(−2)� N ∨
X/P(W ).

When the ambient space P(W ) is clear, we will simply write EN ∨
X . This sheaf is defined

over k and fits in the excess conormal sequence

0→ EN ∨
X/P(W ) → VX ⊗ OX(−2)→ N ∨

X/P(W ) → 0 .

We will also often consider the twist

0→ EN ∨
X/P(W )(2)→ VX ⊗ OX → N ∨

X/P(W )(2)→ 0 . (A.1)

In this appendix, we discuss some properties of the excess conormal sheaf.

Lemma A.2. The excess conormal sheaf is locally free on the lci locus of X.

Proof. This follows from the local freeness of the conormal bundle on the lci locus of X.

Proposition A.3. Consider a closed subscheme X ⊂ P(W ) and a cone CKX ⊂ P(W ⊕ K).
Let W ′ ⊂W ⊕K be a vector subspace, and let X ′ ⊂ P(W ′) ∩ CKX be a closed subscheme. Set
X ′0 := X ′∩C◦KX. If both X and X ′ are intersections of quadrics, there is a canonical commutative
diagram

µ∗EN ∨
X/P(W )

//

��

VX ⊗ OX′
0
(−2) //

��

µ∗N ∨
X/P(W )

//

��

0

0 // EN ∨
X′

0/P(W ′)
// VX′ ⊗ OX′

0
(−2) // N ∨

X′
0/P(W ′)

// 0

(A.2)

of sheaves on X ′0, where µ denotes the natural projection P(W⊕K)rP(K) = C◦KP(W )→ P(W )
as well as its restriction to X ′0.

Proof. The embedding W ′ ⊂ W ⊕K induces a map S2W∨ → S2W ′∨. Denote by V ′ the image
of VX under this map. Clearly, P(W ′) ∩ CKX is cut out in P(W ′) by the quadrics in V ′. Hence
the space VX′ of quadrics cutting out X ′ in P(W ′) contains V ′, and we obtain a canonical map
VX → VX′ . Furthermore, on the open subset P(W ′) r P(K) ⊂ P(W ′), the pullback µ∗IX of
the ideal of X in P(W ) is contained in the ideal IX′

0
of X ′0 in P(W ′) r P(K); hence we have

a commutative diagram

VX ⊗ OP(W ′)rP(K)(−2) //

��

µ∗IX

��

VX′ ⊗ OP(W ′)rP(K)(−2) // IX′
0

.

Restricting it to X ′0 and extending lines to excess conormal sequences proves the claim.

In some cases, the vertical map in (A.2) between excess conormal sheaves is an isomorphism.
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Lemma A.4. In the situation of Proposition A.3, assume W ′ = W ⊕k and X ′ = CkX ⊂ P(W ′),
so that X ′0 = C◦kX is the punctured cone. If µ : X ′0 → X is the natural projection, we have
EN ∨

X′ |X′
0
' µ∗EN ∨

X .

Proof. The intersection in P(W ′) of the quadrics in VX ⊂ S2W∨ ⊂ S2W ′∨ is the cone X ′ = CkX.
Moreover, NX′

0/P(W ′) ' µ∗NX/P(W ). Thus, the central and right vertical arrows in (A.2) are
isomorphisms. Moreover, the map µ is flat; hence the top line is exact on the left. Therefore the
left arrow is an isomorphism as well.

Lemma A.5. Assume that X ⊂ P(W ) is an intersection of quadrics and is linearly normal. Let
W ′ ⊂W be a hyperplane such that X ′ := X ∩P(W ′) is a dimensionally transverse intersection.
Then X ′ ⊂ P(W ′) is an intersection of quadrics and EN ∨

X′
lci
' EN ∨

Xlci
|X′

lci
, where Xlci is the lci

locus of X and X ′lci = X ′ ∩Xlci.

Proof. We have an exact sequence

0→ IX(−1)→ IX → IX′/P(W ′) → 0 .

Twisting it by OP(W )(2) and using the linear normality of X, we conclude that X ′ is an in-
tersection of quadrics and VX′ = VX . The diagram of Proposition A.3 gives a commutative
diagram

EN ∨
X |X′ //

��

VX ⊗ OX′(−2) // N ∨
X/P(W )|X′ //

��

0

0 // EN ∨
X′ // VX′ ⊗ OX′(−2) // N ∨

X′/P(W ′)
// 0 .

The right vertical arrow is an isomorphism by the dimensionally transverse intersection condition.
Moreover, the top line is exact on the lci locus, since the conormal bundle is locally free. Hence
the left arrow is an isomorphism.

Lemma A.6. Assume H0(X,OX) = k, and let Q ⊂ P(W ) be a quadratic hypersurface such
that X ′ = X ∩ Q is a dimensionally transverse intersection. Then EN ∨

X′
lci
' EN ∨

Xlci
|X′

lci
, where

again Xlci is the lci locus of X and X ′lci = X ′ ∩Xlci.

Proof. Tensoring the exact sequences

0→ IX → OP(W ) → OX → 0 and 0→ OP(W )(−2)→ OP(W ) → OQ → 0

and taking into account the dimensional transversality of the intersection X ′ = X ∩Q, we obtain
an exact sequence

0→ IX(−2)→ IX ⊕ OP(W )(−2)→ IX′ → 0 .

Twisting it by OP(W )(2) and taking into account that the condition H0(X,OX) = k implies
H0(P(W ),IX) = H1(P(W ),IX) = 0, we obtain an isomorphism VX′ = VX ⊕ k. It follows that

61



O. Debarre and A. Kuznetsov

the diagram of Proposition A.3 extends to a commutative diagram

0

��

0

��

EN ∨
X |X′ //

��

VX ⊗ OX′(−2) //

��

N ∨
X/P(W )|X′ //

��

0

0 // EN ∨
X′ // VX′ ⊗ OX′(−2) //

��

N ∨
X′/P(W ′)

//

��

0

OX′(−2)

��

OX′(−2)

��

0 0 .

Its middle column is exact by the above argument, and the right column is exact by the dimen-
sionally transverse intersection condition. Moreover, the top line is exact on Xlci; hence the left
vertical arrow is an isomorphism.

Finally, we compute the excess conormal bundle for some examples. Let U be the rank 2
tautological vector bundle on the Grassmannian Gr(2, V5).

Proposition A.7. Let X = Gr(2, V5) ⊂ P(
∧

2V5). Then EN ∨
X ' det(V ∨5 )⊗U (−2).

Proof. The standard resolution of the structure sheaf OX in P(
∧

2V5) is

0→ det(V ∨5 )⊗2⊗O(−5)→ det(V ∨5 )⊗V ∨5 ⊗O(−3)
α−−→ det(V ∨5 )⊗V5⊗O(−2)→ O → OX → 0 ,

where the map α is induced by the contraction V ∨5 ⊗
∧

2V5 → V5. In particular, the space
det(V ∨5 ) ⊗ V5 =

∧
4V ∨5 can be identified with the space of quadrics through X. Tensoring this

resolution with OX and taking into account that Tori(OX ,OX) =
∧
iN ∨

X , we deduce an exact
sequence

0→
∧

2N ∨
X → det(V ∨5 )⊗ V ∨5 ⊗ OX(−3)

α|X−−−→det(V ∨5 )⊗ V5 ⊗ OX(−2)→ N ∨
X → 0 .

The above description of α shows that α|X is the twist by det(V ∨5 ) of the composition of the
epimorphism V ∨5 ⊗OX(−3)� U ∨(−3), an isomorphism U ∨(−3) ∼−→U (−2), and the monomor-
phism U (−2) ↪→ V5 ⊗ OX(−2), whence the claim.

Let V6 be a k-vector space of dimension 6, and let again U be the rank 2 tautological vector
bundle on the Grassmannian Gr(2, V6).

Proposition A.8. Let X = Gr(2, V6) ⊂ P(
∧

2V6). Then

EN ∨
X ' det(V ∨6 )⊗

(
(V6 ⊗U (−2))/(S2U )(−2)

)
.

Proof. The standard resolution [Wey03, Theorem 6.4.1] of the structure sheaf of X in P(
∧

2V6)
is

· · · → det(V ∨6 )⊗ sl(V6)⊗ O(−3)
β−−→ det(V ∨6 )⊗

∧
2V6 ⊗ O(−2)→ O → OX → 0 ,

where β is given by the natural Lie algebra action sl(V6)⊗
∧

2V6 →
∧

2V6. Tensoring this resolution
with OX , we deduce an exact sequence

det(V ∨6 )⊗ sl(V6)⊗ OX(−3)
β|X−−−→ det(V ∨6 )⊗

∧
2V6 ⊗ OX(−2)→ N ∨

X → 0 .

The above description of β shows that β|X is the twist by det(V ∨6 ) of the composition

sl(V6)⊗ OX(−3)� V6 ⊗U ∨(−3) ∼−→V6 ⊗U (−2)→
∧

2V6 ⊗ OX(−2) .
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Since the first arrow is surjective, the image of the composition (that is, the excess conormal
bundle of the Grassmannian) is isomorphic (up to a twist) to the image of V6 ⊗ U (−2). The
kernel of the last map is (S2U )(−2), whence the claim.

Appendix B. Eisenbud–Popescu–Walter sextics

These sextics were introduced by Eisenbud, Popescu, and Walter in [EPW01, Example 9.3] and
were thoroughly investigated, over C, by O’Grady in the series of articles [OGr06, OGr08a,
OGr08b, OGr12, OGr13, OGr15, OGr16]. For their remarkable properties, we refer to these
articles. In this appendix, we sketch the original construction of EPW sextics from Lagrangian
subspaces and discuss some of their properties. The only new results here are Lemmas B.5
and B.6. To be able to use O’Grady’s results, we work over C, although many of his results are
valid over more general fields.

B.1 An overview of EPW sextics

Let V6 be a 6-dimensional complex vector space, and let A ⊂
∧

3V6 be a Lagrangian subspace
for the det(V6)-valued symplectic form ω defined by

ω(ξ, η) = ξ ∧ η .

Definition B.1. For any integer `, we set

Y >`A :=
{

[v] ∈ P(V6) | dim
(
A ∩

(
v ∧

∧
2V6

))
> `
}

(B.1)

and endow it with a scheme structure as in [OGr06, Section 2]. The locally closed subsets

Y `
A := Y >`A r Y >`+1

A (B.2)

form the EPW stratification of P(V6), and the sequence of inclusions

P(V6) = Y >0
A ⊃ Y >1

A ⊃ Y >2
A ⊃ · · ·

is called the EPW sequence. When the scheme YA := Y >1
A is not the whole space P(V6), it is

a sextic hypersurface [OGr06, (1.8)] called an EPW sextic. The scheme Y >2
A is non-empty and

has everywhere dimension at least 2 [OGr06, (2.9)].

Non-zero elements of A which can be written as v1 ∧ v2 ∧ v3 are called decomposable vectors,
so that A contains no decomposable vectors if the scheme

ΘA := P(A) ∩ Gr(3, V6)

is empty. When P(V6) 6=
⋃
V3∈ΘA

P(V3) (for example, when dim(ΘA) 6 2), the scheme YA is
not P(V6) and its singular locus can be described [OGr12, Corollary 2.5] as

Sing(YA) = Y >2
A ∪

( ⋃
V3∈ΘA

P(V3)

)
. (B.3)

The following theorem gathers various results of O’Grady.

Theorem B.2 (O’Grady). Let A ⊂
∧

3V6 be a Lagrangian subspace. If A contains only finitely
many decomposable vectors, then

(a) YA is an integral normal sextic hypersurface in P(V6);

(b) Y >2
A is a surface;
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(c) Y >3
A is finite if the scheme ΘA is moreover reduced;

(d) Y >5
A is empty.

If, moreover, A contains no decomposable vectors, then

(b′) Y >2
A = Sing(YA) is an integral normal Cohen–Macaulay surface of degree 40;

(c′) Y >3
A = Sing(Y >2

A ) is finite and smooth, and is empty for A general;

(d′) Y >4
A is empty.

Note that if A is the dual Lagrangian (see Section B.2) associated with a strongly smooth
ordinary GM curve, A contains five decomposable vectors and Y >4

A is non-empty (Remark 3.17).

Proof. The finite union S :=
⋃
V3∈ΘA

P(V3) is a surface if ΘA is non-empty (finite), and it is
empty otherwise. Relation (B.3) holds; hence claim (a) will follow from claim (b).

As we already mentioned, the scheme Y >2
A has everywhere dimension at least 2 [OGr06, (2.9)].

We now show that Y >2
A has dimension at most 2 at any point v /∈ S. If v ∈ Y 2

A, this is [OGr12,
Proposition 2.9]. Assume v ∈ Y >3

A ; the proof of [OGr13, Claim 3.7] still applies because v /∈ S.
It gives v ∈ Y 3

A and that v is isolated in Y >3
A , which proves that Y >3

A r S is finite. This implies
that in any positive-dimensional component T of Y >2

A r S, the open subset T ∩ Y 2
A is dense and

has dimension at most 2. Therefore, dim(T ) 6 2 and claim (b) is proved.

To finish the proof of claim (c), we show that the set Y >3
A ∩P(V3) is finite for each V3 ∈ ΘA,

under the additional assumption that ΘA is reduced. Since

TΘA,[V3] = P(A) ∩TGr(3,V6),[V3] = P
(
A ∩

(∧
2V3 ∧ V6

))
⊂ P

(∧
3V6

)
,

we have A ∩ (
∧

2V3 ∧ V6) =
∧

3V3. In the notation of [OGr16, Definition 3.3.3], this implies

B(V3, A) =
{

[v] ∈ P(V3) | ∃V ′3 ∈ ΘA, V
′

3 6= V3 and v ∈ V ′3
}
.

But this set is finite: if V3, V
′

3 ∈ ΘA and dim(V3 ∩ V ′3) > 2, the line spanned by [V3] and
[V ′3 ] in P(

∧
3V6) is contained in Gr(3, V6), hence in ΘA, contradicting the finiteness of ΘA. The

finiteness of Y >3
A ∩P(V3) then follows from [OGr16, Proposition 3.3.6] and claim (c) is proved.

Finally, assume v ∈ Y >5
A . Inside P(

∧
2(V6/v)) = P9, the linear space P

(
A∩(v∧

∧
2(V6/v))

)
(of

dimension at least 4) and the Grassmannian Gr(2, V6/v) (of dimension 6) meet along a positive-
dimensional locus contained in ΘA, which is absurd. This proves claim (d).

For the proof of claims (b′), (c′), and (d′), we have ΘA = ∅.

Again, we have Sing(YA) = Y >2
A by (B.3); moreover, Y 2

A is smooth of the expected dimension 2
[OGr12, Proposition 2.9], so that Sing(Y >2

A ) ⊂ Y >3
A . On the other hand, [OGr13, Claim 3.7] says

that claim (d′) holds; the proof actually shows that the tangent space to Y >3
A at any point is

zero, so that Y >3
A is smooth. It is moreover empty for A general [OGr06, Claim 2.6].

All this implies that the determinantal locus Y >2
A has everywhere the expected dimension, 2.

Therefore, it is Cohen–Macaulay and Y >3
A ⊂ Sing(Y >2

A ). This completes the proof of claim (c′).
It also implies that Y >2

A is normal since it is Cohen–Macaulay and its singular locus is finite. Its
degree is 40 by [OGr06, (2.9)].

It remains to show that Y >2
A is irreducible. When A is general, this follows from [OGr08b,

Theorem 1.1]. To deduce irreducibility for any A with no decomposable vectors, we use a standard
trick. Let (T, 0) be a smooth, pointed, connected curve that parametrizes Lagrangians (At)t∈T
with no decomposable vectors such that for t ∈ T general, Y >2

At
is smooth irreducible and A0 = A.
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Let H ⊂ P(V6) be a general hyperplane, so that H ∩ Y >2
A0

is a smooth curve and H ∩ Y >2
At

is smooth irreducible for general t. In T × P5, consider the union of all surfaces {t} × Y >2
At

.
As a determinantal locus, it has everywhere codimension at most 3; hence its intersection Y
with T ×H has everywhere dimension at least 2. Since the fiber Y0 = H ∩Y >2

A0
is 1-dimensional,

any component of Y0 deforms to a neighborhood of 0 in T . Since Yt is irreducible for t general,
so is Y0, hence so is Y >2

A0
. This finishes the proof of the theorem.

B.2 The duality of EPW sextics

If A ⊂
∧

3V6 is a Lagrangian subspace, its orthogonal A⊥ ⊂
∧

3V ∨6 is also a Lagrangian subspace.
In the dual projective space P(V ∨6 ) = Gr(5, V6), the EPW sequence for A⊥ can be described in
terms of A as

Y >`
A⊥ =

{
V5 ∈ Gr(5, V6) | dim

(
A ∩

∧
3V5

)
> `
}
. (B.4)

The canonical identification Gr(3, V6) ' Gr(3, V ∨6 ) induces an isomorphism between the sche-
me ΘA of decomposable vectors in P(A) and the scheme ΘA⊥ of decomposable vectors in P(A⊥)
[OGr12, (2.82)]. In particular, A contains no decomposable vectors if and only if the same is true
for A⊥.

One of the interesting properties of an EPW sextic is that its projective dual is often also
an EPW sextic. The proof we give is essentially equivalent to O’Grady’s [OGr08a, Corollary 3.6]
but is written in more geometrical terms.

Consider the scheme

ŶA :=
{

(v, V5) ∈ Fl(1, 5;V6) |A ∩
(
v ∧

∧
2V5

)
6= 0
}

(B.5)

and the projections

ŶA
p

{{

q

%%

YA YA⊥ .

Proposition B.3. If the scheme ΘA of decomposable vectors in P(A) is finite and reduced, the
hypersurfaces YA ⊂ P(V6) and YA⊥ ⊂ P(V ∨6 ) are projectively dual. If A contains no decompos-

able vectors, ŶA is irreducible and realizes the projective duality between these two hypersurfaces.

Proof. We keep the notation S =
⋃
V3∈ΘA

P(V3) and define

Ŷ ′A :=
{

(a, v, V5) ∈ P(A)× Fl(1, 5;V6) | a ∈ P
(
A ∩

(
v ∧

∧
2V5

))}
,

with the forgetful map Ŷ ′A → ŶA and the maps p′ : Ŷ ′A → ŶA
p−→ YA and q′ : Ŷ ′A → ŶA

q−→ YA⊥ .

Let us determine the fiber of p′ over v ∈ YA. Take a ∈ A ∩ (v ∧
∧

2V6) non-zero, and write
a = v ∧ η with η ∈

∧
2(V6/v).

If a is not decomposable, so is η; hence its rank is 4, and there is a unique hyperplane V5 ⊂ V6

containing v such that η ∈
∧

2(V5/v). Moreover, the space V5 corresponding to a = v ∧ η is given
by the 4-form

η ∧ η ∈
∧

4(V6/v) ' (V6/v)∨ = v⊥ ⊂ V ∨6 .

If a is decomposable, that is, a belongs to some
∧

3V3 ⊂
∧

3V6, the hyperplanes V5 ⊂ V6 such
that a ∈ v ∧

∧
2V5 satisfy

∧
3V3 ⊂

∧
3V5, hence V3 ⊂ V5. This means that the natural map

p′−1(v)→ P
(
A ∩

(
v ∧

∧
2V6

))
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is a P2-fibration over P(A∩ (v ∧
∧

2V6))∩Gr(3, V6) and is an isomorphism over its complement.
If v 6∈ S, the first case does not happen, hence

p′−1(v) ' P
(
A ∩

(
v ∧

∧
2V6

))
. (B.6)

Since Ŷ ′A can be defined as the zero-locus of a section of a rank 14 vector bundle on the smooth

18-dimensional variety P(A) × Fl(1, 5;V6), any irreducible component of Ŷ ′A has dimension at
least 4. On the other hand, the description (B.6) of the fibers of p′ outside of the surface S
implies dim(p′−1(Y 1

A r S)) = 4, and, using also Theorem B.2,

dim
(
p′−1

(
Y >2
A r S

))
6 max

{
dim

(
p′−1

(
Y 2
A r S

))
,dim

(
p′−1

(
Y 3
A r S

))
,dim

(
p′−1

(
Y 4
A r S

))}
6 max{2 + 1, 0 + 2, 0 + 3} = 3 .

Using the description of the fibers of p′ over the surface S, we conclude that the irreducible
components of Ŷ ′A are

• a “main” component Ŷ ′′A which dominates YA,

• one component {a} ×P(V3)×P(V ⊥3 ) for each decomposable vector a ∈
∧

3V3 ⊂ A.

It now remains to prove that Ŷ ′′A defines the projective duality between YA and YA⊥ . Let
v ∈ Y 1

A r S, and set V5 := q(p−1(v)). Let us show that the hyperplane P(V5) ⊂ P(V6) is tangent
to YA at v. Since p′ is an isomorphism over a neighborhood of v, the tangent space TY 1

A,v
is

identified with the tangent space T
Ŷ ′
A,(a,v,V5)

. Let (a+ a′t, v + v′t, V5 + V ′5t) be a tangent vector

to Ŷ ′A, that is, a k[t]/t2-point of this variety, with a′ ∈ A. Since A is Lagrangian, we have

a ∧ a′ = 0 . (B.7)

On the other hand, by the definition of Ŷ ′A, we can write a + a′t = (v + v′t) ∧ (η + η′t), which
gives a = v ∧ η and a′ = v ∧ η′ + v′ ∧ η. Substituting into (B.7), we get

0 = (v ∧ η) ∧ (v ∧ η′ + v′ ∧ η) = v ∧ v′ ∧ η ∧ η . (B.8)

But v′ is the image of the tangent vector in TY 1
A,v

, while v ∧ η ∧ η is the equation of V5. Equa-

tion (B.8) therefore implies v′ ∈ V5. Since this holds for any v′, we deduce TY 1
A,v
⊂ P(V5). Since v

is a smooth point of the hypersurface YA, this implies TYA,v = P(V5), as required.

Remark B.4. Assume that A contains no decomposable vectors. First, the forgetful map Ŷ ′A → ŶA
is an isomorphism: if (a, v, V5), (a′, v, V5) ∈ Ŷ ′A with a 6= a′, there would be decomposable vectors
in A in the span of a and a′.

Second, the definition of ŶA is symmetric with respect to V6 and V ∨6 . In particular, we obtain
from (B.6) an identification q−1(V5) ' P(A∩

∧
3V5), and p takes a ∈ A∩

∧
3V5 to the kernel of a

considered as a skew form on V5 via the isomorphism
∧

3V5 '
∧

2V ∨5 .

The following two lemmas were used in this article.

Lemma B.5. If A contains no decomposable vectors, we have(
Y 2
A × Y 2

A⊥

)
∩ Fl(1, 5;V6) 6⊂ (p× q)

(
ŶA
)
.

Proof. Assume, to the contrary, that we have (Y >2
A ×Y

>2
A⊥)∩Fl(1, 5;V6) ⊂ (p×q)(ŶA). The left side

is the intersection in P(V6)×P(V ∨6 ) of the fourfold Y >2
A ×Y

>2
A⊥ with the hypersurface Fl(1, 5;V6),

hence has dimension everywhere at least 3. On the other hand, it sits in E := p−1(Y >2
A ), the
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exceptional divisor of the birational morphism p, and it follows from the proof of Proposition B.3
that E is irreducible of dimension 3. Therefore, we have(

Y >2
A × Y >2

A⊥

)
∩ Fl(1, 5;V6) = E .

By symmetry, we also have(
Y >2
A × Y >2

A⊥

)
∩ Fl(1, 5;V6) = q−1

(
Y >2
A⊥

)
=: E′ ,

where the right side is the exceptional divisor of the birational morphism q. It follows that
E = E′.

Denote by H and H ′ the respective restrictions to YA and YA⊥ of the hyperplane classes
from P(V6) and P(V ∨6 ). The birational isomorphism q ◦ p−1 : YA 99K YA⊥ is given by the Gauss
map (that is, by the partial derivatives of the equation of YA). Since the equation of YA has de-
gree 6 and any point of Y 2

A has multiplicity 2 on YA [OGr12, Corollary 2.5], the partial derivatives
have degree 5 and multiplicity 1, and we get

H ′∼lin 5H − E .

By symmetry, we also have H ∼lin 5H ′ − E′. Combining these two equations, we obtain

E′∼lin 24H − 5E .

From E′ = E, we obtain 24H ∼lin 6E, which gives a contradiction, since E has negative inter-
section with curves contracted by p while H has zero intersection with such curves.

Lemma B.6. If A contains no decomposable vectors, the scheme Y >2
A ⊂ P(V6) is not contained

in a hyperplane.

Proof. We use the notation introduced in the proof of Lemma B.5. If Y >2
A is contained in a hy-

perplane, the linear system |H − E| is non-empty; hence the linear system

|E′| = |24H − 5E| = |19H + 5(H − E)|

is movable. But E′ is the exceptional divisor of the birational morphism q; hence E′ is rigid, so
this gives a contradiction.

B.3 Double EPW sextics

The properties of EPW sextics that are of most interest come from the existence of a (finite)
canonical double cover fA : ỸA → YA [OGr13, Section 1.2] with the following properties.

Theorem B.7 (O’Grady). Let A ⊂
∧

3V6 be a Lagrangian subspace which contains no decom-
posable vectors, and let YA ⊂ P(V6) be the associated EPW sextic.

(a) The double cover fA : ỸA → YA is branched over the surface Y >2
A and induces the universal

cover of Y 1
A.

(b) The variety ỸA is irreducible and normal, and its singular locus is the finite set f−1
A (Y >3

A ).

(c) When Y >3
A is empty, ỸA is a smooth, hyperkähler fourfold which is a deformation of the

symmetric square of a K3 surface.

Proof. Item (a) is proved in [OGr13, Proof of Theorem 4.15, p. 179], item (b) follows from
statement (3) in the introduction of [OGr13], and item (c) is [OGr06, Theorem 1.1(2)].

We draw a consequence of this theorem.
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Proposition B.8. Let A ⊂
∧

3V6 and A′ ⊂
∧

3V ′6 be Lagrangian subspaces, and let YA ⊂ P(V6)
and YA′ ⊂ P(V ′6) be the schemes defined in (B.1).

(a) Any linear isomorphism ϕ : V6
∼−→V ′6 such that (

∧
3ϕ)(A) = A′ induces an isomorphism

YA
∼−→YA′ .

(b) Assume YA 6= P(V6). Any isomorphism YA
∼−→YA′ is induced by a linear isomorphism

ϕ : V6
∼−→V ′6 , and, if A contains no decomposable vectors, A′ contains no decomposable vectors

and (
∧

3ϕ)(A) = A′.

Proof. Item (a) follows from the definition of YA.

(b) If YA 6= P(V6), it follows from the Lefschetz theorem [Gro05, XII, corollaire 3.7] that
Pic(YA) is generated by the hyperplane class. Any isomorphism YA

∼−→YA′ is therefore induced
by a linear isomorphism ϕ : V6

∼−→V ′6 .

If A contains no decomposable vectors, Sing(YA) is an integral surface of degree 40 (Theo-
rem B.2), hence contains no planes, and the same holds for Sing(YA′). It follows from (B.3) that A′

contains no decomposable vectors. Applying Theorem B.2 again, we obtain ϕ(Y 1
A) = Y 1

A′ . This
isomorphism lifts to the universal covers to an isomorphism f−1

A (Y 1
A) ∼−→ f−1

A′ (Y 1
A′) and extends

to the normal completions to an isomorphism ỸA
∼−→ ỸA′ (Theorem B.7). By [OGr16, Proof of

Proposition 1.0.5], this implies (
∧

3ϕ)(A) = A′.

Finally, we characterize the automorphism group of an EPW sextic.

Proposition B.9 (O’Grady). Let A ⊂
∧

3V6 be a Lagrangian subspace which contains no
decomposable vectors, and let YA ⊂ P(V6) be the associated EPW sextic.

(a) The automorphism group of YA is finite and equal to the group

PGL(V6)A :=
{
g ∈ PGL(V6) |

(∧
3g
)
(A) = A

}
. (B.9)

(b) When A is very general, these groups are trivial.

Proof. (a) The equality Aut(YA) = PGL(V6)A follows from Proposition B.8. These groups are
finite because A is a stable point of LGr(

∧
3V6) for the action of PGL(V6): the non-stable locus

has 12 components, listed in [OGr16, Table 1], and one checks that they are all contained in the
locus of Lagrangians which contain decomposable vectors.

(b) Let fA : ỸA → YA be the canonical double cover, where ỸA is a smooth hyperkähler
fourfold (Theorem B.7(c)). As explained in the proof of Proposition B.8(b), any automorphism g
of YA is linear and lifts to an automorphism g̃ of ỸA.

Let h be the class in H2(ỸA,Z) of f∗A(OYA(1)). The automorphism g̃ fixes h, hence acts on

its orthogonal h⊥ ⊂ H2(ỸA,C) for the Beauville–Bogomolov form as a linear map, which we
denote by g̃∗. The line H2,0(ỸA) ⊂ H2(ỸA,C) is contained in an eigenspace of g̃∗, and the small
deformations At of A for which g extends must maintain H2,0(ỸAt) in that same eigenspace. It
follows that if g extends for all small deformations of A, the eigenspace containing H2,0(ỸA) is
all of h⊥. Thus g̃∗ = ζ Idh⊥ , where ζ is some root of unity. Since g̃∗ is real, we have ζ = ±1.

But the morphism Aut(ỸA)→ Aut(H2(ỸA,Z)) is injective: its kernel is deformation invariant
[HT13, Theorem 2.1], and it is trivial for symmetric squares of K3 surfaces [Bea83, Proposi-
tion 10]; the statement therefore follows from Theorem B.7(c). This implies that g̃ is either the
identity or the involution associated with the double covering fA. In both cases, g = IdYA .
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B.4 EPW quartics

We introduce certain quartic hypersurfaces in Gr(3, V6) also associated with Lagrangian subspaces
A ⊂

∧
3V6. For each ` > 0, we set

Z>`A :=
{
V3 ∈ Gr(3, V6) | dim

(
A ∩

(
V6 ∧

∧
2V3

))
> `
}
. (B.10)

The subschemes Z>`A ⊂ Gr(3, V6) were recently studied in [IKKR17]. In particular, if A
contains no decomposable vectors, the scheme ZA = Z>1

A is an integral quartic hypersurface
[IKKR17, Corollary 2.10]. We will call it the EPW quartic associated with A. We will only need
the following duality property.

Lemma B.10. The natural isomorphism Gr(3, V6) ' Gr(3, V ∨6 ) induces an identification between
the EPW quartics ZA ⊂ Gr(3, V6) and ZA⊥ ⊂ Gr(3, V ∨6 ).

Proof. The isomorphism of the Grassmannians takes V3 ⊂ V6 to V ⊥3 ⊂ V ∨6 . It is therefore enough
to show that the isomorphism

∧
3V6 →

∧
3V ∨6 given by the symplectic form takes the subspace

V6 ∧
∧

2V3 to the subspace V ∨6 ∧
∧

2V ⊥3 . As both subspaces are Lagrangian, it is enough to verify
that the pairing between V6 ∧

∧
2V3 and V ∨6 ∧

∧
2V ⊥3 induced by the pairing between V6 and V ∨6

is trivial, and this is straightforward.

Appendix C. The projective duality of quadrics and Lagrangian subspaces

Let V be a k-vector space. We discuss the projective duality of quadrics (of all possible di-
mensions) in P(V ) and its interpretation in terms of Lagrangian geometry. To simplify the
statements, it is convenient to define a quadric Q in P(V ) as a subvariety of a (possibly empty)
linear subspace P(W ) ⊂ P(V ) defined by a (possibly zero) quadratic form q ∈ S2W∨ (if q = 0,
then Q = P(W ) is a linear subspace of P(V ); it should not be confused with rank 1 quadrics,
which are double linear subspaces). With each such form q, we can associate its kernel space
K ⊂W . The induced form on the (possibly zero) quotient space W/K is then non-degenerate.

The projective dual variety Q∨ ⊂ P(V ∨) is also a quadric, which can be constructed as
follows. The quadratic form q induces an isomorphism

q : W/K ∼−→(W/K)∨ = K⊥/W⊥ ,

where W⊥ ⊂ K⊥ ⊂ V ∨ are the orthogonals. The inverse isomorphism

q−1 : K⊥/W⊥ ∼−→W/K =
(
K⊥/W⊥

)∨
defines a quadratic form q∨ on the space K⊥ ⊂ V ∨ with kernel W⊥. The corresponding quadric
in P(K⊥) ⊂ P(V ∨) is the projective dual Q∨ of Q.

It is a classical observation that the projective duality of quadrics can be described in terms
of Lagrangian subspaces in a symplectic vector space equipped with a Lagrangian direct sum
decomposition. For the reader’s convenience, we summarize this relation and develop it a bit.

We recall how a Lagrangian subspace gives a pair of projectively dual quadrics.

Proposition C.1. Let (V, ω) be a symplectic k-vector space, and let L1 and L2 be Lagrangian
subspaces such that V = L1 ⊕ L2. Denote by pr1 and pr2 ∈ End(V) the projectors to L1 and L2.

(a) For any Lagrangian subspace A ⊂ V, the bilinear form qA on A defined by

qA(x, y) := ω(pr1(x), pr2(y)) (C.1)
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is symmetric. Its kernel is given by

Ker
(
qA
)

= (A ∩ L1)⊕ (A ∩ L2) . (C.2)

(b) The quadratic form qA induces quadratic forms qA1 and qA2 on the subspaces

W1 := pr1(A) = (A ∩ L2)⊥ ⊂ L1 and W2 := pr2(A) = (A ∩ L1)⊥ ⊂ L2

with respective kernels

K1 :=A ∩ L1 ⊂W1 and K2 :=A ∩ L2 ⊂W2 .

The corresponding quadrics QA1 ⊂ P(W1) ⊂ P(L1) and QA2 ⊂ P(W2) ⊂ P(L2) are projectively
dual with respect to the duality between L1 and L2 induced by the symplectic form ω.

Proof. (a) For all x, y ∈ A, we have

qA(x, y)− qA(y, x) = ω(pr1(x), pr2(y)) + ω(pr2(x), pr1(y))

= ω(pr1(x) + pr2(x), pr1(y) + pr2(y))− ω(pr1(x), pr1(y))− ω(pr2(x), pr2(y)) .

In this last expression, the first term equals ω(x, y), hence is zero since A is Lagrangian; the second
and the third terms are zero since L1 and L2 are Lagrangian. Thus the expression vanishes and qA

is symmetric.

It remains to compute the kernel of qA. Since x = pr1(x) + pr2(x) and L2 is Lagrangian, we
have

qA(x, y) = ω(pr1(x), pr2(y)) = ω(x− pr2(x), pr2(y)) = ω(x, pr2(y)) .

Since A is Lagrangian, its ω-orthogonal coincides with A, so y ∈ Ker(qA) is equivalent to
pr2(y) ∈ A. Writing y = pr1(y) + pr2(y), this implies that also pr1(y) ∈ A. Thus pr1(y) ∈ A ∩ L1

and pr2(y) ∈ A∩L2. This proves one inclusion. For the other inclusion, both A∩L1 and A∩L2

are in the kernel of qA: for A ∩ L1, this is because pr2(y) = 0 for y ∈ A ∩ L1, and for A ∩ L2, it
is because pr1(x) = 0 for x ∈ A ∩ L2.

(b) By (C.1), the kernels A∩L2 and A∩L1 of the restrictions pr1|A and pr2|A are contained in
the kernel of qA; hence qA induces quadratic forms on W1 = pr1(A) ⊂ L1 and W2 = pr2(A) ⊂ L2.
The equalities W1 = (A ∩ L2)⊥ and W2 = (A ∩ L1)⊥ follow from the Lagrangian property of A.
The kernels K1 and K2 of the induced quadratic forms qA1 and qA2 are the respective images of
the kernel of qA under pr1 and pr2, so (C.2) implies K1 = A ∩ L1 and K2 = A ∩ L2.

Note that the subspace A/(K1 ⊕ K2) ⊂ W1/K1 ⊕W2/K2 is the graph of an isomorphism
W1/K1 ' W2/K2. The duality between W1/K1 and W2/K2 given by the symplectic form ω
identifies this isomorphism with the quadratic form qA1 and its inverse with qA2 . This means that
the quadrics QA1 and QA2 are projectively dual.

The following construction shows that any pair of projectively dual quadrics comes from
a Lagrangian subspace.

Lemma C.2. Let Q ⊂ P(L) be a quadric, and let Q∨ ⊂ P(L∨) be its projective dual. In the
space V := L⊕ L∨ endowed with the symplectic form

ω(x, y) = (x1, y2)− (y1, x2) ,

there is a unique Lagrangian subspace A ⊂ V such that QA1 = Q and QA2 = Q∨.

Proof. Let K ⊂ L and W ⊂ L be the kernel and span of Q, and let q ∈ S2W∨ be a quadratic
form defining Q. Let A be the kernel of the sum of the induced map q : W → W∨ with the
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canonical surjection L∨ →W∨. It fits into an exact sequence

0→ A→W ⊕ L∨ →W∨ → 0 . (C.3)

The embedding W → L induces an embedding A→ L⊕ L∨ = V. Let us show that the image is
Lagrangian. It can be explicitly described as

A =
{

(x1, x2) ∈ L⊕ L∨ |x1 ∈W and x2 ≡ q(x1) mod W⊥
}
.

Given x = (x1, x2) and y = (y1, y2) in A, we have

ω(x, y) = (x1, y2)− (y1, x2) = (x1, q(y1))− (y1, q(x1)) = q(y1, x1)− q(x1, y1) = 0 ,

so A is indeed Lagrangian. Note that pr1(A) = W by the definition of A. Moreover, if qA is the
quadratic form on A defined in Lemma C.1, for x = (x1, x2) and y = (y1, y2) in A, we have

qA(x, y) = ω(pr1(x), pr2(y)) = ω(x1, y2) = (x1, q(y1)) = q(x1, y1) = q(pr1(x), pr1(y)) .

This shows qA1 = q, so QA1 = Q. Since QA2 is projectively dual to QA1 , we obtain QA2 = Q∨.

For the uniqueness, it is enough to check that the construction of this lemma is inverse to
the construction of Proposition C.1, which is straightforward.

We now discuss the so-called “isotropic reduction” of Lagrangian subspaces.

Let (V, ω) be a symplectic vector space. Let I ⊂ V be an isotropic subspace, and let I⊥ ⊂ V
be its ω-orthogonal. The restriction of the symplectic form ω to I⊥ is degenerate, and its kernel
is I ⊂ I⊥. Hence the form descends to a symplectic form ω̄ on V := I⊥/I. Moreover, for each
Lagrangian subspace L ⊂ V, the subspace

L :=
(
L ∩ I⊥

)
/(L ∩ I) ⊂ V

is Lagrangian. We call the symplectic space V the isotropic reduction of V and the Lagrangian
subspace L the isotropic reduction of L.

Let V = L1⊕L2 be a Lagrangian direct sum decomposition, and let I ⊂ L1 (this is automat-
ically isotropic). Isotropic reduction gives us a Lagrangian direct sum decomposition

V = L1 ⊕ L2 ,

where L1 = L1/I and L2 = L2 ∩ I⊥. Furthermore, if A ⊂ V is Lagrangian, its isotropic reduction

A ⊂ V produces a projectively dual pair of quadrics (QA1 , Q
A
2 ). We will say that this pair is

obtained from the pair (QA1 , Q
A
2 ) by isotropic reduction with respect to I. The next lemma gives

a geometric relation between a pair of projectively dual quadrics and their isotropic reduction.

Lemma C.3. In the situation described above, we have the following:

(a) The quadratic form qA on A is induced by the restriction of the quadratic form qA to
A ∩ I⊥ ⊂ A. In particular,

QA ∩P
(
A ∩ I⊥

)
= CA∩I

(
QA
)
.

(b) The quadric QA2 is the linear section QA2 ∩P(L2) of QA2 , and the quadric QA1 is its projective

dual. Moreover, the span and the kernel of QA2 are

Span
(
QA2
)

= ((A ∩ L1)/(A ∩ I))⊥ ⊂ L2 , Ker
(
QA2
)

= (A ∩ (I⊕ L2))/(A ∩ I) . (C.4)

Proof. (a) First, we have A ∩ I ⊂ A ∩ L1 ⊂ Ker(qA). Thus qA induces a quadratic form on A.
Moreover, the projectors pr1 and pr2 onto the components of the decomposition V = L1⊕L2 are
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induced by the projectors pr1 and pr2. Hence, for x, y ∈ A ∩ I⊥, we have

qA(x, y) = ω(pr1(x), pr2(y)) = ω(pr1(x), pr2(y)) = qA(x, y) .

This means that the quadratic form induced on A is qA and thus proves the first equality.

(b) We prove that QA2 is a linear section of QA2 . Since L1 ⊂ I⊥, we have

W 2 := pr2(A) = pr2
(
A ∩ I⊥

)
= pr2(A) ∩ pr2(I⊥) = W2 ∩ L2 ,

and the kernel of the projection A∩I⊥ → pr2(A∩I⊥) is A∩L1. Therefore we have a commutative
diagram

0 // A ∩ L1
//

��

A ∩ I⊥
pr2 //

����

W2 ∩ L2
// 0

0 // A ∩ L1
// A

pr2 //W 2
// 0 .

Since A∩L1 is contained in the kernel of the quadratic form qA|A∩I⊥ , the quadratic form induced
by it on W2 ∩L2 via the projection pr2 coincides with the quadratic form obtained in two steps,
by first inducing a quadratic form on A via the middle vertical arrow, and then on W 2 via pr2.
The quadratic form induced via pr2 is qA2 |W2∩L2

, the quadratic form induced via the vertical map

is qA, and the quadratic form induced by it via pr2 is qA2 . Therefore, by the commutativity of the

right square, we deduce qA2 |W2∩L2
= qA2 .

We now identify the span and the kernel of QA2 . By Proposition C.1, the span is (A ∩ L1)⊥

and the kernel is A ∩ L2. To describe the first, consider the commutative diagram above. Since
the middle vertical map is surjective with kernel A∩ I, the same is true for the left vertical map;
hence A ∩ L1 = (A ∩ L1)/(A ∩ I).

For the kernel, recall that A is the image of A∩I⊥ under the projection I⊥ → V with kernel I.
Therefore, A ∩ L2 is the image in V of the intersection of A ∩ I⊥ with the preimage of L2 in I⊥,
that is, with I⊕ L2. Thus it is the image in V of A ∩ (I⊕ L2). Since the kernel of the projection
I⊥ → V is I, we see that A ∩ L2 = (A ∩ (I⊕ L2))/(A ∩ I).

Choosing an isotropic space appropriately, we can realize any subquadric in Q2 as the result
of an isotropic reduction applied to the pair (Q1, Q2). This gives a convenient way to control the
span and the kernel of a subquadric.

Corollary C.4. Let (Q1, Q2) be a projectively dual pair of quadrics corresponding to a La-
grangian decomposition V = L1 ⊕ L2 and a Lagrangian subspace A ⊂ V. Let L2 ⊂ L2 be an
arbitrary subspace, and set

I := L1 ∩ L⊥2 .
The isotropic reduction with respect to I produces a projectively dual pair of quadrics (Q1, Q2),
where Q2 = Q2 ∩P(L2). In particular, the span and the kernel of Q2 are given by (C.4).

Proof. Since the pairing between L1 and L2 is non-degenerate and I is the orthogonal of L2 in L1,
it follows that L2 is the orthogonal of I in L2, that is, L2 = L2 ∩ I⊥, and Lemma C.3 applies.

To conclude, we discuss a family version of the correspondence discussed in this appendix.
Let S be a scheme, let V be a vector bundle on S equipped with a symplectic form ω :

∧
2V →M

with values in a line bundle M , and let V = L1⊕L2 be a Lagrangian direct sum decomposition.
The latter induces an isomorphism

L ∨
2 ' L1 ⊗M−1 .
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Let A ⊂ V be another Lagrangian subbundle. Formula (C.1) then defines a quadratic form
qA : M−1 → S2 A ∨ on A , but if we want to consider one of the two projectively dual quadrics,
we should impose some constant-rank condition to ensure that the linear span of the quadric in
question is a vector bundle.

Lemma C.5. Assume that the morphism A ↪→ V
pr2−−−→ L2 has constant rank, and let W2 ⊂ L2

be its image. Then the family of quadrics qA induces a family qA ,2 : M−1 → S2W ∨
2 of quadrics

on W2, and there are isomorphisms of sheaves

Coker
(
W2 ⊗M−1 qA ,2−−−−→ W ∨

2

)
' Coker

(
A ⊗M−1 pr1−−−→ L ∨

2

)
' Coker

(
L2 ⊗M−1 pr∨1−−−→ A ∨

)
and similarly for the kernels.

Proof. By the definition of W2, there are epimorphisms A � W2 and L1 ⊗M−1 ' L ∨
2 � W ∨

2 .
They combine into a commutative diagram

A ⊗M−1

pr1
��

// // W2 ⊗M−1

qA ,2

��

� � // L2 ⊗M−1

pr∨1
��

L ∨
2

// // W ∨
2
� � // A ∨ ,

where the kernels and cokernels of the horizontal compositions are identified by the maps pr1
and pr∨1 (the kernels also can be characterized as the intersection of the subbundles A and L1

inside V , twisted by M−1, and the cokernels are dual to the kernels, up to a twist). It follows
that the cokernels of the vertical maps pr1, qA ,2, and pr∨1 are isomorphic, whence the lemma.

We also discuss a family version of isotropic reduction. Assume that in addition to the above,
we are given a vector subbundle I ⊂ L1. The vector bundle V defined as the cohomology of
the monad I ↪→ V � I ∨ ⊗M then has a natural symplectic structure, and if L ⊂ V is
a Lagrangian subbundle such that the composition L ↪→ V � I ∨ ⊗M has constant rank,
the sheaf L := Ker(L → I ∨ ⊗M )/Ker(I → L ∨ ⊗M ) is locally free and is a Lagrangian
subbundle in V . In particular, when applied to L = L1 and L = L2, we get

L 1 = L1/I and L 2 = Ker(L2 � I ∨ ⊗M ) .

Lemma C.6. One has a Lagrangian direct sum decomposition V = L 1 ⊕ L 2. Moreover, if
A ⊂ V is a Lagrangian subbundle such that the composition A → V → I ∨⊗M has constant
rank, the vector bundle W 2 is a subbundle in W2 and the quadratic form qA ,2 on W 2 equals the

restriction of the quadratic form qA ,2. Finally, the subbundle L̃2 := I ⊕L 2 ⊂ L1 ⊕L2 = V is
Lagrangian, and there is an exact sequence

0→ Coker
(
W 2⊗M−1 → W

∨
2

)
→ Coker

(
A ⊗M−1 → L̃ ∨

2

)
→ Coker

(
A ⊗M−1 → I ∨

)
→ 0 .

In particular, if the map A → I ∨ ⊗M is an epimorphism, there are isomorphisms

Coker
(
W 2 ⊗M−1 → W

∨
2

)
' Coker

(
A ⊗M−1 → L̃ ∨

2

)
' Coker

(
L̃2 ⊗M−1 → A ∨

)
.

Proof. Just repeat the proof of Lemma C.3.
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