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Tensor generators on schemes and stacks

Philipp Gross

Abstract

We show that an algebraic stack with affine stabilizer groups satisfies the resolution
property if and only if it is a quotient of a quasi-affine scheme by the action of the
general linear group or, equivalently, if there exists a vector bundle whose associated
frame bundle has quasi-affine total space. This generalizes a result of B. Totaro to
non-normal and non-noetherian schemes and algebraic stacks. Also, we show that the
vector bundle induces such a quotient structure if and only if it is a tensor generator
in the category of quasi-coherent sheaves.

1. Introduction

When X is a scheme, or an algebraic stack, such that every quasi-coherent sheaf of finite type F
is a quotient of a locally free sheaf G, then one says that X satisfies the resolution property, and
this has important consequences for K-theory. Whereas this condition holds for quasi-projective
or Q-factorial schemes with affine diagonal, it has been difficult to verify for general schemes
that do not possess enough invertible sheaves. It is easy to construct counterexamples when the
diagonal is not affine, but even the case of toric separated threefolds is still open.

A related question deals with global quotient stack presentations. When X is a quotient
stack [U/G] for some algebraic space U acted on by a group scheme G, the geometry of X is
equivalent to the G-equivariant geometry of U . Therefore, it is a fundamental question, whether
such a global quotient stack presentation exists.

One says that X is basic if U is a quasi-affine scheme and G = GLn [Ryd15, Definition 2.1] or,
equivalently, if X is endowed with a vector bundle V of rank n, whose associated frame bundle
U → X has quasi-affine total space. Such a stack has affine diagonal, and at each point x of X,
the stabilizer group Aut(x) is affine and acts faithfully on Vx. But not every algebraic stack with
affine diagonal is basic. For example, the Gm-gerbe associated with a non-torsion element of the
cohomological Brauer group is not a global quotient stack.

It is a classical result by Thomason that a noetherian basic stack X satisfies the resolution
property [Tho87]. The converse was proven by Totaro under the hypothesis that X is a normal
noetherian algebraic stack and that the stabilizer groups are affine at closed points [Tot04,
Theorem 1.1]. He observed that a careful polynomial combination of enough locally free sheaves
produces a locally free sheaf whose associated frame bundle is eventually representable by a quasi-
affine scheme.
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P. Gross

The goal of this paper is to prove the equivalence of the resolution property and being basic
in large generality, by removing the normality and noetherian assumption.

Moreover, we show that for a basic stack X, the distinguished vector bundle V is a tensor
generator in the sense that it generates “enough” locally free sheaves by the process of taking
direct sums, duals, tensor products and certain locally split subsheaves. This generalizes the
well-known fact that linear representations of algebraic group schemes can be reconstructed
from a faithful representation.

In more detail, the main result is the following.

Theorem 1.1. Let X be a quasi-compact and quasi-separated algebraic stack (over Z). Then
the following are equivalent:

(i) The stack X has affine stabilizer groups at closed points and satisfies the resolution property.

(ii) The stack X has affine stabilizer groups at closed points and admits a tensor generator V
of rank n: every quasi-coherent sheaf F of finite type is a quotient of a subsheaf G ⊂ P (V,V∨)
for some polynomial P ∈ N[r, s] such that G is a direct summand when restricted to the frame
bundle IsomX(OnX ,V).

(iii) The stack X is basic, that is, X = [U/GLn], where U is a quasi-affine scheme with an
action of GLn for some n > 0. In particular, X has affine diagonal.

Moreover, if V is a tensor generator, then U in part (iii) can be taken as the total space of the
frame bundle associated with V and vice versa. Also, if V has linearly reductive structure group
(for example, if V is a direct sum of line bundles or if X is of characteristic zero), then in part (ii),
the sheaf F is a quotient of some P (V,V∨).

As an application of the linearly reductive case, we derive that an algebraic stack X has
a generating family of invertible sheaves and affine stabilizer groups if and only if X = [U/Gn

m]
for some quasi-affine scheme U (Corollary 6.7). This was proven by Hausen for integral schemes
of finite type over an algebraically closed field [Hau02, Theorem 1].

Note that when n = 0, the theorem implies that an algebraic stack X with affine stabilizers
at closed points is representable by a quasi-affine scheme if and only if every quasi-coherent sheaf
is globally generated. On the other hand, if X = BGLn and V corresponds to the standard
representation of GLn, we recover the fact that every linear representation is a subquotient of
a polynomial expression in V and V∨. The general case follows by constructing a quasi-affine
morphism X → BGLn.

In the process of verifying the aforementioned representability criterion, we prove that the
AF -property (that is, every finite set of points admits an affine open neighborhood, also known
as the Chevalley–Kleiman property) descends along finite surjections in the category of algebraic
spaces.

Theorem 1.2. Let X be a quasi-compact and quasi-separated algebraic space, and let f : Y → X
be a finite surjective morphism of algebraic spaces. Then X is an AF-scheme if and only if Y is
an AF-scheme.

Kollár also independently proved this in the excellent case [Kol12, Corollary 48], so our result
is just a mild generalization.

This article is largely based on my thesis from 2010. The recent improvements of approxi-
mating general algebraic stacks [Ryd15] made it possible to remove many technical assumptions.
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Tensor generators on schemes and stacks

Outline

In Section 2, we define relatively generating families of finitely presented quasi-coherent sheaves
with respect to a morphism of algebraic stacks and give a thorough discussion of the basic
permanence properties (Proposition 2.8).

Section 3 deals with pinching AF-schemes, and there we prove Theorem 1.2 and generaliza-
tions thereof.

We characterize, in Section 4, quasi-affine morphisms in terms of the counit f∗f∗F → F .
The proof involves several reduction steps from algebraic stacks and algebraic spaces to the
well-known case of schemes.

Section 5 deals with relatively generating families of vector bundles. The results enable us
to treat the resolution property for morphisms X → Y of algebraic stacks. For the reader’s
convenience, we recall the main classes of algebraic stacks where the resolution property is known
to be true.

Finally, in Section 6, we give the proof of Theorem 1.1.

Conventions and notation

For algebraic stacks, we follow the conventions in [LM00] except that we do not require that the
diagonal of an algebraic stack is separated, following [SP15]. All our stacks will however be quasi-
separated, that is, have quasi-compact and quasi-separated diagonal. A scheme is quasi-affine if
it is quasi-compact and isomorphic to an open subscheme of an affine scheme. A morphism of
schemes X → Y is quasi-affine if Y is covered by affine open subschemes whose inverse images
are quasi-affine. A morphism of algebraic stacks X → Y is quasi-affine if there exists a smooth
covering Y ′ → Y by a scheme Y ′ such that the base change X ′ := X×Y Y ′ → Y is representable
by a quasi-affine morphism of schemes. A vector bundle is a locally free sheaf of finite type,
equivalently a flat and finitely presented quasi-coherent sheaf.

2. Quasi-coherent generators

In this preliminary section, we define generating families of finitely presented quasi-coherent
sheaves, extend the definition to the relative case and show the usual permanence properties. In
forthcoming sections, we restrict entirely to the case of locally free sheaves, but for the sake of
completeness we treat the general case here.

Definition 2.1. A family of quasi-coherent OX -modules (Gi)i∈I is a generating family for X if
it is a family of finitely presented generators in the category of all quasi-coherent OX -modules
QCoh(X). That is, for every quasi-coherentOX -moduleM there exists a surjection

⊕
i∈I G

⊕ni
i �

M, where ni ∈ N.

Remark 2.2. The existence of such a family is equivalent to the so-called completeness property,
which says that every quasi-coherent sheaf is the direct limit of finitely presented ones or, in
other words, that QCoh(X) is compactly generated. This is known to hold for a vast class
of algebraic stacks, including (pseudo-)noetherian and quasi-compact stacks with quasi-finite
diagonal [Ryd15, 4.1].

For schemes, a generating family can be given by a suitable family of ideal sheaves, as seen
in the following example.
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Example 2.3 ([SV04, Proposition 2.2]). Suppose that X is a noetherian scheme. Let I1, . . . , In ⊂
OX be a family of ideal sheaves such that (X − V (Ii))16i6n is an affine open covering. Then the
family of all powers (Iji )j∈N, 16i6n is generating for X. If we put G :=

⊕n
i=1 Ii, then (Symk(G))k∈N

is also a generating family.

The definition of a generating family extends to the relative case analogously to relatively
ample invertible sheaves. In order to make this precise, we provide a formulation in terms of an
adjoint pair of functors.

Definition 2.4. Let f : X → Y be a quasi-compact and quasi-separated morphism of algebraic
stacks, and let GI = (Gi)i∈I be a family of finitely presented OX -modules. We define an adjoint
pair of functors (fGI

∗, fGI ∗) by

fGI
∗ : QCoh(Y )I → QCoh(X) , (Ni)i∈I 7→

⊕
i∈I
Gi ⊗OX f

∗Ni ,

fGI ∗ : QCoh(X)→ QCoh(Y )I , M 7→ (f∗HomOX (Gi,M))i∈I .

Note that HomOX (Gi,M) is quasi-coherent because Gi is of finite presentation. Using the adjunc-
tions (f∗, f∗) and (Gi ⊗ ·,HomOX (Gi, ·)) for i ∈ I, it is straightforward to check that (fGI

∗, fGI ∗)
is indeed an adjoint pair.

Remark 2.5. For an algebraic stack X that possesses a coarse moduli space X0, the case of
singleton families that are generating with respect to the natural morphism π : X → X0 was
studied in [OS03, Section 5].

We present three equivalent ways of constructing relative resolutions.

Lemma 2.6. Let f : X → Y be a quasi-compact and quasi-separated morphism of algebraic
stacks, and let GI = (Gi)i∈I be a family of finitely presented quasi-coherent OX -modules. Then
the following properties are equivalent:

(i) Every quasi-coherent OX -module M admits a surjection⊕
i∈I
Gi ⊗ f∗Ni �M

for some family of quasi-coherent OY -modules (Ni)i∈I .
(ii) The counit ε : fGI

∗fGI ∗ ⇒ idQCoh(X) evaluated at any quasi-coherent OX -module M is
a surjective map

ε(M) :
⊕
i∈I
Gi ⊗OX f

∗f∗HomOX (Gi,M)�M .

(iii) The functor fGI ∗ is faithful: for every non-zero morphism M1 → M2 in QCoh(X) there
exists an i ∈ I such that the map

f∗Hom(Gi,M1)→ f∗Hom(Gi,M2)

is non-zero.

Proof. Clearly, property (ii) implies property (i), and the converse holds because, by adjunction,
every map ϕ : fGI

∗((Ni)i∈I) → M factors over the counit ε by fGI
∗(ϕ[), where ϕ[ : (Ni)i∈I →

fGI ∗(M) is the adjoint of ϕ. The equivalence (ii) ⇔ (iii) is a formal consequence of adjunction
(see [Par70, Section 2.12, Proposition 3]).
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Definition 2.7. Let f : X → Y be a morphism of algebraic stacks. A family of quasi-coherent
OX -modules GI = (Gi)i∈I is f -generating if f is quasi-compact and quasi-separated, each Gi is
finitely presented and the equivalent conditions in Lemma 2.6 hold. If Y is affine, the definition
is the same as in the absolute case (see Definition 2.1). We call the family GI universally f -
generating if for every morphism of algebraic stacks Y ′ → Y the family of restricted sheaves
GI |X×Y Y ′ := (Gi|X×Y Y ′)i∈I is generating for the base change fY ′ : X

′ → Y ′.

We begin with the usual sorites for (universally) generating families with respect to mor-
phisms.

Proposition 2.8. Let S be an algebraic stack, let f : X → Y be a morphism of algebraic
S-stacks, and let GI = (Gi)i∈I be a family of quasi-coherent OX -modules.

(i) The family GI is (universally) f -generating if and only if GI is (universally) f ′-generating
for every 2-isomorphic morphism f ′ : X → Y .

(ii) The singleton family OX is universally f -generating if f is quasi-affine (for instance, if f is
an affine, finite or quasi-finite representable separated morphism, a finite-type monomorphism,
a quasi-compact open immersion or a closed immersion).

(iii) (fpqc-local on the target) Let (Sα → S) be an fpqc-covering family (or a faithfully flat
family, f is quasi-compact and quasi-separated, and each Gi is finitely presented). If the restricted
family GI |X(Sα)

is generating for f(Sα) : X(Sα) → Y(Sα) and each α ∈ A, then GI is f -generating.

(iv) (Base change) Let S′ → S be a morphism of algebraic stacks such that S has quasi-affine
diagonal. If GI is f -generating, then the restricted family GI |X(S′) is generating for f(S′) : X(S′) →
Y(S′).

(v) (Composition) Let g : Y → Z be a morphism of algebraic S-stacks, and let EJ = (Ej)j∈J
be a family of quasi-coherent OY -modules. If GI is (universally) f -generating and if EJ is (uni-
versally) g-generating, then the family

GI ⊗ f∗EJ := (Gi ⊗ f∗Ej)(i,j)∈I×J

is (universally) generating for g ◦ f .

(vi) (Left-cancellation property) Suppose that g is quasi-separated (respectively, ∆g is quasi-
affine). If GI is g◦f -generating (respectively, universally g◦f -generating), then GI is f -generating
(respectively, universally f -generating).

(vii) (Products) Let fα : Xα → Yα for α = 1, 2 be morphisms of algebraic S-stacks, and denote

by pα : X1×SX2 → Xα the projections. If G(α)
Iα

for α = 1, 2 are universally fα-generating families
on Xα, then the family

G(1)
I1
�S G(2)

I2
:=
(
pr∗1G

(1)
i1
⊗ pr∗2G

(2)
i2

)
(i1,i2)∈I1×I2

is universally generating for f1 ×S f2 : X1 ×S X2 → Y1 ×S Y2.

(viii) (Reduction) If GI is (universally) f -generating, then the restricted family GI |Xred
is (uni-

versally) generating for fred : Xred → Yred.

Remark 2.9. Let P be a property of finitely presented sheaves which is local and satisfies fpqc-
descent (for example, “locally free”). Then the permanence properties shown in Proposition 2.8
carry over to (universally) relatively generating families of finitely presented sheaves satisfying
P mutatis mutandis.
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Proof of Proposition 2.8.
(i) The universal case reduces to the non-universal case, which follows from Lemma 2.6(iii)

because faithfulness of a functor is preserved and reflected under 2-isomorphisms.

(iii) We may assume S = Y by restricting the faithfully flat covering (Sα → S) along Y → S.
Given a faithfully flat covering uα : Yα → Y , consider for each α the induced 2-cartesian square

Xα
vα //

fα
��

�

X

f
��

Yα
uα // Y .

Let i ∈ I be given. By assumption, fα is quasi-compact and quasi-separated, and each v∗αGi is
finitely presented. Then f is quasi-compact and quasi-separated and Gi is finitely presented by
fpqc descent (or by assumption). Thus the following diagram consists of well-defined functors:

QCoh(X)
vα∗ //

HomOX (Gi,·)
��

QCoh(Xα)

HomOXα
(vα∗Gi,·)

��
QCoh(X)

vα∗ //

f∗
��

QCoh(Xα)

fα∗
��

QCoh(Y )
uα∗ // QCoh(Yα) .

The upper square is 2-commutative since Gi and vα
∗Gi are of finite presentation and vα

∗ commutes
with the internal homomorphisms by flatness. The lower square is 2-commutative by flat base
change [LM00, Proposition 13.1.9]. Thus, the whole diagram is 2-commutative. The assertion
follows now by a simple diagram chase: Since (vα) is a faithfully flat covering family for X, the
induced pullback functor vA : QCoh(X) →

∏
α QCoh(Xα) given by M 7→ vα

∗(M) is faithful.
Similarly, we get a faithful functor uA : QCoh(Y ) →

∏
α QCoh(Yα). For each α let vα

∗GI be
the family of restricted sheaves (vα

∗Gi | i ∈ I), which is generating for fα by hypothesis. Thus,
((fα)vα∗GI )∗ : QCoh(Xα)→ QCoh(Yα)I is faithful for each α. We conclude that the composition

QCoh(X)
vA−→
∏
α

QCoh(Xα)

(
((fα)vα∗GI )

∗

)
α−−−−−−−−−−→
∏
α

QCoh(Yα)I
'−→
(∏

α

QCoh(Yα)

)I
is faithful, and so this holds for the 2-isomorphic functor

QCoh(X)
fGI ∗−−−→ QCoh(Y )I

(uA
∗)I−−−−→

(∏
α

QCoh(Yα)

)I
.

By the left-cancellation property for faithful functors, we conclude that fGI ∗ is faithful, too.
Thus GI is f -generating.

(ii) As the property “quasi-affine” is stable under arbitrary base change, it suffices to show
that OX is f -generating. By hypothesis, there is a smooth covering Y ′ → Y by a scheme Y ′

such that the base change f ′ : X ′ := X ×Y Y ′ → Y ′ is quasi-affine. Thus, OX′ is f ′-ample
[GD61, Proposition 5.1.2], hence f ′-generating. So by statement (iii), we conclude that OX is
f -generating.

(v) It suffices to treat the non-universal case by replacing g ◦ f : X → Y → Z for a given
Z ′ → Z with the base change g′ ◦ f ′ : X ′ → Y ′ → Z ′ and using the isomorphisms (Gi ⊗OX
f∗Ej)|X′ ' Gi|X′ ⊗OX′ f

′∗Ej |Y ′ for all (i, j) ∈ I × J . By assumption, f and g are quasi-compact

506



Tensor generators on schemes and stacks

and quasi-separated, so the same holds for g ◦ f . Let (i, j) ∈ I × J be given. Since Gi and Ej are
of finite presentation, so is Gi ⊗ f∗Ej . Then we get a diagram of well-defined functors:

QCoh(X)
Hom(Gi,·) //

Hom(Gi⊗f∗Ej ,·) ++

QCoh(X)
Hom(f∗Ej ,·)��

f∗ // QCoh(Y )
Hom(Ej ,·)��

QCoh(X)
f∗ //

(g◦f)∗ ++

QCoh(Y )
g∗��

QCoh(Z) .

(2.1)

The upper-left triangle is 2-commutative by adjunction of Gi⊗ · and HomOX (Gi, ·) in QCoh(X).
The lower triangle is 2-commutative by definition. The square is 2-commutative since it cor-
responds by adjunction to the isomorphism f∗(Ej ⊗OY ·) ' f∗Ej ⊗OX f∗(·). Thus, the whole
diagram is 2-commutative. It follows that the composition

(gEJ ∗)
I ◦ fGI ∗ : QCoh(X)

fGI ∗−−−→ QCoh(Y )I
(gEJ ∗)

I

−−−−−→
(

QCoh(Z)J
)I '−→ QCoh(Z)I×J

is 2-isomorphic to the functor

((g ◦ f)GI⊗f∗EJ )∗ : QCoh(X)→ QCoh(Z)I×J .

By hypothesis, fGI ∗ and gEJ ∗ are faithful. Then the constant functor (gEJ ∗)
I is faithful and so is

the composition
(
gEJ ∗

)I ◦ fGI ∗ ' ((g ◦ f)GI⊗f∗EJ )∗, as required.

(vi) Let us first prove the non-universal case. By assumption, GI is a family of finitely pre-
sented OX -modules. Since g ◦ f is quasi-compact and quasi-separated, it follows that f is quasi-
compact and quasi-separated since ∆g is so by assumption. Now, consider diagram (2.1) with
the singleton family E = OY . Since we do not assume that g is quasi-compact, the functor
g∗ : QCoh(Y ) → QCoh(Z) does not make sense, but g∗ : QCoh(Y ) → Mod(Z) does. Thus,
we replace QCoh(Z) with Mod(Z), so that the lower triangle is again well defined. As above,
a diagram chase shows us that

(g∗)
I ◦ fGI ∗ : QCoh(X)→ QCoh(Y )I → Mod(Z)I

is 2-isomorphic to

iI ◦ (g ◦ f)GI ∗ : QCoh(X)→ QCoh(Z)I → Mod(Z)I .

By hypothesis, (g ◦ f)GI ∗ is faithful. Also, the constant functor iI is faithful. Thus, (g∗)
I ◦ fGI ∗,

a fortiori the factor fGI ∗, is faithful, as asserted.

For the universal case, we use the standard argument that f factors up to 2-isomorphism as
the composition of the upper horizontal morphisms of the following two 2-cartesian squares:

X
Γf //

f
��

�

X ×Z Y

f×1
��

X ×Z Y
q //

p

��
�

Y

g

��
Y

∆g // Y ×Z Y , X
g◦f // Z .

By hypothesis, ∆g and hence Γf are quasi-affine. Thus, OX is universally Γf -generating by
statement (ii). Since GI is universally g ◦ f -generating by assumption, p∗GI is universally q-
generating. So by applying statement (v) to f = q ◦ Γf , we conclude that {OX} ⊗ Γf

∗(p∗GI)
is universally f -generating. But in light of the identity p ◦ Γf = idX , this means that GI is
universally f -generating.
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(iv) Choose a smooth covering family S′α → S′ of affine scheme S′α. Then each composition
S′α → S′ → S is a quasi-affine morphism because ∆S/Z is quasi-affine. Then the base changes
Y(S′α) → Y and X(S′α) → X are quasi-affine, too, so that OY(S′α)

and OX(S′α)
are relatively

generating by statement (ii). It follows that the family of restricted sheaves GI |X(S′α)
is generating

for the composition X(S′α) → X → Y by statement (v), a fortiori for the 2-isomorphic morphism
X(S′α) → Y(S′α) → Y and hence for X(S′α) → Y(S′α) by statement (vi) because Y(S′α) → Y has
quasi-affine diagonal. Then statement (iii) implies that GI |(S′) is f(S′)-generating.

(vii) The product morphism f1×S f2 is the decomposition of the upper horizontal morphisms
of the following 2-cartesian squares, where pα, qα, rα denote the projections on the αth factor:

X1 ×S X2

(f1,idX2
)
//

p1
��

�

Y1 ×S X2

q1
��

Y1 ×S X2

(idY1 ,f2)
//

q2
��

�

Y1 ×S Y2

r2
��

X1
f1 // Y1 , X2

f2 // Y2 .

Then the family p1
∗G(1)

I1
is universally (f1, idX2)-generating and the family q2

∗G(2)
I2

is universally

(idY1 , f2)-generating. Hence p1
∗G(1)

I1
⊗ (f1, idX2)∗

(
q2
∗G(2)

I2

)
is universally f1 ×S f2-generating by

statement (v). But due to q2 ◦ (f1, idX2) ' p2, we can identify the right factor of the latter tensor

product with the family p2
∗G(2)

I2
. This proves the assertion.

(viii) The morphisms f and fred fit in a 2-commutative square, where the horizontal mor-
phisms are closed immersions:

Xred
v //

fred
��

X

f
��

Yred
u // Y .

Since OXred
is universally v-generating and u has quasi-affine diagonal, the assertion is a conse-

quence of statement (v) applied to f ◦ v and statement (vi) applied to u ◦ fred.

Corollary 2.10. Let f : X → Y be a quasi-compact and quasi-separated morphism of algebraic
stacks. If Y has quasi-affine diagonal, then every f -generating family is universally f -generating.

Remark 2.11. For families of quasi-coherent sheaves on algebraic stacks without quasi-affine
diagonal, the properties “universally generating” and “generating” do not coincide. For a quasi-
separated morphism f : X → Y , the structure sheaf OX is generating for ∆f : X → X ×Y X, as
we see by applying Proposition 2.8(vi) to the factorization idX = pr1 ◦∆f . However, OX is not

necessarily universally ∆f -generating. To give a counterexample, let A
π→ Spec k be an abelian

scheme of positive dimension. Then the trivial torsor p : Spec k → BA induces a 2-cartesian
square

A //

π
��

�

BA

∆
��

Spec k
(p,p) // BA×k BA .

Although OBA is ∆-generating, OA is not π-generating (equivalently, π-ample) since A is not
quasi-affine. Hence, OBA is not universally ∆-generating.

As expected, the property “universally generating” can be tested over affine schemes.
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Proposition 2.12. Let f : X → Y be a morphism of algebraic stacks, and let GI = (Gi)i∈I be
a family of quasi-coherent OX -modules. Then the following properties are equivalent:

(i) The family GI is universally f -generating.

(ii) For every morphism SpecA → Y , the family of restricted sheaves GI |XA is generating
for XA.

(iii) There exists an fpqc-covering family (Yα → Y ) of algebraic stacks Yα with quasi-affine
diagonal such that each restricted family GI |(Yα) is generating for X(Yα) → Yα.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are trivial. For (iii) ⇒ (i) note that for each α, the
restriction GI |(Yα) is universally generating for X(Yα) → Yα by Corollary 2.10, since Yα has quasi-
affine diagonal. Therefore GI is universally f -generating by fpqc descent (Proposition 2.8(iii)).

The following establishes descent of the completeness property along finite, flat, finitely pre-
sented surjections. It seems that this was known before only for étale maps [Tho87].

Proposition 2.13. Let f : X → Y be a finite, faithfully flat and finitely presented morphism,
and let g : Y → Z be a quasi-compact and quasi-separated morphism of algebraic stacks. If GI
is a (universally) g ◦ f -generating family of OX -modules, then the family of OY -modules f∗GI =
(f∗Gi)i∈I is (universally) g-generating.

Proof. It suffices to treat the non-universal case by applying an appropriate base change. So let
us assume that GI is a g ◦ f -generating family of OX -modules. Now, we invoke Grothendieck
duality for finite morphisms. Recall that f∗ preserves finitely presented sheaves because f is
finite and locally free, and that f∗ has a right adjoint f ! defined by f∗f

!(·) = HomOY (f∗OX , ·).
Then the adjunction formula f∗HomOX (·, f !(·)) = HomOY (f∗(·), ·) implies that for each i ∈ I,
we have g∗ ◦HomOY (f∗Gi, ·) ' g∗ ◦f∗ ◦HomOX (Gi, ·)◦f ! as isomorphism of functors QCoh(Y )→
QCoh(Z). Using Proposition 2.6(iii), one can see that f∗ maps g ◦ f -generating families to g-
generating families if f ! is faithful. The latter is equivalent to the property that the counit
f∗f

!(M)→M is surjective for every quasi-coherent OY -moduleM. By applying HomOY (·,M)
to the canonical map ϕf : OY → f∗OX , we see that this happens precisely if ϕf is an fppf-locally
split monomorphism of quasi-coherent OY -modules. The latter is true since f is faithfully flat
because ϕf is a map of OY -algebras.

We do not know a general descent method for non-finite flat affine coverings. The main
obstacle is that the pushforward of a finitely presented quasi-coherent sheaf is no longer finitely
presented. The following technical lemma is a reminiscence of this approach and will be helpful
to construct generating families on low-dimensional stacks.

Lemma 2.14. Let f : Y → X be an affine and faithfully flat morphism of algebraic stacks such
that Y is quasi-affine. Then every quasi-coherent OX -moduleM is a quotient of a quasi-coherent

OX -submodule N ⊂ f∗O(I)
Y for some set I.

Proof. First, we may identifyM with a subsheaf of f∗f
∗M via the unit δ : M→ f∗f

∗M, which

is injective since f is faithfully flat. As Y is quasi-affine, we can pick a surjection O(I)
Y � f∗M.

Then the pushforward ψ : f∗O(I)
Y � f∗f

∗M is surjective since f is affine. It follows that the
preimage N := ψ−1(M) has the desired properties.

Corollary 2.15. Let X be a reduced quasi-compact algebraic stack with affine diagonal. Then
every quasi-coherent sheaf is a quotient of a torsion-free quasi-coherent sheaf.
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3. Pinching schemes

Recall that every quasi-compact algebraic space X is finitely parametrized by a scheme, which
means that it admits a finite and finitely presented surjection f : Z → X from a scheme Z (see
[LM00, Théorème 16.6] for the noetherian case and [Ryd15, Theorem B] for the general case).
In this section, we show that if every fiber of f is contained in an affine open subset, then X is
representable by a scheme.

Definition 3.1. An algebraic space X is an AF-scheme (or satisfies the Chevalley–Kleiman
property) if the following condition is satisfied:

(AF) Every finite set of points x1, . . . , xn ∈ |X| is contained in a Zariski-open neighborhood that
is representable by an affine scheme.

Remark 3.2. (i) Every AF-scheme is separated. This follows from the valuative criterion of sep-
aratedness.

(ii) Every AF-scheme with finitely many points is affine.

(iii) Every normal AF-scheme of finite type over a field is quasi-projective [Ben13, Corollary 2
and Theorem 9].

(iv) If f : Y → X is a representable morphism of algebraic spaces such that Y admits a relatively
ample invertible sheaf and X is an AF-scheme, then Y is an AF-scheme. In particular, this holds
if f is affine or quasi-affine.

The main result of this section is to prove that the AF property descends along morphisms
that are separated, surjective, universally closed and have finite topological fibers. It is a stronger
variant of Theorem 1.2.

Theorem 3.3. Let f : Y → X be a morphism of algebraic spaces that is separated, surjective,
universally closed and has finite topological fibers, that is, the topological space |f−1(x)| is finite
for every x ∈ X (discrete or not). Then X is an AF-scheme if and only if Y is an AF-scheme.

As Rydh pointed out, f is integral by the following lemma. In particular, f has discrete fibers.

Lemma 3.4. Let f : Y → X be a universally closed and separated morphism of algebraic spaces.
If the topological fibers of f are finite, then f is integral.

Proof. Note that f is representable and quasi-compact because the fibers are quasi-compact
and f is closed. By applying [Ryd15, Theorem 8.3], we see that the morphism f factors as an
integral and surjective morphism Y → Y0 followed by a proper morphism Y0 → X. Since Y → X
has finite fibers, so has Y0 → X. It follows that Y0 → X is finite (Zariski’s main theorem). Hence
Y → X is integral.

A key step of the proof of Theorem 3.3 is the verification of the following global representabil-
ity criterion.

Proposition 3.5. Let Z → X be an integral surjective morphism of algebraic spaces. If Z
is a quasi-compact and quasi-separated scheme that admits an ample invertible sheaf, then X
is representable by a quasi-compact and separated AF-scheme. If X is noetherian and normal,
then X admits an ample invertible sheaf.
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Remark 3.6. The result is well known if X is a noetherian normal scheme, as we see using
the norm map [GD61, Corollary 6.6.2], or if f is flat, finite and finitely presented, or if f is a
quotient map Z → Z/G of a geometric quotient by a finite group. If Z is affine, then X is affine
by Chevalley’s theorem on affineness ([Ryd15, Theorem 8.1], or [Knu71] in the noetherian case).
If Z is quasi-affine, then X is not necessarily quasi-affine [SP15, Tag 0271].

Proof of Proposition 3.5. Let us call X finitely parametrized if there exists such a finite surjective
morphism p : Z → X from a scheme with an ample line bundle. We frequently use that this
property ascends along finite maps X ′ → X. Note that X is quasi-compact since Z is quasi-
compact and p is surjective; it is separated because Z is separated and p : Z → X is universally
closed.

Step 1: Reduction to the case that p is finite and finitely presented. The algebraic space Z
is the filtered projective limit lim←−λ Zλ of integral and finitely presented (hence finite) algebraic
X-spaces Zλ with affine bonding maps Zλ → Zµ because X is pseudo-noetherian [Ryd15, Theo-
rem A]. Then for sufficiently large λ, each Zλ is a quasi-compact and separated scheme [Ryd15,
Theorem C(iii)]. For even larger λ, every ample sheaf L on Z descends to a compatible family
of ample sheaves Lλ on Zλ. This is stated in [TT90, Proposition C.8] in case that the base X is
an affine scheme, but the proof also applies in the general case since the property “affine” can
be approximated over an arbitrary quasi-compact algebraic stack [Ryd15, Theorem C(i)]. So we
may assume that f is finite and finitely presented by replacing p with Zλ → X.

Step 2: Noetherian and normal case. The algebraic space X is a geometric quotient of a
noetherian normal scheme X ′ by a finite group G [LM00, Corollaire 16.6.2]. It follows that X ′

is finitely parametrized: Since X ′ → X is finite, the pullback pr1 : Z ′ := Z ×X X ′ → Z is finite,
so that Z ′ admits an ample line bundle L′ by hypothesis on Z. Since pr2 : Z ′ → X ′ is finite and
surjective, L := NZ′/X′(L′) is an ample OX′-module [GD61, Corollary 6.6.2], so that X ′ is an
AF-scheme [GD61, Corollary 4.5.4]. Then it is well known that the geometric quotient X = X ′/G
is representable by an AF-scheme and that NX′/X(L) is an ample OX -module.

Step 3: Final step. By approximating X and p, we may assume that X is of finite type
over Z (the reduction step in the proof of Chevalley’s theorem [Ryd15, Theorem 8.1] applies
literally). In particular, X is noetherian and Nagata [SP15, Tag 0BAV]. If Xred is an AF-scheme,
then X is an AF-scheme as a consequence of Chevalley’s theorem. Therefore we may assume
that X is reduced since Xred is finitely parametrized. The normalization f : X ′ → X is finite
since X is Nagata, hence X ′ is normal, noetherian and finitely parametrized. By step 2 we know
that X ′ is representable by an AF-scheme. Let i : Y ⊂ X be the closed subspace defined by the
ideal Ann coker(OX → f∗OX′), set i′ : Y ′ = Y ×X X ′ ⊂ X ′ and g := f |Y ′ : Y ′ → Y . Then X is
the pushout of i′ and g in the category of algebraic spaces because f has schematically dense
image (see Lemma 3.7 below). Since Y ⊂ X is a proper subspace that is finitely parametrized, by
noetherian induction we may assume that Y , and hence Y ′, are AF-schemes. Thus, the pushout
X0 := X ′ tY ′ Y exists already in the category of ringed spaces and is an AF-scheme since X ′

and Y are AF-schemes [Fer03, Theorem 5.4].

We claim that X = X0, and since X is the pushout in the category of algebraic spaces, it
is enough to prove that X is a scheme. Let f0 : X ′ → X0 be the quotient map, which is finite,
surjective and schematically dominant. Then by the universal property, it factors as f0 = h ◦ f
for some map of algebraic spaces h : X → X0. In order to see that X is a scheme, we may
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assume that X0 is affine by taking a Zariski covering of affine open subschemes of X0. Then X ′

is affine because f0 is affine. Consequently, X is affine by Chevalley’s theorem since f is finite
and surjective, proving the assertion.

The following preparatory lemma is folklore but stated for lack of reference.

Lemma 3.7. Given a morphism of algebraic spaces f : X ′ → X, the closed immersion i : Y ↪→ X
defined by the conductor ideal AnnOX coker(OX → f∗OX′) and the preimage Y ′ := f−1(Y ) with
closed immersion i′ : Y ′ ↪→ X ′ and restriction g = f |Y ′ : Y ′ → Y give rise to a cartesian square:

Y ′
i′ //

g

��

X ′

f
��

Y
i // X .

(3.1)

If f is finite and schematically dominant (that is, OX → f∗OX′ is injective), then the square is
cocartesian in the category of algebraic spaces.

Proof. In the case that X and hence X ′, Y , Y ′ are affine schemes, the conductor square is co-
cartesian in the category of algebraic spaces ([Fer03, § 1.1] and [CLO12, proof of Theorem 2.2.2]).
It follows that for every étale covering u : U → X with U affine, one recovers U as the pushout
of gU : Y ′U → YU and i′U : Y ′U → X ′U .

In order to see that the square is cocartesian, let h : X ′ → T , j : Y → T be given morphisms
satisfying hi′ = jg. We have to construct a unique map t : X → T with tf = h and ti = j.
Suppose that there are two maps t1, t2 : X → T satisfying this condition. Then t1u = t2u by the
uniqueness of the former case, hence t1 = t2 since Hom(·, T ) is a separated presheaf. This shows
uniqueness. Regarding the existence, observe that X ′U → T and Y ′U → T factor over a unique
map t′ : U → T . It gives rise to two morphisms t′ ◦prα : U ×X U → U → T for α = 1, 2, and both
satisfy the compatibility condition after restricting (3.1) along the étale covering U ×X U → X.
So by uniqueness, we infer t′ ◦pr1 = t′ ◦pr2. Since Hom(·, T ) is a sheaf, there is a map t : X → T
with tu = t′. The condition tf = h (respectively, ti = j) is local over X ′ (respectively, Y ), hence
follows by restricting (3.1) along u.

Corollary 3.8. Let f : Y → X be an integral surjective morphism of algebraic spaces. A finite
set of points P ⊂ |X| is contained in an affine open subspace if and only if f−1(P ) ⊂ |Y | is
contained in an affine open subspace.

Proof. The condition is clearly necessary since f is affine. Conversely, suppose that V ⊂ Y is an
affine Zariski-open neighborhood of f−1(P ). Since f is closed, the set U = X − f(Y − V ) is an
open neighborhood of P such that f−1(P ) ⊂ f−1(U) ⊂ V . Using that P is quasi-compact, we
may replace U with a quasi-compact open subset. Then f−1(U) is quasi-compact too and hence
a quasi-affine open subscheme of V . Then U is representable by an AF-scheme by Proposition 3.5.
Since P ⊂ U and P is finite, we conclude that there exists an affine open subset W with
P ⊂W ⊂ U .

Proof of Theorems 3.3 and 1.2. By Lemma 3.4, the morphism f is integral, hence affine. Thus,
if X is an AF-scheme, then so is Y . Conversely, if Y is an AF-scheme, then by Corollary 3.8, the
scheme X must be an AF-scheme, too.
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4. Global generation of sheaves and quasi-affineness

In this section, we show that for a quasi-compact and quasi-separated algebraic stack X with
affine stabilizer groups, the condition that every quasi-coherent sheaf is globally generated implies
that X is a quasi-affine scheme. This is well known if X is a quasi-compact and quasi-separated
scheme [GD64, 1.7.16].

Proposition 4.1. Let f : X → Y be a quasi-compact and quasi-separated morphism of algebraic
stacks. Then f is quasi-affine if and only if the following conditions are satisfied:

(i) The structure sheaf OX is universally f -generating.

(ii) The morphism f has affine relative stabilizer groups at geometric points; that is, the geo-
metric fibers of the relative inertia If → X are affine (equivalently, quasi-affine). This holds, for
instance, if f has quasi-affine diagonal (for example, if ∆f is quasi-finite and separated).

Proof. The conditions are necessary by Proposition 2.8(ii), so let us verify the sufficiency. Both
assumptions (i) and (ii) are stable under base change, and the assertion is local over Y . Therefore,
we may assume that Y = Spec(A) is affine and that X is quasi-compact and quasi-separated, by
replacing Y with an appropriate smooth covering.

First, we verify that X is representable. It suffices to show that f has representable geometric
fibers or, equivalently, that the inertia stack IX → X is an isomorphism at geometric points.
Since the latter is locally of finite type, the condition implies that it is a monomorphism by
[Ryd15, Lemma A.1(ii)]. But since IX → X has a section, it must be an isomorphism and we
have that f is representable. Therefore, we may assume that Y is the spectrum of an algebraically
closed field, by applying base change with a given point.

Now, we have to show that for every point x : Spec k → X, the stabilizer group Gx is trivial.
It is an affine (algebraic) group scheme by condition (ii). Let ξ ∈ |X| be the point induced by x.
If x′ : Spec k′ → X denotes another representative, then Gx′ and Gx are isomorphic over some
common field extension. Thus, if Gx′ is trivial, then so is Gx by fpqc-descent, showing that it
suffices to find some representative of ξ with trivial stabilizer group.

Since ξ ∈ |X| is algebraic [Ryd11, Theorem B.2], there exists a representative x : Spec k → X
that factors over the residual gerbe Gξ by an epimorphism x : Spec k � Gξ followed by a quasi-
affine monomorphism Gξ ↪→ X. The gerbe Gξ is an algebraic stack of finite type over the residue
field k(ξ), which is the sheafification of Gξ. It follows that there exists a finite field extension
k(ξ) ⊂ L such that Gξ⊗k(ξ)L ' BGx′ , where Gx′ → SpecL is the stabilizer group at the induced
representative x′ : SpecL→ Gξ ↪→ X of ξ. The upshot is that the composition BGx′ → Gξ ↪→ X
is a quasi-affine map, so that OBGx′ is relatively generating. Since OX is generating for X,
we conclude that OBGx′ is an absolute generator for BGx′ by Proposition 2.8(v). But then
Gx′ → SpecL is the trivial algebraic L-group scheme because every linear representation is
generated by the trivial representation. Therefore, X is representable by an algebraic space.

We now return to the situation where Y = Spec(A) is affine, not necessarily with A an
algebraically closed field. In order to see that X is a quasi-affine scheme, take a finite, finitely
presented and surjective morphism p : Z → X for some scheme Z [Ryd15, Theorem B]. Since p
is quasi-affine, OZ = p∗OX is generating for Z, so that Z is quasi-affine [GD64, 1.7.16]. But
then X must be a scheme by Theorem 3.3. By the former argument, we conclude that X is
quasi-affine.

Remark 4.2. In the case that f is representable and Y has quasi-affine diagonal, Proposition 4.1
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was proven in [AE12, Proposition 6.2] by different methods. If X is noetherian and normal, it
can be deduced from the proof of Totaro’s theorem [Tot04, Theorem 1.1].

Corollary 4.3. A morphism of algebraic stacks f : X → Y has quasi-affine diagonal ∆f if and
only if OX is universally ∆f -generating.

Corollary 4.4. A morphism of algebraic stacks f : X → Y is quasi-affine if and only if OX is
universally generating for f and ∆f .

5. The resolution property

In this section, we define the resolution property of a morphism in terms of locally free generating
sheaves and recall the example classes where it is known to hold. From now on, we implicitly
assume that every vector bundle (or locally free OX -module) has constant rank.

Definition 5.1. An algebraic stack X has the resolution property if X is quasi-compact and
quasi-separated and if there exists a generating family of locally free OX -modules. We say that
a morphism f : X → Y of algebraic stacks has the resolution property, or thatX has the resolution
property over Y (relative to f), if f is quasi-compact and quasi-separated and if there exists
a universally f -generating family of locally free OX -modules (see Definition 2.7).

Remark 5.2. For a noetherian algebraic stack this definition is equivalent to Totaro’s [Tot04],
which says that X has the resolution property if and only if every coherent sheaf is a quotient
of a coherent locally free sheaf, by taking the family of all vector bundles (up to isomorphism)
because X has the completeness property (cf. Remark 2.2).

Let us give the usual sorites for this class of morphisms.

Proposition 5.3. (i) Every affine, finite or quasi-finite representable separated morphism,
finite-type monomorphism, quasi-compact immersion or more generally quasi-affine morphism
has the resolution property.

(ii) Let Y ′ → Y be a morphism. If a morphism f : X → Y has the resolution property, then
so has the base change f ′ : X ′ → Y ′.

(iii) Let f : X → Y be a morphism, and let Y ′ → Y be an fpqc morphism. If the base change
f ′ : X ′ → Y ′ has the resolution property given by a family of locally free OX′-modules G′I =

(G′i)i∈I endowed with a descent datum relative to X ′ → X (that is, isomorphisms σi : pr1
∗G′i

'−→
pr2
∗G′i for each i ∈ I, where prα : X ′ ×X X ′ → X, that satisfy the cocycle condition over

X ′ ×X X ′ ×X X ′), then f has the resolution property and there is a universally f -generating
family GI = (Gi)i∈I such that Gi|X′ ' G′i for each i ∈ I.

(iv) If two morphisms f : Xα → Yα for α = 1, 2 over an algebraic stack S have the resolution
property, then so has f ×S g : X1 ×S X2 → Y1 ×S Y2.

(v) If f : X → Y and g : Y → Z have the resolution property, then so has g ◦ f .

(vi) Suppose that ∆g is quasi-affine. If g ◦ f has the resolution property, then so has f .

(vii) Suppose that f is finite, faithfully flat and finitely presented. If g ◦ f has the resolution
property, then so has g.

(viii) If f : X → Y has the resolution property, then so has fred : Xred → Yred.

Proof. The property “locally free and finitely presented” of quasi-coherent sheaves is stable under
taking pullbacks or tensor products and satisfies descent with respect to fpqc-coverings.Thus
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Proposition 2.8 holds mutatis mutandis for generating and universally generating families of
locally free, finitely presented quasi-coherent sheaves. From this one easily deduces properties
(i)–(vi) and (viii). Finally, property (vii) is a consequence of Proposition 2.13.

Lemma 5.4 (finite fppf groupoids). Let R ⇒ U be a finite, faithfully flat, finitely presented
groupoid of algebraic S-spaces. If U (and hence R) satisfies the resolution property over S, then
so does the quotient stack X = [R⇒ U ].

Proof. The quotient map q : U → X is finite, finitely presented and faithfully flat. Thus, Propo-
sition 5.3(vii) applies.

Corollary 5.5. Let G→ S be a flat, finite and finitely presented (equivalently, finite, locally
free) group algebraic space over an algebraic space S that satisfies the resolution property. Then
the classifying stack BG has the resolution property.

Proof. The trivial G-torsor S → BG is finite, finitely presented and faithfully flat.

Remark 5.6. This result is well known if G→ S is étale [Tho87, Lemma 2.14].

Corollary 5.7. Let X be a regular algebraic stack that admits a finite, finitely presented
surjection f : Y → X such that Y is Cohen–Macaulay and satisfies the resolution property.
Then X has the resolution property.

Proof. The regularity properties of Y and X imply that f is flat.

Lemma 5.8 (stacks with regular noetherian coverings of dimension at most 1). Let f : Y → X
be an affine faithfully flat morphism of algebraic stacks. Suppose that Y is a noetherian regular
scheme of dimension at most 1. Then X has the resolution property.

Proof. Since Y is quasi-compact and has affine diagonal (using that dimY 6 1), we may re-
place Y with an affine Zariski covering and hence assume that Y is affine. Then by Lemma 2.14
and [LM00, Proposition 15.4], it suffices to resolve coherent subsheaves M ⊂ f∗O⊕nY for n ∈ N.
But these are already locally free by flat descent because f∗M⊂ f∗f∗O⊕nY is a finitely generated
subsheaf of a torsion-free sheaf, and hence locally free since dimY 6 1 and Y is regular.

Example 5.9 (schemes). Given a noetherian scheme X, the resolution property is known to
hold in the following cases:

(i) The scheme X is divisorial. That is, every point x ∈ X admits an affine open neighbor-
hood that is the non-vanishing locus of a global section s ∈ Γ(X,L) for some invertible sheaf
L [Bor63, Bor67]. This is true if X is quasi-affine or quasi-projective over a noetherian ring
[GD61, Proposition 5.3.2] (including all algebraic curves and all separated algebraic surfaces
with finitely many isolated singularities that are contained in an affine open subscheme [Kle66,
Corollary 4, p. 328]). This also holds if X is normal and Q-factorial with affine diagonal ([BS03,
Proposition 1.3], and the case of separated, regular noetherian schemes is due to Kleiman and
independently Illusie [BGI71, Proposition II.2.2.7])).

(ii) The scheme X is separated and of finite type over a Dedekind ring and dim(X) 6 2 ([Gro12,
Corollary 5.2] or X is a normal separated algebraic surface [SV04, Theorem 2.1]). In dimension at
least 2, there exist normal, proper algebraic schemes that have no non-trivial invertible sheaves
and hence are not divisorial (see [Sch99] for algebraic surfaces).

Example 5.10 (classifying stacks of algebraic group schemes). Given an affine, flat and finitely
presented group scheme π : G→ S over a noetherian and separated scheme, Thomason [Tho87]
verified the absolute resolution property for BG in the following cases:
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(i) The scheme S is regular with dim(S) 6 1.

(ii) The scheme S is regular with dim(S) = 2 and π∗OG is a locally projective OS-module; for
instance, G→ S is smooth with connected fibers.

(iii) The scheme S satisfies the resolution property, G→ S is reductive and G is semisimple, or
S is normal, or the radical and coradical of G are isotrivial (that is, diagonalizable on a finite
étale covering of S).

Remark 5.11. By Totaro’s theorem and its generalization to arbitrary algebraic stacks (Theo-
rem 6.10 below), we know that a quasi-compact and quasi-separated algebraic stack with affine
stabilizer groups that satisfies the resolution property must have affine diagonal. So every al-
gebraic stack with quasi-affine and non-affine diagonal does not have the resolution property.
As an example, glue two copies of A2

k at the complement of the origin to get a scheme with
quasi-affine and non-affine diagonal. Similarly, take the quasi-affine group scheme G obtained
from Z/2Z → A2

k by removing the origin in the non-identity component, then the classifying
stack BG has a quasi-affine but not affine diagonal.

There is an example of an algebraic stack with affine diagonal that does not have the resolution
property. It is the Gm-gerbe over a complex algebraic surface Y corresponding to a non-torsion
element of the cohomological Brauer group H2

ét(Y,Gm) [Gro68, Remark II.1.11(b)].

We do not know if every algebraic stack with quasi-finite and affine diagonal has the resolution
property, even in case of normal, separated algebraic schemes over an algebraically closed field
(like toric threefolds; see [Pay09]).

Étale locally, every algebraic stack with quasi-finite and locally separated diagonal has the
resolution property [Ryd15, Corollary 2.7].

Remark 5.12. If an algebraic stack Y is fibered over an algebraic stack X by means of a morphism
f : Y → X, then the question whether the resolution property holds or not can be broken down to
the relative resolution property of f and the resolution property of the base X. For example, from
this point of view, one can tackle the equivariant resolution property of an algebraic space Y acted
on by an affine, flat and finitely presented group scheme G. It says that every quasi-coherent OY -
G-comodule is a quotient of a direct sum of locally free and finitely presented OY -G-comodules.
Now, quasi-coherent OY -G-comodules correspond to quasi-coherent sheaves on the quotient stack
X := [Y/G]. On the one hand, the affine and faithfully flat quotient map Y → X is a G-torsor,
and we get a G-fibration of Y over the base X. On the other hand, the classifying morphism
X → BG imposes on X a Y -fibration over BG.

Proposition 5.13. Let S be an algebraic space, and let G→ S be an affine, flat and finitely pre-
sented algebraic group space that acts on an algebraic S-space Y . Then the following conditions
are equivalent:

(i) The classifying map X = [Y/G]→ BG has the resolution property,

(ii) The space Y has a family of G-linearized locally free OY -modules of finite type that is
universally generating for Y over S.

Moreover, if BG→ S has the resolution property, then the conditions are equivalent to:

(iii) The quotient space [Y/G] has the resolution property over S.

Proof. By definition of the classifying stack BG, there exists a 2-cartesian square of S-stacks,
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where the vertical arrows are fppf-coverings:

Y //

��

S

��
[Y/G] // BG .

Hence, a generating family of quasi-coherent sheaves for [Y/G] → BG restricts to a quasi-
coherent family on Y → S with descent datum, which is equivalent to giving a G-linearization.
Conversely, every G-linearized family of quasi-coherent sheaves for Y → S descends to a family
of quasi-coherent sheaves on [Y/G]. During this restriction and descent process, the property of
being a relative generating family of finitely presented locally free sheaves is preserved.

Remark 5.14. An algebraic stack X is a global quotient stack if it is equivalent to an algebraic
stack [Y/GLn], where Y is an algebraic space acted on by GLn for some integer n > 0. It
seems to be unknown whether the resolution property descends along the quotient map q : Y →
[Y/GLn], in general. Though, if Y is normal scheme that admits an ample family of invertible
sheaves {Li}ni=1, then the powers {L⊗mi } admit a GLn-linearization for m sufficiently large by
Sumihiro’s theorem [Sum75, Theorem 1.6], and hence descend to invertible sheaves, whose duals
form a generating family for [Y/G]→ BG. Consequently, a large class of global quotient stacks
[Y/G] satisfy the resolution property.

The following lemma is courtesy of Rydh and follows essentially [Tot04, Lemmas 4.1 and 4.2].

Lemma 5.15. Let X be a quasi-compact and quasi-separated algebraic stack. Assume that X has
the resolution property and affine stabilizers at closed points. Then there is a vector bundle E
on X such that the total space Z of the corresponding GLn-torsor has affine stabilizers. In
particular, X has affine stabilizers at all points.

Proof. A vector bundle E gives a twisted representation of the inertia stack IX of X (a morphism
from IX to a twisted form of GLn over X) with kernel a (closed) subgroup H ⊆ IX such that
the pullback of H to the frame bundle Z of E equals the inertia stack of Z. For example, H = 0
if Z is an algebraic space.

Pick a closed point x. Pick a vector bundle F over the residual gerbe Gx such that the
stabilizer action is faithful (possible since the stabilizer is affine). Consider the inclusion morphism
i : Gx → X and note that i∗F is quasi-coherent. Since X has the resolution property, there exist
a vector bundle E and a morphism E → i∗F such that i∗E → i∗i∗F → F is surjective. This means
that the representation of Gx on E is faithful, that is, Hx := i∗H = 0. By upper semi-continuity,
H is quasi-finite in an open neighborhood of x.

Repeating this for all closed points x gives a finite number of vector bundles such that
E1 ⊕ · · · ⊕ En has a corresponding GLn-torsor Z with quasi-finite inertia. (Here we use the fact
that every non-empty quasi-compact scheme has a closed point.) In particular, Z has affine
stabilizers.

Thus, the stabilizer groups of X are extensions of subgroups of GLn with stabilizer groups
of Z, hence affine.

6. Tensor generators and Totaro’s theorem

In this section, we define the property of a vector bundle to be a tensor generator and show that
it is equivalent to the property that its associated frame bundle has quasi-affine total space when
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the stabilizer groups are affine. Moreover, we prove the generalization of Totaro’s theorem [Tot04]
to the general relative case and give the proof of Theorem 1.1 at the end of the section.

Definition 6.1. Let f : X → Y be a morphism of algebraic stacks, and let V on X be a vector
bundle of constant rank n with associated frame bundle p : IsomX(OnX ,V) = F (V) → X. We
shall say that V is a tensor generator for X over Y (or just f -tensor generating) if the family of
all p-locally split subsheaves G ⊂ P (V,V∨) is a universally f -generating family of quasi-coherent
sheaves, where P runs over all polynomials P ∈ N[t, s]. Here, by p-locally split, we mean that the
inclusion G ⊂ P (V,V∨) admits a left-inverse when restricting to the total space F (V). Moreover,
we say that V is a strong tensor generator for X over Y if the family P (V,V∨) of all polynomial
expressions is a universally generating family.

Remark 6.2. Suppose Y = Spec k for a field k and X = BG, where G denotes an algebraic group
scheme. Then the definition above coincides with the one in Tannaka theory [Del90, 6.16] when
we identify quasi-coherent OBG-modules with k-linear G-representations.

Remark 6.3. The properties “tensor generator” and “strong tensor generator” are stable under
base change. Also, the property “strong tensor generator” is local on the base. Moreover, it is
stable on the source under pullback with quasi-affine morphisms X ′ → X.

As a consequence of the following Theorem 6.4, the property “tensor generator” is local on the
base if the morphism has relatively affine stabilizer groups, because the property “quasi-affine”
of morphisms is local on the base.

Theorem 6.4. Let f : X → Y be a quasi-compact morphism of algebraic stacks. Given a vector
bundle V with associated frame bundle p : F (V)→ X, the following properties are equivalent:

(i) (a) The vector bundle V is a tensor generator for f : X → Y , and
(b) the relative inertia stack If → X has affine fibers.

(ii) The composition f ◦ p : F (V)→ Y is quasi-affine or, equivalently, the classifying morphism
cV : X → BGLn,Y is quasi-affine.

Proof. (i) ⇒ (ii) Let (Gi ⊂ Pi(V,V∨))i∈I be a universally f -generating family of p-locally split
subsheaves. Then (p∗Gi)i∈I is universally f ◦p-generating since p is affine. But each p∗Gi is a direct
summand of the free sheaf p∗P (V,V∨), which shows that OF (V) is universally f ◦ p-generating.
Moreover, since If → X has affine fibers and p is affine, we observe that If◦p → X has affine
fibers. Thus, f ◦ p is quasi-affine by Proposition 4.1.

(ii) ⇒ (i) First, note that If → Y has affine fibers because the stabilizer groups of X → Y
are subgroups of GLn on each fiber.

Let E be the vector bundle on BGLn that corresponds to the standard representation. Then
(q ◦ cV)∗E ' V, where q : BGLn,Y → BGLn denotes the projection that is given by the base
change Y → Spec(Z). So, if E is a tensor generator for BGLn, then V is one for f by Remark 6.3.

This reduces to the case that X = BGLn over Y = SpecZ, where V is the standard represen-
tation. It follows from the proof of [Wat79, Theorem 3.5] that p∗OY is a union of vector bundles
Vα ⊂ p∗OY such that each Vα is a quotient of some polynomial expression Pα(V,V∨). Namely,
if we choose a basis for the free Z-module p∗V, the sheaf p∗OY can be identified with the Hopf
algebra Z[x11, . . . , xnn, det−1] and Vα with the comodule det−sα{q ∈ Z[x11, . . . , xnn] | deg q 6 rα}
for sα, rα > 0.

In order to prove that V is a tensor generator, pick a quasi-coherent sheaf F on BGLn. We may
assume that F is locally free of constant rank m since BGLn has the resolution property. Then
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p∗F ' O⊕mY holds because every locally free sheaf on Y = Spec(Z) is free. So, we can identify
F with a p-locally split subsheaf of p∗O⊕mY via the unit F → p∗p

∗F , which is p-locally split by
adjunction. As F is of finite type, the inclusion F ⊂ p∗O⊕mY factors as F ⊂ V⊕mα ⊂ p∗O⊕mY for
every sufficiently large α. Also, F ⊂ V⊕mα is p-locally split, so that V⊕mα /F is a vector bundle.

Choose a surjection P (V,V∨)� V⊕mα , and let G be the preimage of F . Then F is a quotient
of G. Moreover, the induced map P (V,V∨)/G → V⊕mα /F is an isomorphism, hence P (V,V∨)/G
is a vector bundle, so that G ⊂ P (V,V∨) is p-locally split. Thus, V is a tensor generator.

If the structure group of the vector bundle V is linearly reductive, then a generating family
can be deduced from V without taking subsheaves. Recall that a group scheme G over Y is
linearly reductive if BG→ Y is cohomologically affine [Alp13, Definition 12.1].

Proposition 6.5. With the preceding notation, suppose that V is a tensor generator and that
the associated bundle of GLn,Y -frames p : F (V) → X is induced by a G-torsor π : Z → X, for
some flat, linearly reductive subgroup scheme G ⊂ GLn,Y . Then V is a strong tensor generator.

Proof. First, note that the classifying morphism cπ : X → BG is quasi-affine because the compo-
sition X

cπ−→ BG → BGLn is and BG → BGLn, being representable, has quasi-affine diagonal.
The upshot is that cπ

∗ preserves generating families, which reduces the statement to the case
that X is BG for some linearly reductive group scheme G over an affine base Y .

Pick a p-locally split subsheaf G ⊂ P (V,V∨), and denote the quotient by C. Then p∗C
is a direct summand of the free sheaf p∗P (V,V∨), which shows that C is locally free. Then
Ext1

BG(C,G) = Ext1
BG(OBG, C∨⊗G) = H1(BG, C∨⊗G). The latter cohomology group vanishes be-

cause G is linearly reductive. It follows that the short exact sequence 0→ G → P (V,V∨)→ C → 0
splits.

It is well known that GLn,Y is linearly reductive if Y is of characteristic zero.

Corollary 6.6. Let f : X → Y be a morphism with Y of characteristic zero and relatively
affine stabilizer groups. Then every tensor generator is a strong tensor generator.

A split vector bundle V =
⊕n

j=1 Lj has linearly reductive structure group Gn
m.

Corollary 6.7. Let (Lj)nj=1 be a family of invertible sheaves onX. Then the following properties
are equivalent:

(i) The family
⊕n

j=1 Lj is a tensor generator for f .

(ii) The family
⊕n

j=1 Lj is a strong tensor generator for f .

(iii) The family (L⊗`11 ⊗ · · · ⊗ L⊗`nn )`1,...,`n∈Z is universally f -generating.

(iv) The total space Z of the associated Gn
m-torsor Z → X is quasi-affine over Y .

In particular, every invertible tensor generator is a strong tensor generator.

Remark 6.8. The corollary generalizes [Hau02, Theorem 1] to algebraic stacks that are not
irreducible algebraic varieties.

Proposition 6.9. Let f : X → Y be a morphism of algebraic stacks such that the inertia If → X
has affine fibers. Let V be a vector bundle on X. Then V is a tensor generator for f if and only
if V|Xred

is a tensor generator for fred : Xred → Yred.

519



P. Gross

Proof. The total space of the frame bundle F (V) is quasi-affine over Y if and only if F (V|Xred
)

is quasi-affine over Yred [Ryd15, Corollary 8.2]. Hence, the result is a direct consequence of
Theorem 6.4.

Let us finally generalize Totaro’s theorem to the general relative case.

Theorem 6.10. Let f : X → Y be a morphism of algebraic stacks with Y quasi-compact. Then
the following conditions are equivalent:

(i) (a) The morphism f has the resolution property, and
(b) the relative inertia stack If → X has affine fibers (for instance, ∆f is quasi-affine).

(ii) For sufficiently large n > 0, the morphism f admits a factorization

X

f
##

g // BGLn,Y

q

��
Y ,

where g, which is the classifying morphism of the frame bundle for some vector bundle V of rank
n, is quasi-affine and q is the structure morphism. In particular, the diagonal ∆f is affine.

Proof. Let f : X → Y be a morphism of algebraic stacks. Suppose that f factors by a quasi-affine
morphism X → BGLn,Y followed by the projection BGLn,Y → Y . Then both morphisms have
the resolution property and so has the composition f . Moreover, both morphisms have affine
diagonal, so f has too, and we conclude that the inertia If = X ×X×YX X → X is affine.

Conversely, suppose that f has the resolution property and that If → X has affine fibers at
geometric points. Let (Vi)i∈I be a universally f -generating family of vector bundles on X, for
instance the family of all vector bundles on X up to isomorphism. We have to show that there
exists a quasi-affine morphism X → BGLn,Y . For every finite subset J ⊂ I the X-fiber product
pJ : FJ := (

∏
/X)i∈JF (Vi)→ X is an affine morphism. Let (FJ → FK)K⊂J be the natural inverse

system for the family (FJ → X). Then the inverse limit of X-stacks F := lim←−FJ is an algebraic
stack over X because the bonding maps FJ → FK are affine. The projection p : F → X is an
affine morphism and has the property that p∗(Vi) is trivial for every i ∈ I. So OF is universally
f ◦ p-generating by Proposition 2.8(v). Since If → X has affine fibers, the inertia If◦p → F also
has affine fibers because p is affine. Hence, f ◦ p must be quasi-affine by Proposition 4.1. But
then for sufficiently large finite J ⊂ I, each pJ : FJ → Y must be already quasi-affine since Y
is quasi-compact [Ryd15, Theorem C]. The morphism pJ is a torsor for the relative product
group G := (

∏
/Y )i∈J GLni,Y , where ni = rankVi, and the classifying morphism X → BG is

quasi-affine because pJ is.

To finish the proof, it suffices to construct a quasi-affine morphism BG → BGLn,Z. The
diagonal embedding G ↪→ GLn,Z given by n =

∑
i∈J rankVi induces a morphism of torsors and

therefore a morphism BG→ BGLn,Z, which is affine by smooth descent because the base change
along the natural map Spec(Z)→ BGLn,Z is the affine Stiefel scheme GLn,Z /G.

Corollary 6.11. Let f be a quasi-compact and quasi-separated morphism of algebraic stacks.
If f has the resolution property and the relative inertia If → X has affine fibers, then the
diagonal ∆f : X → X ×Y X is affine.

Proof of Theorem 1.1. The implication (iii) ⇒ (ii) follows from Theorem 6.4. It is clear that
statement (ii) implies statement (i). The remaining implication (i)⇒ (iii) follows from Corollary
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2.10, Lemma 5.15 and Theorem 6.10 (with Y = SpecZ). Finally, the addendum was given in
Proposition 6.5 and Corollaries 6.6 and 6.7.
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