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On Fujita invariants of subvarieties
of a uniruled variety

Christopher D. Hacon and Chen Jiang

ABSTRACT

We show that if X is a smooth uniruled projective variety and L is a big and semiample
Q-divisor on X, then there exists a proper closed subset W C X such that every
subvariety Y with Fujita invariant a(Y, L) greater than a(X, L) is contained in W.

1. Introduction

If X is a smooth projective variety and L is a big Q-divisor on X, then the Fujita invariant, or
a-constant, is defined as follows:

a(X,L) =1inf{t > 0 | Kx +tL is big}.

Note that a(X, L) € R>q is well defined since Ky +tL is big for all ¢ > 0 sufficiently large and that
a(X, L) > 0if and only if Kx is not pseudo-effective. It is easy to see that the a-constant is a bira-
tional invariant in the sense that if v : X’ — X is a birational morphism of smooth varieties and
L' =v*L, then a(X, L) = a(X', L") (cf. [HTT15, Proposition 2.7]). Therefore, we may also define
the a-constant for a big Q-Cartier Q-divisor L on an arbitrary projective variety X by setting

a(X,L) :=a(X', L),

where v: X’ — X is a resolution of singularities and L’ = v*L. Note that if X is smooth, then
the a-constant is the usual pseudo-effective threshold; however, if X is singular, these numbers
may be different.

A conjecture of Batyrev and Manin relates arithmetic properties of varieties with ample
anticanonical class to geometric invariants such as a-constants. Roughly speaking, this conjecture
predicts that the asymptotic behavior of a point-counting function is controlled by two geometric
invariants known as the a-constant and the b-constant. In view of this conjecture, it is expected
that almost all subvarieties of a uniruled variety X should have a-constants not greater than
that of X. See [HTT15, LTT14] for more background on the Batyrev—Manin conjecture.

In [LTT14], a-constants were intensively studied by Lehmann, Tanimoto and Tschinkel, mo-
tivated by the conjecture of Batyrev and Manin. They show that if X is a smooth uniruled
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ON FUJITA INVARIANTS

projective variety and L is an ample Q-divisor on X, then there exists a countable union of
proper closed subsets W C X such that every subvariety Y satisfying a(Y, L) > a(X, L) is con-
tained in W [LTT14, Theorem 1.1]. For the purpose of applications, it is expected that one may
choose W to be a proper closed subset of X. The purpose of this note is to prove that this is
indeed the case.

THEOREM 1.1. Let X be a smooth uniruled projective variety and L a big and semiample Q-
divisor on X. Then there exists a proper closed subset W C X such that every subvariety Y
satisfying a(Y, L) > a(X, L) is contained in W.

Note that this result is proven in [LTT14, Theorem 1.2] assuming that a weak version of the
BAB conjecture (due to Borisov, Borisov and Alexeev) holds in dimension n — 1 = dim X — 1.
We expect that Theorem 1.1 also holds if we just assume that L is big and nef (rather than big
and semiample).

Our idea is to replace the WBAB conjecture assumed in [LTT14, Theorem 1.2] by constructing
non-klt centers (see Definition 2.5 and Proposition 2.8) and applying the finiteness of the a-
constants (see Corollary 2.15). This is an application of a recent result of Di Cerbo [DiC17]
based on a boundedness result proved by Birkar [Birl6].

2. Preliminaries

In this paper, we work over the field of complex numbers C.

2.1 Facts on a-constants

In this subsection, for the convenience of the reader, we collect several facts about a-constants
that were proven in [LTT14].

ProPOSITION 2.1 ([LTT14, Proposition 4.1]). Let X be a smooth projective variety and L a big
and nef Q-divisor. Let U — W be a family of subvarieties of X such that U — X is dominant.
Then a general member Y of the family U satisfies a(Y, L) < a(X, L).

THEOREM 2.2 ([LTT14, Theorem 4.2]). Let X be a smooth projective variety and L a big and
nef Q-divisor. Let w: U — W be a family of subvarieties of X . There exists a proper closed subset
V C X such that if a member Y of the family U satisfies a(Y, L) > a(X,L), then Y C V.

ProposITION 2.3 ([LTT14, Proposition 4.6]). Let X be a smooth uniruled projective variety
and L a big and nef Q-divisor. Then either

(i) X is covered by proper subvarieties Y satisfying a(Y, L) = a(X, L) or

(ii) X is birational to a Q-factorial terminal Fano variety X' of Picard number 1.

LeEMMA 2.4 ([LTT14, Lemma 4.7]). Let X be a smooth projective variety and L a big and nef
Q-divisor on X. Fix a constant C. Then the subset of Chow(X ) parametrizing subvarieties of X
that are not contained in B (L) and are of L-degree at most C' is bounded.

2.2 Non-klt centers

We follow the standard notation and conventions of the minimal model program; see, for example,
[Kol97].
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DEFINITION 2.5. Let (X, A) be a pair with X a normal variety and A an effective Q-divisor such
that Ky + A is Q-Cartier. We say that a subvariety V C X is a non-klt center of (X, A) if it
is the image of a divisor of discrepancy at most —1. We will denote by Nklt(X, A) the union of
all non-klt centers of (X, A), which is a proper closed subset of X. A non-kit place is a valuation
corresponding to a divisor of discrepancy at most —1. A non-klt center V' is pure if Kx + A is
log canonical at the generic point of V. If, moreover, there is a unique non-klt place lying over
the generic point of V', we will say that V is an exceptional non-klt center.

The following is a weak form of Kawamata’s subadjunction theorem.

THEOREM 2.6 (Subadjunction; see [Jial3, Proposition 5.1]). Let V' C X be a non-klt center of a
pair (X, A) which is log canonical at a general point of V.. Let v: V¥ — V be the normalization.
Then there is an effective Q-divisor Ay on V¥ such that

I/*(KX + A)|V,, ~Q Kyv + Ay .

We have the following connectedness lemma of Kollar and Shokurov for the non-klt locus (cf.
Shokurov [Sho93, Sho94], Kollar [Kol92, Theorem 17.4]).

THEOREM 2.7 (Connectedness lemma). Let f: X — Z be a proper morphism of normal varieties
with connected fibers and D a Q-divisor such that —(Kx + D) is Q-Cartier, f-nef and f-big.
Write D = DT — D~, where D and D~ are effective with no common components. If D~
is f-exceptional (that is, all of its components have image of codimension at least 2), then
Nklt(X, D) N f~Y(2) is connected for any z € Z.

We can use the following proposition to construct non-klt centers.

PROPOSITION 2.8 (cf. [Lail6, Lemma 3.2]). Let X be a Q-factorial terminal Fano variety of
dimension n. Assume (—Kx)"™ > (wn)" for some positive rational number w. Then for every
point p € X, there is an effective Q-divisor A, ~q —%K x such that the unique minimal non-klt
center V,, C Nklt(X, A,) containing p is exceptional.

Proof. Fix a point p. Fix a positive rational number w’ such that (—Kx)" > (w'n)" > (wn)".
By [Kol97, Theorem 6.7.1], there is an effective Q-divisor A}, ~q —-L Kx such that (X, A}) is
not log canonical (lc) at p. Let 0 < ¢ < 1 be the unique rational number such that (X,tA}) is
lc but not klt at p. By [Amb98, Proposition 3.2, Lemma 3.4], we can find an effective Q-divisor
M, ~q —%K x and some rational number a > 0 such that for any rational number 0 < € < 1,
the pair (X, (1 —¢€)tA}, + eaM,) has a unique minimal non-klt center V}, passing through p which
is exceptional. Note that

(1—€)t+ea %

/

(1 — e)tA), + eaM, ~q — "

and ((1—e)t+ea)/w < 1/w for 0 < € < 1. Since —Kx is ample, by adding a Q-divisor
Q-linearly equivalent to a multiple of —Kx to A;,, we conclude that there exists an effective
Q-divisor A, such that A, ~g —2Kx and (X,Ap) has a unique minimal non-klt center V,,
passing through p which is exceptional. ]

LEMMA 2.9. We keep the notation of Proposition 2.8. If w > 2, then dim V), > 0 for a general
point p.

Proof. Assume to the contrary that there exist p; € X such that V,, = {pi} and py €
X\Supp(A,,) such that V,,, = {p2}. Then p; and py are contained in Nklt(X, A, + A,,) and po
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is isolated by construction. On the other hand,

~(Kx + B+ ) g (122 ) (K)

is ample. By the connectedness lemma, Nklt(X, A, + A,,) is connected, which gives a contra-
diction. O

2.3 Finiteness of a-constants

We recall the main result of [DiC17] in this subsection.

DEFINITION 2.10. Let X be a normal projective variety and H a big Q-divisor. We define the
pseudo-effective threshold to be

7(X,H):=inf{t > 0| Kx + tH is big}.
Note that if X is smooth, the a-constant and pseudo-effective thresholds coincide.

DEFINITION 2.11 (cf. [DiC17, Definition 3.1]). Fix a positive integer n and two positive real
numbers € and J. We define D,,(¢,0) to be the set of lc pairs (X, A) such that

(i) X is a normal projective variety of dimension n,
(ii) A is a big Q-divisor with coefficients > §, and
(iii) (X,tA) is elc and Kx + tA is pseudo-effective for some 0 < ¢ < 1.

DEFINITION 2.12 (cf. [DiC17, Definition 3.2]). Fix a positive integer n and two positive real
numbers € and §. We define the set

To(e,0) :={7(X,A) | (X,A) € Dy(e,9)}.

THEOREM 2.13 ([DiC17, Corollary 3.6]). Fix a positive integer n and three positive real numbers
€, 0 and 1. Then the set T, (e,0) N [n,1] is a finite set.

Applying this theorem in our situation, we obtain Corollary 2.15. To state this, we first need
to introduce the notation P,,.

DEFINITION 2.14. Fix a positive integer n. We define P,, to be the set of pairs (Y, L) such that
(i) Y is a normal projective variety of dimension n,
(ii) L is a base-point-free big Cartier divisor.
COROLLARY 2.15. Fix a positive integer n and a positive real number 7. Then the set
{a(Y,L) | (Y,L) € Pn} N [n,0)
is a finite set.

Proof. We may assume 7 < 1/4(n + 1). First, we show that the set
1
{av.D) | (v.L) € Pa} 0 [n.5]

is a finite set. Take (Y, L) € P,, and assume a(Y, L) € [n, 3]. Note that a(Y,3L) = 2a(Y,L) €
[2n,1]. By taking a resolution, we may assume that Y is smooth. In this case, a(Y, %L) =
T(Y, %L) Replacing L by a general element in |L|, we may assume that L is irreducible and
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smooth. Moreover, (Y, %L) is %-lc and Ky + %L is pseudo-effective, that is, (Y, %L) € Dn(%, %)
This implies that the set

1
{a(y, §L> ‘ (Y,L) e Pn} N [277, 1]
is finite by Theorem 2.13, and so is {a(Y, L) | (Y,L) € P} N [n, 3].
Then we show that the set

{av,) | (V.0 e P} 5 00)

is a finite set. Take (Y, L) € P,, and assume a(Y, L) > % By taking a resolution, we may assume
that Y is smooth. By [LTT14, Proposition 2.10], we have a(Y,L) < n + 1. Now we consider
(Y,2(n + 1)L) € P,. Note that a(Y,2(n+1)L) = (1/2(n + 1))a(Y, L), hence a(Y,2(n + 1)L) €
[1/4(n+1),1]. By the first step, a(Y,2(n + 1)L) belongs to a finite set. Hence a(Y, L) belongs
to a finite set. O

3. Proof of Theorem 1.1

We prove the following proposition suggested by Lehmann.

ProrosiTION 3.1. Fix a positive real number t. Let X be a smooth projective variety and L
a big and semiample Q-divisor. Then there is a bounded family U of subvarieties of X such that
any subvariety Y not contained in B4 (L), with a(Y, L) > t, is dominated by some members Z
of U such that a(Z,L) = a(Y,L).
Proof. Note that for a subvariety Y not contained in By (L), the restriction L|y is nef and
big, and so a(Y, L) is well defined. Therefore, we will only consider subvarieties not contained
in B4 (L). Replacing L by some multiple, we may assume that L is a base-point-free Cartier
divisor. We construct U inductively by increasing induction on the dimension of Y.

For a subvariety Y with a(Y,L) > ¢t and dimY = 1, it is easy to see that Y is a rational
curve with

degy (L) =Y - L=

a(Y,L) ~t~
By Lemma 2.4, such Y form a bounded family 4.

Suppose that we have constructed a bounded family If; of subvarieties such that every sub-
variety Y with a(Y,L) > t and dimY < ¢ is dominated by some members Z of U such that
a(Z,L) = a(Y,L). We construct Ui+, as follows. Suppose that Y is an (i + 1)-dimensional
subvariety satisfying a(Y, L) > t. By taking a resolution, we may assume that Y is smooth.
Proposition 2.3 shows that either

(1) Y is covered by proper subvarieties Z with a(Z, L) = a(Y, L) or
(2) Y is birational to a Q-factorial terminal Fano variety Y’ of Picard number 1.

In case (1), by induction, Z is dominated by some members Z' of U; such that a(Z’, L) =
a(Z,L), and so is Y.

In case (2), by taking a resolution, we may assume that ¢: Y --» Y’ is a morphism. By the
proof of [LTT14, Proposition 4.6], we have Ky + a(Y, L)¢«(L|y) = 0.

We define constants ¢g < 1 and w > 2 as follows: since L is base-point free, we know that
the set

{a(Z,L) | Z is a subvariety of X} N (¢, o]
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is finite by Corollary 2.15. Hence, we may take a rational number ¢y < 1 such that the set
{a(Z, L) | Z is a subvariety of X} N [coa(Z', L), a(Z’',L))
is empty for any subvariety Z’ with a(Z’, L) > t. Take w = 1/(1 — ¢p). We may assume w > 2
by taking cg > % in the definition.
If (—Ky/ )"t < (w(i + 1)) then
(w(i+ D)™ _ (w(i+ 1))
a(y’ L)z‘—l—l a(X, L)i—l—l ’

where the first inequality holds because by the negativity lemma, ¢*¢.(L|y) — L|y = E > 0 and
hence

(L) (6" 0u (L)) = (Lly) (6" du(Lly) = E)(¢"0s(Lly)) < (LIy)' ™ (6" ¢u(Lly) Y™

for j = 0,1,...,4, and where we have use the fact that ¢.(L|y) is nef since p(Y’) = 1. By
Lemma 2.4, such Y form a bounded family /] ;.

(L|Y)i+1 < (¢*¢*(L|Y))i+1 _ (QZ)*(L’Y))H_I <

Now, we assume (—Ky)"*t > (w(i + 1))**1. By Proposition 2.8, for a general point p € Y,
there exists an effective Q-divisor A}, ~q — LKy such that V, C Nklt(Y', A7) is the minimal
exceptional non-klt center containing p. Note that by Lemma 2.9 and the inequality w > 2, we
have dim V) > 0. Let v: \N/p” — V, be the normalization. For any Q-Cartier divisor G on V), we
write G ‘\7; = v*(G. By Theorem 2.6, there is an effective Q-divisor AV; such that

(Kyr + A)) vy~ Ky + Ay -

Note that since Ky+ + a(Y, L)¢.L = 0, we have
1
Kvp,, + Avp,, + (1 — w) (Z(}/, L)¢*L|‘~/pl, ~Q 0.

Let V), be the strict transform of V; on Y. Let ‘7p be a common resolution of f/p” and V,, with
morphisms f: f/p — Vp and g: f/}, — f/ZD”. Then

1 *
Ke,+ (1= 1) a0 (o)
* 1 —1
- g <Kvpu + AVPV + (1 - w> (I(}/, L)¢*L|Vpl’> - g* AVP” "‘ E
~Q —g;lAVpV + E,
where F is a g-exceptional Q-divisor. Note that the Q-divisor —g, 1A‘~/V + F is not big. Hence
p
Ky + (1 — (1/w))a(Y, L) f*(Lly,) is not big and therefore
1
a(Vp,L) > <1 - > a(Y,L) = coa(Y,L).
w

By the definition of ¢g, this implies that a(V,, L) > a(Y,L). Since p is a general point, Y is
dominated by such V). By induction, V), is dominated by some members Z of U; such that
a(Z,L) = a(V,, L) > a(Y,L). Hence Y is also dominated by some members Z of U; such that
a(Z,L) > a(Y,L). By Proposition 2.1, by taking general members, Y is dominated by some
members Z of U; such that a(Z,L) = a(Y, L).

Hence we may take U1 = U; UU], |, and the proof is completed. O
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Proof of Theorem 1.1. Take t = a(X, L) in Proposition 3.1. There is a bounded family U of
subvarieties of X such that any subvariety Y not contained in By (L) with a(Y,L) > a(X, L) is
dominated by some members Z of U such that a(Z,L) = a(Y,L) > a(X, L). By Theorem 2.2,
there exists a proper closed subset W C X such that any member Z of the family U satisfying
a(Z,L) > a(X, L) is contained in W. Hence, any subvariety Y with a(Y, L) > a(X, L) is contained
in W. O
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