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On Fujita invariants of subvarieties

of a uniruled variety

Christopher D. Hacon and Chen Jiang

Abstract

We show that if X is a smooth uniruled projective variety and L is a big and semiample
Q-divisor on X, then there exists a proper closed subset W ⊂ X such that every
subvariety Y with Fujita invariant a(Y,L) greater than a(X,L) is contained in W .

1. Introduction

If X is a smooth projective variety and L is a big Q-divisor on X, then the Fujita invariant, or
a-constant, is defined as follows:

a(X,L) = inf{t > 0 | KX + tL is big} .

Note that a(X,L) ∈ R>0 is well defined since KX+tL is big for all t > 0 sufficiently large and that
a(X,L) > 0 if and only if KX is not pseudo-effective. It is easy to see that the a-constant is a bira-
tional invariant in the sense that if ν : X ′ → X is a birational morphism of smooth varieties and
L′ = ν∗L, then a(X,L) = a(X ′, L′) (cf. [HTT15, Proposition 2.7]). Therefore, we may also define
the a-constant for a big Q-Cartier Q-divisor L on an arbitrary projective variety X by setting

a(X,L) := a(X ′, L′) ,

where ν : X ′ → X is a resolution of singularities and L′ = ν∗L. Note that if X is smooth, then
the a-constant is the usual pseudo-effective threshold; however, if X is singular, these numbers
may be different.

A conjecture of Batyrev and Manin relates arithmetic properties of varieties with ample
anticanonical class to geometric invariants such as a-constants. Roughly speaking, this conjecture
predicts that the asymptotic behavior of a point-counting function is controlled by two geometric
invariants known as the a-constant and the b-constant. In view of this conjecture, it is expected
that almost all subvarieties of a uniruled variety X should have a-constants not greater than
that of X. See [HTT15, LTT14] for more background on the Batyrev–Manin conjecture.

In [LTT14], a-constants were intensively studied by Lehmann, Tanimoto and Tschinkel, mo-
tivated by the conjecture of Batyrev and Manin. They show that if X is a smooth uniruled
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On Fujita invariants

projective variety and L is an ample Q-divisor on X, then there exists a countable union of
proper closed subsets W ⊂ X such that every subvariety Y satisfying a(Y,L) > a(X,L) is con-
tained in W [LTT14, Theorem 1.1]. For the purpose of applications, it is expected that one may
choose W to be a proper closed subset of X. The purpose of this note is to prove that this is
indeed the case.

Theorem 1.1. Let X be a smooth uniruled projective variety and L a big and semiample Q-
divisor on X. Then there exists a proper closed subset W ⊂ X such that every subvariety Y
satisfying a(Y,L) > a(X,L) is contained in W .

Note that this result is proven in [LTT14, Theorem 1.2] assuming that a weak version of the
BAB conjecture (due to Borisov, Borisov and Alexeev) holds in dimension n − 1 = dimX − 1.
We expect that Theorem 1.1 also holds if we just assume that L is big and nef (rather than big
and semiample).

Our idea is to replace the WBAB conjecture assumed in [LTT14, Theorem 1.2] by constructing
non-klt centers (see Definition 2.5 and Proposition 2.8) and applying the finiteness of the a-
constants (see Corollary 2.15). This is an application of a recent result of Di Cerbo [DiC17]
based on a boundedness result proved by Birkar [Bir16].

2. Preliminaries

In this paper, we work over the field of complex numbers C.

2.1 Facts on a-constants

In this subsection, for the convenience of the reader, we collect several facts about a-constants
that were proven in [LTT14].

Proposition 2.1 ([LTT14, Proposition 4.1]). Let X be a smooth projective variety and L a big
and nef Q-divisor. Let U → W be a family of subvarieties of X such that U → X is dominant.
Then a general member Y of the family U satisfies a(Y, L) 6 a(X,L).

Theorem 2.2 ([LTT14, Theorem 4.2]). Let X be a smooth projective variety and L a big and
nef Q-divisor. Let π : U →W be a family of subvarieties of X. There exists a proper closed subset
V ⊂ X such that if a member Y of the family U satisfies a(Y, L) > a(X,L), then Y ⊂ V .

Proposition 2.3 ([LTT14, Proposition 4.6]). Let X be a smooth uniruled projective variety
and L a big and nef Q-divisor. Then either

(i) X is covered by proper subvarieties Y satisfying a(Y, L) = a(X,L) or

(ii) X is birational to a Q-factorial terminal Fano variety X ′ of Picard number 1.

Lemma 2.4 ([LTT14, Lemma 4.7]). Let X be a smooth projective variety and L a big and nef
Q-divisor on X. Fix a constant C. Then the subset of Chow(X) parametrizing subvarieties of X
that are not contained in B+(L) and are of L-degree at most C is bounded.

2.2 Non-klt centers

We follow the standard notation and conventions of the minimal model program; see, for example,
[Kol97].
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Definition 2.5. Let (X,∆) be a pair with X a normal variety and ∆ an effective Q-divisor such
that KX + ∆ is Q-Cartier. We say that a subvariety V ⊂ X is a non-klt center of (X,∆) if it
is the image of a divisor of discrepancy at most −1. We will denote by Nklt(X,∆) the union of
all non-klt centers of (X,∆), which is a proper closed subset of X. A non-klt place is a valuation
corresponding to a divisor of discrepancy at most −1. A non-klt center V is pure if KX + ∆ is
log canonical at the generic point of V . If, moreover, there is a unique non-klt place lying over
the generic point of V , we will say that V is an exceptional non-klt center.

The following is a weak form of Kawamata’s subadjunction theorem.

Theorem 2.6 (Subadjunction; see [Jia13, Proposition 5.1]). Let V ⊂ X be a non-klt center of a
pair (X,∆) which is log canonical at a general point of V . Let ν : V ν → V be the normalization.
Then there is an effective Q-divisor ∆V ν on V ν such that

ν∗(KX + ∆)|Vν ∼Q KV ν + ∆V ν .

We have the following connectedness lemma of Kollár and Shokurov for the non-klt locus (cf.
Shokurov [Sho93, Sho94], Kollár [Kol92, Theorem 17.4]).

Theorem 2.7 (Connectedness lemma). Let f : X → Z be a proper morphism of normal varieties
with connected fibers and D a Q-divisor such that −(KX + D) is Q-Cartier, f -nef and f -big.
Write D = D+ − D−, where D+ and D− are effective with no common components. If D−

is f -exceptional (that is, all of its components have image of codimension at least 2), then
Nklt(X,D) ∩ f−1(z) is connected for any z ∈ Z.

We can use the following proposition to construct non-klt centers.

Proposition 2.8 (cf. [Lai16, Lemma 3.2]). Let X be a Q-factorial terminal Fano variety of
dimension n. Assume (−KX)n > (wn)n for some positive rational number w. Then for every
point p ∈ X, there is an effective Q-divisor ∆p ∼Q − 1

wKX such that the unique minimal non-klt
center Vp ⊂ Nklt(X,∆p) containing p is exceptional.

Proof. Fix a point p. Fix a positive rational number w′ such that (−KX)n > (w′n)n > (wn)n.
By [Kol97, Theorem 6.7.1], there is an effective Q-divisor ∆′p ∼Q − 1

w′KX such that (X,∆′p) is
not log canonical (lc) at p. Let 0 < t 6 1 be the unique rational number such that (X, t∆′p) is
lc but not klt at p. By [Amb98, Proposition 3.2, Lemma 3.4], we can find an effective Q-divisor
Mp ∼Q − 1

w′KX and some rational number a > 0 such that for any rational number 0 < ε � 1,
the pair (X, (1− ε)t∆′p + εaMp) has a unique minimal non-klt center Vp passing through p which
is exceptional. Note that

(1− ε)t∆′p + εaMp ∼Q −
(1− ε)t+ εa

w′
KX

and
(
(1− ε)t+ εa

)
/w′ < 1/w for 0 < ε � 1. Since −KX is ample, by adding a Q-divisor

Q-linearly equivalent to a multiple of −KX to ∆′p, we conclude that there exists an effective

Q-divisor ∆p such that ∆p ∼Q − 1
wKX and (X,∆p) has a unique minimal non-klt center Vp

passing through p which is exceptional.

Lemma 2.9. We keep the notation of Proposition 2.8. If w > 2, then dimVp > 0 for a general
point p.

Proof. Assume to the contrary that there exist p1 ∈ X such that Vp1 = {p1} and p2 ∈
X\Supp(∆p1) such that Vp2 = {p2}. Then p1 and p2 are contained in Nklt(X,∆p1 + ∆p2) and p2
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is isolated by construction. On the other hand,

−(KX + ∆p1 + ∆p2) ∼Q

(
1− 2

w

)
(−KX)

is ample. By the connectedness lemma, Nklt(X,∆p1 + ∆p2) is connected, which gives a contra-
diction.

2.3 Finiteness of a-constants

We recall the main result of [DiC17] in this subsection.

Definition 2.10. Let X be a normal projective variety and H a big Q-divisor. We define the
pseudo-effective threshold to be

τ(X,H) := inf{t > 0 | KX + tH is big} .

Note that if X is smooth, the a-constant and pseudo-effective thresholds coincide.

Definition 2.11 (cf. [DiC17, Definition 3.1]). Fix a positive integer n and two positive real
numbers ε and δ. We define Dn(ε, δ) to be the set of lc pairs (X,∆) such that

(i) X is a normal projective variety of dimension n,

(ii) ∆ is a big Q-divisor with coefficients > δ, and

(iii) (X, t∆) is ε-lc and KX + t∆ is pseudo-effective for some 0 6 t 6 1.

Definition 2.12 (cf. [DiC17, Definition 3.2]). Fix a positive integer n and two positive real
numbers ε and δ. We define the set

Tn(ε, δ) := {τ(X,∆) | (X,∆) ∈ Dn(ε, δ)} .

Theorem 2.13 ([DiC17, Corollary 3.6]). Fix a positive integer n and three positive real numbers
ε, δ and η. Then the set Tn(ε, δ) ∩ [η, 1] is a finite set.

Applying this theorem in our situation, we obtain Corollary 2.15. To state this, we first need
to introduce the notation Pn.

Definition 2.14. Fix a positive integer n. We define Pn to be the set of pairs (Y,L) such that

(i) Y is a normal projective variety of dimension n,

(ii) L is a base-point-free big Cartier divisor.

Corollary 2.15. Fix a positive integer n and a positive real number η. Then the set

{a(Y,L) | (Y, L) ∈ Pn} ∩ [η,∞)

is a finite set.

Proof. We may assume η 6 1/4(n+ 1). First, we show that the set{
a(Y, L) | (Y,L) ∈ Pn

}
∩
[
η,

1

2

]
is a finite set. Take (Y,L) ∈ Pn and assume a(Y,L) ∈

[
η, 12

]
. Note that a

(
Y, 12L

)
= 2a(Y,L) ∈

[2η, 1]. By taking a resolution, we may assume that Y is smooth. In this case, a
(
Y, 12L

)
=

τ
(
Y, 12L

)
. Replacing L by a general element in |L|, we may assume that L is irreducible and
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smooth. Moreover,
(
Y, 12L

)
is 1

2 -lc and KY + 1
2L is pseudo-effective, that is,

(
Y, 12L

)
∈ Dn

(
1
2 ,

1
2

)
.

This implies that the set {
a
(
Y,

1

2
L
) ∣∣∣ (Y,L) ∈ Pn

}
∩
[
2η, 1

]
is finite by Theorem 2.13, and so is {a(Y, L) | (Y, L) ∈ Pn} ∩ [η, 12 ].

Then we show that the set {
a(Y,L) | (Y,L) ∈ Pn

}
∩
[1

2
,∞
)

is a finite set. Take (Y, L) ∈ Pn and assume a(Y,L) > 1
2 . By taking a resolution, we may assume

that Y is smooth. By [LTT14, Proposition 2.10], we have a(Y,L) 6 n + 1. Now we consider
(Y, 2(n + 1)L) ∈ Pn. Note that a(Y, 2(n + 1)L) =

(
1/2(n+ 1)

)
a(Y,L), hence a(Y, 2(n + 1)L) ∈[

1/4(n+ 1), 12
]
. By the first step, a(Y, 2(n + 1)L) belongs to a finite set. Hence a(Y,L) belongs

to a finite set.

3. Proof of Theorem 1.1

We prove the following proposition suggested by Lehmann.

Proposition 3.1. Fix a positive real number t. Let X be a smooth projective variety and L
a big and semiample Q-divisor. Then there is a bounded family U of subvarieties of X such that
any subvariety Y not contained in B+(L), with a(Y,L) > t, is dominated by some members Z
of U such that a(Z,L) = a(Y,L).

Proof. Note that for a subvariety Y not contained in B+(L), the restriction L|Y is nef and
big, and so a(Y,L) is well defined. Therefore, we will only consider subvarieties not contained
in B+(L). Replacing L by some multiple, we may assume that L is a base-point-free Cartier
divisor. We construct U inductively by increasing induction on the dimension of Y .

For a subvariety Y with a(Y, L) > t and dimY = 1, it is easy to see that Y is a rational
curve with

degY (L) = Y · L =
2

a(Y, L)
<

2

t
.

By Lemma 2.4, such Y form a bounded family U1.
Suppose that we have constructed a bounded family Ui of subvarieties such that every sub-

variety Y with a(Y, L) > t and dimY 6 i is dominated by some members Z of U such that
a(Z,L) = a(Y, L). We construct Ui+1 as follows. Suppose that Y is an (i + 1)-dimensional
subvariety satisfying a(Y,L) > t. By taking a resolution, we may assume that Y is smooth.
Proposition 2.3 shows that either

(1) Y is covered by proper subvarieties Z with a(Z,L) = a(Y, L) or

(2) Y is birational to a Q-factorial terminal Fano variety Y ′ of Picard number 1.

In case (1), by induction, Z is dominated by some members Z ′ of Ui such that a(Z ′, L) =
a(Z,L), and so is Y .

In case (2), by taking a resolution, we may assume that φ : Y 99K Y ′ is a morphism. By the
proof of [LTT14, Proposition 4.6], we have KY ′ + a(Y, L)φ∗(L|Y ) ≡ 0.

We define constants c0 < 1 and w > 2 as follows: since L is base-point free, we know that
the set

{a(Z,L) | Z is a subvariety of X} ∩ (t,∞]
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is finite by Corollary 2.15. Hence, we may take a rational number c0 < 1 such that the set

{a(Z,L) | Z is a subvariety of X} ∩ [c0a(Z ′, L), a(Z ′, L))

is empty for any subvariety Z ′ with a(Z ′, L) > t. Take w = 1/(1− c0). We may assume w > 2
by taking c0 >

1
2 in the definition.

If (−KY ′)i+1 6 (w(i+ 1))i+1, then

(L|Y )i+1 6 (φ∗φ∗(L|Y ))i+1 = (φ∗(L|Y ))i+1 6
(w(i+ 1))i+1

a(Y,L)i+1
<

(w(i+ 1))i+1

a(X,L)i+1
,

where the first inequality holds because by the negativity lemma, φ∗φ∗(L|Y )−L|Y = E > 0 and
hence

(L|Y )i+1−j(φ∗φ∗(L|Y ))j = (L|Y )i−j(φ∗φ∗(L|Y )− E)(φ∗φ∗(L|Y ))j 6 (L|Y )i−j(φ∗φ∗(L|Y ))j+1

for j = 0, 1, . . . , i, and where we have use the fact that φ∗(L|Y ) is nef since ρ(Y ′) = 1. By
Lemma 2.4, such Y form a bounded family U ′i+1.

Now, we assume (−KY ′)i+1 > (w(i+ 1))i+1. By Proposition 2.8, for a general point p ∈ Y ′,
there exists an effective Q-divisor ∆′p ∼Q − 1

wKY ′ such that V ′p ⊂ Nklt(Y ′,∆′p) is the minimal
exceptional non-klt center containing p. Note that by Lemma 2.9 and the inequality w > 2, we
have dimV ′p > 0. Let ν : Ṽ ν

p → V ′p be the normalization. For any Q-Cartier divisor G on V ′p , we
write G|Ṽ νp = ν∗G. By Theorem 2.6, there is an effective Q-divisor ∆Ṽ νp

such that(
KY ′ + ∆′p

)
|Ṽ νp ∼Q KṼ νp

+ ∆Ṽ νp
.

Note that since KY ′ + a(Y,L)φ∗L ≡ 0, we have

KṼ νp
+ ∆Ṽ νp

+

(
1− 1

w

)
a(Y, L)φ∗L|Ṽ νp ∼Q 0 .

Let Vp be the strict transform of V ′p on Y . Let Ṽp be a common resolution of Ṽ ν
p and Vp with

morphisms f : Ṽp → Vp and g : Ṽp → Ṽ ν
p . Then

KṼp
+

(
1− 1

w

)
a(Y, L)f∗(L|Vp)

= g∗
(
KṼ νp

+ ∆Ṽ νp
+

(
1− 1

w

)
a(Y,L)φ∗L|Ṽ νp

)
− g−1∗ ∆Ṽ νp

+ E

∼Q −g−1∗ ∆Ṽ νp
+ E ,

where E is a g-exceptional Q-divisor. Note that the Q-divisor −g−1∗ ∆Ṽ νp
+ E is not big. Hence

KṼp
+
(
1− (1/w)

)
a(Y,L)f∗(L|Vp) is not big and therefore

a(Vp, L) >

(
1− 1

w

)
a(Y, L) = c0a(Y, L) .

By the definition of c0, this implies that a(Vp, L) > a(Y,L). Since p is a general point, Y is
dominated by such Vp. By induction, Vp is dominated by some members Z of Ui such that
a(Z,L) = a(Vp, L) > a(Y,L). Hence Y is also dominated by some members Z of Ui such that
a(Z,L) > a(Y, L). By Proposition 2.1, by taking general members, Y is dominated by some
members Z of Ui such that a(Z,L) = a(Y,L).

Hence we may take Ui+1 = Ui ∪ U ′i+1, and the proof is completed.
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Proof of Theorem 1.1. Take t = a(X,L) in Proposition 3.1. There is a bounded family U of
subvarieties of X such that any subvariety Y not contained in B+(L) with a(Y, L) > a(X,L) is
dominated by some members Z of U such that a(Z,L) = a(Y, L) > a(X,L). By Theorem 2.2,
there exists a proper closed subset W ⊂ X such that any member Z of the family U satisfying
a(Z,L) > a(X,L) is contained inW . Hence, any subvariety Y with a(Y,L) > a(X,L) is contained
in W .
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