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Simple surface singularities

Jan Stevens

Abstract

By the famous ADE classification, rational double points are simple. Rational triple
points are also simple. We conjecture that the simple normal surface singularities are
exactly those rational singularities whose resolution graph can be obtained from the
graph of a rational double point or rational triple point by making any number of vertex
weights more negative. We show that no other rational singularities can be simple. We
prove simpleness only for special classes of singularities, namely rational quadruple
points or sandwiched singularities.

1. Introduction

Simple hypersurface singularities were classified by Arnol’d in the famous ADE list [Arn72]. In
the surface case these are exactly the rational double points. In Giusti’s list [Giu83] of simple
isolated complete intersection singularities, no surface singularities occur. They do appear in
the classification of simple determinantal codimension two singularities by Frühbis-Krüger and
Neumer [FKN10]; the simple surface singularities are the rational triple points.

In this paper we address the following question.

Question 1.1. What are the simple normal surface singularities?

The singularities that are considered are germs of complex spaces, and here simple means that
only finitely many isomorphism classes occur in the versal deformation. The known cases suggest
that simple singularities are rational, with star-shaped graph. But not all rational singularities
are simple: already for rational quadruple points, a cross ratio can be involved in the exceptional
divisor.

Conjecture 1.2. Simple normal surface singularities are exactly those rational singularities
whose resolution graphs can be obtained from the graphs of rational double points and rational
triple points by making any number of vertex weights more negative.

Such a graph determines the analytic type of the singularity; this property is called tautness.
The graphs of taut singularities were classified by Laufer [Lau73]. The star-shaped ones make up
the parts I, II and III in his list, and, as Laufer observed, they are precisely the ones that can
be obtained from double-point and triple-point graphs.

A rigid singularity, one having no nontrivial deformations at all, is certainly simple. It is an
old unsolved question whether rigid normal surface singularities exist. Our conjecture says that
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Simple surface singularities

they do not. Without the condition of normality, there are rigid singularities. In fact, the standard
example of a nonnormal isolated singularity, two planes in 4-space meeting transversally in one
point, is rigid and therefore simple.

Our results on the conjecture are restricted to rational singularities. We prove one direction
of the conjecture for rational singularities in general, that those not covered by the conjecture
are not simple. We show that they deform to a singularity with a cross ratio on the exceptional
set, by studying deformations of the resolution. Proving simpleness is more difficult. We succeed
in the cases where there are good methods to study deformations. We prove the following.

Proposition 1.3. For the following classes of rational singularities, the conjecture is true; that
is, the simple rational singularities are those obtained from rational double and triple points:

– quotient singularities

– rational quadruple points

– sandwiched singularities

The case of quotient singularities is already known; it follows by combining the results of
[Bri68] and [EV85]. For rational quadruple points, the first case after double and triple points,
we have quite a good understanding of the versal deformation by the work of De Jong and Van
Straten [dJvS91]. They also studied the deformation theory of sandwiched singularities [dJvS98],
which are normal surface singularities admitting a birational map to (C2, 0).

Not all quotient singularities are sandwiched. If the graph of a singularity contains D4 or the
graph of Proposition 5.5 as subgraph, then it is not sandwiched. This applies in particular to
singularities of Laufer’s type III.5 (see Table 1) and higher.

As singularities of Laufer’s type III.5 (see Table 1) are deformations of those of type III.6,
and those of types III.7 and III.8 are deformations of singularities of type III.9, it remains to
prove that singularities of type III.9 or III.6 and those of type III.4 which are not sandwiched
are simple.

2. The conjecture

By a singularity X we always mean the germ (X, p) of a complex analytic space around a point
p ∈ X. If X is an isolated singularity, then there exists a versal deformation (XS , p) → (S, 0)
with special fibre X0 isomorphic to X. It makes sense to talk about the isomorphism class of
a nearby fibre Xs with 0 6= s ∈ S.

Definition 2.1. A singularity is simple if only finitely many different isomorphism classes of
singularities occur in its versal deformation.

The simple 2-dimensional hypersurface singularities were classified by Arnol’d in the famous
ADE list. They are also known under many other names, each representing a different aspect,
leading to different generalisations. As Kleinian singularities they are quotients of C2 by finite
subgroups of SL(2,C). Non-hypersurface singularities are obtained by taking quotients by sub-
groups of GL(2,C); these quotient singularities were classified by Brieskorn [Bri68]. They are
examples of rational surface singularities.

We recall some notions which will be important later on. General references are [Bri68,
Ném99, Rei97]. Let π : (X̃, E) → (X, p) be a resolution of a normal surface singularity with as
exceptional set E a normal crossings divisor. Then R1π∗OX̃

is a finite-dimensional vector space,
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whose dimension is the geometric genus pg of X. A singularity X is rational if pg(X) = 0.
This condition can be checked from the resolution graph. By a result of Artin, the singularity is
rational if and only if pa(D) 6 0 for any positive cycle D on E, where the arithmetic genus of a
cycle can be computed with the adjunction formula. It suffices that pa(Z) = 0 for the fundamental
cycle, which is by definition the unique minimal positive cycle Z such that Z · Ei 6 0 for every
irreducible component Ei of E.

The fundamental cycle can be found with a computation sequence [Lau72]: let Z1 be any
component of E, and define inductively Zj+1 = Zj + Ei(j), where Ei(j) · Zj > 0, until there
is no component of E intersecting the obtained cycle positively and Z has been reached. In a
computation sequence the genus cannot go down:

pa(Zj+1) = pa(Zj) + pa(Ei(j)) + Zj · Ei(j) − 1 > pa(Zj) .

This gives an algorithmic rationality criterion.

Lemma 2.2 (Laufer’s criterion). A singularity is rational if pa(Zj+1) = 0 in every step Zj+1 of
a computation sequence, so Ei(j) · Zj = 1 in every step.

For rational singularities, the resolution graph contains much information about the analytic
structure of the singularity. In particular, the multiplicity is equal to −Z ·Z, and the embedding
dimension is 1 − Z · Z. Therefore the only rational hypersurface singularities are the rational
double points.

Rational triple points are also simple. This follows from the classification of simple determi-
nantal codimension 2 singularities by Frühbis-Krüger and Neumer [FKN10]. Nonrational singu-
larities of this type are not simple.

But not all rational singularities are simple. Already for quadruple points, we find singulari-
ties with a modulus in the resolution. An example is the n-star singularity of [dJvS91], which has
a star-shaped graph with a central (−4)-vertex and four arms of (−2)-vertices of equal length
n − 1. On the other hand, there exist simple singularities of arbitrary multiplicity, as quotient
singularities are simple. This has been stated explicitly in the unpublished Diploma thesis of
Matthias Kabel (Hamburg, 2004). It follows from two facts: quotient singularities deform only
into other quotient singularities [EV85], and the analytic type of a quotient singularity is deter-
mined by the resolution graph [Bri68].

Definition 2.3. A normal surface singularity is taut if every other singularity with the same
resolution graph is isomorphic to it. A singularity is pseudotaut if there are only finitely many
isomorphism classes of singularities with the same resolution graph.

Laufer classified all taut and pseudotaut surface singularities [Lau73]. The only nonrational
ones are the minimally elliptic singularities whose graph is a Kodaira graph and those are not
simple.

Actually, Laufer defines a singularity as pseudotaut if there are countably many isomorphism
classes with the same graph, but he proves that there are then only finitely many, as a result of
a more precise description. For a pseudotaut graph, all analytic types occur in a certain versal
deformation: using the standard plumbing construction, construct a manifold M with exceptional
divisor E, and consider deformations of the pair (M,E) which are locally trivial deformations
of E. For the general fibre, all such deformations are in fact trivial. For all other singularities, the
resolution has moduli. This does not imply that the singularity itself has moduli: deformations of
the resolution blow down to deformations of the singularity if and only if the geometric genus pg
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is constant. As the geometric genus is semi-continuous, this last condition is always satisfied for
rational singularities. In particular, pseudotautness is a necessary condition for the simpleness
of a rational singularity. We show below (Proposition 3.6) that pseudotaut but not taut rational
singularities are not simple.

We conjecture that simple singularities are rational. The evidence is not only the fact that all
known simple singularities are indeed rational but also the behaviour of the next much-studied
class of singularities after the rational ones. Minimally elliptic singularities deform into the cone
over an elliptic curve of the same multiplicity (where the multiplicity of the cone is the degree
of the curve) [Kar83] and are therefore never simple. We expect this behaviour to be typical.

There is one further restriction on the graphs of the known simple normal surface singularities:
the graph is always star-shaped. The graph of a surface singularity is star-shaped whenever the
singularity is quasi-homogeneous, that is, admits a good C∗-action. Moreover, given a star-shaped
graph, there always exists a quasi-homogeneous singularity with this graph [OW71]. So a taut
singularity with star-shaped graph is quasi-homogeneous.

This leads us to the following conjecture.

Conjecture 2.4. A normal surface singularity is simple if and only if it is taut and quasi-
homogeneous.

Remark 2.5. Quasi-homogeneity is a feature of many lists of simple objects, but in each case it
is the result of the classification. In fact, the list [BG82] of simple map germs (C, 0) → (C2, 0)
also contains germs which are not quasi-homogeneous.

In Table 1, we list all star-shaped graphs from Laufer’s list of taut singularities [Lau73]. It is
organised as to have no duplicates. The meaning of the symbols is the following: A dot denotes
a vertex of any weight −b 6 −2, a dot

−2
has weight exactly −2, whereas a square is a vertex

of any weight −b 6 −3, that is, less than −2. A chain . . . is a chain of vertices of any
length k > 0. So the first entry of the table gives exactly the cyclic quotient singularities, with
the cone over a rational normal curve being the case k = 0. The second entry gives all other
quasi-homogeneous taut singularities with reduced fundamental cycle.

From the table one sees that the graphs can be characterised as obtainable from the graphs
of rational double points and triple points, as Laufer already observed. This gives the equivalent
form of our conjecture, which was stated in the introduction.

Conjecture 2.6. Simple normal surface singularities are exactly those rational singularities
whose resolution graphs can be obtained from the graphs of rational double points and rational
triple points by making any number of vertex weights more negative.

We will say for short that the singularities are obtainable from rational double and triple
points.

3. Deformations on the Artin component

The deformation space of a rational surface singularity has a special component, of largest dimen-
sion, over which a simultaneous resolution exists (after base change). Therefore deformations on
this component can be found from deformations of the resolution. These were studied by Laufer
and Wahl [Lau79, Wah79]. Their theory leads to sufficient conditions for the existence of a de-
formation in terms of the combinatorics of cycles on the resolution.
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Table 1. Quasi-homogeneous taut surface singularities

I, II . . .

III.1 . . . . . .

...

III.2 −2
. . .

III.3 . . .
−2

. . .

III.4 −2 −2 −2
. . .

III.5 −2 −2 −2

−2

. . .

III.6 −2 −2 −2 −2

−2

. . .

III.7 −2 −2 −2

−2

III.8 −2 −2 −2 −2

−2

III.9 −2 −2 −2 −2

−2

−2
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Let XT → T be a 1-parameter deformation of X0
∼= X with simultaneous resolution X̃T → T .

Consider an irreducible component ET → T of the exceptional set mapping surjectively onto T .
Then ET is flat and proper over T . The fibre Et for t 6= 0 is irreducible [Lau79, Theorem 2.1];
in fact, if there are several components, there is monodromy and we find two components which
are homologous in X̃T , contradicting the negative definiteness of the intersection form on Xt. In
the family, E2

t and pa(Et) are constant. For t = 0, the divisor Et specialises to a cycle D on the
exceptional set of X0. We say that D lifts to the deformation X̃T → T . Laufer and Wahl give
sufficient conditions on cycles D for the existence of a deformation to which D lifts. To formulate
the result, we need some definitions.

Definition 3.1 ([Wah79]). A cycle D > 0 on the minimal resolution of a rational singularity is
a positive root if pa(D) = 0.

For the ADE singularities, the positive roots correspond exactly to the positive roots of the
root system of the same type A, D or E under the identification of the resolution graph with the
Dynkin diagram. For general rational singularities, Laufer’s criterion (Lemma 2.2) leads to an
algorithmic characterisation of the roots.

Lemma 3.2 ([Lau79, Lemma 3.1]). A cycle D > 0 is a positive root if and only if D is part of
a computation sequence.

Definition 3.3. A cycle D =
∑
diEi on the exceptional set of the minimal resolution of a normal

surface singularity is almost reduced if it is reduced at the non-(−2)-vertices, that is, di = 1 if
E2

i < −2.

This condition is important, as it implies the vanishing of the obstructions to deform D,
which lie in H1(T 1

D), because h1(T 1
D) = h1(OD−Dred

(D)) = (D −Dred) ·K [Wah79, (2.14)].

Definition 3.4 ([Lau79, Definition 3.5]). A collection of cycles D1, . . . , Dm on the exceptional
set of the minimal resolution of a rational surface singularity is integrally minimal if each Di is
a positive root, the cycle D = D1+· · ·+Dm is almost reduced, and no other collection C1, . . . , Cm

of m positive roots can generate the Di with nonnegative integral coefficients.

Theorem 3.5. Let D1, . . . , Dm be an integrally minimal collection of cycles on the minimal
resolution X̃0 of a rational surface singularity with D =

∑
Di itself a positive root. Then there

exists a 1-parameter deformation X̃T → T such that the exceptional set Et of X̃t for t 6= 0 has
a decomposition in m irreducible components Et,i with Et,i homologous to Di in X̃T .

If the fundamental cycle Z of X̃0 is itself almost reduced, then every deformation arises this
way.

Proof. The result is contained in [Lau79, Theorem 3.12]. Note that Laufer has almost reduced
fundamental cycle as assumption, but his proof shows that the existence of an integrally minimal
collection is sufficient for the existence of a deformation.

Some deformations, which Laufer calls reduced, are particularly simple. In terms of the reso-
lution graph, they are the following. First of all, one can take a (connected) subgraph of a given
graph. One can also replace two intersecting curves Ea and Eb of self-intersection −a and −b,
respectively, with one curve with the same self-intersection as Ea +Eb, that is −(a+ b− 2). This
corresponds to smoothing the double point of the exceptional divisor at the intersection point of
Ea and Eb.
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Table 2. Confining nonsimple singularities

Ẽ6

−2

Ẽ7
−2 −2 −2

Ẽ8
−2 −2 −2 −2

−2

−2

Proposition 3.6. A rational singularity which is not obtainable from a rational double or triple
point is not simple. It deforms into a singularity with a modulus in the exceptional divisor, with
(unweighted) graph of the form

Proof. For the purpose of this proof we call a graph as in the statement a star. If the graph of
a rational singularity has a vertex of valency at least 4, then it has a star as subgraph. If there
are two vertices Ea and Eb of valency 3, then we can smooth all double points of the exceptional
divisor on the chain between Ea and Eb. In terms of the graph, we combine all vertices on the
chain, including Ea and Eb, into one new vertex. The new graph has a star as subgraph.

We are left with graphs with exactly one vertex of valency 3. We claim that every such graph
which is not obtained from a double or triple point graph has as subgraph a rational graph of
form given in Table 2. The meaning of the symbols is the same as in Table 1. If all vertex weights
are −2, then the graph is Ẽ6, Ẽ7 or Ẽ8 (also known as the Kodaira graphs IV∗, III∗ or II∗). One
has to make appropriate vertex weights more negative to obtain rational graphs. We refer to
the resulting graphs as graphs of type Ẽk. To prove the claim, one has only to carefully inspect
Table 1 and note which graphs are absent. First of all, the central curve has to be a (−2)-curve.
If the three arms all have length at least 3 (counting from the central vertex), there is a subgraph
of type Ẽ6. Otherwise, if there is one arm of length 2 and the other two have length at least 4,
then the two vertices on the long arms next to the central vertex have to be (−2)-vertices, and
there is a subgraph of type Ẽ7. If not, the second arm has to have length 3, and the third arm
has length at least 6, and there are at least six (−2)-curves, so there is a subgraph of type Ẽ8.
The proposition follows from the following lemma.

Lemma 3.7. Rational singularities with a graph of type Ẽk deform into a star.
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Proof. We need some notation. We denote the central vertex by E0. There are three arms, of
length p, q and r (counted from the central vertex). Here (p, q, r) = (3, 3, 3), (2, 4, 4) or (2, 3, 6).
In terms of Table 2, the number p is the length of the arm pointing downwards and r the length
of the right arm. The arms are E1,1 + · · · + E1,p−1, E2,1 + · · · + E2,q−1 and E3,1 + · · · + E3,r−1,
with E2

i,j = −bi,j and Ei,1 intersecting E0.

In each of the three cases we define a collection {D0, . . . , D4} of integrally minimal cycles,
such that the graph of the collection is a star with D0 as central vertex, that is, D0 ·Di = 1 and
Di ·Dj = 0 for 1 6 i < j 6 4. Theorem 3.5 then gives the existence of a deformation into a star

with the given graph. For graphs of type Ẽ6 we take

D0 = E0 + E1,1 + E2,1 + E3,1 , D2
0 = −(b1,1 + b2,1 + b3,1 − 4) ,

Di = Ei,2 , 1 6 i 6 3 , D2
i = −bi,2 ,

D4 = E0 , D2
4 = −2 ;

for Ẽ7 we take

D0 = E1,1 + E2,2 + E2,1 + E0 + E3,1 + E3,2 , D2
0 = −(b1,1 + b2,2 + b3,2 − 4) ,

D1 = E0 + E2,1 , D2
1 = −2 ,

D2 = E0 + E3,1 , D2
2 = −2 ,

D3 = E2,3 , D2
3 = −b2,3 ,

D4 = E3,3 , D2
4 = −b3,3 ;

and for Ẽ8 we take

D0 = E2,2 + E2,1 + E0 + E3,1 + E3,2 + E3,3 + E3,4 , D2
0 = −(b2,2 + b3,4 − 2) ,

D1 = E1,1 + E0 + E2,1 , D2
1 = −2 ,

D2 = E1,1 + E0 + E3,1 + E3,2 + E3,3 , D2
2 = −2 ,

D3 = E1,1 + E2,1 + 2E0 + 2E3,1 + E3,2 , D2
3 = −2 ,

D4 = E3,5 , D2
4 = −b3,5 .

Corollary 3.8. Any nonsimple rational singularity deforms into a star.

Proof. If a singularity obtainable from a rational double or triple point only deforms into such
singularities (necessarily only finitely many), then it is simple. So if it is not simple, then it
deforms to a rational singularity that is not of this type, and therefore also into a star.

Next, we study deformations on the Artin component of quasi-homogeneous taut singularities.
If the singularity is obtainable from a double point and the multiplicity is at least 4, then it can
also be obtained from a triple point. Note that it can deform into double points. We start by
determining the positive roots.

Lemma 3.9. Let X ′ be obtained from the rational triple point X, with the irreducible compo-
nents E′i of the exceptional divisor of X ′ corresponding to the components Ei of X. A cycle
D′ =

∑
diE

′
i is a positive root of X ′ if and only if D =

∑
diEi is a positive root of X with di = 1

for all i with (E′i)
2 < E2

i .

Proof. We first show that an E′i with (E′i)
2 = E2

i − βi < E2
i has coefficient 1 in the fundamental

cycle. We construct X ′ from X by blowing up βi smooth points of E. The exceptional divisor E′,
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which is the strict transform of E, is a subset of the exceptional set (the total transform of E)
of a nonminimal resolution of X. The fundamental cycle on this resolution can be computed by
first computing the fundamental cycle on E′. By Laufer’s criterion (Lemma 2.2), each (−1)-curve
intersects this cycle with multiplicity 1. Therefore the condition on di is necessary.

Let D′ be a positive root, so pa(D′) = 0. We compute pa(D) = 1 + 1
2D · (D +K). If di > 1,

then Ei · D = diE
2
i +

∑
Ei·Ej>0 dj = di(E

′
i)
2 +

∑
E′

i·E′
j>0 dj = E′i · D′ and Ei · K = E′i · K ′. If

di = 1 and (E′i)
2 = E2

i − βi, then Ei · (D + K) = E′i · D′ + βi + E′i ·K ′ − βi = E′i · (D′ + K ′).
So also pa(D) = 0. The same computation shows that pa(D) = 0 implies pa(D′) = 0 if di = 1
whenever βi > 0.

Proposition 3.10. A singularity obtainable from a rational triple point deforms on the Artin
component only into singularities obtainable from triple and double points.

Proof. Let X ′ deform into a surface with several singularities. By the openness of versality, we
can smooth all but one of them, so we may as well assume that there is only one singularity. As X ′

has an almost reduced fundamental cycle, the deformation X ′T can be described by an integrally
minimal collection D′1, . . . , D

′
m of positive roots. Lemma 3.9 gives an integrally minimal collection

D1, . . . , Dm, determining a deformation XT of the triple point X. As triple points deform only
into triple or double points, the graph of D is a double- or triple-point graph. An E′i with
(E′i)

2 = E2
i − βi < E2

i can occur in at most one D′j , as its coefficient in D′ is 1. Therefore,

(D′j)
2 = D2

j −
∑
βi(j), where the sum runs over all i such that E′i is contained in the support

of Dj . So the graph of D′ is obtainable from that of D.

4. Rational quadruple points

The deformation theory of rational quadruple points was studied by De Jong and Van Straten
[dJvS91]. Up to a smooth factor, the base space of the versal deformation is isomorphic to an
explicitly described space B(n) with n + 1 irreducible components. The integer n can be found
from the resolution graph of the rational quadruple points, as it is the number of virtual quadruple
points or, in other words, the number of quadruple points in the resolution process.

If the base space has only two components, then a deformation to any other quadruple point
has to occur over the intersection of the two components. So, in particular, it is a deformation
on the Artin component.

Proposition 4.1. A rational quadruple point obtained from a triple point is simple.

Proof. By Proposition 3.10 any other quadruple point on the Artin component is obtainable
from a triple point. Therefore simpleness follows if the base space is B(1), with exactly two
components.

We show that n = 1, that is, there is no quadruple point on the first blow-up. Let X ′ be
obtained from the triple point X, and let E0 be the (−3)-curve of X and E′m the unique curve of
the quadruple point X ′ with E′m ·E′m < Em ·Em (possibly Em = E0). There is a quadruple point
on the first blow-up of X ′ if and only if E′i ·Z ′ = 0 for every curve E′i on the chain from E′0 to E′m.

The multiplicity of E′0 in the fundamental cycle Z ′ is 1. If E′0 ·Z ′ = 0 on X̃ ′, then the neigh-
bour E′1 of E′0 on the chain has the same multiplicity in Z ′ as E1 in Z, and if E′1 · Z ′ = 0, its
neighbour has also the same multiplicity, and so on. This process either stops with an E′i such
that E′i · Z ′ < 0 or reaches E′m, where E′m has the same multiplicity in Z ′ as Em does in Z. But
then E′m · Z ′ < 0.
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Remark 4.2. We can characterise the simple rational quadruple points as those with almost
reduced fundamental cycle, so that the singularities on the first blow-up of the singularity have
multiplicity at most 3. The easiest way to see this is to check the classification of quadruple points
[Ste91, Proposition 4], as it is not always immediately obvious which of the two (−3)-curves one
has to make into a (−2) to get a triple point.

5. Sandwiched singularities

Sandwiched singularities are normal surface singularities which admit a birational map to (C2, 0).
We study them and their deformations following De Jong and Van Straten [dJvS98].

A sandwiched singularity can be constructed in the following way. Start with a curve germ
in the plane and resolve it in such a way that the total transform of the curve is a normal
crossings divisor. The blow-up now contains the resolution of a surface singularity: its exceptional
divisor is a maximal connected subset of the exceptional locus not containing (−1)-curves. This
construction is not unique, but the main point is that it relates surface singularities to plane
curves.

For the theory of plane curve singularities, we refer to [BK81, Chapter 8], which gives a de-
tailed description of the equivalence of the following data: the topological type, the resolution
graph (of the embedded resolution), the system of multiplicity sequences and finally the Puiseux
pairs of the branches and their intersection multiplicities.

To better describe sandwiched singularities, De Jong and Van Straten [dJvS98] equip curve
singularities with extra information. For each branch this is a number, bounded below in a simple
way by the multiplicities of the infinitely near singularities appearing in the resolution process.

Definition 5.1. Let C =
⋃

i∈B Ci be a plane curve singularity. The number m(i) is the sum
of the multiplicities of the branch Ci in the multiplicity sequence of the minimal embedded
resolution of C.

Definition 5.2. A decorated curve is a curve singularity together with a function l : B → N on
the set of branches with the property that l(i) > m(i). A decorated curve (C, l) is nonsingular
if C consists of one smooth branch and l(1) = 0.

Definition 5.3. Let (C, l) be a singular decorated curve on a smooth surface (Z, p), and let mi

be the multiplicity of the ith branch Ci. Consider the blow-up BlpZ → Z of the singular point.
The strict transform (C, l̄) of (C, l) is the decorated curve consisting of the strict transform C
of C with decoration l̄(i) = l(i)−mi.

Note that we do not allow blow-ups in nonsingular decorated curves, for then l̄ would be-
come a negative function. Therefore the embedded resolution of a decorated curve is the unique
(minimal) composition of point blow-ups such that the strict transform of the decorated curve is
nonsingular. It is obtained from the minimal embedded resolution of C by l(i)−m(i) consecutive
point blow-ups in each branch Ci.

Definition 5.4. Let (C, l) ⊂ (Z, p) be a decorated curve with embedded resolution (C, 0) ⊂
Z̃(C, l). The analytic space X(C, l) is obtained from Z̃(C, l)− C by blowing down the maximal
compact subset, that is, all exceptional divisors not intersecting the strict transform C.

The space X(C, l) can be smooth, or it may have several singularities. Each singularity is
a sandwiched singularity. Given a sandwiched singularity, it is always possible to find a decorated
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curve (C, l) such that the sandwiched singularity is the only singularity of the space X(C, l). Even
then the representation of a sandwiched singularity as X(C, l) is not unique.

Proposition 5.5. A singularity is not sandwiched if its graph contains D4 as subgraph or has
the following subgraph:

−2 −2 −2 −2 −2

−3

Proof. A sandwiched singularity has at least one exceptional curve Ei with Ei · Z < 0 and
multiplicity 1 in the fundamental cycle Z. Indeed, the strict transform of the first blown-up
curve in the construction has this property: the compact part of the divisor of a general linear
function is an upper bound for Z. This criterion excludes D4 and the shown graph.

It follows that the singularities of type III.5 and higher in Table 1 are not sandwiched. Most
of the other ones are not excluded by the above criterion, and in fact they are sandwiched.

We now consider deformations. The numbers l(i) determine a divisor on the normalisation C
of C. This interpretation allows a more global point of view, in which a decorated curve (C, l) is
a curve C on a smooth surface Z together with a divisor l on the normalisation C.

Definition 5.6. A 1-parameter deformation (CS , lS) of a decorated curve (C, l) over a germ S
of a smooth curve is a deformation CS → S of C with simultaneous normalisation CS → S,
together with a deformation of the divisor l, such that each fibre (Cs, ls) is a decorated curve.

Theorem 5.7 ([dJvS98, Theorem 4.4]). The 1-parameter deformations of a sandwiched singu-
larity X(C, l) are exactly deformations X(CS , lS) for 1-parameter deformations (CS , lS) of the
decorated curve (C, l).

A simplified proof can be found in the PhD thesis of Möhring [Möh04], who constructs the
deformation X(CS , lS) directly from (CS , lS) by blowing up a family of complete ideals.

The power of the theorem comes from the fact that one has quite a good understanding
of deformations with simultaneous normalisation. By a result of Teissier, these are exactly the
deformations where the δ-invariant (the number of virtual double points) is constant (for a proof,
see [GLS07, II.2.6]). In particular, the intersection number of two branches is constant in such
a deformation.

To study deformations of taut sandwiched singularities, we use a specific representation with
a decorated curve. We start with the classes I, II and III.1, which consist of singularities with
reduced fundamental cycle. For these classes, see also [dJvS98, Example 1.5(4)]. We construct
the resolution graph of a decorated curve. This is an embedded resolution graph for the curve
C, with as usual arrows for the strict transforms Ci and decorations l̄(i) = 0, which we omit.
We choose one end of the resolution graph of the singularity, whose vertex E0 will correspond to
the strict transform of the first curve blown up. To a vertex Ei with i 6= 0, we connect −Z · Ei

copies of a (−1)-vertex, each with an arrow attached to it. To E0, we connect one less vertex
and arrow, namely only −Z · Ei − 1.

Example 5.8 (The cyclic quotient singularity X37,11). We start at the left end. The resulting
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graph is −4 −3

It blows down to the following decorated curve:

6

4
22

For cyclic quotient singularities, this representation with smooth branches has the property
that min{l(i), l(j)} = Ci · Cj + 1 for each pair of branches. Möhring [Möh04] observed that this
property can be used to give a new proof of Riemenschneider’s conjecture that cyclic quotients
deform only into cyclic quotients. Kollár and Shepherd-Barron [KSB88] derive the conjecture
from the stronger result that in a deformation of a rational singularity with reduced fundamental
cycle, the number of ends of the graph cannot go up. Their result can also be obtained with the
present methods. We first treat the cyclic quotient case, where the argument is more transparent.

Lemma 5.9. Let (C, l) be the germ of a decorated curve with smooth branches with the property
that for each pair of branches

Ci · Cj 6 min{l(i), l(j)} 6 Ci · Cj + 1 .

Then the only singularities of the space X(C, l) are cyclic quotients.

Proof. Let Cr be a branch such that l(i) 6 l(r) for all branches Ci. We construct the embedded
resolution of (C, l) in two steps. We first consecutively blow up l(r) times in the origin of the
strict transform of the branch Cr. This introduces a chain E1, . . . , El(r) of exceptional curves. If
l(i) = Ci · Cr + 1, we blow up once in the intersection point of El(i) and the strict transform
of Ci, and we do not blow up further in Ci. The newly introduced (−1)-curve intersects the
strict transform of Ci on the minimal resolution and is therefore not part of the exceptional set
for X(C, l). If l(i) = Ci · Cr, we do not blow up in Ci, and the curve El(i) does not belong to
the exceptional set. This set is thus a subset of the chain E1, . . . , El(r)−1, which may consist of
several connected components.

Proposition 5.10. Cyclic quotient singularities deform only into cyclic quotients.

Proof. Choose, as above, a representation X(C, l) with (C, l) a decorated curve with smooth
branches and the property that min{l(i), l(j)} = Ci ·Cj +1 for each pair of branches. Let X(C̃, l̃)
be a general fibre of a 1-parameter deformation. Consider a pair of branches. Suppose Ci ·Cj = n

and l(i) = n + 1. Then C̃i · C̃j =
∑

p np = n, where the sum runs over the intersection points.

The support of l̃(i) on C̃i may contain other points. Now∑
p∈C̃i∩C̃j

l̃p(i) +
∑
q /∈C̃j

lq(i) = l = n+ 1 = 1 +
∑

p∈C̃i∩C̃j

np .

171



J. Stevens

Because l̃p(i) > np for all p, we see that l̃p(i) = np + 1 holds for at most one point while

for the other points, l̃p(i) = np. So for each singularity p of (C̃, l̃), the property (C̃i · C̃j)p 6
min{l̃p(i), l̃p(j)} 6 (C̃i · C̃j)p + 1 holds.

Lemma 5.11. Let (C, l) be the germ of a decorated curve with smooth branches. Suppose that
the set of branches B can be written as the (not necessarily disjoint) union B1 ∪ · · · ∪ Bk such
that for all 1 6 m 6 k, the property

Ci · Cj 6 min{l(i), l(j)} 6 Ci · Cj + 1

holds for all pairs (i, j) ∈ Bm × Bm. Then the number of ends of the singularities of the
space X(C, l) is at most k + 1.

Proof. Again we construct the embedded resolution of (C, l) in two steps. For each subset Bm,
we choose a branch Cm with l(m) maximal. The first step is to resolve the curve ∪mCm. As
this curve has k branches, the resulting embedded resolution graph has (at most) k + 1 ends.
The exceptional curves of the additional blow-ups needed to resolve (C, l) are not exceptional
for X(C, l).

Proposition 5.12. In a deformation of a rational singularity with reduced fundamental cycle,
the number of ends cannot increase.

Proof. We choose a representation with a decorated curve with smooth branches. For each end
of the graph of the singularity (except the root), we choose a curve Cm whose strict transform is
connected to this end by a (−1)-curve. The set Bm contains all branches which are connected by
(−1)-curves to the chain from the root to Cm. Then min{l(i), l(j)} = Ci ·Cj +1 for all i, j ∈ Bm.

As before, we deduce that (C̃i · C̃j)p 6 min{l̃p(i), l̃p(j)} 6 (C̃i · C̃j)p + 1 for each singular point

of the deformed curve (C̃, l̃) through which branches in the set Bm pass. Therefore we have
a partition in at most k sets and each singularity of X(C̃, l̃) has at most k + 1 ends.

Corollary 5.13. Singularities with graph of type III.1 deform only to singularities of type I, II
or III.1.

Remark 5.14. For a nonreduced fundamental cycle, the number of ends can increase. The defor-
mations of Lemma 3.7 provide examples. We give a sandwich description of the deformation for
the case of a surface singularity of type Ẽ6 with −b1,1 = −4 and all other self-intersections equal
to −2. It has a sandwiched representation with decorated curve (E12, 12), where E12 is the curve
x3 + y7 + axy5 = 0. It deforms into (Ẽ7, (4, 4, 4)), giving a 2-star.

Next, we study sandwiched singularities in the classes III.2 and III.3. The singularities of
type III.2 whose graph contains a D4 subgraph are not sandwiched, but they are simple as they
are dihedral quotients. The sandwiched ones can be seen as special case of the type III.3 if we
allow the arms to be shorter. This means that we are looking at graphs of the form

. . .
−2

. . .

Proposition 5.15. Sandwiched singularities with graph as above deform only to singularities
of the same type or to singularities with reduced fundamental cycle and at most three ends.
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Proof. We start by describing a decorated curve (C, l). We need some notation. The left arm of
the graph is E1,1 + · · · + E1,k, with E1,k the (−3)-vertex. The right arm is E2,1 + · · · + E2,s+1

and the short arm consists only of E3,1. First, look at the triple point graph of this form, which
has exactly one (−3)-vertex and further only (−2)-vertices. A decorated curve giving this graph
is (A2k, 2k + 4 + s). We call the curve C0. To make the self-intersections more negative, we add
branches. They come in three types, one for each arm. On the left arm, if a (−1)-vertex intersects
E1,m, then we have a smooth branch Ci with C0 · Ci = 2m and l(Ci) = m + 1. We make the
short arm E3,1 more negative with a smooth branch Ci with C0 ·Ci = 2k + 1 and l(Ci) = k + 2.
Finally, if a (−1) intersects E2,n on the right arm, then we have a branch Ci of type A2k with
C0 · Ci = 4k + 2 + n and l(Ci) = 2k + 3 + n.

We use induction on the number of branches of (C, l). If the curve consists only of (C0, l(0)),
the claim is true, as an A2k has a δ-const deformation into one A2l with 0 6 l < k and some
A2mi−1 with k = l+

∑
mi. The curve (A2l, 2l+ 1 + t) gives at most a smaller graph of the same

type, while X(A2m−1, (m+ t1,m+ t2)) has reduced fundamental cycle and at most three ends.

Now, consider a deformation X(C̃, l̃) of X(C, l) where C has several branches. Let Ci be
a branch different from C0. We wish to compare the singularities of X(C̃, l̃) and X(C̃ \ C̃i, l̃).
The proposition follows from the following claim.

Claim 5.16. The graph of the singularities of X(C̃, l̃) is a subgraph of the graph of X(C̃ \ C̃i, l̃)
or is obtainable from a subgraph by making some self-intersections more negative.

We first resolve the decorated curve (C̃ \ C̃i, l̃). If this resolution also resolves (C̃, l̃), that
is, no further blow-ups on the strict transform of C̃i are needed, then the exceptional curves
intersected by the strict transform of C̃i are not exceptional for X(C̃, l̃), and the graph of the
singularities of X(C̃, l̃) is a subgraph of the graph of X(C̃ \ C̃i, l̃).

We shall show that if this is not the case, then exactly one extra blow-up is needed. If the
centre of the blow-up does not lie on an exceptional divisor, we get just one (−1)-curve and no
new singularity. If the centre is a smooth point on an irreducible component Ea of the exceptional
divisor, then the self-intersection Ea ·Ea is made more negative. The graph of the singularity in
question is therefore obtainable from a subgraph of the graph of X(C̃ \C̃i, l̃). Finally, if the centre
is an intersection point of two divisors Ea and Eb, then as the newly introduced (−1)-curve is
not exceptional for X(C̃, l̃), it breaks up the graph; the self-intersections of Ea and Eb become
more negative. Therefore, the graphs for X(C̃, l̃) are obtainable from subgraphs of the graph of
X(C̃ \ C̃i, l̃).

We look only at the intersection of a branch C̃i with C̃0. If Ci is a smooth branch with
C0 ·Ci = 2m and l(Ci) = m+ 1, then one has to blow up in m+ 1 points to resolve (C̃i,m+ 1).
Let m0,p be the multiplicity of C̃0 in such a point p. As C̃0 · C̃i =

∑
pm0,p = 2m, it follows that

either m0,p = 2 for m points and one point does not lie on C̃0, or all m + 1 points lie on C̃0

and for two of them m0,p = 1. A similar argument settles the case of a smooth branch Ci with
C0 · Ci = 2k + 1 and l(Ci) = k + 2.

Finally, we look at a branch Ci of type A2k with C0 ·Ci = 4k+ 2 + n and l(Ci) = 2k+ 3 + n.
To resolve (C̃i, l(C̃i)) we need k+3+n blow-ups, and C̃i has multiplicity 2 in k of them. In these
points the multiplicity of C̃0 can be 2, 1 or 0. As the intersection multiplicity C̃0 · C̃i is 4k+2+n,
there are only two possibilities. The first one is k × 4 + (n+ 1)× 1 + 0, with the same numbers
as for C0 ·Ci. The second possibility is that in one multiplicity 2 point of C̃i, the multiplicity of
C̃0 is 1; then 4k + 2 + n = (k − 1)× 4 + 2 + 2 + (n+ 2)× 1.
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Therefore in all cases at most one blown-up point does not lie on the strict transform of C̃0.

Singularities with a graph of type III.4 are not sandwiched if the graph has the graph of
Proposition 5.5 as subgraph. For such singularities to be sandwiched, some vertex weights on
this subgraph have to be more negative. We distinguish three types, with different sandwich
representation. Let the left arm be E1,2 + E1,1, where we always have −b1,1 = −2, let the short
arm be E3,1, and let the right arm be E2,1 + E2,2 + · · · + E2,k. For each of the three types, the
singularity of lowest multiplicity is a quadruple point, realisable as X(C0, l) with C0 irreducible.

For the first type, −b3,1 = −4 (for the quadruple point). We take (E6, k + 7) as decorated
curve. To make the self-intersection of E3,1 (the first blown-up curve) more negative, we add one
or more smooth branches with l = 2, for E1,2 we add smooth branches with l = 3, and finally for
E2,t on the right arm, we add one or more branches (E6, t+ 7) intersecting C0 with multiplicity
12 + t.

The second type always has −b3,1 = −3. If we also have −b1,2 = −3, we get the quadruple
point from the irreducible curve (E8, k + 8). To make E1,2 · E1,2 more negative, we add one or
more smooth branches with l = 2, and for E2,t on the right arm, we add one or more branches
(E8, t+ 8) intersecting C0 with multiplicity 15 + t.

The last type always has −b3,1 = −3 and −b1,2 = −2. In this case, E2,k is the first blown-up
curve. For the quadruple point, the only other (−3)-curve besides E3,1 is E2,2. We take a curve
which is equisingular to (x3 + y3k−1, 4 + 3k); here we may assume k > 2, as k = 2 was dealt with
in the previous case. The only curves which can be made more negative are on the right arm,
and we use smooth branches for this purpose.

Proposition 5.17. Sandwiched singularities with graph of type III.4 deform only to singularities
of type I, II or III.1 up to III.4.

Proof. We again use induction on the number of branches. For the induction start, we have to
describe δ-const deformations of (C0, l). For E6 and E8 this is not difficult, but for the third
type it is not so easy. Therefore we use a different argument. By Proposition 4.1, quadruple
points obtainable from triple points are simple. As sandwiched singularities deform only into
sandwiched singularities, we get the statement of the proposition.

For the induction step, we use the same claim as in the proof of Proposition 5.15. As before,
the result follows if we can prove that either the resolution (C̃\C̃i, l̃) is also the resolution of (C̃, l̃)
or only one extra blow-up in a smooth point of the strict transform of C̃i is needed. For smooth
branches this is the same argument as before. It remains to look at branches of types E6 and E8.
As these cases are similar, we only discuss the last one.

If E8 deforms δ-const to a collection ofAk-singularities, then the multiplicities of the (infinitely
near) points in the minimal embedded resolution are (2, 2, 2, 2), whereas they are (3, 2) if there is
a triple point. This can be checked from the list of possible combinations; it is all the information
we need here. Therefore, the multiplicities in the resolution of (E8, t+8) are (3, 2, 1t+3) or (24, 1t).
The intersection multiplicity with C̃0 has to be 15+t. If the multiplicities in the minimal resolution
of C̃0 are (3, 2), then we can get 15 + t as 9 + 4 + (t+ 2) + 0 or 9 + 2 + 2 + (t+ 2), but not from
a C̃i with multiplicities (24, 1t), as 6 + 4 + 2 + 2 + t = 14 + t. If C̃0 is of type (24), then we can
get 6 + 4 + 2 + 2 + (t+ 1), or 4× 4 + (t− 1) + 0 or 3× 4 + 2 + 2 + (t− 1). So there is at most
one smooth point of the strict transform of C̃i on the resolution of (C̃0, l̃), which still has to be
blown up.
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Corollary 5.18. Sandwiched singularities are simple if and only if they are taut and quasi-
homogeneous.
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