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Compact moduli spaces for slope-semistable sheaves

Daniel Greb and Matei Toma

Abstract

We resolve pathological wall-crossing phenomena for moduli spaces of sheaves on
higher-dimensional complex projective manifolds. This is achieved by considering slope-
semistability with respect to movable curves rather than divisors. Moreover, given a
projective n-fold and a curve C that arises as the complete intersection of n − 1 very
ample divisors, we construct a modular compactification of the moduli space of vec-
tor bundles that are slope-stable with respect to C. Our construction generalises the
algebro-geometric construction of the Donaldson–Uhlenbeck compactification by Le
Potier and Li. Furthermore, we describe the geometry of the newly constructed moduli
spaces by relating them to moduli spaces of simple sheaves and to Gieseker–Maruyama
moduli spaces.

1. Introduction

Moduli spaces of sheaves play a central role in algebraic geometry: they provide intensively
studied examples of higher-dimensional varieties (for example, hyperkähler manifolds), they are
naturally associated with the underlying variety and can therefore be used to define fine invari-
ants of its differentiable structure, and they have found application in numerous problems of
mathematical physics.

To obtain moduli spaces that exist as schemes rather than just stacks, it is necessary to choose
a semistability condition that selects the objects for which a moduli space is to be constructed. In
dimension greater than one, both Gieseker-semistability (which yields projective moduli spaces in
arbitrary dimension) and slope-semistability (which is better behaved geometrically, for example
with respect to tensor products and restrictions) depend on a parameter, classically the class of
a line bundle in the ample cone of the underlying variety. As a consequence, with respect to all
the points of view suggested above it is of great importance to understand how the moduli space
of semistable sheaves changes when the semistability parameter varies.

In the case where the underlying variety is of dimension two, this problem has been investi-
gated by a number of authors and a rather complete geometric picture has emerged, which can
be summarised as follows:
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http://algebraicgeometry.nl
http://www.ams.org/msc/
http://algebraicgeometry.nl
http://creativecommons.org/licenses/by-nc/3.0/
http://algebraicgeometry.nl


Compact moduli spaces for slope-semistable sheaves

(i) There exists a projective moduli space for slope-semistable sheaves that compactifies the
moduli space of slope-stable vector bundles. It is homeomorphic to the Donaldson–Uhlenbeck
compactification, endowing the latter with a complex structure, and admits a natural morphism
from the Gieseker compactification. Motivated by Donaldson’s non-vanishing result [Don90, The-
orem C], this was proved independently by Le Potier [LP92], Li [Li93], and Morgan [Mor93].

(ii) In the ample cone of the underlying variety there exists a locally finite chamber structure
given by linear rational walls, such that the notion of slope- or Gieseker-semistability (and hence
the moduli space) does not change within the chambers; see [Qin93].

(iii) Moreover, at least when the second Chern class of the sheaves under consideration is suf-
ficiently big, moduli spaces corresponding to two chambers separated by a common wall are
birational, and the change in geometry can be understood by studying the moduli space of
sheaves that are slope-semistable with respect to the class of an ample bundle lying on the wall;
see [HL95].

However, starting in dimension three several fundamental problems appear:

(i) Although there are gauge-theoretic generalisations of the Donaldson–Uhlenbeck compactifi-
cation to higher-dimensional varieties due to Tian [Tia00], whose construction provides a major
step towards the definition of new invariants for higher-dimensional (projective) manifolds as
proposed by Donaldson and Thomas in their influential paper [DT98], these are not known to
possess a complex structure.

(ii) Adapting the notion of “wall” as in [Qin93], one immediately finds examples where these
walls are not locally finite inside the ample cone.

(iii) Looking at segments between two integral ample classes in the ample cone instead, Schmitt
[Sch00] gave examples of threefolds such that the point on the segment where the moduli space
changes is no longer rational (as in the case of surfaces) but is a non-rational class in the ample
cone.

1.1 Main results

In this paper we present and pursue a novel approach to attack and solve the above-mentioned
problems. It is based on the philosophy that the natural “polarisations” to consider when de-
fining slope-semistability on higher-dimensional base manifolds are not ample divisors but rather
movable curves; cf. [Miy87, CP11].

Given an n-dimensional smooth projective variety X, we consider the open set P (X) ⊂
Hn−1,n−1

R (X) of powers [H]n−1 of real ample divisor classes [H] ∈ Amp(X) inside the cone
spanned by classes of movable curves. We prove that P (X) is open in the movable cone and that
the natural map Amp(X) → P (X) (taking (n − 1)st powers) is an isomorphism; see Proposi-
tion 6.5. Moreover, we show that P (X) supports a locally finite chamber structure given by linear
rational walls such that the notion of slope-(semi)stability is constant within each chamber; see
Theorem 6.6. Additionally, any chamber (even if it is not open) contains products H1H2 ·. . .·Hn−1

of integral ample divisor classes; see Proposition 6.7. These results explain and resolve the prob-
lem encountered by Qin, Schmitt, and others in their respective approaches to the wall-crossing
problem.

By the results just discussed, we are thus led to the problem of constructing moduli spaces of
torsion-free sheaves which are slope-semistable with respect to a multipolarisation (H1, . . ., Hn−1),
where H1, . . . ,Hn−1 are integral ample divisor classes on X.
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Here and in the following, we say that a torsion-free sheaf E on X is slope-semistable with
respect to (H1, . . . ,Hn−1), or (H1, . . . ,Hn−1)-semistable for short, if for any coherent subsheaf F
of intermediate rank in E we have

c1(F ) ·H1 · . . . ·Hn−1

rk(F )
6
c1(E) ·H1 · . . . ·Hn−1

rk(E)
.

If the strict inequality holds for all F , we say that E is slope-stable with respect to (H1, . . . ,Hn−1),
or (H1, . . . ,Hn−1)-stable for short.

Using this terminology, we can now formulate our main result as follows.

Main Theorem. Let X be a projective manifold of dimension n > 2 and H1, . . . ,Hn−1 ∈ Pic(X)
ample divisors. Take ci ∈ H2i

(
X,Z

)
for 1 6 i 6 n, and let r be a positive integer, c ∈ K(X)num

a class with rank r and Chern classes cj(c) = cj , and Λ a line bundle on X with c1(Λ) = c1 ∈
H2(X,Z). Denote by Mµss the functor that associates with each weakly normal variety B the
set of isomorphism classes of B-flat families of (H1, . . . ,Hn−1)-semistable torsion-free coherent
sheaves with class c and determinant Λ on X. Let hj be the class of OHj in the numerical
Grothendieck group K(X)num of X, and let x ∈ X be a point. Set

un−1(c) := −rhn−1 · . . . · h1 + χ(c · hn−1 · . . . · h1)[Ox] ∈ K(X)num .

Then, there exist a natural number N ∈ N>0, a weakly normal projective variety Mµss =
Mµss(c,Λ) together with an ample line bundle OMµss(1), and a natural transformation Mµss →
Hom(·,Mµss) mapping a family E to a classifying morphism ΦE , with the following properties:

(1) For every B-flat family E of (H1, . . . ,Hn−1)-semistable sheaves of class c and determinant Λ
with induced classifying morphism ΦE : B →Mµss, we have

Φ∗E
(
OMµss(1)

)
= λE

(
un−1(c)

)⊗N
,

where λE

(
un−1(c)

)
is the determinant line bundle on S induced by E and un−1(c).

(2) For any other triple (M ′,OM ′(1), N ′) consisting of a projective variety M ′, an ample line
bundle OM ′(1) on M ′, and a natural number N ′ fulfilling the conditions spelled out in (1),
we have N |N ′, and there exists a uniquely determined morphism ψ : Mµss → M ′ such that
ψ∗
(
OM ′(1)

) ∼= OMµss(N ′/N).

The triple (Mµss,OMµss(1), N) is uniquely determined up to isomorphism by the proper-
ties (1) and (2).

The restriction to families over weakly normal parameter spaces B is necessary due to the
use of extension properties of weakly normal varieties in various crucial steps of our proof (see
the discussion below of the methods employed in the proof (Section 1.2)). It is obscure at this
point if and to what extent this restriction may be relaxed; weak normality is customarily used
in the construction of the Chow variety, cf. [Kol96, Theorem I.3.21], and special instances of our
moduli spaces are isomorphic (or closely related) to Chow varieties of cycles of codimension two;
see the discussion in [GRT15, Section 3.3]. We want to emphasise that a future generalisation to
general parameter spaces B will not change the analytification of Mµss as a topological space,
but only its structure sheaf; cf. the discussion of weakly normal complex spaces in Section 2.3
below.

In addition to the Main Theorem, we obtain the following results concerning the geometry
of Mµss: Two slope-semistable sheaves F1 and F2 give rise to different points in the moduli
space Mµss if the double duals of the graded sheaves associated with Jordan–Hölder filtrations

42



Compact moduli spaces for slope-semistable sheaves

of F1 and F2, respectively, or the naturally associated two-codimensional cycles, differ; see Theo-
rem 5.5. As a consequence, we conclude that Mµss contains the weak normalisation of the mod-
uli space of (isomorphism classes of) (H1, . . . ,Hn−1)-stable reflexive sheaves with the chosen
topological invariants and determinant line bundle as a Zariski-open set; see Theorem 5.10. In
particular, it compactifies the moduli space of (H1, . . . ,Hn−1)-stable vector bundles with the
given invariants, thus answering in our particular setup an open question raised, for example, by
Teleman [Tel08, Section 3.2]; see Remark 5.11.

Based on these results and on the study of examples such as those in [GRT15, Section 3.3],
we expect that the moduli space Mµss realises the following equivalence relation on the set of
isomorphism classes of slope-semistable torsion-free sheaves: two slope-semistable sheaves F1 and
F2 should give rise to the same point in the moduli space Mµss if and only if the double duals
of the graded sheaves associated with the respective Jordan–Hölder filtrations of F1 and F2 are
the same and F1, F2 sit in the same connected component of a natural morphism of “Hilb-to-
Chow”-type. In Proposition 5.8 we show that this is true when this morphism has connected
fibres.

Comparing with the description of the geometry of the known topological compactifications of
the moduli space of slope-stable vector bundles constructed by Tian [Tia00] using gauge theory,
we expect that the moduli spaces Mµss will provide new insight into the question whether these
higher-dimensional analogues of the Donaldson–Uhlenbeck compactification admit complex or
even projective-algebraic structures.

1.2 Methods employed in the proof

The proof of the Main Theorem follows ideas of Le Potier [LP92] and Li [Li93] in the two-
dimensional case; see also [HL10, Chapter 8] for a very nice account of these methods. First,
using boundedness we parametrise slope-semistable sheaves by a locally closed subscheme Rµss

of a suitable Quot scheme. Isomorphism classes of slope-semistable sheaves correspond to orbits
of a special linear group G in Rµss. We then consider a certain determinant line bundle Ln−1

on Rµss and aim to show that it is generated by G-invariant global sections. Le Potier mentions
in [LP92, first lines of Section 4] that in the case H1 = . . . = Hn−1 =: H his proof of this fact
in the two-dimensional case could be extended to higher dimensions if a restriction theorem of
Mehta–Ramanathan type were available for Gieseker-H-semistable sheaves. Indeed, such a re-
sult would be needed if one proceeded by restrictions to hyperplane sections on X. We avoid
this Gieseker-semistability issue and instead restrict our families directly to the corresponding
complete intersection curves, where slope-semistability and Gieseker-semistability coincide. The
price to pay is some loss of flatness for the restricted families. This is the point at which our
restriction to weakly normal parameter spaces comes into play: in order to overcome the difficulty
created by the lacking flatness of restricted families, we pass to weak normalisations and show
that sections in powers of Ln−1 extend continuously, and hence holomorphically, over the non-
flat locus. The moduli space Mµss then arises as the Proj-scheme of a ring of G-invariant sections
of powers of Ln−1 over the weak normalisation of Rµss. Afterwards, the universal properties are
established using the G-equivariant geometry of Rµss and its weak normalisation.

1.3 Outline of the paper

Section 2 contains definitions and basic properties concerning determinant line bundles and
semistability with respect to movable curve classes, followed by a discussion of the properties of
weakly normal spaces and the proof of an elementary but crucial extension result for sections of

43



D. Greb and M. Toma

line bundles on weakly normal varieties. In Section 3.1 we discuss the restriction of flat families
of semistable sheaves to complete intersection curves. The corresponding class computations in
the respective Grothendieck groups are carried out in Section 3.2, and the central semiampleness
result for equivariant determinant bundles on Quot schemes is proven in Section 3.3. In Section 4
the moduli space for slope-semistable sheaves is defined, and its functorial properties are estab-
lished. This is followed in Section 5 by a discussion of the basic geometry of the newly constructed
moduli spaces, in particular concerning the separation properties of classifying maps, the relation
to the moduli space of simple sheaves, and the comparison with the Gieseker–Maruyama moduli
space in those cases where the latter exist. Coming back to the motivating question, the final
Section 6 discusses wall-crossing in the light of the newly constructed moduli spaces.

2. Preliminaries

We work over the field of complex numbers. A separated reduced scheme of finite type over C will
be called an algebraic variety. We emphasise that we do not assume varieties to be irreducible.
An irreducible smooth projective variety will be called a projective manifold.

2.1 Grothendieck groups and determinants

Let X be an irreducible smooth projective variety of dimension n. The Grothendieck group
K(X) = K0(X) = K0(X) of coherent sheaves on X becomes a commutative ring with 1 = [OX ]
by putting

[F1] · [F2] := [F1 ⊗ F2]

for locally free sheaves F1 and F2. Two classes u and u′ in K(X) will be called numerically
equivalent, denoted by u ≡ u′, if their difference is contained in the radical of the quadratic form

(a, b) 7→ χ(a · b) .

We set K(X)num := K(X)/ ≡.

For any Noetherian scheme Z, we let K0(Z) and K0(Z) be the abelian groups generated
by locally free sheaves and coherent OZ-modules, respectively, with relations generated by short
exact sequences. A projective morphism f : Y → Z induces a homomorphism f! : K0(Y )→ K0(Z)
defined by

f![F ] :=
∑
ν>0

[Rνf∗F ] .

Any flat family E of coherent sheaves on a projective manifold X parametrised by a Noethe-
rian scheme S defines an element [E ] ∈ K0(S × X), and as the projection p : S × X → S is
a smooth morphism, we have a well-defined homomorphism p! : K

0(S×X)→ K0(S); cf. [HL10,
Corollary 2.1.11]. Let q : S ×X → X denote the second projection.

Definition 2.1. We define λE : K(X) → Pic(S) to be the composition of the following homo-
morphisms:

K(X)
q∗−→ K0(S ×X)

·[E ]−→ K0(S ×X)
p!−→ K0(S)

det−→ Pic(S) .

We refer the reader to [HL10, Sections 8.1 and 2.1] for more details and for basic properties
of this construction.
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2.2 Semistability with respect to multipolarisations

Let X be a projective manifold of dimension n. Semistability of torsion-free sheaves on X is
classically defined with respect to a polarisation, which is an ample class H in the algebro-
geometric context or a Kähler class φ in the complex case. Although for the discussion of Gieseker-
stability the class H is needed as such, only its (n−1)st power appears in the definition of slope-
semistability; cf. [HL10, Chapter 1]. For the latter, it is therefore reasonable to consider classes
of curves rather than classes of divisors as polarisations. This point of view has been introduced
in [Miy87] and has later been extended to include a discussion of semistability with respect to
movable curve classes [CP11]. We will give here the general definition before we specialise to the
case of complete intersection classes, which is central for this paper.

Definition 2.2. A curve C ⊂ X is called movable if there exists an irreducible algebraic family of
curves containing C as a reduced member and dominatingX. A class α in the spaceN1 = N1(X)R
of 1-cycles on X modulo numerical equivalence is called movable if it lies in the closure of the
convex cone generated in N1 by the classes of movable curves.

Definition 2.3. Let α ∈ N1 be a movable class. Then, a coherent sheaf E on X is called
semistable with respect to α, or simply α-semistable, if it is torsion-free and if additionally for
any proper non-trivial coherent subsheaf F of E we have

µα(F ) :=
[detF ] · α

rk(F )
6

[detE] · α
rk(E)

= µα(E) . (2.1)

The sheaf E is called stable with respect to α, or simply α-stable, if it is torsion free and for all
F of intermediate rank as above, strict inequality holds in (2.1). The quantity µα(F ) is called
the slope of F with respect to α. By replacing the class α by the class [ω] ∈ Hn−1,n−1(X) of a
positive form on X in the above inequality, we obtain the notion of [ω]-(semi)stability. When
H is an ample class or when φ is a Kähler class on X, we will speak of H-semistability or
of φ-semistability, meaning stability with respect to Hn−1 or to φn−1, respectively. A system
(H1, . . . ,Hn−1) of n − 1 integral ample classes on X will be called a multipolarisation. We will
call a coherent sheaf (H1, . . . ,Hn−1)-(semi)stable if it is (semi)stable with respect to the complete
intersection class H1H2 · . . . ·Hn−1 ∈ N1. Once a (multi)polarisation has been fixed, we will just
speak of µ-semistability or slope-semistability. A µ-semistable sheaf will be called µ-polystable if
it is a direct sum of µ-stable sheaves.

Remark 2.4. Note that the notion of slope-semistability does not change when we multiply a given
movable class α ∈ N1 by a constant t ∈ Q>0.

We will need two basic properties of semistable sheaves with respect to multipolarisations:
boundedness and semistable restriction.

Proposition 2.5 (Boundedness). The set of coherent sheaves with fixed Chern classes on X
that are semistable with respect to a fixed multipolarisation is bounded.

This may be proven exactly as the corresponding statement in the case of a single polarisation
[Lan04, Theorem 4.2]; see also Proposition 6.3. The reader is referred to [Lan04, Theorem 5.2
and Corollary 5.4] for the proof of the following result.

Proposition 2.6 (Semistable restriction theorem). If the coherent sheaf E is (semi)stable with
respect to the multipolarisation (H1, . . . ,Hn−1), then there is a positive threshold k0 ∈ N>0

depending only on the topological type of E such that for any k > k0 and any smooth divisor D ∈
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|kH1| with (grµE)|D torsion free, E|D is (semi)stable with respect to (H2|D, . . . ,Hn−1|D). Here
grµE denotes the graded sheaf associated with a Jordan–Hölder filtration of E as in Section 5.1.

2.3 Extension of sections on weakly normal spaces

We quickly recall some notions motivated by the first Riemann extension theorem. For more
information see [Fis76, Appendix to Chapter 2] and [Kol96, Section I.7].

Definition 2.7. Let X be a reduced complex space and U ⊂ X an open subset. A continuous
function f : U → C is called c-holomorphic if its restriction f |Ureg to the regular part of U is

holomorphic. This defines a sheaf ÔX of c-holomorphic functions. A reduced complex space is
called weakly normal if ÔX = OX , that is, if any c-holomorphic function is in fact holomorphic.

Definition 2.8. A variety X is weakly normal if and only if the associated (reduced) complex
space Xan is weakly normal in the sense of Definition 2.7.

Note that by [LV81, Proposition 2.24] and [GT80, Corollary 6.13], a variety is weakly normal
in the sense of Definition 2.8 if and only if it is weakly normal in the sense of [LV81, Definition 2.4]
if and only if it is seminormal in the sense of [GT80, Definition 1.2].

Proofs of the assertions of the following proposition are contained in [Fis76, Section 2.30] and
in [Kol96, Proposition I.7.2.3].

Proposition and Notation 2.9. For any algebraic variety X there exists a weak normalisation,
that is, a weakly normal algebraic variety Xwn together with a finite, surjective map η : Xwn → X
enjoying the following universal property: if Y is any weakly normal algebraic variety together
with a regular map ψ : Y → X, there exists a uniquely determined regular map ψ̂ : Y → Xwn

that fits into the following commutative diagram:

Xwn

η

��
Y

ψ //

ψ̂
<<

X .

If X is a separated scheme of finite type, then by slight abuse of notation, the reduced weakly
normal scheme

(
Xred

)wn
will also be denoted by Xwn.

The analogous statements hold in the complex setting for a reduced complex space X. In this
case, Xwn is a weakly normal complex space, Y is a complex space, ψ : Y → X is a holomorphic
map, and ψ̂ : Y → Xwn is a holomorpic map. If X is a separated complex space, the reduced
weakly normal complex space

(
Xred

)wn
will also be denoted by Xwn.

Remark 2.10. For any complex space X, the normalisation map η : Xwn → X is a homeomor-
phism; see [Fis76, Section 2.29] for the proof.

Lemma 2.11 ([Fis76, 2.29, Lemma p. 123]). Let X be a weakly normal complex space, and let
π : X ′ → X denote its normalisation. Then, we have OX = π∗(OX′)

π; that is, the holomorphic
functions on X are exactly the holomorphic functions on X ′ that are constant on the fibres of π.

The following elementary extension result will play a crucial role throughout the paper.

Lemma 2.12 (Extension of sections on weakly normal varieties). Let G be a connected algebraic
group, let S be a weakly normal G-variety, and let L be a G-linearised line bundle on S. Then,
there exists a finite system of irreducible subvarieties (Si)i=1,...,m of S with the following property:
For any closed G-invariant subvariety T of S such that
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(i) the intersection of T with each irreducible component Σ of S has codimension at least two
in Σ, and

(ii) T contains none of the Si,

any G-invariant section σ ∈ H0
(
S \ T,L

)G
extends to a G-invariant section σ̄ ∈ H0

(
S,L

)G
.

Proof. Let π : S′ → S be the normalisation morphism of S. Note that π : S′ → S is also the
normalisation of S in the analytic category. Let B ⊂ S be the set of points of S over which π is
not a local isomorphism. Consider the irreducible components B′j of π−1(B) and their projections
Bj := π(B′j) on S, and let the family (Si)i=1,...,m consist of the irreducible singular stratification of
intersections of the type Bj1∩Bj2 . Here, by the irreducible singular stratification of a subvariety Σ
of S we mean the set of irreducible components of the subvarieties Σ, Sing(Σ), Sing(Sing(Σ)), etc.

To establish the desired extension, we first pull back σ to a section σ′ inH0
(
S′\π−1(T ), π∗L

)G
.

If S =
⋃
k Σk is the decomposition of S into irreducible components, S′ decomposes into con-

nected components as follows: S′ =
⋃
k Σ′k with π(Σ′k) = Σk. Hence, π−1(T ) intersects every

connected component of S′ in codimension at least two, and the section σ′ extends to S′ by
normality. We will show below that this section, which we continue to denote by σ′, is constant
on the fibres of π. By Lemma 2.11, the section σ hence extends to a holomorphic section of L in
a neighbourhood of s. Global regular extension then follows from the algebraicity of the original
section σ. Moreover, since S \ T is dense in S, the G-invariance of the extended section σ̄ will
follow directly from the G-invariance of the original section σ.

First, we consider points s ∈ T \ B. By definition of B, this implies that S is normal at s,
and consequently, that the normalisation morphism π is an isomorphism over a small neighbour-
hood U of s in S. In particular, the fibre of π over s consists of a single point, so there is nothing
to show. Second, let s ∈ B ∩ T . If π−1(s) ⊂ S′ consists of a single point, then again there is
nothing to show. Now, suppose that s has at least two distinct preimages s′1, s

′
2 ∈ S′. We let

B′1 and B′2 be irreducible components of π−1(B) passing through s′1 and s′2, respectively; B′1
and B′2 may coincide. Then, s ∈ B1 ∩ B2. We take Si in the singular stratification of B1 ∩ B2

that contains s as a smooth point (of Si). Then, for j = 1, 2 there exist irreducible subvarieties
S′i,j ⊂ B′j of π−1(Si) that pass through s′1 and s′2, respectively, and that project onto Si. We fix a
trivialisation of L around s, which we also lift to a trivialisation of π∗(L ) around s′1 and s′2. We
let fσ′ be the holomorphic function that represents σ′ in the chosen trivialisation. As explained
above, it suffices to show that fσ′ is constant on fibres of π. Since T does not contain Si, there
exists a sequence (pn) of points in Si \T converging to s in the classical topology. As π is proper

and finite, we may lift (pn) to sequences (p
(1)
n ) in S′i,1 and (p

(2)
n ) in S′i,2 that converge to s′1 and s′2,

respectively. The values of σ on (pn) coincide with the values of σ′ on the lifted sequences
(
p

(1)
n

)
and

(
p

(2)
n

)
. We thus have fσ′(s

′
1) = lim

n→∞

(
fσ′
(
p

(1)
n

))
= lim

n→∞

(
fσ′
(
p

(2)
n

))
= fσ′(s

′
2) ∈ C.

3. Semiampleness of determinant line bundles

In this core section of the paper, we prove the crucial semiampleness statement, Theorem 3.6,
that will later allow us to define the desired moduli space as the Proj of an appropriate graded
ring of sections. Our main idea is to produce sections in determinant line bundles by exploiting
the existence of sections in determinant line bundles arising from families of sheaves over complete
intersection curves.

Before Theorem 3.6 is proven in Section 3.3, two technical issues are discussed in Sections 3.1
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and 3.2: how does flatness fail precisely when a flat family is restricted to a complete intersection
curve, and how does the determinant line bundles of a flatly restricted family compare with the
determinant line bundle of the original family?

3.1 Flat restriction to curves

Lemma 3.1 (Preserving flatness under restriction to hyperplane sections). Let G be a connected
algebraic group. Let X be a projective manifold of dimension n > 2 and H a very ample
polarisation on X. Let S be an algebraic G-variety, S1, . . . , Sm closed irreducible G-invariant
subvarieties of S, and E a G-linearised S-flat family of coherent sheaves on X such that for each
i ∈ {1, . . . ,m} there exists some point si ∈ Si such that Esi is torsion-free.

Then, there exists a dense open subset U in |H| such that every X ′ ∈ U is smooth and such
that for every X ′ ∈ U there exists a G-invariant closed subvariety T ⊂ S with the following
properties:

(i) The restriction E |S×X′ is flat over S \ T .

(ii) Each Esi |X′ is torsion free on X ′.

(iii) If we denote the restriction E |(S\T )×X′ by E ′, the following sequence of G-linearised (S \T )-
flat sheaves is exact:

0→ E |(S\T )×X
(
−((S \ T )×X ′)

)
→ E |(S\T )×X → E ′ → 0 . (3.1)

(iv) For every i ∈ {1, . . . ,m} the intersection T ∩ Si has codimension at least two in Si.

Proof. The set Stf ⊂ S parametrising torsion-free sheaves in the family E is G-invariant and
Zariski open in S. Moreover, for every i ∈ {1, . . . ,m} the intersection of Stf with Si is dense
in Si. For any (smooth) hyperplane section X ′ ∈ |H|, the restriction E |Stf×X′ is flat, and the
sequence

0→ E |Stf×X(−(Stf ×X ′))→ E |Stf×X → E |Stf×X′ → 0

is exact; see [HL10, Lemma 2.1.4].

In addition to the given points si, choose further points, one on each irreducible component
of Si \ Stf , whenever these open subschemes are non-empty; call the resulting finite set Sch. By
[HL10, Lemma 1.1.12], for each s ∈ Sch there exists a Zariski-open dense subset V (s) of |H|
such that every X ′ ∈ V (s) is smooth and Es-regular; that is, the natural map Es(−X ′) → Es is
injective. Moreover, by [HL10, Corollary 1.1.14.ii)] the set V (s) may be chosen in such a way
that additionally for every X ′ ∈ V (s) all the restricted sheaves Fsi |X′ remain torsion free.

With these preparatory considerations in place, if we set U :=
⋂
s∈Sch

V (s), it follows from
[Mat89, Corollary to Theorem 22.6] that for each X ′ ∈ U the restricted family E |S×X′ is flat
over a G-invariant open neighbourhood N(X ′, s) of s in S, and that the associated sequence

0→ E |N(X′,s)×X(−(N(X ′, s)×X ′))→ E |N(X′,s)×X → E |N(X′,s)×X′ → 0

is exact. Therefore, the subvariety T := S \
(
Stf ∪

⋃
s∈Sch

N(X ′, s)
)

has the desired properties
(i)–(iv).

Repeated application of the preceding lemma yields the following result.

Corollary 3.2 (Preserving flatness under repeated restriction to hyperplane sections). Let
G be a connected algebraic group. Let X be a projective manifold of dimension n > 2 and
H1, H2, . . ., Hn−1 very ample polarisations on X. Let S be an algebraic G-variety, S1, . . . , Sm
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closed irreducible G-invariant subvarieties of S, and E a G-linearised S-flat family of coherent
sheaves on X such that for each i ∈ {1, . . . ,m} there exists some point si ∈ Si such that Esi is
torsion free. Then, there exist dense open subsets Ul ⊂ |Hl| for l = 1, . . . , n− 1 such that for any
choice of elements Xl ∈ Ul for 1 6 l 6 n − 1 the associated complete intersections X(0) := X
and X(l) := ∩lk=1Xk are smooth, and such that for every such choice there exists a G-invariant
closed subvariety T ⊂ S with the following properties:

(1) For all 1 6 l 6 n− 1 the restriction E |S×X(l) is flat over S \ T .

(2) Each Esi |X(l) is torsion free on X(l).

(3) If we denote the restriction E |(S\T )×X(l) by E (l), for all 1 6 l 6 n−1 the following sequence
of G-linearised (S \ T )-flat sheaves is exact:

0→ E (l−1)
(
−
(
(S \ T )×X(l)

))
→ E (l−1) → E (l) → 0 . (3.2)

(4) For every i ∈ {1, . . . ,m} the intersection T ∩ Si has codimension at least two in Si.

Remarks 3.3. (a) The assertion of Corollary 3.2 should be compared with the assumptions of
Lemma 2.12, as well as with the assumptions of Proposition 3.4.

(b) Given a finite number of points p1, . . . , pk ∈ S, we may assume the G-invariant closed
irreducible subvarieties G • p1, . . . , G • pk to be among the Si. The resulting closed subvariety T
will then have empty intersection with the set {p1, . . . , pk}; that is, none of the pi is contained
in T .

(c) If S parametrises a family of torsion-free sheaves (for example, slope-semistable sheaves),
we may choose the irreducible components of S to be among the Si.

3.2 Class computations

Here we extend some class computations from the surface case [HL10, Section 8.2] to the case of
n-dimensional projective manifolds for n > 2. We remark that this generalisation will work for
multipolarisations of type (H1, . . . ,Hn−1), where the ample divisors H1, . . . ,Hn−1 may differ.

We will denote the degree of X with respect to H1, . . . ,Hn−1, Hi, that is, with Hi appearing
twice, by di := H1 · . . . ·Hn−1 ·Hi.

3.2.1 Setup and notation. Let X be a projective n-dimensional manifold, H1, . . . ,Hn−1 ∈
Pic(X) ample divisors, and ci ∈ H2i

(
X,Z

)
for 1 6 i 6 n classes on X. Let r be a positive integer,

c ∈ K(X)num a class with rank r and Chern classes cj(c) = cj , and Λ ∈ Pic(X) a line bundle
with c1(Λ) = c1 ∈ H2(X,Z).

We denote by hi the class of OHi in K(X), which coincides with [OX ]− [OX(−Hi)]. For the
following definition we shall suppose that the divisors H1, . . . ,Hn−1 are very ample. (It will be
clear from our considerations that this does not constitute a restriction of generality.) Given
general elements Xi ∈ |Hi| for 1 6 i 6 n− 1 put

X(0) := X and X(l) :=
⋂l
i=1Xi for 1 6 l 6 n− 1 .

We will also write X ′ instead of X(1). Choose a fixed base point x ∈ X(n−1), set

u0(c|X(n−1)) := −r[OX(n−1) ] + χ(c|X(n−1))[Ox] ∈ K
(
X(n−1)

)
,
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for 1 6 i 6 n− 2 set

ui(c|X(n−1−i)) := −rhn−1|X(n−1−i) · . . . · hn−i|X(n−1−i)

+ χ(c|X(n−1−i) · hn−1|X(n−1−i) · . . . · hn−i|X(n−1−i))[Ox]

∈ K
(
X(n−1−i)) ,

and finally, set

un−1(c) := −rhn−1 · . . . · h1 + χ(c · hn−1 · . . . · h1)[Ox] ∈ K(X) .

Note that the definition of the class un−1(c) does not require restrictions to hyperplane sec-
tions. We can therefore use this definition also when the divisors H1, . . . ,Hn−1 are only supposed
to be ample. We will stress the dependence on H1, . . . ,Hn−1 by writing un−1(c;H1, . . . ,Hn−1)
instead of just un−1(c).

Now, let S be a scheme of finite type over C and E an S-flat family of coherent sheaves on
X with class c and fixed determinant bundle line Λ. It is explained in [HL10, Example 8.1.8.ii]
that for two numerically equivalent classes D0, D1 ∈ K(X) of zero-dimensional sheaves on X
one obtains isomorphic determinant line bundles λE (D0) and λE (D1) on S; see also [LP92,
Proposition 3.2]. In particular, the determinant line bundles λE

(
ui(c|X(n−1−i))

)
will not depend

on the choice of the point x ∈ X(n−1). Using the same reasoning and the fact that [OaiHi ] =
1− (1− hi)ai , we find that for any positive integers ai for 1 6 i 6 n− 1

λE

(
un−1(c; a1H1, . . . , an−1Hn−1)

) ∼= λE

(
un−1(c;H1, . . . ,Hn−1)

)⊗a1···an−1 .

In fact, un−1(c;H1, . . . ,Hn−1) depends only on c and on the class α := hn−1 · . . . · · ·h1 ∈ K(X)
of the complete intersection curve X(n−1).

Numerical equivalence for classes in K(X) will be denoted by ≡.

3.2.2 Determinant line bundles of restricted families. The following result compares deter-
minant line bundles of flat families of sheaves on X with determinant line bundles of flat families
of restricted sheaves on the curve X(n−1). It generalises the computations in the surface case;
see [HL10, p. 223]. We will use the notation introduced in the previous paragraphs as well as the
terminology of Section 2.1.

Proposition 3.4 (Determinant line bundles of restricted families). Let G be a connected alge-
braic group and S an algebraic G-variety. Let E be a G-linearised S-flat family of torsion-free
sheaves on X with class c and fixed determinant line bundle Λ such that for all i ∈ {1, . . . , n−1}

(i) the restriction E (i) := E |S×X(i) is flat over S, and

(ii) the sequence

0→ E (i−1)
(
−X(i)

)
→ E (i−1) → E (i) → 0 (3.3)

is exact.

Then, for every i ∈ {1, . . . , n− 1}, there exists an isomorphism

λE (n−i)
(
ui−1(c|X(n−i))

)⊗dn−i ∼= λE (n−i−1)

(
ui(c|X(n−i−1))

)⊗dn−i (3.4)

of G-linearised line bundles on S. In particular, there exists an isomorphism

λE (n−1)

(
u0(c|X(n−1))

)⊗d1d2···dn−1 ∼= λE

(
un−1(c)

)⊗d1d2···dn−1 (3.5)

of G-linearised line bundles on S.
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Proof. Recall that the determinant line bundle associated with a G-linearised flat family over S
is also G-linearised. One can also check that a short exact sequence 0→ E ′ → E → E ′′ → 0 of G-
linearised flat families over S induces an isomorphism λE ∼= λE ′⊗λE ′′ of G-linearised determinant
line bundles; cf. [HL10, Lemma 8.1.2]. Therefore the following considerations will be compatible
with the group action.

In order to prove our statements, it will be enough to show for that for 1 6 i 6 n − 1 an
isomorphism as in equation (3.4) exists. It is clear that for this it suffices to consider the special
case i = n− 1, where n > 2 is arbitrary. Setting E ′ := E (1), we thus need to check

λE ′
(
un−2(c|X′)

)⊗d1 ∼= λE

(
un−1(c)

)⊗d1 . (3.6)

In order to do this, we will use the following auxiliary class in K(X):

w := −χ(c · hn−1 · . . . · h1 · [OX′ ])hn−1 · . . . · h2 + χ(c · hn−1 · . . . · h2 · [OX′ ])hn−1 · . . . · h1 .

The idea of the proof is to compute the restriction of w to X ′ in two different ways; cf. [HL10,
p. 223]. Indeed, on the one hand, we may write

w|X′ = −χ(c|X′ · hn−1|X′ · . . . · h1|X′)hn−1|X′ · . . . · h2|X′
+ χ(c|X′ · hn−1|X′ · . . . · h2|X′)hn−1|X′ · . . . · h1|X′

≡ d1(−rhn−1|X′ · . . . · h2|X′ + χ(c|X′ · hn−1|X′ · . . . · h2|X′)[Ox])

= d1 un−2(c|X′) ∈ K(X ′) .

(3.7)

On the other hand, we have

w − w · [OX(−X ′)] = w · [OX′ ]

= w · h1

= −χ(c · hn−1 · . . . · h1 · h1)hn−1 · . . . · h1

+ χ(c · hn−1 · . . . · h1)hn−1 · . . . · h1 · h1

≡ d1(−rhn−1 · . . . · h1 + χ(c · hn−1 · . . . · h1)[Ox])

= d1un−1(c) .

(3.8)

Since E is S-flat with fixed determinant line bundle and since it has the additional properties
that the restriction E ′ := E |S×X′ remains flat over S and that sequence (3.3), which in our
current notation reads

0→ E (−X ′)→ E → E ′ → 0 , (3.9)

is exact, we obtain the following equivariant isomorphisms of G-linearised determinant line bun-
dles on S:

λE ′
(
un−2(c|X′)

)⊗d1 ∼= λE ′(w|X′) by (3.7)

= λE (w)⊗ λE (−X′)(w)−1 by (3.9)

∼= λE

(
w − w · [OX(−X ′)]

)
∼= λE

(
un−1(c)

)⊗d1 by (3.8) .

As noted above, this completes the proof of Proposition 3.4.

3.3 Semiampleness of determinant line bundles

In this section we prove the crucial semiampleness statement, which will later allow us to define
the desired moduli space as the Proj-scheme associated with some finitely generated ring of
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invariant sections.

3.3.1 Setup. Let X be a projective n-dimensional manifold, H1, . . . ,Hn−1 ∈ Pic(X) ample
divisors, and ci ∈ H2i

(
X,Z

)
for 1 6 i 6 n classes on X. Let r be a positive integer, c ∈

K(X)num a class with rank r and Chern classes cj(c) = cj , and Λ ∈ Pic(X) a line bundle with
c1(Λ) = c1 ∈ H2(X,Z). By µ-semistable we always mean slope-semistable with respect to the
multipolarisation (H1, . . . ,Hn−1); cf. the discussion in Section 2.2.

Recall from Proposition 2.5 that the family of µ-semistable sheaves of class c (and determi-
nant Λ) is bounded, so that for sufficiently large m ∈ N, each µ-semistable sheaf of class c is
m-regular with respect to some chosen ample line bundle OX(1); cf. [HL10, Lemma 1.7.2]. In
particular, for each such sheaf F , the mth twist F (m) is globally generated with h0(F (m)) =
P (m), where P is the Hilbert polynomial of F with respect to OX(1); see for example [Laz04,
Theorem 1.8.3]. Setting V := CP (m) and H := V ⊗OX(−m), we obtain a surjection ρ : H → F
by composing the evaluation map H0

(
F (m)

)
⊗OX(−m) with an isomorphism V → H0

(
F (m)

)
.

The sheaf morphism ρ defines a closed point

[q : H → F ] ∈ Quot(H , P )

in the Quot scheme of quotients of H with Hilbert polynomial P .

Let Rµss ⊂ Quot(H , P ) be the locally closed subscheme of all quotients [q : H → F ] with
class c and determinant Λ such that

(i) F is µ-semistable of rank r, and

(ii) ρ induces an isomorphism V
∼=−→ H0

(
F (m)

)
.

The reductive group SL(V ) acts on Rµss by change of base in the vector space H0
(
F (m)

)
. This

group action can be lifted to the reduction Rµss
red, making the reduction morphism Rµss

red → Rµss

equivariant with respect to the two SL(V )-actions. Lifting the action one step further, we note
that SL(V ) also acts on the weak normalisation

S := (Rµss
red)wn (3.10)

of Rµss
red in such a way that the weak normalisation morphism (Rµss

red)wn → Rµss
red intertwines the

two SL(V )-actions.

Let ρ : OS ⊗H → F denote the pullback of the universal quotient from Quot(H , P (m))
to S. Choosing a fixed base point x ∈ X, as in Section 3.2.1 we consider the class un−1(c) :=
−rhn−1 · . . . ·h1 +χ(c ·hn−1 · . . . ·h1)[Ox] ∈ K(X) and the corresponding determinant line bundle

Ln−1 := λF

(
un−1(c)

)
(3.11)

on the parameter space S.

Remark 3.5. Since by assumption all the sheaves parametrised by S have the same determinant Λ,
it follows from the argument in [HL10, Example 8.1.8.ii)] that Ln−1 is in fact independent of
the chosen point x ∈ X; that is, it is naturally induced by the classes of the n− 1 ample divisors
H1, H2, . . . ,Hn−1; see also the discussion in Section 3.2.1 above.

3.3.2 Semiampleness. The following is the main result of this section and the core ingredient
in the construction of the moduli space.
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Theorem 3.6 (Equivariant semiampleness). There exists a positive integer ν ∈ N such that
L ⊗ν
n−1 is generated over S by SL(V )-invariant sections.

Proof. Let s ∈ S be a given point in S, which we will fix for the rest of the proof. We will show
that there exists an invariant section in some tensor power of Ln−1 that does not vanish at s.
The claim then follows by Noetherian induction.

By the semistable restriction theorem, Proposition 2.6, there exist positive natural numbers
a1, a2, . . . , an−1 ∈ N such that

(i) a1H1, a2H2, . . . , an−1Hn−1 are very ample and

(ii) for any general (smooth) complete intersection curve X(n−1) obtained by intersecting ele-
ments in |a1H1|, |a2H2|, . . . , |an−1Hn−1| the restriction Fs|X(n−1) is semistable.

Remark 3.7. Concerning the second point note that on the curve X(n−1) the notion of “semista-
bility” is well defined without fixing a further parameter.

Hence, it follows from Corollary 3.2 (applied to the very ample line bundles a1H1, . . . ,
an−1Hn−1) and Lemma 2.12 that in order to prove our claim, without loss of generality, we
may assume to be in the following setup.

Setup. There exists a complete intersection curve X(n−1) obtained by intersecting general
members Xi of |aiHi| such that the following holds: if we set F (l) := F |S×X(l) , then for all
l ∈ {1, . . . , n− 1}

(i) the family F (l) is S-flat, and

(ii) the sequence

0→ F (l−1)
(
−
(
S ×X(l)

))
→ F (l−1) → F (l) → 0 (3.12)

of S-flat sheaves is exact.

For this, we have replaced S by S \T , where T is the “non-flatness” locus from Corollary 3.2,
and we note that we may assume s /∈ T ; cf. Remark 3.3.

For any class c ∈ K(X)num let c(n−1) = ı∗
X(n−1)(c) denote the restriction to X(n−1), and let

P (n−1) = P (c(n−1)) be the associated Hilbert polynomial with respect to the ample line bundle
OX(n−1)(1) := OX(1)|X(n−1) . Let m(n−1) be a large positive integer, set

V (n−1) := CP
(n−1)(m(n−1)) , H (n−1) := V (n−1) ⊗ OX(n−1)

(
−m(n−1)

)
,

and let QX(n−1) be the closed subscheme of Quot
(
H (n−1), P (n−1)

)
parametrising quotients with

determinant Λ|X(n−1) . Denote by OQ
X(n−1)

⊗ H (n−1) → F̂ (n−1) the universal quotient sheaf
on QX(n−1) , and set

L
(n−1)
0 := λ

F̂ (n−1)

(
u0

(
c(n−1)

))
. (3.13)

Note that on the curve X(n−1) slope-semistability and Gieseker-semistability coincide; cf. Re-
mark 3.7. As in [HL10, p. 223], the following lemma thus follows from the construction of the
moduli space for semistable sheaves on the curve X(n−1).

Lemma 3.8. After increasing m(n−1) if necessary, the following hold.

(1) For a given point [q : H (n−1) → E] ∈ QX(n−1) the following assertions are equivalent:

(i) The quotient E is a semistable sheaf, and the induced map V (n−1) → H0
(
X,E

(
m(n−1)

))
is an isomorphism.
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(ii) The point [q] ∈ QX(n−1) is GIT-semistable with respect to the natural SL
(
V (n−1)

)
-

linearisation of L
(n−1)
0 .

(iii) There exist a positive integer ν ∈ N and an SL
(
V (n−1)

)
-invariant section

σ ∈ H0
(
QX(n−1) ,L

(n−1)
0

)
such that σ([q]) 6= 0.

(2) Two points
[
qi : H (n−1) → Ei

]
∈ QX(n−1) for i = 1, 2 are separated by invariant sections in

some tensor power of L
(n−1)
0 if and only if either one of them is semistable but the other is not,

or both points are semistable but E1 and E2 are not S-equivalent.

In addition to assertions (1) and (2) of Lemma 3.8, by increasing m(n−1) further if necessary,

we may assume that for each s ∈ S the restricted sheaf F
(n−1)
s is m(n−1)-regular with respect

to OX(n−1)(1). Consequently, each such sheaf is globally generated and defines a closed point in

QX(n−1) with the added property that the induced map V (n−1) → H0
(
X(n−1),F

(n−1)
s

(
m(n−1)

))
is an isomorphism.

If we denote the projection from S × X(n−1) to the first factor by p, the pushforward
p∗
(
F (n−1)

(
m(n−1)

))
is a locally free SL(V )-linearised OS-sheaf of rank P (n−1)

(
m(n−1)

)
on S.

The associated SL(V )-equivariant projective frame bundle π : S̃ → S parametrises a quotient

O
S̃
⊗H (n−1) → π∗F (n−1) ⊗ Oπ(1) ,

which induces an SL(V (n−1))-invariant morphism Φ(n−1) : S̃ → QX(n−1) that is compatible with

the SL(V )-action on S̃. We summarise our situation in the following diagram:

S̃
Φ(n−1)

//

π

��

QX(n−1)

S .

(3.14)

By Proposition 3.4, especially by equation (3.5), there exist positive integers k0 and kn−1

such that

λF (n−1)

(
u0

(
c(n−1)

))⊗k0 ∼= λF

(
un−1(c)

)⊗kn−1 ; (3.15)

cf. the discussion at the end of Section 3.2.1.

With these preparations in place, we compute:(
Φ(n−1)

)∗(
L

(n−1)
0

)⊗k0
=
(
Φ(n−1)

)∗(
λ

F̂ (n−1)

(
u0

(
c(n−1)

)))⊗k0 by definition, see equation (3.13)

∼= λπ∗F (n−1)⊗Oπ(1)

(
u0

(
c(n−1)

))⊗k0 by [HL10, Lemma 8.1.2 ii)]

∼= λπ∗F (n−1)

(
u0

(
c(n−1)

))⊗k0 by [HL10, Lemma 8.1.2 ii)]

∼= π∗λF (n−1)

(
u0

(
c(n−1)

))⊗k0 by [HL10, Lemma 8.1.2 iv)]

∼= π∗λF

(
un−1(c)

)⊗kn−1 by equation (3.15)

= π∗(Ln−1)⊗kn−1 by definition; see equation (3.11) .

(3.16)

Now, let σ be an SL
(
V (n−1)

)
-invariant section in

(
L

(n−1)
0

)⊗νk0 that does not vanish at

a given point of the form
[
q : H

(n−1)
t → Ft|X(n−1)

]
. Since Φ(n−1) is SL(V )-invariant, the pullback
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Φ(n−1)

)∗
(σ) is an SL

(
V (n−1)

)
× SL(V )-invariant section in(

Φ(n−1)
)∗(

L
(n−1)
0

)⊗k0 ∼= π∗λF (û2)⊗νkn−1 .

Since π is a good quotient of S̃ by the SL(V (n−1))-action, the isomorphism (3.16) implies that(
Φ(n−1)

)∗
(σ) descends to a section lF (σ) ∈ H0

(
S, (L2)⊗νkn−1

)SL(V )
that does not vanish at

t ∈ S.

Finally, recall that we want to produce a section in Ln−1 that does not vanish at our given
point s ∈ S. As Fs|X(n−1) is semistable, and as the induced map

V (n−1) → H0
(
X(n−1),F (n−1)

s

(
m(n−1)

))
is an isomorphism, owing to Lemma 3.8(1) there exist a positive integer ν ∈ N and an invari-

ant section σ ∈ H0
(
QX(n−1) ,

(
L

(n−1)
0

)⊗νk0)SL(V (n−1))
such that the induced section lF (σ) ∈

H0
(
S, (Ln−1)⊗νkn−1

)SL(V )
fulfils lF (σ)(s) 6= 0. This completes the proof of Theorem 3.6.

4. A projective moduli space for slope-semistable sheaves

In this section we will carry out the construction of the “moduli space” of µ-semistable sheaves.
In Section 4.1 we shortly discuss a generalisation of Langton’s theorem to our setup, before
giving the construction of the desired moduli space Mµss in Section 4.2. The universal properties
of Mµss are established in Section 4.3.

We continue to use the notation introduced in the previous section; see especially Section 3.3.1.

4.1 Compactness via Langton’s theorem

The key to proving the compactness of our yet to be constructed moduli spaces lies in the
following generalisation of Langton’s theorem to the case of multipolarisations.

Theorem 4.1 (Langton’s theorem). Let R ⊃ k be a discrete valuation ring with field of
fractions K, let i : X × SpecK → X × SpecR be the inclusion of the generic fibre, and let
j : Xk → X × SpecR be the inclusion of the closed fibre in X × SpecR over SpecR. Then,
for any (H1, . . . ,Hn−1)-semistable torsion-free coherent sheaf EK over X × SpecK, there exists
a torsion-free coherent sheaf over X × SpecR such that i∗E ∼= EK and such that j∗E is torsion-
free and semistable.

Proof. The proof of Langton’s completeness result [Lan75] (for slope-functions defined by a single
integral ample divisor) literally works for slope with respect to multipolarisations. The key point
is to note that degrees with respect to multipolarisations also can be seen as coefficients of
appropriate terms in some Hilbert polynomials; cf. [Kle66, Sections 1 and 2].

By replacing Langton’s original theorem with Theorem 4.1, the following result can now be
obtained using the argument of [HL10, Proposition 8.2.5].

Proposition 4.2. Let Z ⊂ S be any SL(V )-invariant closed subvariety. If T is a separated
scheme of finite type over C, and if ϕ : Z → T is any SL(V )-invariant morphism, then the image
ϕ(Z) ⊂ T is complete. In particular, any SL(V )-invariant function on S is constant.
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4.2 Construction of the moduli space

We have seen in Theorem 3.6 that for ν ∈ N big enough, the line bundle L ⊗ν
n−1 is generated by

SL(V )-invariant sections. Hence, it is a natural idea to construct the moduli space as an image
of S under the map given by invariant sections of L ⊗ν

n−1 for ν � 0.

For this, we set Wν := H0
(
S,L ⊗ν

n−1

)SL(V )
. Since S is Noetherian, for every ν ∈ N such that Wν

generates L ⊗ν
n−1 over S, there exists a finite-dimensional C-vector subspace Ŵν of Wν that still

generates L ⊗ν
n−1 over S. We consider the induced SL(V )-invariant morphism ϕŴν

: S → P(Ŵ ∗ν )
and set MŴν

:= ϕŴν
(S). One now considers the projective varieties MŴν

for increasing values
of ν. Using exactly the same arguments as in the proof of [HL10, Proposition 8.2.6], which uses
the notation introduced in the previous paragraph, we obtain the following result.

Proposition 4.3 (Finite generation). There exists an integer N > 0 such that the graded ring⊕
k>0WkN is generated over W0 = C by finitely many elements of degree one.

We are finally in a position to define the desired moduli space.

Definition 4.4 (Moduli space for slope-semistable sheaves). Let N > 1 be a natural number
with the properties spelled out in Proposition 4.3. Then, we define the polarised variety (Mµss, L)
to be the projective variety

Mµss := Mµss(c,Λ) := Proj
(⊕
k>0

H0
(
S,L ⊗kN

n−1

)SL(V )
)
,

together with the ample line bundle L := OMµss(1). Moreover, we let Φ: S → Mµss be the
induced SL(V )-invariant morphism with Φ∗(L) = L ⊗N

n−1.

4.3 Universal properties of the moduli space

Although the projective variety Mµss is not a coarse moduli space in general, it nevertheless has
certain universal properties, which are stated in the Main Theorem, and which we establish in
the present section.

Note that these universal properties do in fact differ from the ones stated in [HL10, p. 226],
where the surface case is discussed. Note especially that it is necessary to add property (2) to
the set of universal properties listed in the main theorem in order to obtain uniqueness of the
resulting triple

(
Mµss,OMµss(1), N

)
.

We start by formulating and proving a result that is slightly weaker than the Main Theorem.
Subsequently, we will show that by choosing the “correct” polarising line bundle for Mµss, we
obtain the universal properties stated in the Main Theorem.

Proposition 4.5. Let Mµss denote the functor that associates with each weakly normal va-
riety B the set of isomorphism classes of B-flat families of µ-semistable sheaves of class c and
determinant Λ. Then, there exists a natural transformation from Mµss to Hom(·,Mµss), mapping
a family E to a classifying morphism ΦE , with the following properties:

(1) For every B-flat family E of µ-semistable sheaves of class c and determinant Λ with induced
classifying morphism ΦE : B →Mµss we have

Φ∗E (L) ∼= λE

(
un−1(c)

)⊗N
, (4.1)

where λE

(
un−1(c)

)
is the determinant line bundle on B induced by E and un−1(c); cf. Section 2.1.

56



Compact moduli spaces for slope-semistable sheaves

(2) For any other triple of a natural number N ′, a projective variety M ′, and an ample line
bundle L′ fulfilling the conditions spelled out in part (1), there exist a natural number d ∈ N>0

and a uniquely determined morphism ψ : Mµss →M ′ such that ψ∗(L′)⊗dN ∼= L⊗dN
′
.

In the subsequent proofs we will use the following standard terminology.

Definition 4.6. Let X be a proper variety and L a line bundle on X. Then, the section ring of
L is defined to be

R(X,L) :=
⊕
k>0

H0
(
X,L⊗k

)
.

For any d > 2, we define the dth Veronese subring of R(X,L) to be

R(X,L)(d) :=
⊕
d|k

H0
(
X,L⊗k

)
⊂ R(X,L) .

Proof of Proposition 4.5. In the proof of part (1) we follow [HL10, proof of Lemma 4.3.1]. We
will use the notation introduced in Section 3.3.1.

Let B be a weakly normal variety and E a B-flat family of µ-semistable sheaves with Hilbert
polynomial P with respect to the chosen ample polarisation OX(1). Denote the natural projec-
tions of B ×X by p : B ×X → B and q : B ×X → X.

Let m ∈ N be as in Section 3.3.1, such that every µ-semistable sheaf F with the given
invariants is m-regular. We set V := C⊕P (m) and H := V ⊗ OX(−m). The sheaf VE :=
p∗
(
E ⊗ q∗OX(m)

)
is locally free of rank P (m), and there is a canonical surjection ϕE : p∗VE ⊗

q∗OX(−m)� E .

Let π : R(E ) → B be the frame bundle associated with VE ; the group GL(V ) acts on R(E ),
making it a GL(V )-principal bundle with good quotient π. Since the pullback of VE to R(E ) has
a universal trivialisation, we obtain a canonically defined quotient q̃E : OR(E )⊗CH � (π×idX)∗E

on R(E ) ×X. The quotient q̃E gives rise to a classifying morphism Ψ̃E : R(E ) → Quot(H , P ),
which is equivariant with respect to the GL(V )-actions on R(E ) and Rµss. Here, the latter action
is induced by the SL(V )-action via PGL(V ); cf. [HL10, Lemma 4.3.2].

Since the sheaf Eb was assumed to be slope-semistable for all b ∈ B, the image of Ψ̃E is
contained in Rµss. Note that as a principal bundle over the seminormal variety B, the space R(E )
is itself seminormal. Consequently, by Proposition 2.9 the map Ψ̃E lifts to a morphism from R(E )
to (Rµss)wn = S, which we will continue to denote by Ψ̃E . Composing Ψ̃E with the SL(V )-
invariant morphism Φ: S → Mµss, we obtain a GL(V )-invariant morphism Φ̃E : R(E ) → Mµss.
Since π is a good quotient, and hence in particular a categorical quotient, there exists a uniquely
determined morphism ΦE : B →Mµss such that the following diagram commutes:

R(E )
Φ̃E

$$
π

��

Ψ̃E // S

Φ
��

B
ΦE //Mµss .

(4.2)

Assigning ΦE ∈ Mor(B,Mµss) to E yields the desired natural transformation

Mµss → Hom(·,Mµss) .

It remains to show the isomorphism of line bundles (4.1). It follows from the commutative
diagram (4.2) and from the definition of (Mµss,OMµss , N) that

π∗Φ∗E OMµss(1) ∼= Ψ̃∗E
(
L ⊗N
n−1

) ∼= λπ∗E (un−1)⊗N ∼= π∗λ(un−1)⊗N .
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Since the morphism π∗ : Pic(B) → Pic(R(E )) is injective by [MFK94, I.3, Proposition 1.4],
cf. [LP92, Lemma 2.14], the previous chain of isomorphisms implies

Φ∗E OMµss(1) ∼= λ(un−1)⊗N ,

as claimed in item (1).

Next, we prove the claims made in item (2). If (M ′, L′, N ′) is another triple satisfying the
conditions of item (1), then applying the universal property, we obtain a uniquely determined
morphism Φ′ : S → M ′ such that (Φ′)∗(L′) ∼= L ⊗N ′

n−1 . We claim that Φ′ is SL(V )-invariant.
Indeed, the restriction of Φ′ to an SL(V )-orbit O gives the classifying map for the restriction of
the universal family to O. But this classifying map is constant, which implies Φ′(O) = {pt}, as
claimed.

Take d ∈ N>0 such that the dth Veronese subring R(M ′, L′)(d) of R(M ′, L′) is generated in
degree one. Let f : M ′ → Proj(R(M ′, L′)(d)) be the natural isomorphism. Then, the pullback

f∗(O(1)) is naturally isomorphic to (L′)⊗d. Setting d′ := dN ′ and using the universal property
of L′, we obtain a natural morphism of graded rings

R(M ′, L′)(dN) →
⊕
d′|k

H0
(
S,L ⊗kN

n−1

)SL(V )

by pulling back sections via the SL(V )-invariant map Φ′. This in turn induces a uniquely deter-
mined morphism

ψ : M = Proj
(⊕
d′|k

H0
(
S,L ⊗kN

n−1

)SL(V )
)
→ Proj

(
R(M ′, L′)(dN)

)
= M ′

such that ψ∗(L′)⊗dN = L⊗dN
′
. This concludes the proof of item (2).

Corollary 4.7 (Weak normality). The variety Mµss is weakly normal.

Proof. The weak normalisation η : (Mµss)wn → Mµss together with the line bundle L′ := η∗L
and the natural number N has the universal properties spelled out in Proposition 4.5(1). Indeed,
by Proposition 2.9 every map from a weakly normal variety S to Mµss can be lifted in a unique
way to a map from S to (Mµss)wn satisfying the required pullback properties. Consequently,
Proposition 4.5(2) yields a uniquely determined morphism ψ : Mµss → (Mµss)wn, which gives an
inverse to η.

Comparing the universal property (2) of Proposition 4.5 with the one claimed in the Main
Theorem, we see that we need to improve the uniqueness statement in Proposition 4.5(2). This
amounts to showing that although the map Φ: S → Mµss is not proper, due to its SL(V )-
invariance it still has certain properties that are reminiscent of the Stein fibration and Iitaka
fibration for semiample line bundles on proper varieties; cf. [Laz04, Section 2.1.C].

Lemma 4.8 (Pushing down invariant functions). Let Φ: S →Mµss be as before. Then, we have

Φ∗(OS)SL(V ) = OMµss .

Proof. We first note the following generalisation of the classical projection formula to the equiv-
ariant setting; cf. [Gre10, Lemma 9.2].

Lemma 4.9 (Equivariant projection formula). Let G be an algebraic group, let Y be an algebraic
G-variety, and let f : Y → Z be a G-invariant morphism to an algebraic variety Z. Then, for
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every G-linearised coherent algebraic sheaf F on Y and every locally free sheaf E of finite rank
on Z, there is a natural isomorphism

f∗(F ⊗ f∗E )G ∼= f∗(F )G ⊗ E .

Here, f∗E is given the natural G-linearisation as a pullback bundle via an invariant morphism,
and F ⊗ f∗E is given the natural tensor product linearisation.

We proceed as follows. Since Φ is invariant, we obtain a natural morphism θ : OMµss →
Φ∗(OS)SL(V ) of quasi-coherent sheaves of OMµss-modules. Since L = OMµss(1) is ample, and
since R(Mµss, L) is generated in degree one, in order for θ to be an isomorphism it suffices to
show that the induced map

θ̂k : H0
(
Mµss, L⊗k

)
→ H0

(
Mµss,Φ∗(OS)SL(V ) ⊗ L⊗k

)
is an isomorphism for all natural numbers k > 1. For this, we note that θ̂k can be factored in the
following way:

H0
(
Mµss, L⊗k

) αk−→ H0
(
S,L ⊗kN

n−1

)SL(V ) βk−→ H0
(
Mµss,Φ∗

(
OS ⊗ Φ∗L⊗k

)SL(V ))
γk−→ H0

(
Mµss,Φ∗(O)SL(V ) ⊗ L⊗k

)
.

In this diagram, αk and βk are isomorphisms by definition and by the SL(V )-equivariant iso-
morphism Φ∗L⊗k ∼= L ⊗kN

n−1 , and γk is an isomorphism by the equivariant projection formula,

Lemma 4.9. Consequently, the composition, which is equal to θ̂k, is an isomorphism. This con-
cludes the proof of Lemma 4.8.

The following is the analogue of [Laz04, Example 2.1.14] in our equivariant setup.

Lemma 4.10 (Injectivity of equivariant pullback). The natural pullback map from Pic(Mµss) to
the group of SL(V )-linearised line bundles on S,

Φ∗ : Pic(Mµss)→ PicSL(V )(S) ,

is injective.

Proof. Let D be a line bundle on Mµss such that Φ∗(D) is SL(V )-equivariantly isomorphic to
the trivial line bundle with the trivial SL(V )-linearisation. The equivariant projection formula,
Lemma 4.9, and Lemma 4.8 lead to the following chain of isomorphisms:

H0
(
S,OS

)SL(V ) ∼= H0
(
Mµss,Φ∗(Φ

∗D)SL(V )
)

∼= H0
(
Mµss,Φ∗(OS)SL(V ) ⊗D

)
∼= H0

(
Mµss, D

)
.

(4.3)

Any non-zero constant function on S is trivially SL(V )-invariant, and hence via (4.3) induces a
section in H0

(
Mµss, D

)
that does not vanish on any component of Mµss. As the same reasoning

applies to the dual D−1, the line bundle D is trivial, as claimed.

Lemma 4.11 (Injectivity of pullback). The pullback map Φ∗ : Pic(Mµss)→ Pic(S) is injective.

Proof. Since SL(V ) is semisimple, and therefore has no non-trivial characters, by [MFK94, I.3,
Proposition 1.4] the forgetful map PicSL(V )(S)→ Pic(S) is injective. Together with Lemma 4.10
this yields the claim.
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In the next step, we make a first improvement concerning the universal properties of Propo-
sition 4.5.

Lemma 4.12. Using the notation of Proposition 4.5, we may take d = 1. That is, for any other
triple of a natural number N ′, a projective variety M ′, and an ample line bundle L′ fulfilling the
conditions spelled out in part (1) of Proposition 4.5, there exists a uniquely determined morphism
ψ : Mµss →M ′ such that ψ∗(L′)⊗N ∼= L⊗N

′
. Call this universal property Property (2′).

Proof. Let (M ′, L′, N ′) be a second triple having property (1) of Proposition 4.5. Then, as in the
proof of Proposition 4.5, let Φ′ : S → M ′ be the classifying morphism for the universal family
over S. Via the Proj construction, we obtain a uniquely determined morphism ψ : Mµss → M ′

such that the following diagram commutes:

S
Φ

||

Φ′

  
Mµss ψ //M ′ .

By the universal properties of L and L′, we have natural isomorphisms

Φ∗
(
ψ∗(L′)⊗N

) ∼= (Φ′)∗(L′)⊗N ∼= L ⊗NN ′
n−1

∼= Φ∗
(
L⊗N

′)
.

As Φ∗ is injective by Lemma 4.11, this implies ψ∗(L′)⊗N ∼= L⊗N
′
.

We are now in a position to prove the existence of an “optimal” line bundle on Mµss that
has the universal property stated in the Main Theorem.

Proposition 4.13. Let N be minimal such that (Mµss, L,N) has property (1) of Proposition 4.5
and Property (2′), as stated in Lemma 4.12. Then, (M ∼= Mµss, L,N) has the following universal
property (2′′): for any other triple of a natural number N ′, a projective variety M ′, and an ample
line bundle L′ fulfilling the conditions spelled out in part (1) of Proposition 4.5, we have N |N ′,
and there exists a uniquely determined morphism ψ : Mµss →M ′ such that ψ∗(L′) ∼= L⊗(N ′/N).

Proof. Consider a second triple of a natural number N ′, a projective variety M ′, and an ample
line bundle L′ that fulfils the conditions spelled out in item (1) of Proposition 4.5, and let
ψ : M → M ′ be the uniquely determined morphism of Lemma 4.12. To establish the claim, it
suffices to show N |N ′, as the rest follows by the same argument as in the proof of Lemma 4.12.

Suppose that N does not divide N ′, and let

e = lcd(N,N ′) < N (4.4)

be their greatest common divisor. There exist a, b ∈ Z such that e = aN ′ + bN , and we set

A := ψ∗(L′)⊗a ⊗ L⊗b. The pullback of A to S via Φ equals L
⊗(aN ′+bN)
n−1 = L ⊗e

n−1. From this we

infer that A⊗(N/e) ∼= L, using the injectivity of Φ∗ provided by Lemma 4.11. Hence, A is ample.
Aiming for a contradiction to the minimality of N , we claim that the triple (M,A, e) has the
universal properties (1) and (2′).

As to property (1), let B be a weakly normal variety, and let E be a B-flat family of µ-
semistable sheaves of class c and determinant Λ on X. The family E induces two classifying
morphisms ΦE : B → M = Mµss and Φ′E : B → M ′. The morphism ψ : M → M ′ given by
property (2) for M is such that ψ ◦ ΦE = Φ′E , as can be seen from the proof of Proposition 4.5.
We conclude that

Φ∗E (A) = (Φ′E )∗
(
(L′)⊗a

)
⊗ Φ∗E

(
L⊗b

) ∼= λE (un−1)aN
′+bN = λE (un−1)e . (4.5)
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In order to prove that (M,A, e) enjoys property (2′), let (M ′′, L′′, N ′′) be any other triple
having property (1). Then, as in the proof of Lemma 4.12, there exists a natural commutative
diagram

S
Φ

||

Φ′′

!!
Mµss ψ //M ′′ .

From the construction and from (4.5), we obtain natural isomorphisms

Φ∗
(
A⊗N

′′) ∼= L ⊗eN ′′
n−1

∼= (Φ′′)∗(L′′)⊗e ∼= Φ∗
(
ψ∗(L′′)⊗e

)
on S. Using Lemma 4.11 another time, we conclude that A⊗N

′′ ∼= ψ∗(L′′⊗e).

In summary, we have established properties (1) and (2′) for the new triple (M,A, e). Together
with the inequality (4.4), this yields a contradiction to the minimality ofN . We therefore conclude
that N |N ′, which is exactly the claim made in Proposition 4.13.

As an immediate consequence, we obtain the following result in the usual way.

Corollary 4.14 (Uniqueness). The triple (Mµss, L,N) with N minimal as above is uniquely
determined up to isomorphism by the properties (1) and (2′′).

Remark 4.15. With Proposition 4.13 at hand, we have now established all claims made in the
Main Theorem.

5. Geometry of the moduli space

In the current section we start to investigate the geometry of Mµss. First, in Section 5.1 we
look at the separation properties of the map Φ: S → Mµss. Second, in Section 5.2 we prove
that Mµss provides a compactification for the moduli space of µ-stable reflexive sheaves. Third,
in Section 5.3 we investigate the relation between Mµss and the Gieseker–Maruyama moduli
space in the special case where H1 = . . . = Hn−1.

5.1 Separation properties

The geometry of the map Φ will be studied in terms of Jordan–Hölder filtrations. Let us introduce
the relevant terminology.

Proposition and Notation 5.1 (Jordan–Hölder filtrations). Let X be a projective n-dimen-
sional manifold, and let (H1, . . . ,Hn−1) be a multipolarisation on X with respect to which
we consider slope-semistability. For a µ-semistable sheaf F on X, there exist µ-Jordan–Hölder
filtrations (in the sense of [HL10, Definition 1.5.1]). Let grµ F denote the graded sheaf associated
with a µ-Jordan–Hölder filtration with torsion-free factors, and set F ] := (grµ F )∨∨. Then, F ]

is a reflexive µ-polystable sheaf on X, which depends only on F and not on the chosen Jordan–
Hölder filtration.

Proof. Existence of µ-Jordan–Hölder filtrations is shown exactly as in [HL10, Proposition 1.5.2],
uniqueness as in [HL10, Corollary 1.6.10]. See also [Miy87].

Notation 5.2. For any µ-semistable sheaf F as above we consider the natural map ı : grµ F→F ].
Since grµ F is torsion free, ı is injective, and the quotient sheaf F ]/ grµ F is supported in codi-
mension at least two. We associate with F the two-codimensional support Chow-cycle of the
sheaf F ]/ grµ F , which we will denote by CF .
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Remarks 5.3. (a) For later reference, we quickly recall how the cycle CF can be computed; for
this we set TF := F ]/ grµ F , and let Ck for k = 1, . . . ,K be the codimension two components
of supp(TF ). Let X(n−2) be a general complete intersection surface of X (with respect to some

multipolarisation (H1, . . . ,Hn−2) consisting of very ample line bundles), and let p
(k)
1 , . . . , p

(k)
Nk

be

the components of the scheme-theoretic intersection X(n−2) ∩Ck, which in our situation will be
smooth. The restriction TF |X(n−2) is a skyscraper sheaf. The associated natural number

lengthO
X(n−2),p

(k)
i

(
TF |X(n−2)

)
p
(k)
i

is independent of i ∈ {1, . . . , Nk} and will be called mk. With this notation at hand, we have

CF =
K∑
k=1

mkCk ∈ Chown−2(X) .

Moreover, for further reference, in the situation under consideration we let

CX
(n−2)

F :=
K∑
k=1

Nk∑
i=1

mk[p
(k)
i ] ∈ Sym∗

(
X(n−2)

)
be the 0-cycle on X(n−2) defined by TF |X(n−2) .

(b) The cycle CF depends only on F and not on the chosen Jordan–Hölder filtration, as can be
seen by a reduction to the surface case [HL10, Corollary 1.5.10] using hyperplane sections, and
by the description of CF given in part (a).

The connection between Jordan–Hölder filtrations and restriction of µ-semistable sheaves to
curves is established by the following result, variants of which appear throughout the literature.

Lemma 5.4. Let F1 and F2 be µ-semistable torsion-free sheaves on X. If m1, . . ., mn−1 are
sufficiently large integers, then F ]1 and F ]2 are isomorphic if and only if the restrictions of F1 and
F2 to any general complete intersection curve X(n−1) := X1 ∩ · · · ∩Xn−1 with Xj ∈ |mjHj | are
S-equivalent.

Proof. Choose Jordan–Hölder filtrations with torsion-free factors for F1 and F2. If m1, . . ., mn−1

are sufficiently large integers, then a general complete intersection curve X(n−1) = X1∩· · ·∩Xn−1

will have the following properties:

(i) The curve X(n−1) avoids the singularities of grµ F1 and grµ F2.

(ii) The restriction of the Jordan–Hölder filtrations of F1 and F2 to X(n−1) are Jordan–Hölder
filtrations for F1|X(n−1) and F2|X(n−1) .

Item (i) is achievable, since torsion-free sheaves are locally free in codimension one; that is, their
singularities lie in codimension two or higher. Item (ii) is achievable by the semistable restriction
theorem, Proposition 2.6.

Then, by item (ii) the restricted sheaves F1|X(n−1) and F2|X(n−1) are S-equivalent if and only

if (grµ F1)|X(n−1)
∼= (grµ F2)|X(n−1) , and this in turn is equivalent to F ]1 |X(n−1)

∼= F ]2 |X(n−1) by
item (i).

In the next step, we focus on the reflexive sheaf E := H om(F ]1 , F
]
2). If E is any reflexive sheaf

on a smooth projective manifold Z, then its restriction to a general (smooth) hyperplane section
stays reflexive; see [HL10, Lemma 1.1.12 and Corollary 1.1.14]. Moreover, H1

(
Z,E(−mH)

)
va-

nishes when H is ample and m � 0 by [BS76, IV, Theorem 3.1]. Therefore, if mi � 0 and
Xi ∈ |miHi| for 1 6 i 6 n− 1 are general elements, it follows that
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(α) each X(i) := X1 ∩ · · · ∩Xi is smooth,

(β) each E|X(i) is reflexive on X(i),

(γ) the following cohomology groups vanish:

H1
(
X,E(−X1)

)
= H1

(
X(i−1), E|X(i−1)(−Xi)

)
= {0} for 2 6 i 6 n− 1 .

In this setup, we can lift sections from H0
(
X(n−1), E|X(n−1)

)
to H0(X,E) using the vanishing in

item (γ) and the exact sequences

0→ E|X(i)(−Xi+1)→ E|X(i) → E|X(i+1) → 0 .

It follows that F ]1 |X(n−1)
∼= F ]2 |X(n−1) if and only if F ]1 and F ]2 are isomorphic on X; cf. [Kob87,

Proposition IV.1.7(2)]. This completes the proof.

We now formulate a first separation criterion, which describes the geometry of Φ and hence
of Mµss.

Theorem 5.5 (Separating semistable sheaves in the moduli space). Let F1 and F2 be two

(H1, . . . ,Hn−1)-semistable sheaves on the projective manifold X such that F ]1 6∼= F ]2 or CF1 6= CF2 .
Then, F1 and F2 give rise to distinct points in Mµss.

Proof. We will use the setup and notation introduced in Section 3.3.1. We look for invariant
sections of L ⊗ν

n−1 on S = (Rµss
red)wn that separate the orbits corresponding to F1 and F2. For this

we follow the proof of Theorem 3.6 and restrict the S-flat family F successively to appropriately
chosen general hyperplane sections X(1), . . . , X(n−1).

Simplifying assumptions. As said before, we work in the setup and notation introduced in
Section 3.3.1. By an argument similar to that just after Remark 3.7, it follows from Lemma 3.2
(applied to the very ample line bundles aiHi) and Lemma 2.12 that in order to prove the existence
of sections in powers of Ln−1 that separate F1 and F2, we may assume without loss of generality
to be in the following setup.

Setup. For any complete intersection curve X(n−1) obtained by intersecting general members Xi

of |aiHi| for 1 6 i 6 n− 1 the following holds: if we set F (i) := F |S×X(i) , then

(i) all families F (i) are S-flat,

(ii) the sequences of equivariant S-flat sheaves

0→ F (i−1)(−X(i))→ F (i−1) → F (i) → 0 (5.1)

are exact.

Our sheaves F1 and F2 are represented by points s1, s2 ∈ S. An application of [HL10, Lem-
ma 1.1.12 and Corollary 1.1.14] allows us to assume that their restrictions to X(i) remain torsion
free for all i ∈ {1, . . . , n− 2}.

After these preparatory considerations, the proof of Theorem 5.5 will be divided into two
cases.

Case 1: Separating sheaves with different F ]. If F ]1 6∼= F ]2 , then by Lemma 5.4 and by the

semistable restriction theorem, Proposition 2.6, the restrictions of F ]1 and F ]2 to a general com-
plete intersection curve X(n−1) are locally free, semistable, and not S-equivalent. Consequently,
it follows from Lemma 3.8 that the corresponding points in the Quot scheme QX(n−1) may be
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separated by an invariant section σ in a sufficiently high tensor power
(
L

(n−1)
0

)⊗ν
of L

(n−1)
0 .

The associated lift lX
(n−1)

F (σ) ∈ H0
(
S, (Ln−1

)⊗νk
)SL(V ) separates the points s1 ∈ S and s2 ∈ S

corresponding to F1 and F2, respectively; cf. the proof of Theorem 3.6. Consequently, F1 and F2

give rise to different points in Mµss, which is the desired conclusion.

Case 2: Separating sheaves with identical F ]. Case 1 being already established, we may
assume that F1 and F2 are two µ-semistable sheaves on X such that

(α) F ]1
∼= F ]2 , but

(β) CF1 6= CF2 .

Working towards our goal of separating F1 and F2 in Mµss, we first reduce to the case of
polystable sheaves, cf. the proof of [HL10, Theorem 8.2.11]: If F is µ-semistable and if grµ(F ) is
the torsion-free graded sheaf associated with a µ-Jordan–Hölder filtration of F , then there exists
a flat family G parametrised by C such that G0

∼= grµ(F ) and Gt ∼= F for all t 6= 0. As Mµss is
separated, F and grµ(F ) are mapped to the same point p ∈Mµss.

As a consequence of the previous paragraph, in the following we may assume without loss
of generality that both F1 and F2 are µ-polystable, with the same double dual F ]1

∼= F ]2 =: E.
Hence, there exist two exact sequences

0→ Fj → E → Tj → 0 , j = 1, 2 .

We let s1, s2 ∈ S be two points with Fsi
∼= Fi for i = 1, 2.

The idea of our proof is as follows: As the cycles associated with the two sheaves F1 and Fs
differ, their respective intersection with any general complete intersection surface will still differ.
Close reading of the proof of the separation properties of determinant line bundles for families of
sheaves on surfaces will then show that there are sections in determinant line bundles associated
with families over complete intersection curves that will induce separating sections in Ln−1, as
desired.

By the construction of CFi and by the semistable restriction theorem, Proposition 2.6, for
any general complete intersection surface X(n−2) there exists an open subset U2 in the linear
system

∣∣mn−1Hn−1|X(n−2)

∣∣ such that the following statements hold for X(n−2) and for any curve

X(n−1) ∈ U2:

(1) The cycles CX
(n−2)

F1
and CX

(n−2)

F2
in Sym∗

(
X(n−2)

)
do not coincide.

(2) The restrictions F1|X(n−2) and F2|X(n−2) are both slope-polystable with respect to the po-
larisation Hn−1|X(n−2) .

(3) The double dual Fi|∨∨X(n−2) is isomorphic to E|X(n−2) for i = 1, 2.

(4) The sheaf E|X(n−1) is polystable.

It follows from the arguments of [HL10, p. 223–224] or from a slight modification of the proof
of Theorem 3.6 that in our setup, spelled out in the paragraph Simplifying assumptions above,
there exist r0, r1 ∈ N+ such that for every ν > 1 there is a linear “lifting” map

H0
(
QX(n−1) ,

(
L

(n−1)
0

)⊗νr0)SL(V (n−1)) → H0
(
S, λF (n−2)

(
u1(c|X(2))

)⊗νr1)SL(V )
,

which is induced by restricting the flat family F (n−2) of sheaves on the surface X(n−2) further
down to S ×X(n−1), and which we will call lX

(n−1)X(n−2)

F .
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As the 0-cycles CX
(n−2)

F1
and CX

(n−2)

F2
on X(n−2) do not coincide, we deduce from items (2)–

(3) above and from [HL10, proof of Proposition 8.2.13 and discussion preceding Lemma 8.2.14]

that there exist finitely many curves X
(n−1)
1 , . . . , X

(n−1)
k ∈ U2, a positive natural number ν, and

sections σ
(n−1)
i ∈ H0

(
Q
X

(n−1)
i

,
(
L

(n−1)
0

)νr1)SL(V (n−1))
such that the linear combination

σ(n−2) :=
k∑
i=1

l
X

(n−1)
i X(n−2)

F

(
σ

(n−1)
i

)
∈ H0

(
S, λF (n−2)

(
u1(c|X(2))

)⊗νr1)SL(V )

separates s1 and s2; that is, we have

0 = σ(n−2)(s1) 6= σ(n−2)(s2) . (5.2)

In our setup, the prerequisites of Proposition 3.4 are fulfilled, and hence, some positive tensor
power of λF (n−2)

(
u1(c|X(2))

)
is SL(V )-equivariantly isomorphic to some (other) positive tensor

power of Ln−1. Via this SL(V )-equivariant isomorphism, the section σ(n−2) induces an invariant

section τ ∈ H0
(
S,L ⊗s

n−1

)SL(V )
for some s > 0. Because of (5.2), we have 0 = τ(s1) 6= τ(s2); that

is, τ separates the two points s1 and s2. These are therefore mapped to different points by the
morphism Φ: S →Mµss, which implies that F1 and F2 give rise to different points in the moduli
space Mµss. This concludes the proof of Theorem 5.5.

Remark 5.6. Note that in case 2 of the proof of Theorem 5.5 the subcase when Supp CF1 6=
Supp CF2 may be dealt with easily by using some complete intersection curve meeting only one of
the two supports. In the remaining subcase, if X(n−1) meets Supp CF1 = Supp CF2 , then all lifted

sections will vanish at s1 as well as at s2. As a consequence, the curves X
(n−1)
1 , . . . , X

(n−1)
k ∈ U2

used in the proof will in general avoid Supp CF1 = Supp CF2 , and none of the individual sec-

tions σ
(n−1)
i needs to vanish at s1. This is why lifting from several curves X

(n−1)
i is needed in

order to achieve separation in this case.

We now reduce the problem of identifying the equivalence relation realised by Mµss to a ques-
tion concerning the connectedness of the fibres of the “Quot to Chow” morphism [Fog69, Ryd08].

Lemma 5.7. Let E be a flat family of (H1, . . . ,Hn−1)-semistable sheaves on X over a (connected)

curve S such that for all s ∈ S one has E ]
s
∼= F and CEs = C for some fixed reflexive sheaf F and

some fixed cycle C of codimension two on X. Then, some positive tensor power of the associated
determinant line bundle Ln−1 on S is trivial.

Proof. The singular set Sing(Es) of each individual sheaf Es consists of a codimension two part,
which is equal to Supp(C), and a part of higher codimension, which might depend on s. The
union B :=

⋃
s∈S Sing(Es) is thus a constructible set of codimension at least two in X. We

may therefore choose a complete intersection curve X(n−1) that satisfies the conditions of our
Proposition 3.4 and that avoids B. Moreover, we observe that X(n−1) may be chosen in such
a way that in addition to the above, F |X(n−1) is a semistable locally free sheaf on X(n−1).

With these choices, we have Es|X(n−1)
∼= F |X(n−1) for all s ∈ S, and the restricted family

E |X(n−1)×S of semistable sheaves on X(n−1) gives rise to a single point in the corresponding
moduli space M ss

X(n−1)

(
c|X(n−1) ,det(F |X(n−1))

)
of semistable sheaves with the relevant Chern

classes and with fixed determinant on the curve X(n−1). The ample line bundle L 0 on the
moduli space M ss

X(n−1)

(
c|X(n−1) ,det(F |X(n−1))

)
described in [HL10, Theorem 8.1.11] pulls back

by the classifying morphism to a trivial line bundle on S, where it is linearly equivalent to
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the determinant line bundle λE (n−1)(u0(c|X(n−1))) by [HL10, Theorem 8.1.5(2)]. The assertion
on Ln−1 now follows from the isomorphism (3.5) of Proposition 3.4.

Lemma 5.7 implies the following non-separation criterion, which under an additional con-
nectivity assumption gives a converse to Theorem 5.5, and hence in this case gives a complete
sheaf-theoretic description of the equivalence relation realised by Mµss.

Proposition 5.8 (Non-separation). Let F1 and F2 be two (H1, . . . ,Hn−1)-semistable sheaves
with the same Hilbert polynomial P on X such that

(i) F ]1
∼= F ]2 =: F and

(ii) CF1 = CF2 =: C.

Suppose, in addition, that the isomorphism classes of the sheaves F/ grµ F1 and F/ grµ F2 lie in
the same connected component of the fibre over C of the canonical morphism from the seminor-
malisation of the Quot scheme Quot(F, PF − P ) to the Chow variety Chown−2(X) of cycles of
codimension two on X. Then, F1 and F2 give rise to the same point in Mµss.

Remark 5.9. The connectedness and even the irreducibility of the fibres of the Quot-to-Chow
morphism is known when X is two-dimensional [EL99], but does not hold in general. In absence
of such a connectedness result, our criterion only says that the number of points in Mµss which
give the same tuple (F ], CF ) is finite and bounded by the number of connected components of
the fibre over CF of the morphism from Quot(F ], PF ] − PF ) to Chown−2(X).

It is an interesting problem to identify situations in which Proposition 5.8 holds uncondi-
tionally; we will pursue this in future work.

5.2 Mµss as a compactification of the moduli space of µ-stable reflexive sheaves

By work of Altman and Kleiman [AK80, Theorem 7.4] (in the algebraic category) as well as of
Kosarew and Okonek [KO89] and Schumacher [Sch83] (in the analytic category), there exists
a (possibly non-separated) coarse moduli space Msim for isomorphism classes of simple coherent
sheaves on a fixed projective variety X. Since every µ-stable sheaf is simple by [HL10, Corol-
lary 1.2.8], it is a natural task to compare Msim with the newly constructed moduli space Mµss.
In fact, we will show that Mµss provides a natural compactification for the moduli space of
µ-stable reflexive sheaves (of fixed topological type) on X.

Note that by [BS76, V, Theorem 2.8] and the characterisation of reflexive sheaves given in
[HL10, Proposition 1.1.10(4)], reflexivity is an open condition in the base space of a flat (proper)
family. Let Mµs

refl be the locally closed subscheme of Msim representing (isomorphism classes of)
µ-stable reflexive sheaves with class c and determinant Λ. It follows for example from [KO89,
Proposition 6.6] and [Kob87, Corollary 7.12] that

(
Mµs

refl

)
red

is a separated quasi-projective variety.

Theorem 5.10 (Compactifying the moduli space of stable reflexive sheaves). There exists a na-
tural morphism

φ :
(
Mµs

refl

)wn →Mµss

that embeds
(
Mµs

refl

)wn
as a Zariski-open subset of Mµss.

Proof. The proof is divided into five steps.
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Step 1: constructing the map φ. As in Section 3.3, let Rµs and Rµss denote the locally
closed subschemes of the Quot scheme used to construct Mµss, consisting of all µ-stable and
µ-semistable quotients with the chosen invariants, respectively. Moreover, let Rµs

refl denote the
subscheme of reflexive µ-stable quotients. Furthermore, we let S = (Rµss)wn and Sµs

refl = (Rµs
refl)wn

be the respective weak normalisations, and we note that we have a natural SL(V )-equivariant
inclusion

Sµs
refl ↪→ S . (5.3)

It follows from [HL10, Lemma 4.3.2] that the centre of SL(V ) acts trivially on all the spaces
introduced above (that is, the action of SL(V ) factors over PGL(V )) and moreover that the
respective actions of PGL(V ) on Rµs and on (Rµs)wn are set-theoretically free.

We will show that the PGL(V )-action on Sµs
refl is proper. For this, it suffices to show that the

action on (Sµs
refl)an =: S is proper in the topological sense. As this action is set-theoretically free,

it suffices to establish the following two properties:

(α) The quotient topology on S/PGL(V ) is Hausdorff.

(β) There exist local slices through every point of S; that is, through every point s ∈ S there
exists a locally closed analytic subset T ⊂ S containing s such that PGL(V ) • T is open in S
and such that the map PGL(V )× T → PGL(V ) • T ⊂ S is biholomorphic.

If we set M :=
(
(Mµs

refl)wn
)an

, then M is the (analytic) coarse moduli space for families of µ-
stable reflexive sheaves with the chosen invariants parametrised by weakly normal complex base
spaces. Consequently, the restriction of the universal family from R to S gives rise to a holomor-
phic classifying map π : S → M. Since isomorphism classes of sheaves parametrised by S are
realised by the PGL(V )-action, cf. [HL10, Section 4.3], the map π induces an injective continu-
ous map S/PGL(V )→M. SinceM is Hausdorff, S/PGL(V ) is likewise Hausdorff. This shows
property (α).

Now, let s0 ∈ S, and let π(s0) be the corresponding point in the moduli space M. Then,
we may find an open neighbourhood W of π(s0) in M such that there exists a universal family
U over W × X; see [KO89, Theorem 6.4] or [AK80, Theorem 7.4]. After shrinking W if nec-
essary, the family U induces a holomorphic section σ : W → π−1(W ) ⊂ S of π|π−1(W ) through
s0 ∈ S. Since every fibre of π is a PGL(V )-orbit, we conclude that PGL(V ) • σ(W ) = π−1(W ) is
open in S. Moreover, since π|σ(W ) : σ(W ) → W is biholomorphic, hence bijective, and since M
parametrises isomorphism classes of µ-stable reflexive sheaves, for any s ∈ σ(W ) =: T we have
PGL(V ) • s ∩ σ(W ) = {s}. As a consequence, the natural map η : PGL(V )× T → PGL(V ) • T
is holomorphic, open, and bijective. As PGL(V ) • T ⊂ S is weakly normal, η is therefore biholo-
morphic; that is, T = σ(W ) is a local holomorphic slice through s0.

To sum up, we have established that PGL(V ) acts properly on Sµs
refl. As a consequence, the

geometric quotient Sµs
refl/PGL(V ) exists in the category of algebraic spaces [Kol97], and once

the existence of this quotient is established, it is rather straightforward to see that in fact
(Mµs

refl)wn ∼= Sµs
refl/PGL(V ). By abuse of notation, we will also denote by π the corresponding

quotient map Sµs
refl → (Mµs

refl)wn.

Recalling the inclusion (5.3), we may restrict the SL(V )-invariant and hence PGL(V )-inva-
riant map Φ (cf. Definition 4.4) to Sµs

refl. As π is a categorical quotient, the resulting map descends
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to a regular morphism φ : (Mµs
refl)wn →Mµss completing the following diagram:

Sµs
refl
� � //

π

��

S

Φ

��
(Mµs

refl)wn φ //Mµss .

(5.4)

This concludes the construction of the desired map from (Mµs
refl)wn to Mµss.

Step 2: φ is injective. This follows immediately from Lemma 5.4.

Step 3: φ
(
(Mµs

refl)wn
)

is open. The set A := S \ Sµs
refl is an SL(V )-invariant closed subvariety

of S. It follows from Proposition 4.2 that its image Φ(A) ⊂Mµss is closed. Furthermore, as a con-
sequence of Lemma 5.4 we deduce that A is Φ-saturated; that is, Φ−1(Φ(A)) = A. Consequently,
the set

U := φ
(
(Mµs

refl)wn
)

= Φ
(
Sµs

refl

)
= Mµss \ Φ(A)

is open, as claimed.

Step 4: φ is open as a map onto its image U . Since we have already seen that φ : (Mµs
refl)wn →

U is bijective, it suffices to show that φ : (Mµs
refl)wn → U is closed. Let Ẑ be any closed subvariety

of (Mµs
refl)wn. Then, let Z ⊂ Sµs

refl be its preimage under π, and Z the closure of Z in S, which is
automatically SL(V )-invariant. As a consequence of Proposition 4.2, the image Φ(Z) is closed
in Mµss. Hence, φ(Ẑ) = Φ(Z) ∩ U is closed in U , as claimed.

Step 5 : conclusion of proof. Summarising the previous steps, we know that φ : (Mµs
refl)wn →

U is a bijective open morphism. Hence, its (set-theoretical) inverse φ−1 is continuous. Since
U ⊂ Mµs is weakly normal by construction, it follows that φ−1 is regular, and hence that φ is
an isomorphism, as claimed.

Remark 5.11. Theorem 5.10 together with Proposition 6.7 below solves an old problem (raised
for example independently by Tyurin and Teleman [Tel08, 3.2, Conjecture 1]) of exhibiting a
sheaf-theoretically and geometrically meaningful compactification of the gauge-theoretic moduli
space of vector bundles that are slope-stable with respect to a chosen Kähler class [ω] on a given
Kähler manifold, in the particular case of projective manifolds and classes [ω] ∈ Amp(X)R.

5.3 Comparing Mµss with the Gieseker–Maruyama moduli space

Up to this point, we have considered multipolarisations (H1, . . . ,Hn−1) made up of possibly
different ample line bundles Hi. In this section, we investigate the special case where H1 =
H2 = . . . = Hn−1 =: H. In this setup, a compactification of the space of H-slope-stable vector
bundles has long been known to exist, the so-called Gieseker–Maruyama moduli space; see [HL10,
Chapter 4] and the references given there. The following result compares this Gieseker–Maruyama
moduli space with our newly constructed moduli space Mµss.

Proposition 5.12 (Comparing MGss and Mµss). Let X be a projective manifold of dimen-
sion n with ample line bundle H, let Mµss = Mµss(c,Λ) be the moduli space of µH -semistable
sheaves with Chern classes given by c ∈ K(X)num and with fixed determinant line bundle Λ,
and let MGss = MGss(c,Λ) be the Gieseker–Maruyama moduli space for sheaves with the same
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invariants. Then, the following hold:

(1) There exists a line bundle λMGss

(
u(c)

)
on MGss, unique up to isomorphism, such that for

every flat family E of Gieseker-semistable sheaves parametrised by a scheme Z, with associated
classifying morphism ΨE : Z →MGss, we have

Ψ∗E
(
λMGss

(
u(c)

)) ∼= λE

(
un−1(c)

)
.

In the presence of group actions on Z and E , this isomorphism is an isomorphism of linearised
line bundles. We will denote the pullback of the line bundle λMGss

(
u(c)

)
to the weak normalisa-

tion (MGss)wn by L n−1.

(2) The line bundle L n−1 is semiample. We set

MGss
n−1 := Proj

(⊕
k>0

H0
((
MGss

)wn
,L
⊗k
n−1

))
,

and we denote the natural morphism from (MGss)wn to MGss
n−1 by ΦGss

n−1.

(3) If N ∈ N+ is as in the Main Theorem and S is as defined in (3.10), the restriction of
the universal family F from S to the open subset SGss := {s ∈ S |Fs is Gieseker-semistable}
induces a morphism Φ: (MGss)wn →Mµss such that

Φ
∗
(OMµss(1)) ∼= L

⊗N
n−1 . (5.5)

The Stein factorisation of Φ is given by the following commutative diagram:

(MGss)wn

Φ

%%
ΦGssn−1

��
MGss
n−1

η //Mµss .

(5.6)

The proof of Proposition 5.12 is a combination of standard arguments and our main result.
For details we refer the reader to the preprint version of this paper [GT13].

Remark 5.13. The map Φ is birational when restricted to the respective closures of the weak
normalisation (Mµs

refl)wn of the moduli space of µ-stable reflexive sheaves, which embeds into both
(MGss)wn and Mµss; cf. Section 5.2.

Remark 5.14. Note that in the surface case n = 2 the starting point of Le Potier [LP92] and
Li [Li93] is to study the line bundle λMGss

(
u1(c)

)
on MGss. Both authors show that this bundle is

semiample. Le Potier [LP92, Section 4] then studies the maps given by complete linear systems of
sections in high powers of L n−1, whereas Li [Li93, Section 3] focuses on linear systems of sections
that are lifted from curves. Later, Huybrechts and Lehn [HL10, Chapter 5] introduce an approach
that does not restrict to families of Gieseker-semistable sheaves, but more generally considers
families of slope-semistable sheaves. It follows from the description of the resulting moduli spaces
that the slightly different approaches of Le Potier, Li, and Huybrechts–Lehn induce the same
equivalence relation on MGss, and are hence equivalent.

6. Wall-crossing problems

In the present section, we investigate wall-crossing questions for moduli spaces of sheaves on
base manifolds of dimension greater than two. The results obtained here, especially Theorem 6.6
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and Proposition 6.7, are one of the main motivations for constructing the moduli space of
(H1, . . . ,Hn−1)-semistable sheaves, as carried out in the previous sections of this paper.

6.1 Motivation—The work of Qin and Schmitt

As sketched in the introduction, there is a well-developed theory for wall-crossing phenomena
of moduli spaces of sheaves on surfaces. Investigating these phenomena for moduli spaces of
Gieseker-semistable sheaves over higher-dimensional base manifolds, Qin adapts his notion of
“wall” from the two-dimensional to the higher-dimensional case. But in contrast to the surface
case, he immediately finds examples of varieties (with Picard number three) where these walls
are not locally finite inside the ample cone; see [Qin93, Example I.2.3].

In order to avoid these pathologies, Schmitt [Sch00] restricts his attention to segments in-
side the ample cone that connect integral ample classes. Provided that wall-crossing occurs on
a rational wall, he is able to derive results that are similar in spirit those to those obtained for
two-dimensional base manifolds by Matsuki and Wentworth [MW97]. However, he also gives ex-
amples of threefolds where this condition is not satisfied. More precisely, he exhibits threefolds X
with Picard number two carrying a rank two vector bundle E that is µ-stable with respect to
some integral ample divisor H0 and unstable with respect to some other integral ample divisor
H1 such that the class Hλ := (1 − λ)H0 + λH1 for which E becomes strictly semistable is irra-
tional; see [Sch00, Example 1.1.5]. This irrationality can be traced back to the fact that λ ∈ R is
obtained as the solution of a quadratic equation given by a condition of the form H2

λD = 0 for
a suitable rational divisor D; cf. Section 6.3.2.

In the subsequent sections, we will solve these problems based on the philosophy that the
natural “polarisations” to consider when defining slope-semistability on higher-dimensional base
manifolds are not ample divisors but rather movable curves.

Recalling some notions already introduced in Section 2.2, given an n-dimensional smooth
projective variety X, let N1 = N1(X)R be the space of 1-cycles with real coefficients modulo
numerical equivalence, and let N1 = N1(X)R be the dual space of divisor classes, which contains
the open cone Amp(X) of real ample divisor classes. Consider the associated subset P (X) of N1

consisting of (n − 1)st powers of real ample classes in N1, which is contained inside the cone
spanned by the classes of movable curves.

We prove that P (X) is open in N1 and that the natural map Amp(X) → P (X) (taking
(n − 1)st powers) is an isomorphism; see Proposition 6.5. Moreover, we show in Theorem 6.6
that P (X) supports a locally finite chamber structure given by linear rational walls such that
the notion of slope-semistability is constant within each chamber. Furthermore, every chamber
(even if it is not open) contains products H1H2 · . . . ·Hn−1 of integral ample divisor classes; see
Proposition 6.7.

6.2 Boundedness

The current section is devoted to the proof of some preparatory boundedness results. Since
there is no added complication, we consider slope-semistability with respect to arbitrary Kähler
classes. We say that a torsion-free sheaf is (semi)stable with respect to some Kähler class ω if it
is (semi)stable with respect to ωn−1; cf. Section 2.2.

We start by stating two lemmata that can be proven by standard arguments: the first by
reduction to the locally free case [Tel08, Proposition 2.5] via Hironaka’s flattening theorem, the
second by reduction to the case of rank one destabilising subsheaves and by use of Lemma 6.1;
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see [GT13] for details.

Lemma 6.1. Let X be a compact complex manifold of dimension n endowed with a Kähler
class φ, and let E be a torsion-free sheaf on X. Then, for every d ∈ R the set BN(E)>d := {L ∈
Pic(X) | Hom(L,E) 6= 0, degφ L > d} is compact in Pic(X).

Lemma 6.2. Let X be a compact complex manifold of dimension n, and let φ0, φ1 ∈ H1,1(X,R)
be two Kähler classes on X. For every τ ∈ [0, 1] we set

φτ := (1− τ)φ0 + τφ1 ∈ H1,1(X,R) .

Suppose that the torsion-free sheaf E on X is semistable with respect to φ1 and unstable with
respect to φ0, and let

t := inf{τ > 0 |E is semistable with respect to φτ} .

Then, E is properly semistable with respect to φt.

The next proposition proves the boundedness of the set of torsion-free sheaves that are slope-
semistable with respect to Kähler classes. Although we do not need the result in this generality,
the techniques involved in the proof will be needed in the special case of polarisations from P (X).
We note that Proposition 2.5 only applies to multipolarisations, and hence does not cover the
case of polarisations from P (X) needed here.

Proposition 6.3 (Boundedness). Let X be a projective manifold of dimension n, and let K
a compact subset of the Kähler cone K(X) ⊂ H1,1(X,R) of X. Fix a natural number r > 0 and
classes ci ∈ H2i(X,R). Then, the family of rank r torsion-free sheaves E with ci(E) = ci that
are semistable with respect to some polarisation contained in K is bounded.

Proof. Let φ1 be some element of K. Choose an ample class φ0 in H1,1(X,R). For τ ∈ [0, 1],
set φτ := (1 − τ)φ0 + τφ1, and denote by µτ the slope with respect to φτ . We shall prove
boundedness by applying [HL10, Theorem 3.3.7] with respect to the ample polarisation φ0. In
order to establish the assertion of Proposition 6.3, it thus suffices to establish the following.

Lemma 6.4. In the setup of Proposition 6.3, if Emax is the maximally φ0-destabilising subsheaf of
a φ1-semistable torsion-free sheaf E of rank r, then µ0(Emax) is bounded by a constant depending
only on c1(E), c2(E), φ0, and K.

Proof. The idea of the proof is to produce a filtration of E such that the associated graduation
has φ0-semistable terms whose slope with respect to φ0 is bounded by a constant depending only
on c1(E), c2(E), φ0, and K. This constant will then bound µ0(Emax) as well.

To implement this idea, let E0 = E be φ1-semistable and set

t1 := inf{τ > 0 |E0 is semistable with respect to φτ} .

If t1 = 0, then E is φ0-semistable and our claim is verified. In the following argumentation we
will therefore assume t1 > 0. Under this assumption, we know from Lemma 6.2 that E0 can be
written as an extension

0→ E1 → E0 → E2 → 0 (6.1)

with a torsion-free subsheaf E1 and torsion-free quotient E2, such that E1 and E2 are both
φt1-semistable with slopes

µt1(E1) = µt1(E2) = µt1(E0) . (6.2)
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We define

a1 :=
rk(E2)c1(E1)− rk(E1)c1(E2)

rk(E0)
, (6.3)

and we note that (6.1) taken together with the additivity of Chern classes in short exact sequences
leads to

a1 =
rk(E2)c1(E0)

rk(E0)
− c1(E2) = c1(E1)− rk(E1)c1(E0)

rk(E0)
. (6.4)

We first establish a lower bound for the intersection of −a2
1 with φn−2

t1
. As a consequence of (6.2)

and (6.4) we obtain

a1φ
n−1
t1

= 0 ; (6.5)

that is, a1 is φt1-primitive. The Hodge index theorem implies that a 7→ −a2φn−2
t1

defines the

square of a norm on Ker(φn−1
t1

) ⊂ NS(X)R. In particular, from (6.5) we infer that

0 6 −a2
1φ

n−2
t1

. (6.6)

Moreover, equality in (6.6) is achieved if and only if a1 = 0.

With these preparations in place, we will show that −a2
1φ

n−2
t1

is bounded from above by some
constant that depends only on c1(E), c2(E), φ1, and K. Once this bound is established, we will
conclude that a1 is contained in a finite set that depends only on c1(E), c2(E), φ0, and K. The
equality (6.4) will then give the desired bound on c1(E1), and consequently also on c1(E2) (note
that φt1 belongs to the convex hull of K and φ0).

Before we proceed, recall the definition of the discriminant of a torsion-free sheaf F , cf. [HL10,
Section 3.4]:

∆(F ) =
1

rk(F )

(
c2(F )− rk(F )− 1

2 rk(F )
c2

1(F )

)
. (6.7)

A short computation using (6.7) and (6.4) shows that we can express the discriminant of E0

in terms of a1 and the discriminants of E1 and E2, as follows:

∆(E0) = − 1

2 rk(E1) rk(E2)
a2

1 +
rk(E1)

rk(E0)
∆(E1) +

rk(E2)

rk(E0)
∆(E2) . (6.8)

Since both E1 and E2 are φt1-semistable, the Bogomolov inequality (see [BS94, Corollary 3] for
the case of polystable reflexive sheaves and [BM10, Lemma 2.1] for the general case) holds for
both sheaves; that is, we have

∆(Ei)φ
n−2
t1
> 0 for i = 1, 2 . (6.9)

Combining the lower bound (6.6) with the expression (6.8) and the Bogomolov inequalities (6.9),
we infer that

0 6 − 1

2 rk(E1) rk(E2)
a2

1φ
n−2
t1
6 ∆(E0)φn−2

t1
,

which establishes the desired bound for a1, since φt1 lies in the compact set {(1−τ)φ0 +τφ1 | τ ∈
[0, 1], φ1 ∈ K}.

We now iterate this argument. For this, we set

t2 := inf{τ > 0 |E1, E2 are semistable with respect to φτ} .

If t2 = 0, we are done as before, for 0 ⊂ E1 ⊂ E is the desired filtration.
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When t2 6= 0, one of E1 and E2 will be properly φt2-semistable and the other φt2-semistable.
For simplicity of notation suppose that E2 is properly φt2-semistable and denote by E3 a subsheaf
of E2 with torsion-free quotient E4 such that E3 and E4 are φt2-semistable and µt2(E3) =
µt2(E4) = µt2(E2).

We will use the following shorthand notation: ri := rk(Ei), ci := c1(Ei), and ∆i := ∆(Ei). In
analogy with the definition of a1, cf. (6.3), we set

a2 :=
r4c3 − r3c4

r2
=
r4c2
r2
− c4 = c3 −

r3c2
r2

.

As in the first step we see that a2 is φt2-primitive. Furthermore, comparing discriminants we
arrive at

∆0 +
1

2r1r2
a2

1 =
r1

r0
∆1 +

r2

r0
∆2 =

r1

r0
∆1 +

r2

r0
·
(
− 1

2r3r4
a2

2 +
r3

r2
∆3 +

r4

r2
∆4

)
= − r2

2r0r3r4
a2

2 +
r1

r0
∆1 +

r3

r0
∆3 +

r4

r0
∆4 .

As above, the Hodge index theorem and the Bogomolov inequality now imply that a2, c1(E3),
and c1(E4) are bounded by some function that depends only on c1(E), c2(E), φ0, and K.

Since torsion-free sheaves of rank one are semistable with respect to any polarisation, the
process stops after at most r − 1 steps. It produces a filtration of E with the property that the
associated graduation has φ0-semistable torsion-free terms whose slopes with respect to φ0 are
bounded by some constant C = C(c1(E), c2(E), φ0,K) that depends only on c1(E), c2(E), φ0,
and K.

Finally, the inclusion Emax ⊂ E gives a non-trivial morphism from Emax to some term of this
graduation, showing that µ0(Emax) 6 C.

Proof of Proposition 6.3, continued. As already noted above, Lemma 6.4 implies Proposition 6.3
by [HL10, Proposition 3.3.7]. This concludes the proof of Proposition 6.3.

6.3 A chamber structure on the set of (n− 1)st powers of ample classes

In the present section we will construct a chamber structure on P (X) that reflects the change of
the induced semistability condition, and we will investigate the basic properties of this decom-
position.

6.3.1 Constructing the chamber structure. We first note the following fundamental relation
between Amp(X) and P (X).

Proposition 6.5 (Injectivity of power maps). The set P (X) is open in N1, and the map
pn−1 : α 7→ αn−1 is a homeomorphism from Amp(X) to P (X).

Proof. We put norms ‖ ‖k on the real vector spaces Hk,k
R (X). For 1 6 k 6 n the continuity of

the maps pk : H1,1
R (X)→ Hk,k

R (X) defined by α 7→ αk implies the existence of constants Ck such
that ‖αk‖k 6 Ck‖α‖k1 holds for all α. Furthermore, we infer that the total derivative of pn−1 at
a point α is the map β 7→ (n−1)αn−2 ·β. Thus, the restriction of pn−1 to the ample cone is a local
isomorphism by the Hard Lefschetz theorem. Consequently, the image P (X) of pn−1 is open inN1.

Let α and β be two real ample classes such that αn−1 = βn−1 in N1. Multiplication by α
from the left and by β from the right gives

αn = αβn−1 as well as αn−1β = βn , (6.10)
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and hence

αnβn =
(
αn−1β

)(
αβn−1

)
. (6.11)

On the other hand, the Khovanskii–Teissier inequalities [Laz04, Example 1.6.4] give(
αn−jβj

)(
αn−j−2βj+2

)
6
(
αn−j−1βj+1

)2
for 0 6 j 6 n− 2 . (6.12)

Multiplying all of these inequalities, we obtain the inequality

αnβn 6
(
αn−1β

)(
αβn−1

)
. (6.13)

Note that in our setup, (6.11) says that equality is attained in (6.13). Thus, equality must hold
in each of the Khovanskii–Teissier inequalities (6.12). Together with the equalities (6.10), this
immediately implies that all the mixed intersection products αn−jβj for 0 6 j 6 n are equal. It
follows that

(α− β)αn−1 = 0 ;

that is, α − β is primitive with respect to the polarisation α. By the Hodge index theorem, the
quadratic form q(γ) := γ2αn−2 is definite on the primitive part of H1,1

R (X). Therefore, setting γ =
α−β and invoking again the equality of mixed intersection products, we conclude that α = β.

As in the two-dimensional case, we obtain a locally finite linear rational chamber decompo-
sition, this time however not on the ample cone, but on P (X).

Theorem 6.6 (Chamber structure on P (X)). For any set of topological invariants (r, c1, . . . , cn)
of torsion-free sheaves on X and for any compact subset K ⊂ P (X), there exist finitely many
linear rational walls defining a chamber structure with the following property: if two elements α
and β in K belong to the same chamber, then for any torsion-free coherent sheaf F with the
given topological invariants, F is α-(semi)stable if and only if F is β-(semi)stable.

Proof. It suffices to consider the following situation: let φ0 be any real ample class in N1, let K̂ be
a convex compact neighbourhood of φ0 in Amp(X), and let K be its image under pn−1 in P (X).
Using the notation introduced in the proof of Lemma 6.4, it follows from the arguments given
there that change of semistability within K occurs only at hyperplanes of the form a⊥1 ∩ K;
see (6.5). In the same proof, we have seen that there are only finitely many such hyperplanes,
once the discrete invariants of the sheaves and the compact set K are fixed.

6.3.2 Explaining the pathologies found by Schmitt and Qin. By Proposition 6.5 our chamber
structure on P (X) pulls back to a locally finite chamber structure on Amp(X). The corresponding
walls thus obtained in Amp(X) are given by equations that are homogeneous of degree n − 1,
so, except in the case where ρ(X) := dimN1(X) 6 2, these need not be linear. This explains the
pathologies encountered in the approaches of Schmitt and Qin.

More precisely, on the one hand Schmitt [Sch00] considers segments connecting rational points
in Amp(X) as well as points on these segments where the induced notion of slope-stability
changes. These separating points are precisely the intersection points of his segments with our
walls. This clarifies the appearance of non-rational points as for example in [Sch00, Exam-
ple 1.1.5]. On the other hand, these intersection points are also contained in the linear walls
considered by Qin in [Qin93]. This in turn explains the pathologies of Qin’s linear chamber
structure on Amp(X), and in particular the fact that it cannot be locally finite in general.
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6.3.3 Representing chambers by complete intersection curves. The system of walls given by
Theorem 6.6 yields an obvious stratification of P (X) into connected chambers. We show next
that every such chamber, even if it is not of the maximal dimension ρ(X), contains a class which
is an intersection of integral ample divisor classes; cf. the discussion in Section 6.1. This is one
of the main motivations for the construction and investigation of a moduli space for families of
sheaves that are slope-semistable with respect such a complete intersection class, as carried out
in Sections 3 to 5 of this paper.

Proposition 6.7 (Representing chambers by complete intersection curves). Let X be a projec-
tive manifold of dimension n > 2, and fix some chamber C ⊂ P (X) of stability polarisations
in P (X). Then, there exist ample integral classes A and B such that the complete intersection
class An−2B lies in C.

Proof. For any H ∈ Amp(X), the R-linear map LH ∈ L(N1, N1) given by LH(D) := DHn−2 is
invertible by the Hard Lefschetz theorem. As the map Amp(X)→ L(N1, N

1) given by H 7→ L−1
H

is continuous, the same also holds for the map

e : Amp(X)×N1 → N1, (H,C) 7→ L−1
H (C) .

TakeH ∈ Amp(X) such thatHn−1 lies in the fixed chamber C ⊂ P (X). We have e(H,Hn−1)=H.
Since by Theorem 6.6 the chambers are cut out by rational walls, close to Hn−1 there exists
a rational element C in the same chamber as Hn−1. Furthermore, choose a rational ample class
A ∈ Amp(X) close to H. Then, B := e(A,C) is close to H, and hence in particular, B is
in Amp(X). By construction, we have

C = BAn−2 . (6.14)

Since C and A are rational, we infer that the intersection numbers BAn−2D = CD are rational
whenever D ∈ N1 is rational. But the elements An−2D span N1(X)Q as D runs through N1(X)Q.
Hence, B is a rational element in Amp(X). Together with equation (6.14) and with the observa-
tion that taking positive real scalar multiples in Amp(X) or P (X) does not change the induced
notion of slope-(semi)stability, this implies the claim.
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Added in proof A different argument for Proposition 6.5 in the Kähler context was given in
[FX14].
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