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Semistability of the tangent sheaf

of singular varieties

Henri Guenancia

Abstract

The main goal of this paper is to prove the polystability of the logarithmic tangent
sheaf TX(− logD) of a log canonical pair (X,D) whose canonical bundle KX + D is
ample, generalizing in a significant way a theorem of Enoki. We apply this result and
the techniques involved in its proof to get a Bogomolov-type inequality for Chern num-
bers for log canonical pairs, a version of the semistability theorem for stable varieties
(the higher-dimensional analogue of Deligne–Mumford’s stable curves) and finally the
generic semipositivity of the sheaf of logarithmic differentials of a log canonical pair
with pseudo-effective log canonical class, in the spirit of Miyaoka’s theorem.

1. Introduction

1.1 Semistability

This paper deals with the notion of slope semistability for coherent sheaves on singular varieties
using a differential-geometric approach. This notion was first introduced by Mumford [Mum63]
in his attempt to construct bounded families of vector bundles over a curve. Recall that a vector
bundle E over a complex projective curve C is said to be semistable (respectively, stable) if for
every proper subbundle F of E, we have

deg(F )

rkF
6

deg(E)

rkE

(
respectively,

deg(F )

rkF
<

deg(E)

rkE

)
,

where the degree of F is
∫
C c1(F ); the quantity deg(F )/ rkF is called the slope of F and

denoted µ(F ). When one tries to generalize this definition to higher-dimensional varieties, one
first needs an ample line bundle H (called a polarization) to define a degree and thus a slope:
degH(F ) = c1(F ) ·Hn−1 and µH(F ) = degH(F )/ rkF . And more importantly, in order to keep
the good moduli properties shared by stable vector bundles over curves, one needs to ask that
not only all subbundles of E have slope smaller than that of E, but also all its proper coherent
subsheaves; cf. Definition 3.1.
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Semistability of the tangent sheaf of singular varieties

1.2 The Kobayashi–Hitchin correspondence

One of the major developments regarding stable vector bundles is the celebrated Kobayashi–
Hitchin correspondence, relating the stability of a vector bundle E (an algebro-geometric pro-
perty) to the existence of a special hermitian metric on E (a differential-geometric property).

Kobayashi–Hitchin correspondence. Let E be a holomorphic vector bundle on a compact
Kähler manifold (X,ω). Then E is polystable with respect to ω if and only if E admits a Hermite–
Einstein metric with respect to ω.

Recall that a Hermite–Einstein metric h on E is a Hermite–Einstein metric with respect
to a Kähler form ω if its Chern curvature tensor Θh(E) ∈ C∞(X,Ω1,1 ⊗ End(E)) satisfies
trω(Θh(E)) = µ IdE for some constant µ ∈ R. Here, polystability means that E is semistable
and is the sum of stable subsheaves (that automatically have the same slope).

This correspondence is due to Kobayashi–Lübke [KobS82, Lüb83] in the direction “Hermite–
Einstein ⇒ stable”, to Donaldson for Riemann surfaces [Don83], algebraic surfaces [Don85] and
manifolds [Don87] and to Uhlenbeck–Yau [UY86, UY89] for Kähler manifolds.

The case where E = TX is the tangent bundle of the manifold is of particular importance
because due to the symmetry of the Riemann curvature tensor, if ω is a Kähler form and h is the
induced hermitian metric on TX , then (TX , h) is Hermite–Einstein with respect to ω if and only
if ω is a Kähler–Einstein metric, that is, Ricω = µω for some constant µ ∈ R. For many reasons,
the Kähler–Einstein equation is in general easier to study or solve than the Hermite–Einstein
equation, and currently we dispose of many existence results and tools in Kähler–Einstein theory.
For example, when KX is ample (respectively, numerically trivial), the celebrated theorems of
Aubin–Yau and Yau [Aub78, Yau78] provide a unique negatively curved Kähler–Einstein metric
(respectively, Ricci-flat metric) on X living in c1(KX) (respectively, in any Kähler cohomology
class). Bringing these theorem together with the Kobayashi–Hitchin correspondence, we obtain
the following.

Corollary. Let X be a compact Kähler manifold. Then

(i) if KX is ample, then TX is polystable with respect to KX ;

(ii) if KX is numerically trivial, then TX is polystable with respect to any Kähler class.

1.3 Singular varieties and stability

In the present paper, we will strive to extend the above result in a singular setting, pushing fur-
ther the very elegant approach of Enoki [Eno88], who essentially proved the semistability of the
tangent sheaf of X in both cases above assuming merely that X has canonical singularities. His
strategy is to use approximate Kähler–Einstein metrics on a resolution X ′. By considering them
as approximate Hermite–Einstein metrics on TX′ , he obtains an “approximate slope inequality”.
Thanks to various estimates (due to Yau) about Monge–Ampère equations, he manages to con-
trol the error term in the inequality and to prove that it converges to zero at the end of the
approximation process.

In a related though somewhat different framework, Tsuji [Tsu88] proved the semistability of
the tangent bundle of smooth minimal projective manifolds (that is, with nef canonical bundle)
using a perturbation argument involving conic metrics along some suitable divisor whose angle
tends to 2π. He also states (without proof though) that the result holds as well for a log smooth
pair (X,D) such that KX +D is nef.
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We will generalize Enoki’s theorem from three different perspectives: we will merely require
that X has log canonical singularities, we will allow a boundary divisor and work in the setting
of log pairs, and finally we will show polystability in addition to semistability.

Theorem A. Let X be a compact Kähler space and D a reduced Weil divisor such that (X,D)
has log canonical singularities.

(i) If KX + D is ample, then the logarithmic tangent sheaf TX(− logD) is polystable with
respect to KX +D.

(ii) If KX +D ≡ 0, then TX(− logD) is semistable with respect to any Kähler class. Moreover,
if D = 0 and X has Kawamata log terminal (klt) singularities, then TX is actually polystable
with respect to any Kähler class.

Note that the ampleness of KX+D can be replaced by nefness without any change in the proof
(for the semistability, not the polystability though); however, it is not that common to consider
stability with respect to non-movable classes, which is why we left it out of the statement.

Compared to the proof in the case of canonical singularities, many serious new difficulties
pop up in this general setting, mainly because the presence of the boundary divisor D requires
us to work with cuspidal metrics instead of smooth metrics. Also, passing from canonical to log
canonical singularities depends upon a finer analysis of the regularity for solutions of degenerate
Monge–Ampère equations, which we develop in Section 2. We have outlined the new issues we
had to overcome in Section 3.2.

We should mention that Theorem A(ii) is closely linked with the main result of [GKP11],
which further investigates the tangent sheaf of varieties with canonical singularities and vanishing
first Chern class. Also, some of the techniques used in the proof appear in the very interesting
paper [CP14], where one of the clever ideas to treat boundary problems is to use conic metrics
(with angles going to zero); we will apply these ideas in the last section.

1.4 Stable varieties

Theorem A(i) can be used to deduce properties about the so-called stable varieties. In short, sta-
ble varieties are the higher-dimensional analogue of the stable curves introduced by Deligne and
Mumford, in the sense that they allow us to compactify the moduli space of canonically polar-
ized manifolds (say with fixed Hilbert polynomial). Their definition involves three requirements:
projectivity, positivity of the canonical bundle and specific singularities; cf. Section 4.1 and the
references therein for a more detailed account. For the time being, we just need to know that if X
is a stable variety, then KX can be defined as an ample Q-line bundle, and the normalization
map ν : Xν → X satisfies ν∗KX = KXν + D, where D is a reduced Weil divisor such that the
pair (Xν , D) has log canonical singularities.

Therefore, Theorem A guarantees that TXν (− logD) is semistable with respect to KXν +D,
and one can easily infer from this that Aut(X) is a finite group; cf. Corollary 3.6. One can
also ask whether one can say anything about the semistability of the tangent sheaf of X itself.
Inspired by the case of stable curves, we introduce the sheaf ν∗TXν (− logD) that should be
the “tangent sheaf” we want to look at in this setting, where the philosophy is to describe the
objects upstairs. For non-normal varieties, the notions of slope and stability exist, but are way
more delicate to deal with. We recall them in Section 4 and manage to prove the following result,
which is a non-trivial consequence of Theorem A.
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Semistability of the tangent sheaf of singular varieties

Theorem B. Let X be a stable variety, ν : Xν → X its normalization map and D ⊂ Xν the
conductor of ν. Then the sheaf ν∗TXν (− logD) is semistable with respect to KX .

The proof of this theorem requires us to understand the relationship between the slope of a
sheaf and that of its pull-back under the normalization map, which happens to be trickier than
one could imagine at first sight; cf. Remark 4.8.

1.5 Generic semipositivity

The Miyaoka generic semipositivity theorem [Miy87] asserts that if X is a normal projective
variety, then Ω1

X is generically semipositive unless X is uniruled. Recall that a reflexive sheaf
E on a normal projective variety X is generically semipositive if for any ample polarizations
H1, . . . ,Hn−1 and any coherent quotient F of E , the degree of F with respect to (H1, . . . ,Hn−1)
is non-negative, that is, (c1(F )·H1 · · · · ·Hn−1) > 0. This celebrated result had many applications
and was recently generalized to the case of log smooth pairs (X,D) such that KX +D is pseudo-
effective by Campana–Păun [CP13, CP14]. Capitalizing on their method and the techniques of
this paper, we are able to extend this to the following singular case.

Theorem C. Let X be an n-dimensional compact Kähler space, D a reduced Weil divisor such
that (X,D) has log canonical singularities and ω a Kähler form. If KX + D is pseudo-effective
(respectively, −(KX + D) is pseudo-effective), then Ω1

X(logD) (respectively, TX(− logD)) is
generically ω-semipositive.

In particular, if KX + D ≡ 0, the slope of the logarithmic tangent sheaf vanishes, so the
generic semipositivity of Ω1

X(logD) is equivalent to its semistability with respect to any Kähler
class. This is how we will prove Theorem A(ii).

1.6 A Bogomolov-type inequality

In the last section of this paper, we investigate applications of the Kähler–Einstein theory for
singular spaces to Chern numbers inequalities. In the smooth case, this is a very fruitful domain
(cf. Section 6), but for singular varieties, the lack of understanding of the Kähler–Einstein metrics
near the singularities makes it very hard to tackle such global questions. However, the point of
this article is to show that even limited control over the singularities of the metric lets us prove
semistability properties. Therefore, one can apply the Bogomolov–Gieseker inequality (gener-
alized by Miyaoka) to our semistable logarithmic tangent sheaf in the context we are working
in.

More precisely, let (X,D) be a projective log canonical pair of dimension n, where D is
a reduced divisor. Let π : Y → X be a log resolution of the pair (X,D); in particular, π∗D+Exc(π)
is a divisor with simple normal crossings (snc) support. We denote by ∆ the sum of the strict
transform of D and the exceptional divisor with zero log discrepancy; to put it in a different way,
KY + ∆− π∗(KX +D) is an exceptional divisor with coefficients strictly greater than −1.

Theorem 1.1. Let (X,D) be a projective log canonical pair as above. We have the following
Bogomolov-type inequalities:

(i) If KX +D is ample, then

c1(TY (− log ∆))2 · (π∗(KX +D))n−2 6
2n

n− 1
c2(TY (− log ∆)) · (π∗(KX +D))n−2 .
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(ii) If KX +D ≡ 0, then for any ample line bundle H on X, we have

c1(TY (− log ∆))2 · (π∗H)n−2 6
2n

n− 1
c2(TY (− log ∆)) · (π∗H)n−2 .

Of course, if the non-snc locus (X,D)sing has codimension greater than 2, then we can define c1

and c2 for the logarithmic tangent sheaf TX(− logD) as the push-forwards of the usual cycles
on (X,D)reg by the open immersion. If KX +D is ample, the projection formula yields

c1(TX(− logD))2 · (KX +D)n−2 6
2n

n− 1
c2(TX(− logD)) · (KX +D)n−2 ,

and if KX +D ≡ 0, it yields

c1(TX(− logD))2 ·Hn−2 6
2n

n− 1
c2(TX(− logD)) ·Hn−2 .

1.7 Organization of the paper

In Section 2 we obtain a Laplacian estimate for solutions of Monge–Ampère equations with
degenerate right-hand side, which will turn out to be crucial for the proof of the semistability.
In Section 3 we first recall the definitions of stability, log canonical singularities and logarithmic
tangent sheaf; then we state the first part of Theorem A, explain the difficulties and prove it.
In Section 4 we give the definition of stable varieties as well as semistability in a context of
non-normal varieties, and then prove Theorem B. In Section 5, extending the techniques from
Campana–Păun’s papers [CP13, CP14] to the singular case, we prove generic semipositivity for
the sheaf of logarithmic differentials assuming that the logarithmic canonical bundle is pseudo-
effective. Then we apply this result to prove Theorem A(ii). In Section 6 we prove a Bogomolov-
type inequality for Chern numbers on log canonical pairs.

2. A Laplacian estimate

This section is devoted to the technical Proposition 2.1, which can be seen as a generalization of
the Laplacian estimate obtained using the Chern–Lu formula. It will be used in the next section
to control the error term in the semistability inequality.

So let us first recall the Chern–Lu formula [Che68, Lu68], which is going to be a essential tool
to get the Laplacian estimate. Let (X,ωX) and (Y, ωY ) be two Kähler manifolds and f : X → Y
a holomorphic map satisfying ∂f 6= 0. Then

∆ωX log |∂f |2 >
RicωX ⊗ ωY (∂f, ∂f)

|∂f |2
− ωX ⊗RY (∂f, ∂f, ∂f, ∂f)

|∂f |2
,

where ∂f is viewed as a section of T ∗X ⊗ f∗TY .

Using this formula, when f is the identity map (but the Kähler forms differ), one can de-
rive so-called Laplacian estimates for the Kähler–Einstein equation provided that the reference
metric has holomorphic bisectional curvature bounded from above (cf. [JMR16, Section 7]). The
following proposition, inspired by [Pău08] (see also [BBEGZ11, Theorem 10.1]), enables us to
derive (weaker) Laplacian estimates in some cases where the Ricci curvature is not bounded from
below.

Proposition 2.1. Let X be a compact Kähler manifold of dimension n, and let ω and ω′ be
two cohomologous Kähler metrics on X. We assume ω′ = ω + ddcϕ, that there exists a smooth
function Ψ and that we have a constant C > 0 satisfying
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Semistability of the tangent sheaf of singular varieties

(i) supX |ϕ| 6 C,

(ii) supX Ψ 6 C and ddcΨ > −Cω,

(iii) Θω(TX) 6 Cω ⊗ IdTX ,

(iv) Ricω′ > −Cω′ − Cω − ddcΨ.

Then there exists some constant M > 0 depending only on n and C such that

ω′ >M−1eΨω .

In the above proposition, we used the operator dc := 1
2iπ (∂ − ∂̄), and we denoted by Θω(TX)

the Chern curvature of the hermitian vector bundle (TX , ω). The inequality in part (iii) is to be
understood in the sense of Griffiths semipositivity.

Proof. The main difficulty is that we do not have control over the lower bound on Ricω′. The
trick, inspired by [Pău08], is to add ψ in the Laplacian appearing in the Chern–Lu formula. Let
us now get into the details. We apply the Chern–Lu formula to f = id: (X,ω′)→ (X,ω). Then
|∂f |2 = trω′ ω. We denote by g and h the hermitian metrics induced by ω′ and ω, respectively.
The second term of the Chern–Lu formula is easily dealt with:

−ω′ ⊗Rh(∂f, ∂f, ∂f, ∂f) = −gij̄gkl̄Rhij̄kl̄
> −Cgij̄gkl̄(hij̄hkl̄ + hil̄hkj̄)

> −2C(trω′ ω)2 .

To analyze Ricω′ ⊗ ω(∂f, ∂f), it is convenient to introduce a suitable system of coordinates.
More precisely, at a given point p ∈ X, one can choose geodesic coordinates such that (hkl̄(0)) is
diagonal, gij̄(0) = δij , and the first-order derivatives of gij vanish at p (cf., for example, [B lo12,
(1.2)–(1.4)]). So, at p, we have

Ricω′ ⊗ ω(∂f, ∂f) =
∑
i,j,k,l

gik̄gjl̄Rg
ij̄
hkl̄

> −
∑
i,j,k,l

gik̄gjl̄(Cgij̄ + (Chij̄ + Ψij̄))hkl̄

= −
∑
i

(
Cgīi + gīigīi(C + Ψīi)

)
> −C

(∑
i

gīi

)
−

(∑
i

gīi

)
·

∑
j

gjj̄(C + Ψjj̄)


= −C trω′ ω − (trω′ ω) · trω′(Cω + ddcΨ) .

At that point, the Chern–Lu formula gives us

∆ω′ log trω′ ω > −3C trω′ ω − C − trω′ dd
cΨ ,

and therefore

∆ω′(log trω′ ω + Ψ) > −3C trω′ ω − C .
Setting A = 3C + 1, we get, as usual,

∆ω′(log trω′ ω + Ψ−Aϕ) > trω′ ω − nA− C .
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The end is classic: we choose a point p where log trω′ ω + Ψ−Aϕ attains its maximum; then

log trω′ ω 6 (log trω′ ω + Ψ−Aϕ)(p)−Ψ +Aϕ

6 (log(nA+ C) + sup Ψ + 2A sup |ϕ|)−Ψ ,

which gives the expected result since we have a uniform bound on ||ϕ||∞, by assumption.

Remark 2.2. Note that it is not clear a priori how to deduce the previous estimate using [Pău08]
by exchanging the roles of ω and ω′, because we would no longer have control over the bisectional
curvature of ω′.

Combining the previous result and Păun’s estimate, we obtain the following estimate.

Corollary 2.3. Let X be a compact Kähler manifold of dimension n, and let ω and ω′ be two
cohomologous Kähler metrics on X. We assume ω′ = ω + ddcϕ with ω′n = eψ

+−ψ−ωn for some
smooth functions ψ±, and that we have a constant C > 0 and some p > 1 satisfying

(i) supX ψ
+ 6 C and ||e−ψ− ||Lp(ωn) 6 C,

(ii) ddcψ± > −Cω.

Then there exists some constant M > 0 depending only on n, p, C and ω such that

M−1eψ
+
ω 6 ω′ 6Me−ψ

−
ω .

3. Polystability of the logarithmic tangent sheaf

3.1 Generalities

In this section, we briefly recall the definitions of slope, semistability, various types of singu-
larities appearing in the minimal model program, as well as the (logarithmic) tangent sheaf
before presenting previously known results. We refer to [Har80], [KobS87, Chapter V] or [HL10]
for more details.

Notion of stability. In the following, X will be a complex projective normal variety of dimen-
sion n (or a normal Kähler space), and F will always denote a coherent sheaf. We set r = rk F ,
and we let det F := (ΛrF )∗∗ be the determinant of F . It is a rank 1 reflexive sheaf on X, but
if X is not smooth, it is in general not a line bundle; that is, it is not locally free. We will denote
by c1(F ) the equivalence class of any Weil divisor attached to det F . We can now define the
slope.

Definition 3.1. Let H be an ample line bundle on X. We define the slope of F with respect
to H to be the rational number

µH(F ) :=
c1(F ) ·Hn−1

rk F
.

The same definition can be transposed without any change if H is merely the coholomogy
class of a Kähler form in a normal Kähler space. Let us now give the definition of slope stability,
which goes back to Mumford [Mum63] and Takemoto [Tak72].

Definition 3.2. Let E be a torsion-free coherent sheaf on X and H an ample line bundle. We
say that E is semistable (respectively, stable) with respect to H if for every coherent subsheaf
F ⊂ E (respectively, every non-zero and proper coherent subsheaf F ), we have

µH(F ) 6 µH(E ) (respectively, µH(F ) < µH(E )) .
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Semistability of the tangent sheaf of singular varieties

We say that E is polystable (with respect to H) if E is the direct sum of stable subsheaves with
the same slope.

Canonical and log canonical singularities. Let us now very briefly give a definition of the
class of singularities we are going to deal with (see [KM98] for a more detailed account).

Definition 3.3. Let X be a complex normal variety, D an effective Weil Q-divisor D such that
KX +D is Q-Cartier and π : X ′ → X a log resolution of (X,D). We define the coefficients ai by
the formula

KX′ = π∗(KX +D) +
∑

aiEi ,

where Ei is either an exceptional divisor or the strict transform of a component of D.

– If D = 0, we say that X has canonical (respectively, log terminal) singularities if for all i,
one has ai > 0 (respectively, ai > −1).

– Else, we say that the pair (X,D) has klt (respectively, log canonical) singularities if for all i,
one has ai > −1 (respectively, ai > −1).

All these singularities are normal, so that the notions of slope and semistability make sense
for these varieties.

The logarithmic tangent sheaf. Let us first recall that on an arbitrary complex variety X,
one can define the sheaf Ω1

X of Kähler differentials (cf. [Har77, II.8]) and define the tangent
sheaf TX of X as the dual (Ω1

X)∗ of the sheaf of Kähler differentials. If X is smooth, then this
sheaf corresponds to the sheaf associated with the tangent bundle TX . If X is merely normal,
then TX is a reflexive sheaf, so that by the observation above, it can equivalently be defined as
the push-forward of TXreg via the open immersion Xreg ↪→ X.

Let us now consider log pairs. Let X be a normal projective variety and D a reduced Weil
divisor on X. If the pair (X,D) is log smooth, that is, X is smooth and D is reduced with simple
normal crossings, we have a well-defined logarithmic tangent bundle TX(− logD) which is the
dual of the bundle of logarithmic differentials Ω1

X(logD). It simply consists of vector fields that
vanish along D; that is, if D is locally given by (z1 · · · zk = 0), then the sheaf at stake is the
locally free OX -module generated by

z1
∂

∂z1
, . . . , zk

∂

∂zk
,

∂

∂zk+1
, . . . ,

∂

∂zn
.

To define its analogue in a more general setting, we proceed as follows. We denote by (X,D)reg

the snc locus of the pair (X,D), that is, the locus of points x ∈ X where (X,D) is log smooth
in a neighborhood of x. As X is normal, it is smooth in codimension 1, and D is generically
smooth; therefore (X,D)reg is a Zariski-open set whose complement has codimension at least 2.
Let us denote by j : (X,D)reg ↪→ X the open immersion.

Definition 3.4. Let (X,D) be a log pair as above, and denote by U := (X,D)reg its snc locus.
The logarithmic tangent sheaf of (X,D), denoted by TX(− logD), is defined as j∗TU (− logD|U ).
Its dual is denoted Ω1

X(− logD) and is called the sheaf of (reflexive) logarithmic differentials.

The sheaf TX(− logD) (as well as its dual) is automatically coherent, and hence reflexive by,
for example, [Har80, Proposition 1.6]. One can equivalently define the logarithm tangent sheaf as
the sheafification of the module of derivations that preserve the ideal sheaf corresponding to D.
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When (X,D) is log smooth, the logarithmic tangent sheaf is locally free, and we will denote the
corresponding vector bundle by TX(− logD).

In the case where X is merely a compact normal Kähler space, one needs to be more careful,
as j∗TU (− logD|U ) is not automatically coherent, unlike in the projective case. However, one
can always consider the sheafification of the module of derivations that preserve the ideal sheaf
corresponding to D. This is an analytic coherent sheaf on X that extends TU (− logD|U ), and
therefore, by the main result of [Ser66], the sheaf j∗TU (− logD|U ) is itself a (reflexive) analytic
coherent sheaf. We denote it by TX(− logD), and call it the logarithmic tangent sheaf of (X,D).
Its dual, Ω1

X(− logD), is called the sheaf of (reflexive) logarithmic differentials.

3.2 Statement of the result

Our main result extends Enoki’s theorem (say, when KX is ample) to the case of a log canonical
pair (X,D) and also proves the polystability.

Theorem 3.5. Let X be a normal projective variety and D a reduced Weil divisor such that
(X,D) is log canonical and KX +D is an ample Q-line bundle. Then TX(− logD) is polystable
with respect to KX +D.

Compared to Enoki’s setting, in this generalized setting many new difficulties arise that
require much fine analysis and some recent work:

– getting precise estimates for the Monge–Ampère equations with a very degenerate right-
hand side (this is the content of Lemma 3.7, which is a combination of Proposition 2.1 and
[GW16, Theorem A])

– working with cuspidal metrics instead of smooth ones (which requires the delicate Proposi-
tion 3.8)

– analyzing the limiting behavior of the approximate Kähler–Einstein metrics (we will use
[BG14] and [GW16, Theorem B] in a crucial way) to get polystability

However, these complications come from the relatively large degree of generality that we chose
to work with, and we could have obtained weaker generalizations of Enoki’s theorem at a lower
cost; cf. Remark 3.10.

3.3 An application to automorphism groups

A first application of Theorem 3.5 concerns the finiteness of some automorphism groups. Indeed,
it is well known that semistable sheaves with negative slopes do not admit any non-trivial sections,
and relying on this fact and the above theorem, one can prove the following.

Corollary 3.6. The automorphism group Aut(X) of a stable variety X is finite.

For the definition of a stable variety, see Definition 4.1. The finiteness of the automorphism
group of such varieties was already well known; cf. [Miy83, BHPS13] or [BG14, Theorem 6.3] for
a differential-geometric proof in the normal case.

Proof of Corollary 3.6. Let ν : Y → X be the normalization of X. By the universal property of
the normalization, any automorphism of X can be lifted to an automorphism of Y , giving an
injection i : Aut(X)→ Aut(Y ); observe that any element in i(Aut(X)) preserves the conductor ∆
of the normalization. Moreover, the subgroup of Aut(Y ) fixing every connected component of Y
has finite index in Aut(Y ), so we can assume that Y is connected.
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Semistability of the tangent sheaf of singular varieties

So we are reduced to showing that for a normal variety Y and a reduced divisor ∆ such
that the pair (Y,∆) has log canonical singularities and KY + ∆ is ample, the automorphism
group Aut(Y,∆) of the pair (Y,∆) is finite; this group is defined as the (closed) subgroup of
Aut(Y ) fixing ∆. But any such automorphism will preserve KY + ∆, and therefore our group is
a subgroup of the automorphism of a polarized variety, so it is a linear group (as it embeds into
PGL(N,C) for some large integer N). Therefore Aut(Y,∆) is finite if and only if its tangent space
is trivial, but its tangent space is precisely H0(Y,TY (− log ∆)), the space of holomorphic vector
fields tangent to ∆. Indeed, given a 1-parameter family of such automorphisms (φt), each of them
preserves (Y,∆)reg, the snc locus of the pair, so taking the derivative at t = 0 yields a vector
field on (Y,∆)reg tangent to ∆. As TY (− log ∆)) is reflexive and the complement of (Y,∆)reg

has codimension at least 2, we get an element in H0(Y,TY (− log ∆)). The correspondence works
just as well in the other direction by restricting the vector field to (Y,∆)reg and taking its flow,
which extends to an automorphism of the pair (Y,∆) by [BBEGZ11, Lemma 5.2].

Now, any non-zero element ξ ∈ H0(Y,TY (− log ∆)) induces an injective sheaf morphism
f : OY → TY (− log ∆) (the kernel is a torsion sheaf, but OY is torsion free), hence f(OY ) is
a subsheaf of TY (− log ∆) with zero slope. This contradicts the semistability of TY (− log ∆),
whose slope −(KY + ∆)n/n is strictly negative.

3.4 Proof of Theorem A

Proof of Theorem 3.5. We proceed in four steps.

Step 1. Reduction to the log smooth case. Let (Y,∆) be a log canonical pair with ∆ a reduced
Weil divisor such that KY +∆ is ample, and let G be a coherent subsheaf of TY (− log ∆) of rank
r > 0. We choose a log resolution π : X → Y of the pair that is an isomorphism over its snc locus;
we denote by ∆′ the strict transform of ∆. There exists a π-exceptional divisor E =

∑
aiEi such

that KX +∆′ = π∗(KY +∆)+E, and we have ai > −1 for all i by the log canonical assumption.
Let us set F =

∑
ai=−1Ei, the “purely log canonical part” and D := ∆′+F ; for reasons that will

appear later, we want to find a coherent subsheaf F of TX(− logD) such that π∗c1(F ) = c1(G ).
We consider the snc locus (Y,∆)reg of the pair, which is an open subset of Y whose complement
has codimension at least 2, and we set U := π−1((Y,∆)reg) and let j : U → X denote the open
immersion. Then the sheaf F := (j∗(π

∗G )|U )∩TX(− logD) is a coherent subsheaf of TX(− logD)
that satisfies π∗c1(F ) = c1(G ) on (Y,∆)reg, hence on the whole Y .

Finally, as c1(TY (− log ∆)) is represented by −(KY + ∆), the projection formula yields the
following equivalences:

c1(G ) · (KY + ∆)n−1

r
6
c1(TY (− log ∆)) · (KY + ∆)n−1

n

⇐⇒ c1(F ) · π∗(KY + ∆)n−1

r
6
−π∗(KY + ∆)n

n

⇐⇒ c1(F ) · π∗(KY + ∆)n−1

r
6
−(KX + ∆′ − E) · π∗(KY + ∆)n−1

n

⇐⇒ c1(F ) · π∗(KY + ∆)n−1

r
6
c1(TX(− logD)) · π∗(KY + ∆)n−1

n
, (3.1)

as E is π-exceptional.

Therefore we are reduced to showing the semistability of TX(− logD) with respect to
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π∗(KY + ∆). Actually, we will prove a bit more and show that for every generically injective
sheaf morphism F → TX(− logD), we have the expected slope inequality.

Step 2. Construction of appropriate cusp metrics. Let us first introduce some notation. We
choose an ample line bundle A on X, a Kähler form ωA whose cohomology class is c1(A), and
a Kähler form ω0 on Y representing c1(KY + ∆). We set X0 := X\D, and we fix two parameters
ε, t > 0 for our regularization process. Finally, we consider for each i such that ai > −1 a
regularizing family (θi,ε)ε>0 of (1, 1)-forms in c1(aiEi) such that θi,ε converges to the singular
current ai[Ei] when ε goes to zero. An explicit formula for θi,ε can be given in terms of hermitian
metrics hi on OX(Ei) as well as sections si cutting out the divisors Ei:

θi,ε = ai

(
ε2|D′isi|2

(|si|2 + ε2)2
+

ε2θEi
|si|2 + ε2

)
,

where D′i is the (1, 0)-part of the Chern connection of (OX(Ei), hi) and θEi is its curvature. In
the following, we will work with the metric ω satisfying

Ricω = −ω + tωA + [D]−
∑
ai>−1

θi,ε . (3.2)

This metric ω belongs to c1(π∗(KY + ∆) + tA) and depends on ε and t, but we choose not to
mention its dependence to keep the notation lighter. It is smooth on X0 and has cusp singularities
along D; that is, around points where D is given by (z1 · · · zr = 0), the metric ω is uniformly
equivalent to the model cusp metric (also called Poincaré metric)

r∑
k=1

idzk ∧ dz̄k
|z|2 log2 |z|2

+
∑
k>r

idzk ∧ dz̄k .

The existence (and uniqueness) of ω is guaranteed by results of Kobayashi [KobR84] and Tian–
Yau [TY87], who obtained it as the solution of the Monge–Ampère equation

(π∗ω0 + tωA + ddcϕ)n =
eϕ+f

∏
i(|si|2 + ε2)ai∏
j |tj |2

ωnA ,

where f is some smooth function determined by ωA as well as the hermitian metrics chosen on E
and D, (si = 0) cuts out Ei for i such that ai > −1, and (tj = 0) cuts out the jth component of D.
Moreover, one can rewrite this equation in a perhaps more standard form using the potential
ϕP = −

∑
j log log2 |tj |2 of the cusp metric along D: setting ωP := π∗ω0 + tωA + ddcϕP and

ψ := ϕ− ϕP , the equation becomes

(ωP + ddcψ)n =
∏
i

(
|si|2 + ε2

)aieψ+FωnP , (3.3)

where F is a smooth function when read in the quasi-coordinates; cf. [KobR84] or [Gue14, Lem-
ma 4.3]. The metric ω = ωP + ddcψ (that depends strongly on ε and t) satisfies the following
property, which will be a cornerstone of the proof.

Lemma 3.7. For every fixed t > 0 and any section s = si or s = tj , the integral∫
X0

ε2

|s|2 + ε2
ωA ∧ ωn−1

converges to zero when ε goes to zero.
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Proof. Assume for the moment that we can prove that there is a constant C depending only on
t > 0 such that

ω > C−1
∏
ai>0

(
|si|2 + ε2

)aiωP . (3.4)

In view of equation (3.3), satisfied by ω, and the above assumption, we have

trω(ωA)ωn 6 C

∏
ai>−1

(|si|2 + ε2)aieψωnP∏
ai>0

(|si|2 + ε2)ai

for some C > 0 independent of ε (depending on sup |F | and a constant M > 0 such that
ωA 6MωP ). We need here another non-trivial input, as we want to get rid of ψ. This is possible
by invoking [GW16, Theorem A] (or, more precisely, the outcome of Sections 3.3 and 3.4, where
the Monge–Ampère equation studied is exactly (3.3) with t > 0 fixed) that provides a bound
sup |ψ| 6 C independent of ε (but depending on t).

Combining these observations, we get

ε2

|s|2 + ε2
ωA ∧ ωn−1 6

Cε2

|s|2 + ε2
·
∏

−1<ai<0

(
|si|2 + ε2

)aiωnP .
Checking the convergence to zero of our integral is now local on Supp(D + E). As this divisor
has simple normal crossing support, we can use Fubini’s theorem to reduce our problem to
a 1-dimensional one. We will be done once we have proved that both integrals∫

D

ε2idz ∧ dz̄
(|z|2 + ε2)1+δ

and

∫
D

ε2idz ∧ dz̄
(|z|2 + ε2) · |z|2 log2 |z|2

converge to zero for any δ ∈ (0, 1), where D is a small disc centered at 0 ∈ C. For the first
integral, we can perform the change of variable w = z/ε, giving the integral

ε2(1−δ)
∫
|w|261/ε

|dw|2

(1 + |w|2)1+δ
,

which goes to zero as 1 > δ > 0. As for the second one, we know that ε2(|z|2 + ε2)−1 6 1 and
that (|z|2 log2 |z|2)−1 ∈ L1(D); we then just have to apply the dominated convergence theorem
to conclude.

The only thing left to prove now is (3.4), and we would like to use Proposition 2.1 with ω′ = ω
and ω = ωP . So we check the four conditions. For condition (i), we write ω = ωP + ddcψ, where
the L∞ estimate on ψ comes from [GW16, Section 2.3–2.4]. For condition (iii), it is well known
that the reference metric ωP has bounded geometry so, in particular, it has a bounded curvature
tensor. As for conditions (ii) and (iv), we set Ψ :=

∑
ai>0 ai log(|si|2 + ε2); it obviously satisfies

condition (ii) and (outside D) we moreover have

Ricω > −ω + tωA − ddc
∑
ai>0

ai log
(
|si|2 + ε2

)
−

( ∑
−1<ai<0

aiε
2θEi

|si|2 + ε2
+
∑
ai>0

aiθEi

)
> −ω − CωP − ddc

∑
ai>0

ai log
(
|si|2 + ε2

)
= −ω − CωP − ddcΨ

for some sufficiently big constant C. Therefore, inequality (3.4) would follow from Proposition 2.1
if we could establish it for metrics ω, ω′ without the compactness assumption. It turns out that in
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our situation, the reference metric ωP has bounded curvature tensor, and the unknown metric ω
is complete with (qualitatively) bounded Ricci curvature (even bounded holomorphic bisectional
curvature), so that we can apply the generalized maximum principle of Yau and mimic the proof
of Proposition 2.1 without any serious change. This concludes the proof of (3.4), and hence of
the lemma.

Step 3. Computing the slopes using the singular metrics. We start with a generically in-
jective morphism F → TX(− logD). If r = rk(F ), then this morphism induces j : det F →
ΛrTX(− logD), where, by definition, det F := (ΛrF )∗∗. The strategy consists of endowing
TX(− logD) and F with the hermitian metrics induced by ω and computing the slopes of these
sheaves using the corresponding representatives of their first Chern classes. Two different types
of difficulty appear, though: First, as ω is cuspidal along D, it induces a singular hermitian
metric on TX(− logD), and it is not clear that one can use it to compute any slope (whether
for TX(− logD) or F ). Second, as ω is not Kähler–Einstein but only approximately Kähler–
Einstein, it is not clear that the error term in the slope inequality will vanish when the various
regularizing parameters (essentially ε and t) will converge to zero.

We start by addressing the first difficulty. In order to do so, we introduce the singularity
set W = W (F ), which is defined as the smallest analytic subset of X outside which the sheaf
morphism F → TX(− logD) is an injection of vector bundles. We denote by F the vector
bundle on X\W such that F = OX(F ) there Without loss of generality, one can assume that F
is saturated in TX(− logD) (it is enough to consider such subsheaves to test the semistability),
so that W has codimension at least 2 in X.

We denote by h the smooth hermitian metric induced by ω on TX(− logD) over X\D. It also
induces a smooth hermitian metric on F over X\(W ∪D), that we still denote by h. We claim
that h can be used to compute the slope of F :

Proposition 3.8. We have∫
X\(W∪D)

c1(F, h) ∧ ωn−1 = c1(F ) · (π∗(KY + ∆) + tA)n−1 .

Proof. This is far from being obvious, especially because of the singularities of ω along D. On
X\(W ∪D), the metric h induces a hermitian metric h∧r on ΛrF that we aim to compare with
a smooth hermitian metric h0 on det F—notice that ΛrF and det F coincide on X\(W ∪D).
We are now going to analyze the behavior of h∧r/h0 on W ∪ D. More precisely, if ξ denotes a
local trivialization of the line bundle det F , then the quantity h∧r(ξ)/h0(ξ) is independent of the
choice of ξ, so it induces a smooth positive function H on X\(W ∪D), and obviously ddc logH =
c1(det F , h0) − c1(F, h), so everything boils down to showing

∫
X\(W∪D) dd

c logH ∧ ωn−1 = 0.
For the sake of clarity, we will distinguish three cases, even if they could be treated in a unified
manner.

Case 1. Near a point x ∈ W\D, the morphism j : det F → ΛrTX(− logD) is degenerate.
Choose trivializations of all bundles at stake. Then there are holomorphic function (f1, . . . , fp),
where p =

(
n
r

)
, such that j = (f1, . . . , fp). Then H = |j|2h is the squared norm (for some hermitian

product on Cp) of a vector of holomorphic functions, and we claim that logH, possibly after
a modification, is the sum of a smooth function and a pluriharmonic function outside (j = 0)—
which is nothing else than W intersected with our trivializing chart. To see that, we choose a log
resolution ν of the ideal (f1, . . . , fp) which produces on the resolution a holomorphic function
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g and a trivial ideal sheaf (g1, . . . , gp) such that ν∗fi = gig for each i. Therefore, ν∗ logH =
log
∑
|gi|2 + log |g|2, and the first summand extends smoothly across the exceptional divisor

(g = 0) = ν−1(W ).

Case 2. Near a point x ∈ D\W , the hermitian metric h is degenerate, but F is a genuine
subbundle of TX(− logD). A local holomorphic frame of TX(− logD) is given by

z1
∂

∂z1
, . . . , zk

∂

∂zk
,

∂

∂zk+1
, . . . ,

∂

∂zn
.

Also, ω is (possibly non-uniformly in t, ε, though) equivalent to the standard Kähler metric
with cuspidal singularities along D. Therefore, in these coordinates h is equivalent to the matrix
hcusp := diag((− log |z1|2)−2, . . . , (− log |zk|2)−2, 1, . . . , 1). Also, near x, the line bundle ΛrF is
locally generated by one element ξ ∈ ΛrTX(− logD),

ξ =
∑

I=(i1,...,ir)

aI

 ∏
i∈I,i6k

zi

 ∂

∂zi1
∧ · · · ∧ ∂

∂zir
,

where I runs among all (unordered) r-tuples of {1, . . . , n}. With respect to Λrhcusp, the squared
norm of ξ is equal to

∑
I |aI |2

∏
i∈I∩{1,...,k}(− log |zi|2)−2. We choose an r-tuple I such that

aI(x) 6= 0. One can assume that aI does not vanish, up to shrinking the neighborhood we are
working on. As h∧r is equivalent to Λrhcusp, we infer that

log |ξ|2h∧r >
∑

i∈I∩{1,...,k}

− log log2 |zi|2 − C (3.5)

for some given constant C > 0. Remember that our ultimate goal is to show that∫
X\(W∪D)

ddc logH ∧ ωn−1 = 0 .

A way to prove this is to prove that logH is regular enough that this integral is actually coho-
mological. Of course, logH is not smooth (or even bounded), but the above inequality tends to
suggest that it has finite energy in the sense of [GZ07]. But a zero-order bound like this does not
quite suffice to support this claim, as we also crucially need to bound its complex Hessian from
below. As ξ is a (local) holomorphic section of the hermitian bundle (ΛrTX , h) over X\D, one
can write

ddc log |ξ|2h =
1

|ξ|2h

(
|∇ξ|2 − |〈∇ξ, ξ〉|

2

|ξ|2h

)
− 〈Θh(ΛrTX)ξ, ξ〉

|ξ|2h
,

where Θh(ΛrTX) is the Chern curvature tensor of (ΛrTX , h) and ∇ is the (1, 0)-part of its Chern
connection. As |〈∇ξ, ξ〉|2 6 |∇ξ|2 · |ξ|2, the term in the parentheses on the right-hand side is non-
negative. Moreover, we know from [KobR84, TY87] that (X\D,ω) has bounded geometry, so
in particular ω has bounded holomorphic bisectional curvature. Therefore the curvature tensor
of (ΛrTX , h) is bounded too, so that there is a constant C (depending on ε and t) such that
Θh(ΛrTX) 6 Cω ⊗ IdΛrTX in the sense of Griffiths semipositivity; in particular, we get

ddc log |ξ|2h > −Cω . (3.6)

Still, one cannot conclude yet that logH is in a finite energy class. Indeed, all we wrote requires ξ
not to vanish (so it applies as long as we are far away from W ), and, also, the inequality (3.6) does
not say that logH is quasi-plurisubharmonic (quasi-psh for short), as ω is certainly not dominated
by a smooth Kähler form on X. The first issue will be addressed by using the methods of the first
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item above; as for the second, if we introduce ϕP :=
∑
− log log2 |tj |2, where the tj are sections

cutting out the components of D (and the norms are taken with respect to arbitrary smooth
hermitian metrics), then ddcϕP is quasi-psh and there exists a fixed smooth Kähler metric ω0

on X such that ω0 + ddcϕP has cusp singularities along D. In particular, there exists a C > 0
(depending on t and ε, once again) such that ω0 + ddcϕP > C−1ω. Also, it follows from [Gue14,
Proposition 2.3] that ϕP ∈ E(X,ω0); that is, ϕP has finite energy in the sense of [GZ07].

If W were empty, then for some big constant C > 0, the function logH + CϕP would be
a quasi-psh function dominating a multiple of ϕP up to a constant, so it has finite energy too.
Also, ω is a finite energy current (its potential is equal to ϕP +O(1)), therefore

∫
X\D dd

c(logH+

CϕP )∧ωn−1 = 0. By linearity and as ϕP has finite energy, we deduce
∫
X\D dd

c logH∧ωn−1 = 0,
which had to be showed.

Case 3. We now deal with the general case. The morphism j : det F → ΛrTX(− logD)
induces a non-zero section t of ΛrTX(− logD)⊗(det F )−1. We choose a log resolution ν : X̃ → X
of the ideal sheaf defined by t and D, which is co-supported on W ∪ D. Let D′ be the strict
transform of D, and let us analyze the behavior of ν∗(logH) along Exc(ν)∪D′. By the previous
two items, ν∗(logH) dominates a (global) finite energy function locally outside Exc(ν) ∩ D′,
and its complex Hessian is bounded from below by a (negative) constant times a cuspidal metric
along D′. So let us now see what happens at a point x ∈ Exc(ν)∩D′. Pick a small neighborhood U
of x, and let ξ be a holomorphic trivialization of det F on U . Over U\(W ∪D), the trivialization
ξ is a non-vanishing section of ΛrTX(− logD) that can be written

ξ =
∑

I=(i1,...,ir)

aI

(∏
i∈I
i6k

zi

)
∂

∂zi1
∧ · · · ∧ ∂

∂zir
,

as above. Of course, the ideal sheaf defined by t is given by (aI) on U . Moreover, as ω is equivalent
to a cusp metric along D,

log |ξ|2h = log

∑
I

|aI |2
∏

i∈I∩{1,...,k}

(
− log |zi|2

)−2

+O(1) . (3.7)

We write ν∗aI = gIg, where g cuts out the exceptional divisor on ν−1(U) and (gI) is a trivial
ideal sheaf on this open set. Now, pick a point x̃ above x, that is, with ν(x̃) = x. There exist
an I such that gI(x̃) 6= 0; moreover, as ν∗D is an snc divisor, there are holomorphic coordinates
(z̃1, . . . , z̃n) around x̃ such that each of the ν∗zi (1 6 i 6 k) is a monomial in the z̃j . Therefore,
around x̃, we have

ν∗ log |ξ|2h > log |g|2 +
∑

i∈I∩{1,...,k}

− log log2 |ν∗zi|2 − C .

Take for example ν∗z1; by the observations above, we have ν∗z1 = z̃a11 · · · z̃ann for some non-
negative integers a1, . . . , an. Then − log log2 |ν∗zi|2 = −2 log

(
−
∑n

i=1 ai log |z̃i|2
)
, which by the

concavity of the logarithm is greater than (1/
∑
ai)
∑n

i=1− log log2 |z̃i|2. In the end, we obtain

ν∗ log |ξ|2h > log |g|2 + k
n∑
i=1

− log log2 |z̃i|2 − C . (3.8)

Let us gather all that has been said so far. Take a section σ cutting out the exceptional divisor E
of ν, which we are going to measure with respect to an arbitrary smooth hermitian norm hE .
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Let us set as before ϕP :=
∑
− log log2 |si|2. We consider the function

ψ := ν∗

(
log
|ξ|2h
|ξ|2h0

+ CϕP

)
− log |σ|2

on ν−1(X\(W ∪D)). We claim that for C big enough, ψ extends to a quasi-psh function on X̃
having finite energy. Indeed, by the bound ddc log |ξ|2h > −Cω, there exists a Kähler metric ω0 on
X such that ddc(log |ξ|2h+CϕP ) > −ω0 outside W ∪D, for C big enough. Therefore ddcψ > −ω̃0

on ν−1(X\(W ∪D)) for some Kähler form ω̃0 on X̃. As ψ is bounded from above thanks to (3.7),
it therefore extends as a quasi-psh function on X̃. Moreover, we retrieve from (3.8) that near
each point of the exceptional divisor (or D′), ψ dominates a function satisfying the criterion
[BBGZ13, Lemma 2.9] thanks to [Gue14, Proposition 2.3], so ψ satisfies this criterion globally,
hence has finite energy. Therefore,∫

ν−1(X\(W∪D))
ddcψ ∧ (ν∗ω)n−1 = 0 .

Moreover, ϕP has finite energy, and the equality ddc log |σ|2 = −ΘhE (E) outside E extends
smoothly across the exceptional divisor (and D). As a result, we have∫

X\(W∪D)
ddc logH ∧ ωn−1 =

∫
ν−1(X\(W∪D))

ν∗ddc logH ∧ (ν∗ω)n−1

=

∫
ν−1(X\(W∪D))

ddc[ψ + log |σ|2 − Cν∗ϕP ] ∧ (ν∗ω)n−1

= −
∫
X̃

ΘhE (E) ∧ (ν∗ω)n−1 ,

which vanishes as E is ν-exceptional and ν∗ω is a finite energy current.

So we now know that we can use h to compute the slope of F . But outside W ∪D, the bundle
F = OX(F ) is a subbundle of TX , so the Chern curvature tensors of each of the hermitian bundles
can be related using the second fundamental form β ∈ Ω1,0 ⊗Hom(F, F⊥):

Θh(F ) = prF (Θh(TX)|F ) + β∗ ∧ β ,

where prF is the orthogonal projection onto F of the endomorphism part. Taking the trace (as
endomorphism), and then wedging with ωn−1, we get

c1(F, h) ∧ ωn−1 = trEnd(prF (trω Θh(TX)|F ))ωn/n+ trEnd

(
β∗ ∧ β ∧ ωn−1

)
. (3.9)

Integrating this identity over X\(W ∪D), we get, thanks to Proposition 3.8,

nc1(F ) · (π∗(KY + ∆) + tA)n−1 6
∫
X\(W∪D)

trEnd(prF (trω Θh(TX)|F ))ωn . (3.10)

The next goal is then to compute the integral on the right-hand side and express it in terms of
cohomological quantities.

Proposition 3.9. The integral∫
X\(W∪D)

trEnd(prF (trω Θh(TX)|F ))ωn

converges to −r(KY + ∆)n when first ε and then t converge to zero.
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Before starting the proof of the proposition, let us try understand what trω Θh(TX) is. We
choose geodesic coordinates (zi) for ω around some point x0, so that

Θh(TX)x0 =
∑
j,k,l,m

Rjk̄lm̄dzj ∧ dz̄k ⊗
(
∂

∂zl

)∗
⊗ ∂

∂z̄m
.

In particular,

trω Θh(TX)x0 =
∑
j,l,m

Rjj̄lm̄

(
∂

∂zl

)∗
⊗ ∂

∂z̄m

and using the Kähler symmetry Rjj̄lm̄ = Rlm̄jj̄ , we find

trω Θh(TX)x0 =
∑
j,l,m

Rlm̄jj̄

(
∂

∂zl

)∗
⊗ ∂

∂z̄m
.

It will be useful to introduce the operator ] (relatively to ω) which, with any (1, 1)-form α,
associates an endomorphism ]α of TX . More explicitly, if the metric ω is locally given by ω =
i
∑
gαβ̄dzα ∧ dz̄β and if we denote by (gαβ̄) the inverse matrix of (gαβ̄), then ] is defined by

]dz̄j :=
∑

k g
kj̄ ∂
∂zk

. Therefore, if α =
∑

i,j αij̄dzi ∧ dzj̄ , we have ]α =
∑

i,j,k αij̄g
kj̄dzi ⊗ ∂

∂zk
. In

particular,

trEnd(]α) = trω α .

Recalling that Ricω =
∑

j,l,mRlm̄jj̄dzl ∧ dz̄m, the computation above reads

trω Θh(TX) = ](Ricω) . (3.11)

We can now turn to the proof.

Proof of Proposition 3.9. Over X\D, our metric ω satisfies equation (3.2):

Ricω = −ω + tωA −
∑
ai>−1

θi,ε ;

therefore trω Θh(TX) = −]ω + t]ωA −
∑

ai>−1 ]θi,ε, and we have three terms to deal with.

First term. Of course, ]ω = IdTX , so that trEnd(prF (]ω)|F ))ωn = rωn, which when inte-
grated over X\(W ∪ D) yields r(π∗(KY + ∆) + tA)n, as ω has finite energy. So our task is to
show that as ε and t go to zero, the other terms vanish once properly contracted.

Second term. As for the second term, ωA is a positive form, so ]ωA is a positive endomor-
phism of TX . Hence

trEnd

(
prF ((]ωA)|F )

)
ωn 6 tr(]ωA)ωn = trω ωAω

n = nωA ∧ ωn−1 ,

and t
∫
X\(W∪D) nωA ∧ ω

n−1 = tnA · (π∗(KY + ∆) + tA)n−1 is independent of ε and converges to

zero when t→ 0. As a result, so does the non-negative integral
∫
X\(W∪D) tr

(
prF ((]ωA)|F )

)
ωn.

Third term. The last term is the more subtle to deal with. We are going to show that
for each i such that ai > −1, the integral

∫
X\(W∪D) trEnd(prF (]θi,ε)|F ))ωn converges to zero.

Remember that

θi,ε = ai

(
ε2|D′si|2

(|si|2 + ε2)2
+

ε2θEi
|si|2 + ε2

)
;

for the sake of clarity, let us drop the index i and decompose θ as θ = a(β + γ), where

β :=
ε2|D′s|2

(|s|2 + ε2)2
and γ :=

ε2θE
|s|2 + ε2

.

524



Semistability of the tangent sheaf of singular varieties

Start with γ. One can choose C > 0 big enough that ±Θ 6 CωA. As the ] operator respects
positivity (and hence inequalities), we have∣∣trEnd(prF (]γ)|F ))

∣∣ωn 6
Cε2

|s|2 + ε2
tr
(
prF ((]ωA)|F )

)
ωn

6
nCε2

|s|2 + ε2
ωA ∧ ωn−1 ;

hence ∣∣∣∣∣
∫
X\(W∪D)

trEnd(prF (]γ)|F ))ωn

∣∣∣∣∣ 6 C ′
∫
X\(W∪D)

ε2

|s|2 + ε2
ωA ∧ ωn−1 ,

which converges to zero as ε goes to zero, thanks to Lemma 3.7.

The term involving β cannot be treated in the same way, as it explodes too quickly. However,
we are going to take advantage of the facts that β has a sign and that β + γ belongs to a fixed
contractible cohomological class. So similarly to what we had before, we have

trEnd(prF (]β)|F ))ωn 6 nβ ∧ ωn−1 .

Writing β as (β + γ)− γ, we get∫
X\(W∪D)

tr
(
prF ((]β)|F )

)
ωn 6 C

∫
X\(W∪D)

(
θ ∧ ωn−1 +

ε2

|s|2 + ε2
ωA ∧ ωn−1

)
.

Using Lemma 3.7 and the fact that θ is smooth and ω has finite energy, we obtain that the
right-hand side converges to

CE · (π∗(KY + ∆) + tA)n−1

when ε goes to zero, where E is the (π-exceptional) divisor representing the cohomology class
of θ. Therefore, our (non-negative) integral converges to zero as t goes to zero, which ends the
proof of Proposition 3.9.

Combining the inequality (3.10) with Proposition 3.9, we have shown that the slope of F is
less than or equal to the slope of TX(− logD), which concludes the proof of the semistability of
TY (− log ∆) with respect to KY + ∆.

Step 4. Polystability. Let us prove that the sheaf TY (− log ∆) is polystable with respect to
KY + ∆. Using an induction argument, it would be enough to prove that whenever there exists
a sheaf G ⊂ TY (− log ∆) with the same slope as TY (− log ∆), there also exists another sheaf G ′

such that TY (− log ∆) ' G ⊕G ′. Indeed, if G is chosen of minimal rank amongst the subsheaves
of maximal slope, then G has to be stable, and we can run the whole argument with G ′ instead
of TY (− log ∆).

So let us assume the existence of such a subsheaf G . By the arguments of step 1, we can
find a subsheaf F of TX(− logD) with the same slope as TX(− logD), which we may assume
saturated (hence reflexive). Let us set V = π−1((Y,∆)reg) = X\Supp(E) and V0 := V \D =
X\ Supp(D + E), and finally U0 = V0\W .

Going back to inequality (3.9), combining it with Proposition 3.9 and the fact that F has
the same slope as TX(− logD), we obtain that the integral∫

U0

trEnd(β∗t,ε ∧ βt,ε) ∧ ωn−1
t,ε (3.12)
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converges to zero when ε and then t go to zero. Here βt,ε is the second fundamental form of
F ⊂ TX with respect to the hermitian metric induced by ωt,ε.

The crucial input we now need is in [BG14] (more precisely, Theorem 4.5 combined with the
estimates from Sections 5.5 and 5.6: the estimates show that we can extract subsequences which
will converge smoothly outside the singularities, and Theorem 4.5 says that all the limit metrics
actually coincide and are equal to the Kähler–Einstein metric), where it is proved that there exists
a Kähler metric ω∞ on V0 such that ωt,ε converges to ω∞ in the topology of C∞ convergence
on the compact subsets of V0. Let β∞ the second fundamental form of F ⊂ TX induced by the
Kähler metric ω∞ on U0. By the smooth convergence of ωt,ε to ω∞ on the compact subsets of
V0, Fatou’s lemma applied to (3.12) shows that∫

U0

tr(β∗∞ ∧ β∞) ∧ ωn−1
∞ = 0 ,

so that tr(β∗∞∧β∞) and hence β∞ vanishes on U0. In particular, we get an holomorphic splitting

TX(− logD)|U0
' F|U0

⊕F⊥|U0
. (3.13)

We would like to extend this decomposition to V = π−1((Y,∆)reg) and push it forward to
(Y,∆)reg, where it would extend to Y by reflexivity. The difficulty here is that U0 ⊂ V has
codimension 1 because of D. So we first have to show how extend the splitting across D and
then use reflexivity arguments to get it on V .

Another way to reformulate (3.13) is to say that there is a holomorphic surjection of vector
bundles p : TX(− logD) → F over U0. Or better, we can view it as morphism p : TX(− logD)
→ TX(− logD) over U0 satisfying p2 = p and with norm less that 1; that is, for every v ∈
TX(− logD), we have |p(v)|ω∞ 6 |v|ω∞ . We want to extend p to U∩V . The additional information
we need lies in [GW16, Theorem B], where it is shown that ω∞ is equivalent to a cusp metric
along D on V . Now we choose a point x ∈ D∩V such that D is locally given by D = (z1 · · · zk = 0)
for some coordinates (zi) around x. Then

ei :=

{
zi

∂
∂zi

if 1 6 i 6 k,
∂
∂zi

if i > k

defines a holomorphic frame of TX(− logD) around x. By the previously cited result, the ω∞-
norm of ei is equivalent to (log(1/|zi|2))−1 if 1 6 i 6 k, and 1 if i > k. Let us consider (pij(z)),
the matrix of p with respect to the basis (ei). We know that there exists a constant C such that
|p(ei)|ω∞ 6 C for all i. One the other hand, as ω∞ is equivalent to the cusp metric, we have

|p(ei)|2ω∞ =

∣∣∣∣∣∣
n∑
j=1

pij(z)ej

∣∣∣∣∣∣
2

ω∞

> C−1

 r∑
j=1

|pij(z)|2

log2 1
|zi|2

+

n∑
j=r+1

|pij(z)|2
 .

Therefore, |pij(z)| is uniformly bounded near x if j > k, and |pij(z)| 6 log2(1/|zi|2) if 1 6 j 6 k.
In any case, pij is locally L2 near x (with respect to a smooth volume form), and therefore it
extends analytically across D. As a consequence, we get a holomorphic splitting

TX(− logD)|U∩V ' F|U∩V ⊕F⊥|U∩V .
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As the complement of U ∩ V in V has codimension at least 2 and all the sheaves at play are
reflexive, the above decomposition extends as a sheaf isomorphism

TX(− logD)|V ' F|V ⊕ (jU∩V )∗(F
⊥
|U∩V ) ,

where jU∩V : U ∩ V → V is the open immersion. Pushing forward by π, we get on (Y,∆)reg:

TY (− log ∆)|(Y,∆)reg ' G|(Y,∆)reg ⊕ G ′|(Y,∆)reg
,

where G ′ is the (reflexive) sheaf on Y defined as (j(Y,∆)reg ◦ π ◦ jU∩V )∗(F⊥|U∩V ), where j|· : · → Y
generically denotes any open immersion from · to Y . And here again, the reflexivity of these
sheaves leads to the expected splitting

TY (− log ∆) ' G ⊕ G ′

on Y , ending the proof of the polystability of TY (− log ∆).

Remark 3.10. We already mentioned in the introduction and in Section 3.2 that Theorem 3.5 is
a significant generalization of what was known before, that is, the semistability of the tangent
sheaf in the case of canonical singularities; cf. [Eno88]. However, two consequential simplifications
occur if one is interested in a weakened form of Theorem 3.5.

First, if one focuses only on semistability and not polystability; then, instead of using the
inequality relating the Chern curvature form of a subbundle F to that of the ambient bundle TX
(cf. (3.9)), one can use a weaker form of it as in [CP14, equation (1.2)] which enables us to endow
detF with a smooth metric instead of the singular metric induced by ω (the singularities occur
because F is a subbundle only on an open set, and because ω may have cuspidal singularities
along a divisor), thus avoiding the use of the technical Lemma 3.8.

Second, if ∆ = 0, then the approximate Kähler–Einstein metrics ω are smooth and do not
have cuspidal singularities anymore. In that case, the crucial Lemma 3.8 becomes much easier
and was already treated in the item (∗∗) of the proof of [KobS87, Theorem 8.3].

4. An extension to stable varieties

4.1 Stable varieties

Once we have studied log canonical pairs with ample log canonical bundle, it is very tempting
to try to extend these results to varieties (or pairs) with possible non-normal singularities. More
precisely, we will consider stable varieties in the sense of Kollár–Shepherd–Barron [KSB88] and
Alexeev [Ale96]. These varieties are the higher-dimensional analogue of stable curves as defined
by Deligne–Mumford [DM69], and they arise in the compactification of the moduli space of
smooth canonically polarized projective varieties; their precise definition is stated below, though
we refer to the very nice paper [Kov13] and the references therein for more details and insight
on all the objects involved.

Definition 4.1. A stable variety is an equidimensional and reduced complex projective varietyX
with semi-log canonical singularities such that KX is ample.

Let us recall that X has semi-log canonical singularities if the only singularities of X in
codimension 1 are ordinary double points (that is, locally analytically isomorphic to (xy = 0) ∈
Cn+1), if X satisfies Serre’s S2 property and is Q-Gorenstein, and if the pair (Xν , Dν) formed
by the normalization of X and its conductor divisor has log canonical singularities. Here the
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conductor of the normalization is essentially the Weil divisor determined by the preimage of the
ordinary double points locus under the normalization map.

It is important to notice that stable varieties may be reducible, which is a source of difficulties
in view of the theory of semistability for coherent sheaves. Indeed, if we want to mimic the
definition of the slope of a coherent sheaf F , we need to define the (n − 1)-cycle c1(F ). We
can still do it on Xreg, but there is an issue when we want to extend it to the whole X, as the
complement of Xreg has codimension 1 in general. Actually, there is a very general notion of
slope, defined in a high degree of generality using Hilbert polynomials (see, for example, [HL10]),
and of course agreeing with the usual one on smooth varieties. We are now going to review these
notions briefly.

4.2 Slope and stability on non-normal varieties

On non-normal varieties, defining the slope of a coherent sheaf is more complicated. We recall
the definition; cf. [HL10]. Let X be an n-equidimensional reduced projective scheme over C, let
L be an ample line bundle, and let F be a coherent sheaf on X of dimension n (which means
that the support of F has dimension n). We know that the Hilbert polynomial P (F ) given by
m 7→ χ(X,F ⊗ L⊗m) can be uniquely written in the form

P (F ,m) :=
n∑
k=0

ak(F )
mk

k!
,

where the ak(F ) are integers. Note that for m large enough, the vanishing of the higher co-
homology implies P (F ,m) = h0(X,F ⊗ L⊗m). Of course, this polynomial depends on F and
on the polarization L. If X is integral, then the rank of F is defined as the rank of F at the
generic point (as F is locally free on some dense open set). In this more general framework, we
define the rank of F as a convex combination of the ranks of F restricted to each irreducible
component. More precisely, if X = X1 ∪ · · · ∪Xr, where the Xi are the irreducible components
of X, and if Li and Fi denote the restrictions of L and F to Xi, respectively, then we define

rk(F ) :=

r∑
i=1

(Lni ) rk(Fi)

(Ln)
.

One can also check that rk(F ) coincides with an(F )/an(OX); cf. [Laz04, Remark 1.1.26]. If F
has constant rank (that is, rk(Fi) is independent of i), then the rank of F is the same as rk(Fi)
for any i.

Now we need to define the degree of F with respect to L. To do this, we introduce the
suitable combination of the coefficients ak that gives the usual degree in the smooth case. More
precisely,

degL(F ) := an−1(F )− rk(F )an−1(OX) ,

and finally, one can define the slope as the quotient of the degree by the rank,

µL(F ) :=
degL(F )

rk(F )
.

Of course, this definition only make sense for sheaves with positive rank.

Remark 4.2. If X = X1q· · ·qXs is the disjoint sum of its irreducible components, and if F has
constant rank, then it follows from the definition that the slope of F with respect to a polarization
L on X is the sum of the slopes of F|Xi with respect to L|Xi for 1 6 i 6 s.
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The first thing to check is whether this definition generalizes the definition of slope that we
gave for normal varieties. Recall that if F is a coherent sheaf on a normal variety, we defined
c1(F ) to be the (n−1)-cycle represented by the closure of the Weil divisor attached to det(F|Xreg

).

Proposition 4.3. Let (X,L) be a polarized normal variety of dimension n and F a torsion-free
coherent sheaf on X. Then we have

degL(F ) =
(
c1(F ) · Ln−1

)
,

and, in particular, µL(F ) agrees with (c1(F ) · Ln−1)/ rk(F ).

Proof. Let π : Y → X be a resolution of X such that π is an isomorphism over Xreg. We will
show that the two quantities above coincide with (c1(π∗F ) · π∗Ln−1).

Using the projection formula and the fact that on Xreg, the cycles π∗c1(π∗(F )) and c1(F )
coincide, we see that (c1(π∗F ) · π∗Ln−1) = (c1(F ) ·Ln−1), so we have done half of the job. The
other equality requires a bit more work.

First, let us prove that degL(F ) = degπ∗L(π∗F ). If we define G to be the sheaf π∗F⊗π∗L⊗m,
then the degeneracy of the Leray spectral sequence provides the equality

χ(Y,G ) =
∑
q>0

(−1)qχ(X,Rqπ∗G ). (4.1)

Moreover, the projection formula gives us an isomorphism

Rqπ∗(π
∗F ⊗OY π

∗L⊗m)→ Rqπ∗(π
∗F )⊗OX L

⊗m .

As F is torsion free, it is locally free in codimension 1 (cf., for example, [KobS87, 5.15]), so if
we apply the projection formula once again, we obtain that the natural morphism

Rqπ∗(π
∗F )→ Rqπ∗OY ⊗OX F

is an isomorphism in codimension 2. Combining these two observations, we get a morphism

Rqπ∗(π
∗F ⊗OY π

∗L⊗m)→ Rqπ∗OY ⊗OX F ⊗OX L
⊗m ,

which is an isomorphism in codimension 2. Therefore, as π∗OY = OX , we get from (4.1):

χ(Y, π∗F ⊗ π∗L⊗m) = χ(X,F ⊗ L⊗m) +
∑
q>0

(−1)qχ(X,Rqπ∗OY ⊗F ⊗ L⊗m) +O
(
mn−2

)
.

Finally, as X is normal and π is an isomorphism over Xreg, the sheaves Rqπ∗OY are supported
in codimension at most 2 for q > 0 (cf. [Har77, 8.2 and 11.2], for example). Therefore, we obtain

χ(Y, π∗F ⊗ π∗L⊗m) = χ(X,F ⊗ L⊗m) +O
(
mn−2

)
.

These two polynomials have same leading-term coefficient, namely the top intersection of c1(F )⊗
L divided by n! (as π is generically of degree 1), so they have the same coefficient in front of the
second-highest power of m. As this is true for any torsion-free sheaf F , we have the same result
for OX too, so in the end we get degL(F ) = degπ∗L(π∗F ).

To conclude the proof of the proposition, we need to see that degπ∗L(π∗F ) = (c1(π∗F ) ·
π∗Ln−1). By the Riemann–Roch–Hirzebruch theorem, we know that

χ(Y, π∗F ⊗ π∗L⊗m) = rk(F ) · (π∗L)n
mn

n!

+

[(
c1(π∗F ) · π∗Ln−1

)
+

1

2

(
c1(Y ) · π∗Ln−1

)] mn−1

(n− 1)!
+O

(
mn−2

)
.

Applying this to F and OY , we get the expected equality.
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Now we would like to see, for a non-normal variety, how to relate the slope of a sheaf with the
slope of its pull-back by the normalization map. This is the content of the following proposition.

Proposition 4.4. Let X be a reduced equidimensional projective scheme over C, let L be a
polarization, and let F be a coherent sheaf which is locally free in codimension 1. If π : Y → X
is the normalization of X, then we have

µπ∗L(π∗F ) = µL(F ) .

Proof. First, let us define T := π∗OY /OX , and let us set r = rk(F ) (one may notice that F ,
being locally free in codimension 1, has constant rank). As L and π∗L are ample, we will assume
in the following that the power m to which we raise them is large enough that all the higher
cohomology groups involved are zero. As a consequence, we will identify the Euler–Poincaré
characteristic with h0. Using the projection formula combined with an argument similar to that
in the previous proof (we use here that F is locally free in codimension 1), we see that

h0(Y, π∗F ⊗ π∗L⊗m) = h0(X,F ⊗ L⊗m ⊗ π∗OY ) +O
(
mn−2

)
.

Moreover, as F is locally free in codimension 1, the short sequence

0→ F ⊗ L⊗m → F ⊗ L⊗m ⊗ π∗OY → F ⊗ L⊗m ⊗ T → 0

is exact in codimension 1. Combining these two identities, we get

an−1(π∗F ) = an−1(F ) + an−1(F ⊗ T ) ,

where the polarizations which respect to which the Hilbert polynomials are computed are re-
spectively L on X and π∗L on Y .

Therefore, we have

µπ∗L(π∗F ) =
1

r
an−1(π∗F )− an−1(OY )

=
1

r
an−1(F ) +

1

r
an−1(F ⊗ T )− an−1(OX) + (an−1(OY )− an−1(OX))

= µL(F ) +
1

r
an−1(F ⊗ T )− an−1(T ) .

If T is supported in codimension at most 2, then 1
ran−1(F ⊗ T ) = an−1(T ) = 0 and we are

done. Else, it is supported in a codimension 1 subvariety Z, so it follows from the Riemann–Roch
formula (in the reducible case, cf. [Kol96, Proposition VI.2.7]) that an−1(F ⊗ T ) = rk((F ⊗
T )|Z) = r · rk(T ) = ran−1(T ), where we again used that F is locally free in codimension 1. In
the end, we have proved that the slopes of F and π∗F agree.

Example 4.5. One should pay attention to the fact that the above result is false without the
assumption that the sheaf is locally free in codimension 1. Indeed, if we choose X = (xy = 0) ⊂ P2

to be the union of two lines, then its normalization is P1 with two points p′ and p′′ sitting above the
node p. Then, if we choose L = OP2(1)|X and F = OX⊕(OX/Ip), where I is the ideal sheaf of the
node, we see that h0(F ⊗L⊗m) = h0(L⊗m)+1; that is, µL(F ) = 1. But π∗F = OY ⊕OY /Ip′, p′′ ,
so that h0(π∗F ⊗ π∗L⊗m) = h0(π∗L⊗m) + 2 and therefore µπ∗L(π∗F ) = 2.

In view of all the observations we have made so far, one can introduce a notion of semistability
which is weaker than the one in [HL10, 1.2.12], but particularly adapted to our context.

Definition 4.6. Let X be an n-equidimensional reduced projective scheme over C and L an
ample divisor. A coherent sheaf E is said to be semistable with respect to L if for every subsheaf
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F ⊂ E that is locally free in codimension 1 and satisfies 0 < rk(F ) < rk(E ), we have µL(F ) 6
µL(E ).

If X is normal and E is torsion free, then any subsheaf F of E is also torsion free, hence
locally free in codimension 1, as X is normal. So we just recover the usual notion of semistability.

4.3 Main result

The general definition above is actually motivated by Proposition 4.4 and tailored for the fol-
lowing theorem.

Theorem 4.7. Let X be a stable variety, let ν : Xν → X be the normalization of X, and let ∆
be the conductor of ν. Then the sheaf ν∗TXν (− log ∆) is semistable with respect to KX .

Although stability has been defined with respect to a genuine ample line bundle, one can
work as well with Q-line polarizations L. To do so, one considers m0 such that m0L is Cartier
and shows stability with respect to m0L independently of the choice of such an integer m0.

Proof. Let F ⊂ TX be a coherent subsheaf of TX which is locally free in codimension 1. If
ν : Xν → X is the normalization of X and ∆ is the conductor divisor of ν on Xν , then we
get a generically injective map ν∗F → ν∗ν∗TXν (− log ∆). If we compose it with the natural
map ν∗TX → (ν∗ν∗TXν (− log ∆))∗∗, then in view of the Lemma 4.9 below, we get a generically
injective morphism

ν∗F → TXν (− log ∆) . (4.2)

Let us now consider a log resolution π : Y → Xν of (Xν ,∆) that leaves the snc locus untouched,
and let D = π−1(∆). Then there is a natural morphism π∗TXν (− log ∆)→ TY (− logD) which is
an isomorphism over (Xν ,∆)reg. Taking the double dual and using the reflexivity of TY (− logD),
we end up with a natural isomorphism (π∗TXν (− log ∆))∗∗ ' TY (− logD). Pulling back (4.2)
by π, we get a generically injective morphism π∗ν∗F → TY (− logD). We proved that in this
situation, the slope of π∗ν∗F with respect to π∗ν∗KX is less than or equal to the slope of
TY (− logD). At this point, we use the fact that F has constant rank to pass from the slope
inequality on each component to the global slope inequality.

By the projection formula, it yields

µν∗KX (ν∗F ) 6 µν∗KX (TXν (− log ∆)) .

We would like to push forward this inequality to X. For the left-hand side, this can be done
thanks to Proposition 4.4, which shows that µν∗KX (ν∗F ) = µKX (F ) as F is locally free in
codimension 1. Actually, the right-hand side is not equal to µKX (TX), but there is a correction
factor which fortunately has the right sign. More precisely, writing T := ν∗OXν/OX , by the
projection formula (m is large and divisible enough), we have

h0(Xν , ν∗(K⊗mX )∗∗) = h0(X, (K⊗mX )∗∗ ⊗ ν∗OXν )

and also

h0(Xν ,TXν (− log ∆)⊗ ν∗(K⊗mX )∗∗) = h0(X, ν∗TXν (− log ∆)⊗ (K⊗mX )∗∗) .
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Therefore, we get

µν∗KX (TXν (− log ∆)) =
1

n
an−1(TXν (− log ∆))− an−1(OXν )

=

(
1

n
an−1(ν∗TXν (− log ∆))− an−1(OX)

)
+ an−1(OX)− an−1(OXν )

= µKX (ν∗TXν (− log ∆))− an−1(T ) .

As T is supported in codimension at least 1, we have an−1(T ) > 0, so that in the end, we have
proved

µKX (F ) 6 µKX (ν∗TXν (− log ∆)) .

Remark 4.8. In general, the sheaf ν∗TXν (− log ∆) is distinct from the tangent sheaf of X
(defined as the sheaf of derivations of OX), as already in the case of a (local) node X =
Spec(C[x, y, z]/(xy)), the former sheaf strictly contains the latter one. But given the last step
of the proof, where we neglected an−1(T ), it could be possible that the same proof yields the
semistability of TX .

To conclude this section, let us state and prove a result we have used in the course of the
proof of Theorem 4.7.

Lemma 4.9. Let X be an n-equidimensional reduced projective scheme over C, and let π : Y → X
be the normalization of X. If E is a reflexive coherent sheaf on Y , then the reflexive hull (π∗π∗E )∗∗

is naturally isomorphic to E .

Proof. Let us begin by reducing the problem to one of commutative algebra. First, there is
a natural map π∗π∗E → E inducing (π∗π∗E )∗∗ → E ∗∗ ' E . This map is a morphism between
two reflexive sheaves, so if we can show that it is a isomorphism over a open set in Y whose
complement has codimension at least 2, then our map will actually be a sheaf isomorphism over
the whole Y . As a consequence, one can assume that E is locally free (as E is reflexive, it will be
locally free on such a “big” open set). Now, the problem is local, and as the normalization is an
affine morphism, one can assume without loss of generality that Y = Spec(B), X = Spec(A) and
E = B̃. We claim that the sheaf morphism E ∗ → (π∗π∗E )∗ is an isomorphism, or equivalently
that the morphism of B-modules

F : HomB(B,B)→ HomB(B ⊗A BA, B)

ϕ 7−→ ϕ ◦ f

is an isomorphism. Here, BA is B viewed as an A-module and f : B ⊗A BA → B is defined by
f(
∑
bi⊗mi) =

∑
bimi. As f is surjective, F is injective, so we need to prove that F is surjective.

Given ψ ∈ HomB(B⊗BA, B), we define ϕ ∈ HomB(B,B) by setting ϕ(1) = ψ(1⊗1). We want to
show that F (ϕ) = ψ, and this amounts to proving that for any b ∈ B, we have ψ(1⊗b) = bψ(1⊗1).
The crucial input is that B is a subring of the total quotient ring of A, so there exists an s ∈ A
which is not zero divisor, such that sb ∈ A. Therefore, if we set x := ψ(1 ⊗ b) − bψ(1 ⊗ 1), we
get sx = sψ(1⊗ b)− sbψ(1⊗ 1) = ψ(s⊗ b)− ψ(sb⊗ 1) = ψ(1⊗ sb)− ψ(sb⊗ 1) = 0, as sb ∈ A.
So sx = 0; but s is not a zero divisor in A and hence neither in B, as B is a subring of the total
quotient ring of A. This proves x = 0, and thus F is an isomorphism, as claimed.
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5. Generic semipositivity

In this section, we prove Theorem C, stated in the introduction. Recall that a reflexive sheaf E
on a normal compact Kähler space X endowed with a Kähler form ω is said to be generically ω-
semipositive if for all coherent quotient F of E , the degree of F with respect to ω is non-negative,
that is,

∫
X c1(F ) ∧ ωn−1 > 0.

By a theorem of Hartshorne [Har71], a vector bundle over a curve is nef if and only if
all its quotient bundles have non-negative degree. As a result, the restriction of a generically
semipositive sheaf or bundle to a sufficiently general curve is nef (say on a projective variety).

Theorem C is a variation on Miyaoka’s semiposivity theorem [Miy87]. In the case where X is
smooth projective, it has been proved by Boucksom–Demailly–Păun–Peternell [BDPP13] that X
is uniruled if and only if KX is not pseudo-effective, so that we essentially recover the same
statement. However, as opposed to Miyaoka’s theorem, our result works in the context of singular
log pairs and holds for (singular) Kähler spaces and not only for algebraic varieties—it was
also proved in the smooth Kähler case by Cao [Cao13]. Also, as there exist rational (hence
uniruled) surfaces with only klt singularities and for which KX is ample [Kol08, Example 43],
our assumption that KX is pseudo-effective encompasses some new cases even when D = 0.

Proof of Theorem C. Let us begin with the case KX +D pseudo-effective. Here again, we denote
by Y the singular original Kähler space, and choose a log resolution π : X → Y of (Y,∆). We will
show that for each coherent subsheaf F ⊂ TX(− logD) and every Kähler form ω0 on Y , we have∫
X c1(F )∧ (π∗ω0)n−1 6 0. As before, this shows that each coherent subsheaf of TY (− log ∆) has

non-positive slope with respect to ω. We conclude by duality (consider a quotient G of Ω1
Y (log ∆);

it induces a subsheaf G∗ ⊂ TY (− log ∆) with non-positive slope, so that G has a non-negative
slope).

We choose a log resolution π : X → Y of the pair (Y,∆), so we have

KX +D + E = π∗(KY + ∆) ,

where D =
∑
Dk is a reduced snc divisor (containing the strict transform of ∆ as well as an

exceptional divisor with zero log discrepancy) and E =
∑
aiEi is an exceptional divisor with

positive log discrepancies (that is, whose coefficients satisfy ai < 1, but are possibly negative).

We would like to endow TX(− logD) with a singular metric having seminegative Ricci cur-
vature outside D ∪ E in a weak sense; that is, we would like to solve

Ricω = −T + [D] + [E] (5.1)

for ω ∈ {π∗ω0} and T ∈ π∗(KY + ∆) a positive current. Unfortunately, there are obstructions
to constructing such a metric (as this would amount to solving a Monge–Ampère equation with
non-integrable right-hand side) and using it for our purposes (we would need to know its behavior
near the singularities in order to perform integrations by parts, for example). Therefore, we will
instead approximate a potential object of this type by regularizing the equation in the following
fashion:

– Replace the cohomology class of ω by the Kähler class {π∗ω0 + δωX} for some Kähler
metric ωX .

– Replace D by (1− δ)D.

– Choose a positive current Tδ ∈ π∗(KY + ∆) + δ{ωX} with analytic singularities.

– Replace [E] by a smooth (1, 1)-form Θε.
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For the third item, we use Demailly’s regularization theorem [Dem92] inside the big cohomo-
logy class π∗(KY + ∆) + δ{ωX}, while for the last item, we choose

Θε =
∑
i

ai
[
θEi + ddc log(|si|2 + ε2)

]
=
∑
i

ai

(
ε2|D′si|2

(|si|2 + ε2)2
+

ε2θEi
|s|2 + ε2

)
, (5.2)

where si is a defining section for Ei and θEi is the Chern curvature of the smooth hermitian metric
| · |i chosen on OX(Ei). Set θE :=

∑
aiθEi . We also choose sections σk of the components Dk

of D and pick arbitrary smooth hermitian metrics | · |k on OX(Dk) whose curvature form will be
denoted by θDk . Finally, set θD =

∑
k θDk .

Let us now choose an arbitrary volume form dV on X; one can find a (sup-normalized)
potential ψδ for Tδ such that Tδ = −Ric(dV ) + θD + θE + δωX + ddcψδ. In particular, there
exists a uniform C (independent of δ) such that ddcψδ > −CωX . Moreover, as Tδ has analytic
singularities, ψδ is smooth outside a proper analytic set Z ⊂ X (one should observe that Z
depends on δ, though); set X0 := X\(D ∪ Z). Thanks to Ko lodziej’s theorem [Ko l98], one can
find a bounded solution ϕ = ϕδ,ε of the following Monge–Ampère equation:

(π∗ω0 + δωX + ddcϕ)n =
eψδ+Cδ,εdV∏

i(|si|2 + ε2)ai
∏
k |σk|2(1−δ) , (5.3)

where Cδ,ε is a normalizing constant which is bounded uniformly with respect to ε (but not δ!).
Although the solution ωδ,ε := π∗ω0 + δωX + ddcϕ strongly depends on the parameters δ and ε,
we choose not to mention this dependence anymore to lighten the notation. So in the following,
ω = π∗ω0 + δωX + ddcϕ will denote the solution of equation (5.3). It is straightforward to check
that

Ricω = −Tδ + (1− δ)[D] + δθD + Θε + δωX (5.4)

in the sense of currents; this is the regularized version of (5.1).

It is crucial to understand the singularities of ω. Let us first fix δ and ε. We would like to use
the Laplacian estimate [GP16, Proposition 2.1], so we need to properly regularize eψδ/

∏
|σk|2(1−δ).

On the one hand, the Demailly regularization theorem enables us to regularize ψδ by smooth
sup-normalized functions ψδ,η such that ddcψδ,η > −CωX (up to increasing C) and on the other
hand, one can replace 1/

∏
|σk|2(1−δ) by 1/

∏
(|σk|2 + η2)1−δ. Everything is in order to apply

[GP16, Proposition 2.1], so we obtain that ω is dominated by a metric with conic singularities
with cone angle 2πδ along D; that is, there exists a Cδ,ε such that

ω 6 C

(
ωX +

∑
k

〈D′σk, D′σk〉
|σk|2(1−δ)

)
, (5.5)

so, in particular, ω is smooth outside D∪Z (by standard bootstrapping arguments). As a result,
we can find a family of cut-off functions (χη)η>0 vanishing near D ∪ Z and converging to the
indicatrix of the complement of this set, such that || trω(ddcχη)||L1(ωn) → 0. This family can be
made explicit if Z is empty; cf. [CGP13, Section 9]. Else, one considers a log resolution of the
ideal corresponding to D ∪ Z (with its reduced structure) and constructs the family upstairs
similarly thanks to (5.5).

Finally, applying Proposition 2.1 to the Monge–Ampère equation (5.3) yields the convergence∫
X0

ε2

|s|2 + ε2
ωX ∧ ωn−1 → 0 (5.6)

when ε tends to zero (δ > 0 being fixed) thanks to the same arguments as in Lemma 3.7,
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whether (s = 0) cuts out a component of E or one of D. To be rigorous, one should only
apply Proposition 2.1 once (5.3) is regularized. Basically, one needs to replace |σk|−2(1−δ) by
(|σk|2 +η2)δ−1 for η > 0 and ψδ by a uniformly quasi-psh smooth approximant, which is possible
thanks to [Dem92].

Back to our problem, we start with a generically injective morphism F → TX(− logD). If
r = rk(F ), then this morphism induces L = (ΛrF )∗∗ → ΛrTX(− logD). As X is smooth and L
is reflexive of rank 1, it is actually locally free, so the above morphism yields a non-zero section u
of the bundle ΛrTX(− logD) ⊗ L−1. We want to endow this bundle with a metric. For L, we
just choose an arbitrary smooth hermitian metric hL, and for ΛrTX(− logD), we would like to
use ω. As ω is singular along D ∪Z, we need to work on X0 = X\(D ∪Z), where ω is a smooth
Kähler metric and induces a genuine hermitian metric on TX(− logD)|X0

' TX |X0
, and hence

on ΛrTX |X0
. Let us call this metric h; we can then measure u with respect to h⊗ h−1

L . For any
number λ > 0, we have on X0

ddc log
(
|u|2 + λ2

)
=

1

|u|2 + λ2

(
|D′u|2 − |〈D

′u, u〉|2

|u|2 + λ2

− 〈Θ
(
ΛrTX(− logD)⊗ L−1, h⊗ h−1

L

)
u, u〉

)
. (5.7)

Here, for a (vector-valued) (1, 0)-form α, we used the notation |α|2 := α ∧ ᾱ. As |〈D′u, u〉|2 6
|D′u|2 · |u|2, we deduce from the equality above

ddc log
(
|u|2 + λ2

)
>

|u|2

|u|2 + λ2

(
Θ(L, hL)− 〈Θ(ΛrTX(− logD), h)u, u〉

|u|2

)
, (5.8)

where the action of Θ(ΛrTX(− logD), h) is extended to ΛrTX(− logD) ⊗ L−1 by tensoring it
with IdL−1 . Let us observe that u is a section of ΛrTX(− logD)⊗ L−1 and that ω is dominated
by a conic metric along D; cf. (5.5). Therefore |u| is globally bounded on X0 (of course, the
bound depends on both δ and ε).

Now, we wedge inequality (5.8) with ωn−1 and try to integrate it on X0. In order to legitimate
this, we first need to multiply by the cut-off function χη mentioned a few lines above. Using the
Stokes theorem, we get

−
∫
X

log
(
|u|2 +λ2

)
ddcχη ∧ωn−1 >

∫
X

χη|u|2

|u|2 + λ2

(
Θ(L, hL)− 〈Θ(ΛrTX , h)u, u〉

|u|2

)
∧ωn−1 . (5.9)

Our goal is to study the convergence of each of the terms appearing in this inequality when
the parameters η, λ, ε, δ (in this order) converge to zero.

Let us begin with the term on the left-hand side. As log(|u|2 +λ2) is globally bounded on X0

(since λ > 0) and trω(ddcχη) → 0 in L1(X0, ω
n), this term converges to zero when η → 0, the

other parameters (λ, ε, δ) being fixed.

As ω has bounded potentials, the dominated convergence theorem guarantees that the inte-
gral ∫

X

χη|u|2

|u|2 + λ2
Θ(L, hL) ∧ ωn−1

converges to c1(L) · {ω}n−1 = c1(L) · (π∗(KY + ∆) + δ{ωX})n−1 when η and λ go to zero. This
is a standard argument that we will use repeatedly, so here is a justification. If T is a pos-
itive current and ϕ a bounded quasi-psh function, then ddcϕ ∧ T := ddc(ϕT ) is a (signed)
measure with zero integral on X (just evaluate this current against the constant function 1).
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Next, we apply this to T = Θ(L, hL) ∧ ωn−1 to get
∫
X Θ(L, hL) ∧ ωn−1 =

∫
X Θ(L, hL) ∧ ωn−1 ∧

(π∗ω0 + δωX), and inductively, we find
∫
X Θ(L, hL)∧ (π∗ω0 + δωX)n−1 = c1(L) · (π∗(KY + ∆) +

δ{ωX})n−1.

The remaining term is the more subtle to deal with. First, let us introduce notation: Let V
be a complex vector space of dimension n, let 1 6 r 6 n be an integer, and let f ∈ End(V ). We
denote by f∧r the endomorphism of ΛrV defined by

f∧r(v1 ∧ · · · ∧ vr) :=
r∑
i=1

v1 ∧ · · · vi−1 ∧ f(vi) ∧ vi+1 ∧ · · · ∧ vr .

Let us add that if V has an hermitian structure and if f is hermitian semipositive, then so is f∧r

with the induced metric, and we have tr(f∧r) 6
(
n
r

)
tr(f). Now, we can easily check the following

identity:

nΘ(ΛrTX , h) ∧ ωn−1 = (]Ricω)∧rωn .

But on X0, we have from (5.4) that Ricω = −Tδ+δθD+Θε+δωX , hence Ricω 6 δθD+Θε+δωX ,
so there are now two terms to be controlled.

The first one involves δωX (we can treat δθD in the same way):

0 6 〈](ωX)∧ru, u〉ωn 6

(
n

r

)
tr(]ωX)|u|2ωn =

(
n

r

)
trω(ωX)|u|2ωn = n

(
n

r

)
|u|2ωX ∧ ωn−1 .

Hence, we get

0 6
∫
X

χη|u|2

|u|2 + λ2
· 〈(](δωX))∧ru, u〉ωn

|u|2
6 n

(
n

r

)
δ

∫
X0

ωX ∧ ωn−1

and the right-hand side equals n
(
n
r

)
δ{ωX}·{ω}n−1 (because ω has bounded potentials), which is a

cohomological quantity depending only on δ and converging to zero when this parameter does so.

So now we need to control 〈(]Θε)
∧ru, u〉ωn. We would like to view this term as a cohomological

one, but the ] operation makes it difficult. So we split this term into a main positive (or negative
according to the sign of ai) part and a smaller correction factor; one can apply basic inequalities
to the term with a sign to recover in the end cohomological terms up to a small error factor.

Recall (5.2),

Θε =
∑

ai

(
ε2|D′si|2

(|si|2 + ε2)2
+

ε2θEi
|s|2 + ε2

)
,

where θEi is the curvature form of the hermitian metric chosen on OX(Ei). By linearity, it is
enough to consider each of these summands separately. So we pick one and drop the index i to
simplify the notation. So we have Θε = a(β + γ), where

β =
ε2|D′s|2

(|s|2 + ε2)2
and γ =

ε2θ

|s|2 + ε2
;

remember that these forms are smooth as long as ε > 0. Let us start with γ. There exists a con-
stant C > 0 such that ±γ 6 Cε2/(|s|2 + ε2)ωX . As the ] and ∧r operations preserve positivity,
we get ±(]γ)∧rωn 6 Cε2/(|s|2 + ε2)(]ωX)∧rωn. But ]ωX is a positive endomorphism whose trace
is trω ωX , and therefore (]ωX)∧r 6

(
n
r

)
trω(ωX) Id. Consequently,

±〈(]γ)∧ru, u〉ωn

|u|2
6

Cε2

|s|2 + ε2
ωX ∧ ωn−1

for some C > 0 independent of ε. From (5.6) and the dominated convergence theorem, one
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deduces that the integral ∫
X

χη|u|2

|u|2 + λ2
· 〈(]γ)∧ru, u〉ωn

|u|2
converges to zero when η, λ and ε go to zero.

The last term to control is the one involving β. We know that β is non-negative, so (]β)∧rωn 6
n
(
n
r

)
β ∧ ωn−1 Id, so

0 6
∫
X

χη|u|2

|u|2 + λ2
· 〈(]β)∧ru, u〉ωn

n|u|2
6 C

∫
X

χη|u|2

|u|2 + λ2
· β ∧ ωn−1

6 C

∫
X0

β ∧ ωn−1

= C

(∫
X0

(β + γ) ∧ ωn−1 −
∫
X0

γ ∧ ωn−1

)
= C

(
c1(Ei) · {ω}n−1 −

∫
X0

γ ∧ ωn−1

)
,

where we have used the fact that ω has bounded potentials (so that none of its powers charge
a pluripolar set). We have already observed that the second integral converges to zero when ε→ 0.
As for the first term, it is cohomological (independent of ε) and it equals δn−1c1(Ei) · {ωX}n−1

as Ei is π-exceptional; thus it converges to zero when δ goes to zero.

Finally, we have shown that if we first make η go to zero, and then λ, ε and at last δ, inequal-
ity (5.9) becomes L · {π∗ω0}n−1 6 0, which is equivalent to c1(F ) · {π∗ω0}n−1 6 0 or, using (3.1),
to c1(G ) · {π∗ω0}n−1 6 0, which is the expected generic semipositivity inequality for the sheaf
of logarithmic forms Ω1

Y (log ∆).

The case where −(KY + ∆) is pseudo-effective is very similar. Again, it is enough to show
that every coherent subsheaf F ⊂ Ω1

X(logD) has non-positive slope with respect to any “polar-
ization” π∗ωn−1

0 pulled back from Y . We solve the same Monge–Ampère equation, but now the
metric satisfies Ricωε,δ = Tδ + (1 − δ)[D] + δθD + Θε − δωX , where ωε,δ ∈ π∗ω0 + δωX and Tδ
is a positive current in c1(−π∗(KY + ∆)) + δ{ωX}, so that Ricωε,δ > δθD + Θε − δωX . Now,
Θ(Ω1

X) = −Θ(TX)∗, so that trω Θ(Ω1
X) = −]Ricω. We can now run the same computations as

above and get the non-positivity of the slope of F .

We can now move on to the proof of the polystability of the tangent sheaf of singular Calabi–
Yau varieties.

Proof of the result below Theorem C. Let us start with a “polarization” ω0 on Y , and take the
notation of the proof above, where we work on a resolution π : X → Y of the Calabi–Yau variety Y
and denote the exceptional divisor of π by E. As the slope of TY vanishes, Theorem C already
gives the ω-semistability of TY . Now, suppose that there exists a reflexive subsheaf F ⊂ TY

whose slope with respect to ωY vanishes too. As in step 4 of the proof of Theorem 3.5 (the case
KY ample), one chooses G of minimal rank, and it suffices to find a holomorphic complement
of G inside TY . Therefore we are reduced to showing that one can complement over X\E any
reflexive subsheaf F ⊂ TX whose slope with respect to π∗ω vanishes. We denote by W the
minimal analytic set (of codimension at least 2 as F is reflexive) outside which F is a subbundle
of TX .

We run the proof of Theorem C above, and as KY is numerically trivial, one can choose Tδ = 0
from the very beginning (and D = 0 of course, as well as λ = 1). So we end up with a family of
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Kähler metrics ω := ωε,δ cohomologous to π∗ω0 + δωX and solving Ricω = Θε, where Θε (see
(5.2)) is a smooth approximant of the current of integration along E, with E the exceptional
divisor representing −KX .

We know (for example, from [EGZ09]) that ωε,δ converges in C∞loc(X\E) to a smooth Ricci-flat
metric ω∞ inducing a smooth hermitian metric h∞ on TX|X\E .

Inequality (5.8) must become an equality at the limit, so the term we neglected to go from (5.7)
to (5.8) necessarily converges to zero. This term is (remember that λ = 1)

1

|u|2 + 1

(
|D′u|2 − |〈D

′u, u〉|2

|u|2 + 1

)
>

|D′u|2

(|u|2 + 1)2

thanks to the Cauchy–Schwarz inequality.

Fatou’s lemma shows that |D′u|ω∞ = 0 on X\(W ∪ E), and therefore det F is a parallel
subbundle of TX on this locus. By simple algebraic manipulations, this implies that F itself
is a parallel subbundle of TX . Therefore we get a holomorphic splitting TX = F ⊕ F⊥ over
X\(W ∪E). We can push forward this identity to Y , which by reflexivity gives us the expected
complement of G inside TY , as π(E ∪W ) has codimension at least 2.

6. A Bogomolov-type inequality for Chern numbers

If X is a singular variety (endowed with a Kähler–Einstein metric), then it is in general not
possible to reproduce the arguments of Yau and work directly with the metric on the smooth
locus to get an appropriate inequality between Chern numbers—this would require us to somehow
control the curvature of the metric near the singularities, but this seems out of reach for now.
Instead, we will rely on the so-called Bogomolov–Gieseker inequality, which asserts that any
reflexive sheaf E of rank r on a smooth projective surface which is semistable with respect to
some given polarization H satisfies

c1(E)2 6
2r

r − 1
c2(E) . (6.1)

The proof of the Bogomolov inequality, generalized by Miyaoka in higher dimension [Miy87,
Corollary 4.7], consists in analyzing the high powers of the semistable bundle OP(E)(1)⊗ 1

rdetE.
This bundle has degree zero, hence its twist by an anti-effective divisor cannot admit any sections.
Identifying the leading-order term in the Riemann–Roch formula leads to inequality (6.1); we
refer to [MP97, Section 3] for more details.

The argument uses the Mehta–Ramanathan theorem to reduce the general case to the case of
surfaces, so it is important to work with an ample polarization. However, [Sug90, Theorem 6.1]
showed that we can get a slightly weaker statement for singular varieties, by proving that if X
is Q-Gorenstein and π : Y → X is a resolution of singularities, then any rank r bundle E on Y
which is semistable with respect to π∗H for some ample divisor H on X satisfies the following
Bogomolov inequality:

c1(E)2 · (π∗H)n−2 6
2r

r − 1
c2(E) · (π∗H)n−2 .

Combining this with Enoki’s result about the semistability of the tangent sheaf for canonical
varieties with ample (respectively, trivial) canonical class, Sugiyama obtained the inequality
above with H = KX (respectively, H arbitrary). Actually, using the base-point-free theorem, he
could also generalize it to the case where KX is nef and big, even essentially assuming only that
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KX is nef (relying on Miyaoka’s generic semipositivity theorem for c2).

Sugiyama’s arguments can be transposed to the case of a log pair (X,D) such that KX +D is
Q-Cartier without any significant changes. So we can use these ideas in our setting; combined with
Theorem A, they yield the following result. The context is as follows: let (X,D) be a projective
log canonical pair of dimension n and π : Y → X a log resolution. We denote by ∆ the sum
of the strict transform of D and the exceptional divisor with zero log discrepancy; to put it in
a different way, KY + ∆− π∗(KX +D) is an exceptional divisor with coefficients strictly greater
than −1. If KX + D is ample (respectively, numerically trivial), then the proof of Theorem A
shows that TY (− log ∆) is semistable with respect to π∗(KX + D) (respectively, π∗H for any
ample line bundle H on X).

Putting together the previous observations, we get Theorem 1.1, stated in the introduction.
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Aub78 T. Aubin, Équations du type Monge–Ampère sur les variétés kählériennes compactes, Bull.
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