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Fixed points of a finite subgroup

of the plane Cremona group

Igor Dolgachev and Alexander Duncan

Abstract

We classify all finite subgroups of the plane Cremona group which have a fixed point.
In other words, we determine all rational surfaces X with an action of a finite group G
such that X is equivariantly birational to a surface which has a G-fixed point.

1. Introduction

Let G be a finite subgroup of the plane Cremona group, Cr(2), the group of birational transfor-
mations of the complex projective plane. We say that G has a fixed point if there exist a smooth
rational projective surface X with a faithful G-action ρ : G ↪→ Aut(X), and a birational map
φ : X 99K P2 such that X has a G-fixed point and φ◦ρ(G)◦φ−1 = G. This definition depends only
on the conjugacy class of G in Cr(2). In this paper we present a classification of the conjugacy
classes of the subgroups of Cr(2) with a fixed point and, for each class, we find a representative
G-surface.

For abelian finite groups acting on smooth proper varieties, the presence of a fixed point is
a birational invariant (see [RY00, Proposition A.2]). In general, however, this is not true; for
example, the exceptional divisor of a blow-up of a fixed point may not have any fixed points.
However, if f : X → X ′ is a morphism of G-surfaces, then a fixed point on X maps to a fixed
point on X ′. Thus, the theory of minimal models of G-surfaces tells us that it suffices to find
minimal G-surfaces of one of the following two types:

– Conic bundles: There exists a regular map f : X → P1 such that the general fiber is isomor-
phic to P1 and the subgroup Pic(X)G of G-invariant invertible sheaves on X is generated
over Q by the canonical class KX and the class of a fiber of f .

– del Pezzo G-surfaces: The anti-canonical class −KX is ample and Pic(X)G is generated
over Q by KX .

An important tool for solving our problem is the classification of the conjugacy classes of the
finite subgroups of Cr(2) from [DI09]. Although we use some results from [DI09], many of our
proofs do not directly rely on this work. In fact, our work led to the discovery of some gaps in
the classification in that paper and we use this opportunity to fill those gaps. Note, however,
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that this classification is incomplete in the case of conic bundles (see also [Tsy11]). One may also
find an independent classification of the abelian subgroups of Cr(2) in [Bla07].

By considering the action on the tangent space of a fixed point, we see that any finite group G
acting on a smooth surface with a fixed point must be isomorphic to a subgroup of GL(2). Also,
it is well known that a cyclic group always has a fixed point on a rational variety (for example,
as was noticed by J.-P. Serre, this follows from the Lefschetz fixed-point formula applied to the
structure sheaf). Consequently, we restrict our attention to G not cyclic.

Recall that a del Pezzo surface has degree d = K2
X . A del Pezzo surface X of degree 4 can be

written by two equations in P4 defined by diagonal quadrics. The coordinate hyperplanes cut out
five genus 1 curves E1, . . . , E5 on X. A del Pezzo surface X of degree 3 is a cubic surface in P3.
An Eckardt point on X is a point where three lines on the surface meet. A del Pezzo surface X
of degree 2 is a double cover of P2 branched over a smooth plane quartic curve B.

Theorem 1.1. Suppose that G is a finite non-cyclic subgroup of the Cremona group admitting
a fixed point. Then there exists a G-surface X realizing a fixed point p of G of one of the following
forms:

L X is P2.

6 X is a del Pezzo surface of degree 6.

4 X is a del Pezzo surface of degree 4 and p lies on exactly two curves Ei, Ej , both of which
are equianharmonic.

3 X is a cubic surface and the tangent space to p contains three Eckardt points.

2A X is a del Pezzo surface of degree 2 and p lies on the ramification divisor R.

2B X is a del Pezzo surface of degree 2 and p is the intersection point of four exceptional curves.

1 X is a del Pezzo surface of degree 1 and p is the base point of the anti-canonical linear
system.

C X is a minimal conic bundle.

Note that there may be some overlap between these cases as there may be more than one
G-surface in an equivalence class. Occurrences of this phenomenon, along with the specific groups
that occur in each case, will be discussed in the sections below. For the readers’ convenience,
we consolidate those groups acting on del Pezzo surfaces of degree 2–6 in Table 1. We use the
notation for finite groups employed in [DI09], borrowed from [CCNPW85].

2. Preliminaries

Let G be a finite group. A G-surface is a pair (X, ρ) where X is a smooth projective surface
and ρ : G ↪→ Aut(X) is a faithful G-action. We will often refer to the pair as (X,G) or simply
X when the context is clear. A morphism of G-surfaces (X, ρ) → (X ′, ρ′) is a morphism of the
underlying surfaces f : X → X ′ such that ρ′(G) ◦ f = f ◦ ρ(G). Similarly, one defines rational
maps, birational maps and birational morphisms of G-surfaces.

A G-surface X is minimal if any birational morphism X → X ′ of G-surfaces is an isomor-
phism. We say that an action of G on a surface X is a minimal group of automorphisms if
the corresponding G-surface is minimal. As in the introduction, minimal G-surface are either
minimal conic bundles or minimal del Pezzo G-surfaces.

442



Fixed points of a finite subgroup of the plane Cremona group

Group Order Cases

22 4 2A.1

S3 6 6

S3 6 3.1

4× 2 8 2B.2 , 2A.3

D8 8 2B.1

Q8 8 2B.3

32 9 3.3

6× 2 12 2A.2

S3 × 2 12 6

S3 × 2 12 3.2

3 : 4 12 4

42 16 2B.5

8× 2 16 2A.5

4.22 16 2B.3

6× 3 18 3.3

S3 × 3 18 3.3 (twice)

12× 2 24 2A.4

22 : S3 24 4

2 · A4 24 2B.4

4 ·D8 32 2B.5

S3 × 6 36 3.3

4 · A4 48 2B.4

Table 1. Non-cyclic subgroups G of Cr(2) with a fixed point realized by a minimal del Pezzo
G-surface of degree 2–6, but not by a minimal conic bundle

A minimal conic bundle f : X → P1 either is a minimal ruled surface with f being one of
its rulings or has k > 3 degenerate fibers isomorphic to the union of two projective lines P1

intersecting transversally at one point. Recall that a del Pezzo surface X is a smooth projective
surface such that the anti-canonical divisor class −KX is ample. The degree of a del Pezzo surface
is d = K2

X , which takes values 1 6 d 6 9.

We caution the reader that a minimal G-surface may be a del Pezzo surface but not be
a minimal del Pezzo G-surface! We shall see an example of such a surface in Section 7.

With the notable exceptions of P2 and P1 × P1, every del Pezzo surface is a blow-up of P2 at
9−d points x1, . . . , x9−d in general position, with corresponding exceptional divisorsR1, . . . , R9−d.
Conversely, any set of 9− d disjoint (−1)-curves can be blown down to P2, giving rise to a plane
model of X. Each such choice is called a geometric marking and gives rise to a choice of basis
for the orthogonal complement RX of KX in Pic(X).

For d 6 6, the action of Aut(X) on RX defines a homomorphism

ρ : Aut(X)→W9−d , (2.1)
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where Wn denotes the Weyl group of a simple root system of type En (by definition, E5 = D5,
E4 = A4, E3 = A2 +A1). If d 6 5, then ρ is injective. It follows that in this case any subgroup G
of Aut(X) defines a conjugacy class of Wn which is independent of the choice of a basis in Pic(X).

A G-surface X is a minimal del Pezzo G-surface if Pic(X)G is generated over Q by KX .
A minimal del Pezzo G-surface of degree 8 is isomorphic to P1×P1; the other surface of degree 8
is never minimal. Similarly, the surface of degree 7 is never minimal.

In order to determine whether a del Pezzo surface is minimal, we will use the following
consequence of the Lefschetz fixed-point formula (as it was used in Section 6 of [DI09]).

Proposition 2.1. Let X be a del Pezzo surface. If σ is an automorphism of X, then the trace
of σ∗ on RX is given by

Tr(σ∗|RX) = s− 3 +

n∑
i=1

(2− 2gi) ,

where s is the number of isolated fixed points and g1, . . . , gn are the genera of the fixed curves.
Moreover, for a finite group G, the surface X is G-minimal if and only if∑

σ∈G
Tr(σ∗|RX) = 0 .

We are classifying G-surfaces up to birational equivalence. It may happen that two minimal
G-surfaces are birationally equivalent. Indeed, we will see in Sections 3–6 that all del Pezzo G-
surfaces of degree at least 5 with a fixed point are birationally G-isomorphic to P2 with a fixed
point. On the other hand, from Section 8 of [DI09] we have that any minimal del Pezzo G-surface
of degree at most 3 is rigid ; thus we have the following.

Lemma 2.2. Every minimal del Pezzo G-surface X of degree at most 3 is the unique minimal
G-surface in its birational G-equivalence class.

The remaining case of degree 4 is more subtle and will be discussed in Section 7.

In Theorems 8.1, 9.1 and 9.5, we will describe families of del Pezzo surfaces via normal forms
involving parameters. For a given family A, there is some collection of groups G which fix a point
and for which the G-surface is minimal. For certain special values of these parameters, the set of
possible groups G may be larger and we have a new family B. We say that A specializes to B, say
that B is a specialization of A, or write A→ B. Conversely, we say that A is a generization of B.

This language is justified in view of the following.

Proposition 2.3. Let X → T be a flat family of del Pezzo surfaces of degree at most 5 over a
base scheme T . For each conjugacy class C of subgroups in W9−d, the set

{t ∈ T : Aut(Xt) contains a subgroup G representing C}

is closed in T .

Proof. Since the monodromy group of a smooth flat family of del Pezzo surfaces is a finite sub-
group of the Weyl group W9−d, after passing to a certain finite cover of T , we may trivialize the
local coefficient system on T defined by the second cohomology group of fibers. Choosing simul-
taneously a geometric marking in each fiber, we may define a map from T to the GIT-quotient
P 9−d
2 of (P2)9−d by the group PGL(3). Since the pre-image of a closed set is closed, it suffices to

assume that T is an open subset U of P 9−d
2 parameterizing point sets whose blow-up is a del Pezzo
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surface. From [DO88], the group W9−d acts biregularly on U via Cremona transformations and
the stabilizer of a point t ∈ T is equal to the image of Aut(Xt) under the homomorphism (2.1).

Let a : Γ×V → V be an action of a finite group Γ on an algebraic variety V . The pre-image Z
of the diagonal ∆ of V under the map (a, id) : Γ× V → V × V consists of points (g, v) such that
g ∈ Γv. For any subgroup H of Γ, the pre-image of H under the first projection Z → Γ is a closed
subset W of Z. Since Γ is finite, the image of W via the second projection Z → V is a closed
subset of V consisting of points whose stabilizer contains H. Applying this to our situation,
where Γ = W9−d and V = U , we obtain the assertion of the proposition.

3. Del Pezzo surfaces of degree 9

In the degree 9 case, X ∼= P2 and we classify finite subgroups of Aut(P2) ∼= PGL(3) that have a
fixed point.

Let G be a subgroup of PGL(3), and let G̃ be a pre-image in GL(3). We have a 3-dimensional
representation ρ of G̃. The existence of a G-fixed point on X is equivalent to the existence of a 1-
dimensional subrepresentation χ of ρ. It follows that any finite group of projective transformations
has either no fixed points, or one fixed point, or three isolated fixed points, or a line of fixed
points plus an isolated fixed point.

Theorem 3.1 (Case L ). Conjugacy classes of finite subgroups of Aut(P2) with one isolated
fixed point are in a natural bijection with conjugacy classes of finite subgroups of GL(2) with
a fixed point.

Proof. We choose coordinates x, y, z such that the fixed point is p0 = (0, 0, 1). A projective
transformation g fixing this point can be uniquely represented by a transformation (x : y : z) 7→
(ax + by : cx + dy : z), where g̃ =

(
a b
c d

)
∈ GL(2). Any conjugate g′ = h−1gh must fix the

point p0 (here we use the assumption on the set of fixed points). Hence h̃ conjugates g̃′ and g̃.
The converse is also true.

If G has three isolated fixed points, then G is an abelian group conjugate to a subgroup of
transformations (x : y : z) 7→ (ax : by : cz). Finally, if G has a line of fixed points, then G is
a cyclic group.

4. Del Pezzo surfaces of degree 8

There are two isomorphism classes of del Pezzo surfaces of degree 8. One is isomorphic to the
blow-up of one point; hence it is not minimal. The other one is isomorphic to X = P1 × P1. So
we will study subgroups of P1 × P1.

Assume that G has a fixed point p. Let `1, `2 be the two fibers passing through p. Their
union is G-invariant. The group G contains a subgroup G′ of index 1 or 2 such that each ruling
πi : X → P1 is invariant.

As each ruling πi is G′-equivariant, there must be a G′-fixed point on each image πi(X) ∼= P1.
Note that any finite group of automorphisms which fixes one point on P1 must fix another. Thus
there exists another pair of lines `′1, `

′
2 whose intersection is another G-fixed point p′ on X.

If we blow up p, the strict transforms of `1 and `2 both become exceptional curves. Since they
do not intersect and their union is G-invariant, we may blow them down G-equivariantly to X ′.
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The variety X ′ is isomorphic to P2 and has a G-fixed point since the birational map X → X ′ is
defined at p′. Thus, we have the following.

Theorem 4.1. If G has a fixed point on X ∼= P1×P1, then X is G-birationally equivalent to P2.

5. Del Pezzo surfaces of degree 6

The surface X is isomorphic the blow-up of three non-collinear points x1, x2, x3 in the plane. The
strict transforms of the lines `12, `13, `23 through each pair of points are (−1)-curves on X. Along
with the exceptional divisors sitting above each point xi, these form a hexagon of (−1)-curves.

Let p be a fixed point of G. If p is on the hexagon, then it must be one of its vertices since
otherwise the side of the hexagon containing p is G-invariant and hence can be equivariantly
blown down. But, if p is a vertex, then the opposite vertex is also fixed, and there will be two
skew lines that are left invariant and can be equivariantly blown down. This contradicts the
minimality assumption. Thus p is not on the hexagon.

Since p is not on the hexagon, it must be the pre-image of a point x0 in the plane. The
blow-up of X at p is a del Pezzo surface of degree 5. It contains ten lines; six of them are the
pre-images of the sides of the hexagon, and three of them are the pre-images `1, `2, `3 of the
lines in the plane joining x0 with the vertices of the coordinate triangle. The last line is the
exceptional curve E(p) of the blow-up. Since the sides of the hexagon and the line E(p) form a
G-invariant set of lines, the set of lines `1, `2, `3 is also G-invariant. The action on this set gives a
homomorphism ρ : G→ S3. If G fixes one line, then we can blow down the pair of opposite sides
of the hexagon intersecting this line. This shows that (X,G) is not minimal. So, the image of G
in S3 is either a cyclic group of order 3 or the whole S3. An element in the kernel of ρ fixes all
three lines `i, and hence fixes all pairs of opposite sides of the hexagon. Composing it with the
action of the standard Cremona transformation s1 (see [DI09, Section 6.2]) on X that permutes
the opposite sides, we get the identity. This shows that ker(ρ) is either trivial or generated by s1.

In summary, we have the following result.

Theorem 5.1 (Case 6 ). Let G be a minimal finite non-cyclic group of automorphisms of a del
Pezzo surface of degree 6 that fixes a point. Then G is either S3, of order 6, or the group 2×S3,
of order 12.

If we blow up the fixed point p then the lines `1, `2, `3 form a G-invariant set of skew
lines. Blowing these down, we obtain a G-equivariant birational equivalence from X to P1 × P1.
However, the fixed point is lost. This equivalence is a link of type II (see [DI09, Section 7]).
From the discussion in [DI09, Section 8], we see that the only other possible minimal del Pezzo
or minimal conic bundles equivariantly birational to X are del Pezzo surfaces of degree 5. But
such surfaces are only minimal if G contains an element of order 5 (see below). Thus a del Pezzo
surface of order 6 is the only model for G which has a fixed point.

6. Del Pezzo surfaces of degree 5

The surface is isomorphic to the blow-up of four points x1, . . . , x4 in P2, no three of which are
collinear. In this case we know from [DI09, Theorem 6.4] that Aut(X) ∼= S5. The ten exceptional
curves along with their intersections are in bijective correspondence with vertices and lines of the
Petersen graph. Alternatively, the ten exceptional curves are in bijection with pairs of elements
of {1, 2, 3, 4, 5}; two curves intersect if and only if the pairs have no common elements.
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The maximal subgroups of S5 are S3× 2, S4, A5 and 5 : 4. Note that S3× 2 ∼= 〈(123), (45)〉
is not minimal since it fixes the exceptional curve corresponding to {4, 5}. The group S4 is not
minimal since it leaves invariant the four skew lines {1, 5}, {2, 5}, {3, 5}, {4, 5}. The subgraph of
the Petersen graph based on the orbit of any cyclic group of order 5 is a pentagon. For example,
if σ = (12345) and the vertex is {1, 2}, the orbit consists of vertices {1, 2}, {2, 3}, {3, 4}, {4, 5},
{1, 5}. This shows that any group containing an element of order 5 must be minimal. Thus, the
groups S5, A5 and 5 : 4 are minimal; however, they do not have 2-dimensional representations
and thus cannot have fixed points. Among their subgroups, the only non-cyclic group not yet
considered is G ∼= D10.

The group D10 is minimal and has two fixed points. To see this, we use the well-known S5-
equivariant isomorphism between a del Pezzo surface X of degree 5 and the GIT-quotient P 5

1

of (P1)5 by PGL(2). Represented as point sets, the points

p0 =
(
1, ε5, ε

2
5, ε

3
5, ε

4
5

)
and p1 =

(
1, ε35, ε5, ε

4
5, ε

2
5

)
on X are fixed by the group G = 〈σ, τ〉 ∼= D10, where

σ = (12345) and τ = (25)(34) .

Indeed, σ(pi) ≡ pi since it amounts to multiplication by a constant, while τ corresponds to
z 7→ z−1 on each P1.

While this G-surface is minimal, it is birationally equivalent to P2. Note that neither fixed
point lies on an exceptional divisor since every G-orbit of exceptional divisors contains skew
divisors. If we consider X as the blow-up of four points in P2, the linear system of cubic curves
through the four points and a double point at the image of p0 in the plane is of dimension 2.
Thus we have an equivariant birational map from X to P2 which maps p1 to a fixed point. We
conclude as follows.

Theorem 6.1. Suppose that (X,G) is a minimal del Pezzo surface of degree 5 with a fixed point
and G non-cyclic. Then G ∼= D10 and X is G-birational to P2 with a fixed point.

7. Del Pezzo surfaces of degree 4

We recall several facts from Section 6.4 of [DI09]. Any quartic del Pezzo surface X is isomorphic
to a smooth surface in P4 given by the equations

5∑
i=1

t2i =

5∑
i=1

ait
2
i = 0 ,

where ai 6= aj whenever i 6= j.

The natural representation of Aut(X) on the Picard group of X defines an isomorphism ρ
of Aut(X) onto a subgroup of the Weyl group W (D5) ∼= 24 : S5. The normal subgroup 24 is
always in the image of ρ and acts on X by multiplying an even number of coordinates by −1.
The image of Aut(X) in S5 could be one of the following groups: 1, 2, S3, 4 and D10.

Each element of 24 is represented by a subset A of {1, 2, 3, 4, 5} corresponding to the indices
of the coordinates ti that are multiplied by −1. Since Aut(X) acts on the projective space P4,
we may identify each subset of A with its complement. Thus, it suffices to assume that the
cardinality of A of a non-trivial element is equal to 1 or 2. The corresponding involution ιA is
called of the first kind or of the second kind, accordingly.
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We denote by Ek the genus 1 curve cut out by the hyperplane section tk = 0. The group
Aut(X) acts on the set of such curves with kernel of the action equal to 24. The fixed point set
on X of each ιk is precisely the corresponding genus 1 curve Ek.

We now discuss how to see the action of W (D5) on the exceptional divisors of X and its con-
nection to the plane model. Recall that X is isomorphic to the blow-up of five points x1, . . . , x5
in the projective plane. We label the 16 exceptional divisors of X: let R1, . . . , R5 be the excep-
tional curves corresponding to the points xi, let Rij be the strict transforms of the lines xi, xj ,
and let R0 be the strict transform of the conic through the points x1, . . . , x5. Each geometric
marking corresponds to a choice of the five disjoint lines Ri. There are 24 such subsets and the
Weyl group W (D5) has 24 conjugate subgroups isomorphic to S5; each of them leaves invariant
the set of the divisor classes of five disjoint lines.

Each of the involutions ιk is given by a de Jonquières involution of the plane model with
center at the point xk (see [DI09, Section 2.3]). The involution is given by the linear system
of cubics through the points xi for i 6= k and a singular point at xk. The image of Ek is the
unique plane cubic curve that passes through the points x1, . . . , x5 with tangent direction at each
point xj for j 6= k equal to the line xj , xk. The de Jonquières involution preserves the pencil of
lines through the point xk.

It follows from the construction of de Jonquières involutions that ιk interchanges Ri with Rik,
and Rk with R0. The remaining set of six lines Rij , where i, j 6= k, consist of three orbits of
pairs of intersecting lines. Note that, even though no orbits of (−1)-curves can be blown down,
the subgroup generated by ιk does not give X the structure of a G-minimal del Pezzo surface.
However, X is G-minimal when considered as a conic bundle defined by the pencil of conics given
by the proper inverse transforms of the lines through xk.

It follows that the involution ιkl = ιk ◦ ιl interchanges the disjoint lines R0 and Rkl; thus, it
does not act minimally. The fixed points of ιkl are precisely the four intersection points of the
two genus 1 curves Ek and El. The only minimal subgroups of 24 with fixed points are those
that contain exactly two involutions of the first kind.

In [DI09, Section 8], it is shown that any minimal del Pezzo G-surface of degree 4 with a fixed
point is equivariantly birationally equivalent to a G-minimal conic bundle. However, the conic
bundle may not have a fixed point. We clarify the situation as follows.

Lemma 7.1. Suppose that X is a minimal del Pezzo G-surface.

(i) If G has more than one fixed point or G is abelian, then X is birationally equivalent to
a minimal conic bundle with a fixed point.

(ii) If G has exactly one fixed point and G is non-abelian, then X is not birationally equiva-
lent to a minimal conic bundle or non-isomorphic minimal del Pezzo surface with a fixed
point.

Proof. Let p be a G-fixed point on X. Blowing up the point p, we obtain a weak del Pezzo
surface X ′ of degree 3 with Pic(X ′)G ∼= Z2. The linear system |−KX′ − R|, where R is the
exceptional curve of the blow-up, defines on X ′ a structure of a G-minimal conic bundle.

If X has more than one fixed point, then X ′ also has a fixed point. Also, if G is abelian, then
the induced action on R ∼= P1 is cyclic and thus X ′ again has a fixed point.

However, if X has a unique fixed point and G is non-abelian, then the new surface X ′ does
not have a fixed point. Indeed, the exceptional curve R has an action of G; since G is not abelian,
the image of its action is not cyclic and R ∼= P1 cannot have a fixed point.
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Conceivably, there might be a third minimal G-surface X ′′ birational to X which does have
a fixed point. We consult the classification of elementary links in [DI09, Section 7.4]. From X,
the link of Type I to X ′ as described above is the only link which changes the isomorphism class
of X. The conic bundle X ′ satisfies K2

X′ = 3 and the only links which change the isomorphism
class are links of Type II. These are simply compositions of elementary transformations and
cannot introduce new fixed points, nor change the value of K2

X′ .

We now prove the main result of this section.

Theorem 7.2 (Case 4 ). Let X be a minimal del Pezzo G-surface of degree 4. Suppose that G
has a fixed point and is not birationally equivalent to a minimal conic bundle with a fixed point.
Then X is isomorphic to the G-surface

t21 + ε3t
2
2 + ε23t

2
3 + t24 = t21 + ε23t

2
2 + ε3t

2
3 + t25 = 0 , ε3 = e2πi/3 ,

whose automorphism group (as an ordinary surface) is generated by 24 along with the transfor-
mations

g1 : (t1 : t2 : t3 : t4 : t5) 7→
(
t2 : t3 : t1 : ε3t4 : ε23t5

)
,

g2 : (t1 : t2 : t3 : t4 : t5) 7→ (t1 : t3 : t2 : t5 : t4) .

The group G is isomorphic to one of the following groups:

22 : S3 , 3 : 4 ,

with unique fixed point p = (1 : 1 : 1 : 0 : 0).

Proof. From the lemma, it suffices to find G-minimal del Pezzo surfaces with a unique fixed
point and G non-abelian.

It is known that any minimal subgroup of Aut(X) contains a non-trivial subgroup of 24.
Hence, a fixed point p of G must lie on one of the curves Ei. Since no three genus 1 curves among
E1, . . . , E5 have a common point, the group G contains a subgroup G′ of index at most 2 that
leaves Ei invariant. We may consider Ei as an elliptic curve with the zero element p. Let A be
the image of G′ in the automorphism group of the elliptic curve Ei. It is known that A is of
order 2, 3, 4 or 6. It has 4, 3, 2 or 1 fixed point, respectively. Thus A must be of order 6, hence
the order of G is divisible by 3.

Let G be a group of automorphisms of X of order divisible by 3. It is known that X is
isomorphic to the surface from the assertion of the theorem. Also, the automorphism group of X
is generated by involutions ιA and the subgroup H = 〈g1, g2〉 ∼= S3. We fix a plane model of X
as above to assume that g1 acts on Pic(X) by permuting cyclically the classes of the exceptional
curves R1, R2, R3 and fixing the curves R4, R5. The element g2 acts by switching R2 and R3

and switching R4 and R5.

There are four subgroups of order 3 in Aut(X):

〈g1ι12〉 , 〈g1ι13〉 , 〈g1ι23〉 , 〈g1〉 ,

but they are all conjugate. We may assume without loss of generality that g1 is in G.

Let K be the kernel of the homomorphism G → S3, and let Ḡ be the image of this homo-
morphism. We enumerate all the possible subgroups K of rank at most 2 which are invariant
under g1:

〈ι4〉 , 〈ι5〉 , 〈ι45〉 , 〈ι4, ι5〉 , 〈ι12, ι23〉 .
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Note that 〈ι12, ι23〉 does not fix a point and can be eliminated. The remaining groups are fixed
pointwise by g1. Thus, if Ḡ is cyclic of order 3, then G is abelian and can be eliminated. It remains
to consider Ḡ ' S3. In this case, only the subgroups 〈ι45〉 and 〈ι4, ι5〉 are invariant under g2; so
these are the only possibilities for K.

Consider the set Γ ⊂ 24 of all elements ιA such that g2ιA is in G. Note that g3g2ιAg3 =
g2ι(132)A and (g2ιA)−1 = g2ι(12)(45)A are also in G. Also note that (g2ιA)−1(g2ιB) = ιAιB. Thus Γ
is an S3-invariant set such that the product of any two elements in Γ is in K. We conclude that Γ
contains only id, ι4, ι5 and ι45.

Thus the only possibilities for G are

〈g2, g3, ι45〉 ∼= 2×S3 ,

〈g2, g3, ι4〉 ∼= 22 : S3 ,

〈g2ι4, g3〉 ∼= 3 : 4 .

All of these leave fixed the point (1 : 1 : 1 : 0 : 0). Appealing to Proposition 2.1, we see that
2×S3 is not minimal while the other two groups are minimal.

Remark 7.3. As was first noticed by Yuri Prokhorov (see [Pro15]), the groups 3 : 4 and 22 : S3

above were missing from the classification in [DI09]. We found additional missing groups isomor-
phic to 2×D8, M16, 23 : S3 and L16 : 3, as well as a second copy of L16 which is not conjugate
to an existing group in the list. In addition, the group of order 32 identified as 22 : 8 should
instead be 23 : 4. Here L16 and M16 are certain groups of order 16 whose structure is described
in [DI09, Table 3]. One finds the corrected statements and the corrected proofs in an updated
version of the paper at http://www.math.lsa.umich.edu/~idolga/papers.html.

8. Del Pezzo surfaces of degree 3

Recall that a del Pezzo surface of degree 3 is a smooth cubic surface in P3. Here we prove the
following.

Theorem 8.1 (Case 3 ). Suppose that G is a non-cyclic group and X is a minimal cubic G-
surface with a fixed point p. Then X is equivariantly projectively equivalent to the surface in P3

defined by

F = t30 + t31 + t32 + t34 + t0t1(at2 + bt3) ,

with fixed point p = (0 : 0 : 1 : −1), where a and b are parameters. The tangent plane at p
contains three Eckardt points. The different possibilities are given in the following table:

Name Possible G Parameters Surface type from [DI09]

3.1 S3 I–VI, VIII, V

3.2 S3 × 2 a = b I, II, VI

3.3 S3 × 6, S3 × 3 (twice), a = b = 0 I
6× 3, 3× 3

The possibilities have specializations

3.1 // 3.2 // 3.3 .

Note that we do not list those G which already occur in generizations.
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Proof. We begin by considering the case 3.3 . Here X is the Fermat cubic surface

X : t30 + t31 + t32 + t33 = 0 .

The automorphism group of X is 33 : S4, of order 648 (see [DI09] or [Dol12]). The surface X
has 18 Eckardt points; one of these is p = (0 : 0 : 1 : −1), and all the others are obtained from p
by automorphisms. The stabilizer Aut(X, p) is isomorphic to S3 × 6, of order 36. We will show
that every case specializes to this case.

Now, let X be general as in the theorem. Since G is minimal, the cardinality of any orbit
on the 27 lines must be divisible by 3 (if the sum of k lines is linearly equivalent to mKX , then
k = 3m). Thus, G has order divisible by 3.

Let g be an element of order 3 in G. From [Dol12, Table 9.5], up to projective equivalence,
we have three different options for the action of g on P3:

(3A) : g(t0 : t1 : t2 : t3) = (ε3t0 : t1 : t2 : t3) ,

(3C) : g(t0 : t1 : t2 : t3) = (ε3t0 : ε3t1 : t2 : t3) ,

(3D) : g(t0 : t1 : t2 : t3) = (ε3t0 : ε23t1 : t2 : t3) ,

where ε3 is a primitive third root of unity.

If we assume that g is of class (3C), then X must be the Fermat cubic (see [Dol12, Sec-
tion 9.5.1]). The fixed points are all Eckardt points and so we are in case 3.3 .

Now, we assume that g is of class (3D). As in [Dol12, Section 9.5.1], up to a projective change
of coordinates, the surface X is one of the surfaces stated in the theorem. Set `1 : t2 = t3 = 0
and `2 : t0 = t1 = 0. Note that `1 and `2 are canonically defined given g. The three points `2 ∩X
are the only fixed points of g on X; they are of the form (0 : 0 : 1 : −a) where a3 = 1. Without
loss of generality we may take p = (0 : 0 : 1 : −1).

There is always an involution σ which interchanges t0 and t1. Thus, there is an action of S3

on X that fixes p. The line `1 is stable under S3 and the three points X ∩ `1 are all Eckardt
points by [Dol12, Proposition 9.1.27].

Consider the tangent space TpX ⊂ P3. One checks that TpX contains `1. The intersection
C = TpX ∩ X is either a nodal cubic or three concurrent lines. There is a faithful action of G
on TpX which must leave C invariant.

In the case where C is a nodal cubic, we see that G ⊂ Gm : 2. Since G contains an element
of order 3 and the three points in `1 ∩C must be G-invariant, we see that G is isomorphic to S3

and we are in case 3.1 .

When C is three concurrent lines, the point p is an Eckardt point and we have S3 × 2 ⊂
Aut(X, p) by [Dol12, Proposition 9.1.26]. The automorphism group of three concurrent lines in
P2 is Gm × S3. The polar P of p in X is a union of two planes, the tangent plane t2 + t3 = 0
and the plane t2 − t3 = 0. Since both these planes and the line `1 must be G-invariant, the only
other automorphisms fixing p must be of the form (t0 : t1 : t2 : t3) 7→ (t0 : t1 : λt2 : λt3), where
λ is in C×. This λ can be non-trivial only in the case where X is the Fermat cubic (and we are
then in case 3.3 ). If λ is forced to be trivial, then we are in case 3.2 .

Finally, if we assume that g is of class (3A), then X is the cyclic cubic surface

X : t30 + F (t1, t2, t3) = 0 .

It is a triple cover of P2 ramified at the smooth genus 1 curve cut out by the plane t0 = 0. The
Hessian quartic surface is a union of the plane t0 = 0 and a cone over the Hessian cubic curve H
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associated with P2. If X has an additional cyclic structure, then the curve H is a union of three
concurrent lines and X must be isomorphic to the Fermat cubic (see [Dol12, Lemma 3.2.4]).
Since the Fermat cubic was already considered above, we may assume that the cyclic structure
is unique, and thus G leaves invariant a genus 1 curve containing the fixed point p. This means
that G is a central extension of a cyclic group H by 3. The group G is thus cyclic unless H has
order divisible by 3. In this latter case, G contains a subgroup isomorphic to C2

3 . This means
that G must contain an element of order 3 whose class is not of the form (3A) and thus was
already discussed above.

It remains to determine which subgroups G of Aut(X, p) are minimal. It suffices to consider
only 3.3 since the others are generizations of this case. First, we list all non-cyclic subgroups
of S3 × 6 up to conjugacy:

22 , S3 (twice) , 32 , 6× 2 , S3 × 2 , 6× 3 , S3 × 3 (twice) , S3 × 6 .

We compute the traces on the space RX using Proposition 2.1 as in [Dol12, Table 9.4], where ε
is a primitive third root of unity:

Eigenvalues on P4 Tr(·|RX)
1 1 1 1 6
1 1 1 −1 −2
1 1 −1 −1 2
1 1 1 ε −3
1 1 ε ε 3
1 1 ε ε2 0
1 1 ε −ε 1
1 −1 ε ε 1
1 −1 ε −ε −1
1 −1 ε ε2 −2

Note that the subgroup generated by an element with eigenvalues 1, 1, 1, ε give traces which
sum to 0, thus any group containing this element is minimal. Thus 3 × 3, 6 × 3, both classes
of S3 × 3, and S3 × 6 are minimal groups. We remark that the eigenvalues of the involutions
in the two different classes of S3 × 3 are different; thus the two conjugacy classes are distinct
in Cr(2).

Additionally, the group S3 generated by elements with eigenvalues 1, 1, ε, ε2 and 1, 1, 1, −1
gives traces which sum to 0. Thus S3 and S3× 2 are minimal. It remains to establish that 6× 2,
2 × 2 and the other conjugacy class of S3 are not minimal. The group 6 × 2 and the group S3

both have traces which sum to 12, so neither is minimal; the group 22 is a subgroup of 6× 2 and
thus is not minimal.

9. Del Pezzo surfaces of degree 2

Throughout this section, G is a non-cyclic finite group, X is a minimal del Pezzo G-surface of
degree 2, and p is a G-fixed point on X.

We recall some features of such surfaces from [DI09, Section 6.6]. Any such surface has an
involution γ called the Geiser involution. Its set of fixed points is a smooth curve R of genus 3.
The quotient by γ induces a degree 2 map

π : X → P2

with branch locus B ∼= R a smooth quartic curve.

452



Fixed points of a finite subgroup of the plane Cremona group

We may write X as

F (t0, t1, t2) + t23 = 0

in the weighted projective space P(1, 1, 1, 2), where F is the degree 4 form which defines B
in P2. The Geiser involution is simply the map which takes t3 to −t3. We have a decomposition
Aut(X) ∼= Aut(B) × 〈γ〉. Note that Aut(B) is a finite subgroup of PGL(3) since F = 0 is the
canonical embedding of B. The possible Aut(B) can be found in [Dol12, Theorem 6.5.2].

Theorem 9.1 (Case 2A ). If p lies on the ramification curve R, then the group Aut(X, p) is
abelian of the form H × 〈γ〉, where H is a cyclic subgroup of Aut(B). We have the following
possibilities:

Name Possible G Surface type from [DI09]

2A.1 22 I–V, VII–X, XII

2A.2 6× 2 III, VIII

2A.3 4× 2 II–III, V

2A.4 12× 2 III

2A.5 8× 2 II

These possibilities satisfy the specializations

2A.1 //

""

2A.2 // 2A.4

2A.3 // 2A.5

Note that we do not list those G which already occur in generizations.

Proof. Since p lies on R, the group Aut(X, p) contains γ. It remains only to classify the possible
subgroups H. Since H acts faithfully on the tangent space to R at p, we see that H is cyclic.
Since G is not cyclic, Aut(X, p) is not cyclic. Thus, the possible H are precisely the maximal
cyclic subgroups of Aut(B) of even order which fix a point on B. From [Dol12, Lemma 6.5.1],

we obtain the cases 2A.1 – 2A.5 above. Minimality follows since the Geiser involution alone is
minimal.

Now, suppose that G does not fix any points on the ramification curve R. Then p is not fixed
by γ and we may assume that G is an isomorphic lift of a subgroup Ḡ of Aut(B) fixing a point
q = π(p) in P2 not lying on B.

A del Pezzo surface has 56 exceptional curves (lines) Ei on which G acts. Any orbit of G on
the lines consists of k lines whose sum is linearly equivalent to a multiple of KX . Since K2

X = 2,
this implies that k is even. Thus the order of G is even and G contains an involution τ̃ , a lift of
an involution τ of P2 that leaves B invariant. The set (P2)τ of fixed points of τ is equal to {q}
plus a line L that intersects B at four fixed points (counted with multiplicities). The set of fixed
points of τ̃ is the set containing the two points p and γ(p) along with a genus 1 curve π−1(L).

We claim that q is the intersection point of four bitangents. Choose the projective coordinates
(t0, t1, t2) in P2 such that q = (0 : 0 : 1) and L : t2 = 0. Then the equation of B has the form

t42 + 2f2(t0, t1)t
2
2 + f4(t0, t1) = 0 , (9.1)
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where the involution τ acts by (t0 : t1 : t2) 7→ (t0 : t1 : −t2) and f2 and f4 are homogeneous
polynomials of degree 2 and 4, respectively. Note that we can rewrite the equation in the form(

t22 + f2(t0, t1)
)2

+
(
f4(t0, t1)− f2(t0, t1)2

)
= 0 .

This shows that each line bt0 − at1 = 0, where (f4(a, b) − f2(a, b)2) = 0, is a bitangent of B
passing through the point q. Thus q is the intersection point of four bitangents of B, as claimed.

The converse was first proven by Sonya Kowalevski [Kow84]. Although we do not use this
result, we do give a proof.

Proposition 9.2. Suppose that a smooth plane quartic curve B has four bitangents meeting
at a point q. Then the exists a projective involution τ of P2 that leaves B invariant and has the
point q ∈ B as an isolated fixed point.

Proof. By [Dol12, Proposition 6.1.4 ], any three of the bitangent lines form a syzygetic triad
of bitangents; that is, the corresponding six tangency points lie on a conic. This implies that
all eight tangency points lie on a conic. Choose coordinates such that q = (0 : 0 : 1). Let
`i : li = ait0 + bit1 = 0, and let C2(t0, t1, t2) = 0 be the equation of the conic K passing
through the eight tangency points. Then the polynomials C2

2 and l1 · · · l4 define the same divisor
on B, hence the equation of B can be written in the form F = C2

2 + l1l2l3l4 = 0. Let C2 =
t22 + 2t2l(t0, t1) + q(t0, t1) = (t2 + l(t0, t1))

2 + q(t0, t1)− l(t0, t1)2 = 0. After we again change the
coordinates t2 7→ t2 + l(t0, t1), the equation of B is reduced to the form (9.1). The involution
(t0 : t1 : t2) 7→ (t0 : t1 : −t2) is the projective involution of B.

The involution τ has four fixed points (a : b : 1) on B, where f4(a, b) = 0, and the quotient
E = B/(τ) is a genus 1 curve with equation

z2 + 2zf2(x, y) + f4(x, y) = 0

in the weighted projective space P(1, 1, 2).

Lemma 9.3. The involution τ of B belongs to the center of the group Ḡ.

Proof. For any σ ∈ Ḡ, the element τ ′ = στσ−1 fixes q and leaves invariant the set of the bitan-
gents of B that contain q. Thus it leaves invariant the pencil of lines through q. This shows that τ ′

is an involution of P2 with the same isolated fixed point as τ . Thus τ and τ ′ must coincide.

Since the polynomial f4 has four distinct roots, we can choose projective coordinates t0, t1, t2
in the plane such that

f2(t0, t1) = at20 + bt0t1 + ct21 , f4(t0, t1) = t40 + dt20t
2
1 + t41 .

The only condition on the coefficients here is d2 6= 4, expressing the fact that f4 has no multiple
roots, or, equivalently, that the curve B is non-singular.

We may assume that Ḡ acts via its lift to GL(3) as the group of matrices of the form

(
α β 0
γ δ 0
0 0 1

)
.

Thus the group Ḡ is naturally identified with a subgroup of GL(2). The transformation τ is
defined by the matrix −I2.

We want to find a list of the maximal non-cyclic subgroups of GL(2), up to conjugacy, that
leave f2 and f4 invariant. The automorphism τ is always present. Let H be the automorphism
group of f4 = 0 viewed as a set of four points in P1. Let K be the image of G in PGL(2); note
that K ⊂ H. Consulting [DI09, Section 5.5], we see that for f4 in the coordinates above, H is
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either 22 for general d, or A4 for d2 = −12, or D8 for d = 0. If f2 = 0, then the kernel of G→ K
is cyclic of order 4 and the possible maximal G are, respectively, 4.22, 4.A4 and 4.D8.

Suppose f2 6= 0. The kernel of G → K is precisely 〈τ〉. Since K must leave a pair of points
invariant, it is isomorphic to one of 1, 2, 3, 4 or 22. We may discount 1 and 3 since we consider
non-cyclic G. Since G must be a subgroup of 4.22 or 4.D8, all of its elements act by scaling t0
and t1 while possibly interchanging them. Thus, all the remaining possibilities arise when a, b or
c is zero, or when a = c.

Note that if a = c, then we may instead assume b = 0 via the the linear change of variables

(t0, t1) 7→
(
δ(t0 − t1), δ(t0 + t1)

)
for some δ satisfying δ4 = (2 + d)−1. Accounting also for the symmetry between a and c, we
enumerate the possibilities in Table 2:

f4 f2 Maximal G

any d a− c, a, c 6= 0, b = 0 22

any d a = c 6= 0, b = 0 D8

d = 0 a = b = 0, c 6= 0 2× 4

d 6= 0, d2 6= −12 0 4.22

d2 = −12 0 4.A4

d = 0 0 4.D8
∼= 42 : 2

Table 2. Maximal non-cyclic subgroups G of GL(2) leaving f2 and f4 invariant

Our group G is a minimal isomorphic lift of a subgroup Ḡ of Aut(B) as above. Following
[DI09, Section 6.6], we say a lift is even if the group G in its representation in W (E7) is contained
in the normal subgroup W (E7)

+ of index 2, and a lift is odd otherwise.

Remark 9.4. The classification of minimal groups of automorphisms of degree 2 del Pezzo
surfaces from [DI09] has the following errors:

(i) 〈γ〉 is missing from all types (except XII).

(ii) Type XIII is missing completely.

(iii) 22 × 〈γ〉 was omitted in Type I surfaces.

(iv) An even lift of Q8 was omitted in Types II, III and V.

(v) 2 · A4
∼= Q8 : 3 in Type III (not D8 : 3).

(vi) A4 × 〈γ〉 was omitted in Type IV.

(vii) C3 × 〈γ〉 was omitted in Type III.

One finds the corrected statements and the corrected proofs in an updated version of the paper
at http://www.math.lsa.umich.edu/~idolga/papers.html.

Theorem 9.5 (Case 2B ). Let G be a minimal group with a fixed point p that is not in the
ramification curve R. Then B is isomorphic to the plane quartic curve

F = t42 + t22
(
at20 + ct21

)
+ t40 + dt20t

2
1 + t41 = 0

and the fixed point is a lift of (0 : 0 : 1).

We have the following cases:
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Name Possible G Parameters Surface type from [DI09]

2B.1 D8 a = c 6= 0 I–V, VII

2B.2 2× 4 a = d = 0 II, III, V

2B.3 4 · 22 ∼= 2.D8, Q8 a = c = 0 II, III, V

2B.4 4 · A4, 2 · A4 a = c = 0, d2 = −12 III

2B.5 4 ·D8, 4× 4 a = c = d = 0 II

These cases satisfy the specializations

2B.1 // 2B.3 //

""

2B.4

2B.2 // 2B.5

Note that we do not list those G which already occur in generizations.

Proof. We may assume that the fixed point is (0 : 0 : 1) and that G acts as a subgroup of GL(2)
on the coordinates (t0, t1). The maximal G and the appropriate parameters can be obtained
from Table 2. It remains only to determine which subgroups make X minimal. Our main tools
are Proposition 2.1 and the classification in [DI09, Table 7] (which was derived using the same
method).

Observe that any involution in PGL(3) fixes an isolated point and a line. One lift to Aut(X)
fixes points only on R and thus is excluded. The other fixes a pair of points and a genus 1 curve,
thus every involution has trace −1 on RX . In particular, G ∼= 22 has sum of traces equal to 4
and cannot be minimal.

An element of order 4 in G with eigenvalues i and −i in GL(2) fixes two points on X and
thus has trace −1 on RX . From this we conclude that both D8 and Q8 are minimal groups. In
particular, the group D8 in 2B.1 is minimal.

The element of order 4 with a generator having eigenvalues 1 and i in GL(2) fixes a genus 1
curve on X and thus has trace −3. The group it generates is minimal. Thus the group 2×4 from
2B.2 is minimal.

Now we refer to [DI09, Table 7]. The cases 2B.1 and 2B.2 are finished. For 2B.3 , we

note that Q8 appears and that 4 ·22 is minimal since it contains D8. For 2B.4 , the groups 2 ·A4

and 4 · A4 contain Q8 and are therefore minimal.

In the case of 2B.5 , we only need to consider subgroups of a Sylow 2-subgroup of Aut(X)
isomorphic to 4·D8. The group 42 contains 2×4 and is thus minimal. The group 4·D8 is similarly
minimal. It remains to show that the even lift of M16 does not fix p. We will do this by showing
that the cyclic subgroup of order 8 within is an odd lift.

An automorphism of order 8 of B acts by (t0 : t1 : t2) 7→
(
ε38t0 : ε−18 t1 : t2

)
in coordinates

where B is given by the equation t42 + t0t1
(
t20 + t21

)
= 0. It has three fixed points in P2, two of

which are on B. Thus, its lift must have four fixed points. The trace of an even lift of g is equal
to −1 and has two fixed points. We conclude that an element of order 8 in G is an odd lift. Thus
the subgroup isomorphic to M16 in 2B.5 is not minimal.
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10. Del Pezzo surfaces of degree 1

Theorem 10.1 (Case 1 ). Let X be a minimal del Pezzo G-surface of degree 1. Then G has
a fixed point.

This is immediate since the unique base point of |−KX | is canonical and thus must be fixed
by any automorphism of X. A list of all the minimal groups in this case can be found in [DI09,
Section 6.7].

11. Conic bundles

Throughout this section, π : X → B is a minimal conic G-bundle with B ∼= P1. Let GK be the
kernel of the action of G on B, and let GB be the image. We have an exact sequence

1→ GK → G→ GB → 1 .

Let Σ ⊂ B be the set of points whose pre-images under π are singular.

Lemma 11.1. The group GK acts faithfully on each fiber.

Proof. Suppose that g is a non-trivial element of GK that acts identically on a fiber F . We
know that g has two fixed points on each non-singular fiber. The closure of this set of points is
a 1-dimensional component C of Xg that is of relative degree 2 over the base. More precisely,
this curve is the closure of a divisor of degree 2 on the general fiber Xη that defines two fixed
points of G on the geometric generic fiber. Since F and C intersect and Xg is smooth, we obtain
a contradiction.

Let G0 be the kernel of the action of G on Pic(X). We use the trichotomy of conic bundles
as in [DI09]:

(i) X → B is a minimal rational ruled surface.

(ii) X → B is non-exceptional : G0 = 1 and X is not a minimal ruled surface.

(iii) X → B is exceptional : G0 6= 1 and X is not a minimal ruled surface.

We will consider each case in turn.

We begin by considering the case of a minimal ruled surface. Recall that the case of F0
∼=

P1 × P1 was shown to be birationally equivalent to P2 with a G-fixed point in Section 4. In fact,
this is true for all minimal rational ruled G-surfaces.

Theorem 11.2. Suppose that X ∼= Fn is a ruled G-surface with a fixed point, where n > 2.
Then G is abelian and X is birationally equivalent to P2 with a G-fixed point.

Proof. We recall some facts from the proof of [DI09, Theorem 4.10]. Let S be the exceptional
section. It is invariant with respect to the group of automorphisms of Fn. The action of G on S
is isomorphic to the action of G on the base of the projection π : Fn → P1. Since G has a fixed
point on X, its projection is fixed, hence G acts on P1 with two fixed points, and therefore G
has two fixed points on S. Since it has two fixed points on each invariant fiber, we obtain that G
has four fixed points, two on S and two outside S.

We now show that X is birationally equivalent to P2 with a fixed point. Since G fixes a point p
not on S, we may perform an elementary transformation at that point to obtain a ruled G-
surface X ′ isomorphic to Fn−1 which must also have a fixed point since G is abelian. By applying
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this procedure inductively, we eventually find a birational equivalence to a G-surface isomorphic
to F1. Blowing down the exceptional divisor, we have the desired result.

Theorem 11.3 (Case C.ne ). Let G be a non-cyclic finite group, and let X be a non-exceptional
G-minimal conic bundle. Assume that G has a fixed point. Then we have one of the following
cases, where n = mq is a positive integer, m is a power of 2 and q is odd:

(i) GK ∼= 2, GB ∼= 2n, G ∼= 2× 2n.

(ii) GK ∼= 22, GB ∼= n, G ∼= 2× 2n.

(iii) GK ∼= 22, GB ∼= n, G ∼= (2m : 2)× q.

Proof. Recall that in this case G0 is trivial and X is not a minimal ruled surface. Here GK ∼= 2a

with a = 1 or 2 [DI09, Theorem 5.7]. Since G has a fixed point, the group GB is cyclic.

First, consider GK ∼= 2. Since we assume that G is not cyclic, G ∼= 2 × 2n for some positive
integer n.

Now, assume GK ∼= 22. The order of GB is n = mq, where m is a power of 2 and q is a positive
odd integer. Thus there is a homomorphism from G to a cyclic group of order m whose kernel is
a 2-group. Since the quotient and kernel have coprime orders, the extension splits. It is known
that the subgroup GK is always minimal [DI09, Lemma 5.6]. The 2-group will also be minimal
since it contains GK . Thus, it suffices to assume that the order of GB is of the form n = m.

Since G must embed into GL(2), we see that some element z in GK must map to the mat-
rix − id. Let x be a non-trivial element of GK not equal to z. Let g be a lift to G of a generator
of GB.

Since g must normalize GK and z must be central, we see that

(1) either gxg−1 = x

(2) or gxg−1 = xz.

In case (1), the group G is abelian. Since G must have rank at most 2, we see that G ' 2× 2m.

In case (2), rearranging, we obtain xgx−1 = gz. Note that xgmx−1 = gm since m is even.
Thus, the group generated by 〈x, z, gm〉 must be abelian of rank 2. Since GK = 〈x, z〉, and x
and g do not commute, we conclude that

(a) either gm = 1

(b) or gm = z.

In case (a), we conclude that g has order 2 and G ' D8; otherwise, we would have a contradiction
as the abelian group 〈x, z, gm/2〉 would have rank 3. In case (b), we conclude that our group G
is a semidirect product 2m : 2, where the involution x acts by g 7→ gm+1.

Example 11.4. Let X be a del Pezzo surface of degree 4, and let G be a subgroup of automor-
phisms generated by two involutions of the first kind, say ι1 and ι2. The group has four fixed
points E1 ∩ E2 = {p1, p2, p3, p4}. Let σ : X ′ → X be the blow-up of p1. From the description of
the involutions in Section 7, we see that p1 does not lie on any exceptional divisors. Thus, the
surface X ′ is a del Pezzo surface of degree 3. In its anti-canonical model, it is a cubic surface.

The image of the exceptional curve E of σ is a line on X ′ invariant with respect to G. The
pencil of planes through R has R as its fixed component, and the residual pencil is a pencil of
conics invariant under G. It equips X ′ with a structure of a minimal conic bundle G-surface with
a 2-section R.
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Since G ∼= 22 acts faithfully on the tangent space of X at p1 and has two invariant tangent
directions corresponding to E1 and E2 at p1, we see that the involution of the second kind ι12
acts identically on R while the other two involutions act non-trivially. We have a 2 to 1 morphism
R ∼= P1 → B ∼= P1 which is equivariant with respect to a cyclic group of order 2; this forces the
action on B to be trivial. Thus the group GB is trivial and G = GK ∼= 22.

As G acts faithfully on each fiber by Lemma 11.1, we conclude that the set of fixed points
coincides with the set of singular points of the fibers of σ. A conic bundle on a cubic surface
has five singular fibers, so we have five fixed points. Alternatively, we note that there are four
fixed points on X, but there are two fixed points on R; thus X ′ has five fixed points.

Note that in the plane model of X ′ as the blow-up of six points x1, . . . , x5, p1, the pencil of
conics arises from the pencil of cubics through x1, . . . , x5 and a double point at p1. The singular
fibers are the unions of the line `i = p1, xi and the conic Ci through the points xk for k 6= i
and p1. Three such pairs (li, Ci) intersect at p1 and pi for i = 2, 3, 4, and the remaining two are
tangent at p1 with the tangent directions corresponding to the cubics defined by E1 and E2.

Theorem 11.5 (Case C.ex ). Let G be a non-cyclic finite group, and let X be an exceptional
G-minimal conic bundle with a fixed point p. Then GK is a dihedral group or a cyclic group of
even order, GB is cyclic or trivial, and G is a subgroup of D2m × n for some integers m and n.
Furthermore, p is a singular point of a singular fiber of π.

Proof. Here G0 is non-trivial, but X is not a minimal ruled surface. Recall from [DI09, Section 5]
that X has two disjoint sections S0 and S∞ that can be blown down to obtain a hypersurface

X ′ : H2g+2(t0, t1) + t2t3 = 0

in the weighted projective space P(1 : 1; g+1 : g+1) for g a positive integer. The map π : X → B
is given by the morphism (t0 : t1; t2, t3)→ (t0 : t1).

Since GB is cyclic or trivial, by the proof of [DI09, Proposition 5.3] we see that G is a subgroup
of GB × N , where GB acts linearly on (t0 : t1) and N is the subgroup C× : 2 of SL2(C) which
preserves t2t3. Note that if G is minimal, then there must exist an element in GK which swaps
t2 and t3 and thus has even order. Since GK is a subgroup of even order of a dihedral group, it
must be of the form given in the statement of the theorem.

Finally, we establish that G fixes a singular point of a singular fiber. The subgroup G0 leaves
invariant each singular fiber and each section S0 and S∞. Since there are at least three singular
fibers, the sections S0 and S∞ have at least three points fixed by G0. Thus the action of G0

on S0 and S∞ is trivial. Since G0 is a subgroup of GK , by Lemma 11.1 it acts faithfully on each
fiber F . In particular, it can only fix the points F ∩S0 and F ∩S∞ on a non-singular fiber. Since
an element of GK swaps the two sections and XG ⊂ XG0 , we see that G can only fix the singular
points of singular fibers.
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