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Toward GIT stability of syzygies of canonical curves

Anand Deopurkar, Maksym Fedorchuk and David Swinarski

Abstract

We introduce the problem of GIT stability for syzygy points of canonical curves with a
view toward a GIT construction of the canonical model of Mg. As the first step in this
direction, we prove the semi-stability of the first syzygy point for a general canonical
curve of odd genus.

1. Introduction

By analogy with Hilbert points, as introduced by Gieseker in [Gie77, § 1], we introduce syzygy
points of canonical curves and initiate a program of studying their geometric invariant theory
(GIT) stability. The eventual goal of this program is a GIT construction of the canonical model
of Mg, a problem whose origins lie in the log minimal model program for the moduli space of
stable curves. Introduced by Hassett and Keel, the log minimal model program for Mg aims to
construct certain log canonical models of Mg in a way that allows modular interpretation [Has05].
The log canonical divisors on (the stack) Mg considered in this program are

KMg
+ αδ = 13λ− (2− α)δ , where α ∈ [0, 1] ∩Q .

The work done so far suggests that we can construct some of these models as GIT quotients of
spaces of Hilbert points of n-canonically embedded curves. This is already evidenced in the work
of Gieseker [Gie82] and Schubert [Sch91b], who analyzed the cases n > 5 and n = 3, respectively.
Recent work of Hassett and Hyeon [HH09, HH13] extends the GIT analysis to n = 2 and
constructs the log canonical models of Mg corresponding to α > 7/10− ε; see also [AFSvdW13]
for a non-GIT construction of the models corresponding to α > 2/3− ε. Subsequent work along
this direction suggests that the case n = 1 and the use of finite Hilbert points would yield log
canonical models corresponding to the values of α down to α = (g + 6)/(7g + 6) [AFS13, FJ13].

The ultimate goal of the Hassett–Keel program is to reach α = 0, which corresponds to the
canonical model of Mg. To go beyond α = (g + 6)/(7g + 6) and indeed down to α = 0, Farkas and
Keel suggested that one should construct birational models of Mg by performing GIT analysis
on syzygies of canonically embedded curves. In this paper, we make the first step toward this
goal by proving a generic semi-stability result for the first syzygies in odd genus.

Main Theorem. A general canonical curve of odd genus g > 5 has a semi-stable first syzygy
point.
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Our strategy for proving the generic semi-stability of syzygy points follows that of [AFS13]
for proving the generic semi-stability of finite Hilbert points. Namely, we prove the semi-stability
of the first syzygy point of a singular curve with Gm-action, the balanced ribbon, by a method
suggested by Morrison and Swinarski in [MS11].

Ribbons and the problem of studying syzygies of their canonical embeddings were originally
introduced by Bayer and Eisenbud in [BE95]. Their motivation for studying ribbons was in the
context of Green’s conjecture for smooth canonical curves. Namely, Bayer and Eisenbud asked
whether rational ribbons satisfy an appropriate version of Green’s conjecture [BE95, Introduc-
tion]. Although this question remains open in its full generality, an affirmative answer to it im-
plies the generic Green’s conjecture, which is known thanks to the work of Voisin [Voi02, Voi05].
Green’s conjecture makes an appearance in the study of GIT stability of syzygies of canonical
curves by controlling which syzygy points are well defined; see Remark 2.4.

Outline of the paper. In Section 2, we define syzygy points of a canonically embedded
Gorenstein curve and give a precise statement of our main result. In Section 3, we recall some
preliminary results about balanced ribbons. In the most technical section, Section 4, we construct
several monomial bases of cosyzygies for the balanced ribbon. Finally, in Section 5, we prove the
main theorem by deducing the semi-stability of the first syzygy point of the balanced ribbon
from the existence of the monomial bases constructed in Section 4.

2. Syzygy points of canonical curves

In this section, we recall some basic notions of Koszul cohomology and set up GIT problems
for the linear syzygies of a canonical curve. We refer to [Gre84] and [AF11b] for a complete
treatment of Koszul cohomology and a detailed discussion of Green’s conjecture.

We define a canonical Gorenstein curve to be a complete Gorenstein curve C with a very
ample dualizing sheaf ωC . The arithmetic genus of such C is at least 3. In this paper, we are
exclusively concerned with Koszul cohomology of the pair (C,ωC). Namely, associated to C and
the line bundle ωC is the Koszul complex

p+1∧
H0(ωC)⊗H0

(
ωq−1C

) fp+1,q−1−−−−−−→
p∧

H0(ωC)⊗H0
(
ωqC
) fp,q−−−−−−→

p−1∧
H0(ωC)⊗H0

(
ωq+1
C

)
, (2.1)

where the differential fp,q is given by

fp,q(x0 ∧ x1 ∧ · · · ∧ xp−1 ⊗ y) =

p−1∑
i=0

(−1)ix0 ∧ · · · ∧ x̂i ∧ · · · ∧ xp−1 ⊗ xiy .

The Koszul cohomology groups of (C,ωC) are

Kp,q(C) := ker fp,q
/

im fp+1,q−1 .

We say that C satisfies property (Np) if Ki,q(C) = 0 for all (i, q) with i 6 p and q > 2. In
particular, property (N0) means that the natural maps Symm H0(ωC) → H0(ωmC ) are surjective
for all m, or, equivalently, that C is projectively normal in its canonical embedding. Property (Np)
for p > 1 means, in addition, that the ideal of C in the canonical embedding is generated by
quadrics and the syzygies of order up to p are linear.

Remark 2.1 (On the projective normality of canonical Gorenstein curves). A classical theorem of
Max Noether says that a smooth curve C of genus g > 3 is non-hyperelliptic if and only if ωC is
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very ample if and only if C satisfies property (N0) [ACGH85, Chapter III, § 2]. A relatively recent
result [KM09] extends these equivalences to the case when C is an integral Gorenstein curve.
We are not aware of a general result concerning projective normality of non-integral Gorenstein
curves. In particular, it appears that the case of reducible curves is open in general [BB11].
Because of this and because our primary object of study is a non-reduced curve (namely, a ra-
tional ribbon), we often specify projective normality as a hypothesis. We do note that projective
normality of non-hyperelliptic ribbons is established in the original paper of Bayer and Eisenbud
[BE95, Theorem 5.3]. An explicit proof for the case of the balanced ribbon appears in [AFS13,
Proposition 3.5].

Let C be a canonical Gorenstein curve of genus g > 3 satisfying property (N0). Then the
canonical embedding of C is an arithmetically Gorenstein curve in Pg−1, and, from the self-duality
of the minimal projective resolution of its homogeneous coordinate ring, we have Kp,q(C) = 0
for all q > 3 and p 6 g − 3; see [Sch91a, Corollary 1.3]. In particular, for all p < bg/2c, property
(Np) is equivalent to Kp,2(C) = 0. For p 6 g − 2, set

Γp(C) :=

(
p+1∧

H0(ωC)⊗H0(ωC)

)/ p+2∧
H0(ωC) . (2.2)

We can readily compute that

dim ker fp,2 = (3g − 2p− 3)

(
g − 1

p

)
and

dim Γp(C) = g

(
g

p+ 1

)
−
(

g

p+ 2

)
.

(2.3)

The first four terms of the Koszul complex (2.1) in degree p+ 2 give the exact sequence

0→ Kp+1,1(C)→ Γp(C)→ ker fp,2 → Kp,2(C)→ 0 .

Definition 2.2. We define the space of pth-order linear syzygies of C as the subspace of Γp(C)
given by

Syzp(C) := Kp+1,1(C) .

Suppose that C satisfies property (Np), so that Kp,2(C) = 0. We define the space of pth-order
linear cosyzygies of C as the quotient space of Γp(C) given by

CoSyzp(C) := ker fp,2 .

The relation of the above definition to the definition of syzygies in terms of the homogeneous
ideal of C is as follows. Let

Im(C) = ker
(

Symm H0(ωC)→ H0(ωmC )
)

be the degree m graded piece of the homogeneous ideal of C. Then the space of pth-order linear
syzygies among the defining quadrics of C is taken to be the kernel of the map

p∧
H0(ωC)⊗ I2(C)

γ−→
p−1∧

H0(ωC)⊗ I3(C) .

A simple diagram chase now gives a well-known isomorphism ker γ ' Kp+1,1(C).
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Definition 2.3. Suppose that C satisfies property (Np). We define the pth syzygy point of C to
be the quotient of Γp(C) given by [

Γp(C)→ CoSyzp(C)→ 0
]

and interpreted as a point in the Grassmannian Grass
(
(3g − 2p− 3)

(
g−1
p

)
,Γp(C)

)
.

Abusing notation, we use CoSyzp(C) to denote both the vector space itself and the point

in Grass
(
(3g − 2p − 3)

(
g−1
p

)
,Γp(C)

)
that it represents. Observe that the zeroth syzygy point is

simply the second Hilbert point.

Remark 2.4. For which curves is the pth syzygy point defined? According to a celebrated conjec-
ture, a smooth canonical curve C satisfies (Np) if and only if p is less than the Clifford index of C.
Formulated by Green in [Gre84], this conjecture remains open in its full generality. It is known
to be true, however, for a large class of curves. Voisin proved that general canonical curves on K3
surfaces satisfy Green’s conjecture [Voi02, Voi05]. More recently, Aprodu and Farkas proved the
conjecture for all smooth curves on K3 surfaces [AF11a]. In particular, the pth syzygy point of
a generic curve of genus g is defined for all p < bg/2c.

Definition 2.5. We define Syzp to be the closure in Grass
(
(3g − 2p − 3)

(
g−1
p

)
,Γp(C)

)
of the

locus of pth syzygy points of canonical curves satisfying property (Np).

Consider the group SLg ' SL(H0(ωC)). Its natural action on H0(ωC) induces actions on
the vector space Γp(C), the Grassmannian Grass

(
(3g − 2p− 3)

(
g−1
p

)
,Γp(C)

)
, and finally on the

subvariety Syzp. The Plücker line bundle on the Grassmannian is equipped with a natural SLg
linearization, and so is its restriction to Syzp. A candidate for the pth syzygy model of Mg is thus
the GIT quotient

Syzp// SLg .

Our main theorem shows that this quotient is non-empty for p = 1 and odd g > 5.

Theorem 2.6. A general canonical curve of odd genus g > 5 has a semi-stable first syzygy point.

We prove this theorem in Section 5; see Corollary 5.5.

3. The balanced canonical ribbon

We prove Theorem 2.6 by explicitly writing down a semi-stable point in Syz1. This point cor-
responds to the syzygies of the balanced ribbon. Our exposition of its properties closely fol-
lows [AFS13], where the semi-stability of Hilbert points of this ribbon was established. Never-
theless, we recall the necessary details for the reader’s convenience.

Let g = 2k + 1. The balanced ribbon of genus g is the scheme R obtained by identifying
U := SpecC[u, ε]/(ε2) and V := SpecC[v, η]/(η2) along U \ {0} and V \ {0} via the isomorphism

u 7→ v−1 − v−k−2η ,
ε 7→ v−g−1η .

(3.1)

The scheme R is an example of a rational ribbon. While our arguments use only the balanced
ribbon, we refer the reader to [BE95] for a more extensive study of ribbons in general.
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Being a Gorenstein curve, R has a dualizing line bundle ω, trivialized by (du ∧ dε)/ε2 on U
and by (dv ∧ dη)/η2 on V . Since ω is very ample by [AFS13, Lemma 3.2], the global sections
of ω embed R as an arithmetically Gorenstein curve in Pg−1 by [BE95, Theorem 5.3].

The balanced ribbon R admits a Gm-action, given by

t · u 7→ tu , t · ε 7→ tk+1ε ,

t · v 7→ t−1v , t · η 7→ t−k−1η .
(3.2)

This action induces Gm-actions on H0(R,ωm) for all m. The next two propositions describe these
spaces along with their decompositions into weight spaces.

Proposition 3.1. A basis for H0(R,ω) is given by x0, . . . , x2k, where the xi restricted to U are
given by

xi =


ui
du ∧ dε
ε2

if 0 6 i 6 k ,(
ui + (i− k)ui−k−1ε

)du ∧ dε
ε2

if k < i 6 2k ,

and where xi is a Gm-semi-invariant of weight i − k. In particular, H0(R,ω) splits as a direct
sum of g distinct Gm-weight spaces of weights −k, . . . , k.

Proof. That the xi form a basis follows from [BE95, Theorem 5.1]. The statement about the
weights is obvious.

Remark 3.2 (Z2-symmetry). Observe that R has a Z2-symmetry given by the isomorphism V ' U
defined by u ↔ v and ε ↔ η and commuting with the gluing isomorphism (3.1). This Z2-
symmetry exchanges xi and x2k−i.

The following observation from [AFS13, Lemma 3.4] deals with higher powers of ω.

Lemma 3.3 (Ribbon product lemma). Let 0 6 i1, . . . , im 6 2k be such that i1, . . . , i` 6 k and
i`+1, . . . , im > k. On U , we have

xi1 · · ·xim =
(
ua + (a− b)ua−k−1ε

)(du ∧ dε
ε2

)m
,

where

a = i1 + · · ·+ im ,

b = i1 + · · ·+ i` + k(m− `) .

Definition 3.4. The u-weight (or u-degree) of a monomial xi1 · · ·xim is the sum i1 + · · ·+ im.
Note that the u-weight of xi1 · · ·xim equals the Gm-weight of xi1 · · ·xim plus mk.

Proposition 3.5. Let m > 2. Let H0(R,ωm)d be the weight space of H0(R,ωm) of u-weight d.
Then

dim H0(R,ωm)d =


1 if 0 6 d 6 k ,

2 if k < d < 2mk − k ,
1 if 2mk − k 6 d 6 2mk .

Moreover, the map Symm H0(R,ω)→ H0(R,ωm) is surjective.

Proof. Using the generator ((du ∧ dε)/ε2)m of ωm on U , let us identify the sections of ωm on U
with the elements of C[u, ε]/(ε2). Consider the following (2m− 1)(g − 1) sections of ωm on U :{

ui
}2mk−k−1
i=0

,
{
ui + (i−mk)ui−k−1ε

}2mk
i=k+1

. (3.3)
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We claim that these sections are in the image of Symm H0(R,ω). Indeed, for 0 6 i 6 k, the
monomial xm−10 xi restricts to ui on U . For 2mk − k 6 i 6 2mk, the monomial xm−12k xi+2k−2mk
restricts to ui + (i − mk)ui−k−1. For k < i < 2mk − k, it suffices to exhibit two monomials
xi1 · · ·xim with i1 + · · · + im = i whose restrictions to U are linearly independent. This is easy
to do using Lemma 3.3; we leave this to the reader.

We conclude that the sections listed in (3.3) extend to global sections of ωm. By construc-
tion, these global sections are in the image of Symm H0(R,ω). Since these sections are linearly
independent and their number equals h0(ωm), they form a basis of H0(ωm). We conclude that
Symm H0(R,ω) → H0(R,ωm) is surjective. The sections ui((du ∧ dε)/ε2)m are semi-invariants
of Gm with weights −mk, . . . ,mk − k − 1. The sections (ui + (i −mk)ui−k−1ε)((du ∧ dε)/ε2)m
are semi-invariants of Gm with weights −mk + k + 1, . . . ,mk. The claim about the dimensions
of the weight spaces follows.

The following is immediate from Proposition 3.5.

Corollary 3.6. Let B be a set of monomials of degree m in the variables x0, . . . , x2k. Its image
in H0(R,ωm) forms a basis if and only if

(i) for 0 6 d 6 k and 2mk−k 6 d 6 2mk, the set B contains exactly one monomial of u-weight
d;

(ii) for k < d < 2mk−k, the set B contains exactly two monomials of u-weight d and these two
monomials are linearly independent in H0(R,ωm).

We recall the following result.

Proposition 3.7. The following are bases of H0(R,ω2):

B+ := {x0xi}2ki=0 ∪ {xkxi}2k−1i=1 ∪ {x2kxi}
2k
i=1 ,

B− := {x2i }2ki=0 ∪ {xixi+1}2k−1i=0 ∪ {xixi+k}
k−1
i=1 ∪ {xixi+k+1}k−1i=0 .

(3.4)

Both B+ and B− are invariant with respect to the Z2-symmetry of R and consist of Gm-semi-
invariant sections. The breakdown of B+ by u-weight in the range 0 6 d 6 2k is as follows:

x0xd for 0 6 d 6 k ,

x0xd, xkxd−k for k < d 6 2k .

The breakdown of B− by u-weight in the range 0 6 d 6 2k is as follows:

xbd/2cxdd/2e for 0 6 d 6 k ,

xbd/2cxdd/2e, xb(d−k)/2cxd(d+k)/2e for k < d 6 2k .

The breakdowns in the range 2k 6 d 6 4k are obtained by using the Z2-symmetry.

Proof. The fact that B+ and B− are bases of H0(R,ω2) is the content of [AFS13, Lemma 4.3].
The weight-decomposition statement is obvious.

We record a simple observation about expressing arbitrary quadratic monomials in H0(R,ω2)
in terms of the monomials of B− that will be used repeatedly in Subsection 4.2.

Lemma 3.8 (Quadratic equations). Consider 0 6 i 6 j 6 2k and set d = i+j. Then in H0(R,ω2)
we have a relation

xixj = λxbd/2cxdd/2e + µxb(d−k)/2cxd(d+k)/2e ,
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where λ and µ are uniquely determined rational numbers. In addition, λ and µ satisfy

(i) λ+ µ = 1;

(ii) if j 6 k or i > k, then µ = 0;

(iii) if j − i = k or j − i = k + 1, then λ = 0;

(iv) if j − i < k, then λ, µ > 0;

(v) if j − i > k + 1, then λ < 0, µ > 0.

Proof. The existence and uniqueness of the relation follow from Proposition 3.7. We now establish
the claims about the coefficients for k < d < 3k, the remaining cases being clear. By the Z2-
symmetry, we may take k < d 6 2k. If j 6 k, the statement is clear. If j > k, then

xbd/2cxdd/2e = ud ,

xb(d−k)/2cxd(d+k)/2e = ud + d(d− k)/2eud−k−1ε ,
xixj = ud + (j − k)ud−k−1ε .

Now, claim (i) follows by equating the coefficients of ud. If j − i = k or j − i = k + 1, then
(i, j) = (b(d − k)/2c, d(d + k)/2e), so claim (iii) follows. Finally, claims (iv) and (v) follow by
equating the coefficients of ud−k−1ε and observing that if j − i < k, then j − k < d(d − k)/2e,
and if j − i > k + 1, then j − k > d(d− k)/2e.

4. Monomial bases of cosyzygies

In this technical heart of the paper, we introduce monomial bases of cosyzygies for a canonical
Gorenstein curve C. These correspond to Plücker coordinates of the first syzygy point of C with
respect to a fixed basis of H0(C,ωC) and thus can be used in verifying the semi-stability of the
first syzygy point of C via the Hilbert–Mumford numerical criterion. We then construct three
particular monomial bases of cosyzygies C+, C−, and C? for the balanced ribbon R. These bases
will be used in the proof of Theorem 5.4. These constructions are done in Subsections 4.1, 4.2,
and 4.3, respectively.

Let C be a canonical Gorenstein curve of genus g. Set H0(ω) := H0(C,ωC), and let Γ := Γ1(C)
be as defined in (2.2). For the first syzygy point, the relevant strand of the Koszul complex is

0→ Γ
f2,1−−→ H0(ω)⊗H0

(
ω2
) f1,2−−→ H0

(
ω3
)
→ 0 . (4.1)

Fix a basis {x0, . . . , xg−1} of H0(ω). For x, y, z ∈ {x0, . . . , xg−1}, we call the image of (x∧ y)⊗ z
in Γ a cosyzygy. With this convention, the only linear relations among cosyzygies in Γ are

(x ∧ y)⊗ z + (y ∧ z)⊗ x+ (z ∧ x)⊗ y = 0 .

By Definition 2.3, the first syzygy point of C is well defined if and only if K1,2(C) = 0 if and
only if the map Γ→ ker f1,2 given by (4.1) is surjective.

Definition 4.1. A set C = {(xa ∧ xb)⊗ xc}(a,b,c)∈S ⊂ Γ is called a monomial basis of cosyzygies
if the set {f2,1

(
(xa ∧ xb)⊗ xc

)
}(a,b,c)∈S forms a basis of ker f1,2.

Suppose K1,2(C) = 0, so that the first syzygy point CoSyz1(C) is well defined. Let T ⊂
SL(H0(ω)) be the maximal torus acting diagonally on the fixed basis {x0, . . . , xg−1} of H0(ω).
Then the monomial bases of cosyzygies of C correspond precisely to the non-zero Plücker coor-
dinates of CoSyz1(C) ∈ Grass

(
(3g − 5)(g − 1),Γ

)
with respect to the distinguished basis of Γ
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consisting of the T -eigenvectors. To every such coordinate, and in turn, to every monomial basis of
cosyzygies C, we can associate a T -character, called the T -state of C, which is represented by a li-
near combination of x0, . . . , xg−1. Precisely, the T -state of C = {(xa∧xb)⊗xc}(a,b,c)∈S is given by

wT (C) :=
∑

(a,b,c)∈S

wT
(
(xa ∧ xb)⊗ xc

)
=

∑
(a,b,c)∈S

(xa + xb + xc) = n0x0 + · · ·+ ng−1xg−1 ,

where ni is the number of occurrences of xi among the cosyzygies in C. Note that we always have

g−1∑
i=0

ni = 3(3g − 5)(g − 1) .

Remark 4.2. Recall from equation (2.3) that

dim ker f1,2 = (3g − 5)(g − 1) .

Therefore, a set C = {(xa ∧ xb)⊗ xc}(a,b,c)∈S ⊂ Γ is a monomial basis of cosyzygies if and only if
the following two conditions are satisfied:

(i) the set C has (3g − 5)(g − 1) elements;

(ii) the set
{
f2,1
(
(xa ∧ xb)⊗ xc

)
= xb ⊗ xaxc − xa ⊗ xbxc

}
(a,b,c)∈S spans ker f1,2.

From now on, we assume that C = R is the balanced ribbon of genus g = 2k + 1 and that
{x0, . . . , x2k} is the basis of H0(ω) described in Proposition 3.1. Our goal for the rest of this
section is to construct three monomial bases of cosyzygies for R that will be used in Section 5
to establish the semi-stability of CoSyz1(R).

Notation. The following terminology will be in force throughout the rest of the paper. We
define the u-degree of a cosyzygy (xa∧xb)⊗xc ∈ Γ to be a+ b+ c and define the level of a tensor
xa⊗xbxc ∈ H0(ω)⊗H0(ω2) to be a. To lighten the notation, we often use (xa∧xb)⊗xc to denote
f2,1
(
(xa ∧ xb)⊗ xc

)
= xb ⊗ xaxc − xa ⊗ xbxc in H0(ω)⊗H0(ω2).

For α ∈ Q, set {α} =
⌊
α+ 1

2

⌋
. In other words, {α} is the integer closest to α. Observe that

for n ∈ Z, we have

n = bn/3c+ {n/3}+ dn/3e .
We use 〈S〉 to denote the linear span of elements in a subset S of a vector space.

Outline of the construction. We now describe our strategy for constructing monomial bases
of cosyzygies for the balanced ribbon R. From Definition 4.1, a set C = {(xa∧xb)⊗xc}(a,b,c)∈S ⊂
Γ of (3g − 5)(g − 1) cosyzygies is a monomial basis of cosyzygies if and only if the images
f2,1
(
(xa ∧ xb)⊗ xc

)
for (a, b, c) ∈ S span ker f1,2.

The first step in our construction is to write down a suitably chosen set C of (3g − 5)(g − 1)
cosyzygies. Next, we make the following observation. Since im f2,1 ⊆ ker f1,2 and f1,2 is surjective
onto H0(ω3), to prove that the images of the cosyzygies in C span ker f1,2, it suffices to show

dim
(
H0(ω)⊗H0

(
ω2
)) /
〈f2,1((xa ∧ xb)⊗ xc)〉(a,b,c)∈S 6 dim H0

(
ω3
)

= 5(g − 1) .

In order to do this, we treat

f2,1
(
(xa ∧ xb)⊗ xc

)
= xb ⊗ xaxc − xa ⊗ xbxc

as a relation among the elements of H0(ω) ⊗ H0(ω2). We therefore reduce to showing that the
relations imposed by C reduce the dimension of H0(ω)⊗H0(ω2) to at most 5(g − 1).
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The final observation is that all of our results and constructions respect the Gm-action on R
described in equation (3.2). In particular, we can run our argument by u-degree. This observation
greatly simplifies our task because the relevant weight spaces have small dimensions. In particular,
by Proposition 3.5, we have

dim H0
(
ω3
)
d

=

{
1 if 0 6 d 6 k or 5k 6 d 6 6k ,

2 if k < d < 5k .
(4.2)

4.1 A construction of the first monomial basis

We define C+ to be the union of the following sets of cosyzygies:

(S1) (x0 ∧ xi)⊗ xj , where i 6= 0, 2k and j 6= 2k;

(S2) (x0 ∧ xi)⊗ x2k, where 1 6 i 6 k − 1;

(S3) (x0 ∧ x2k)⊗ xi, where i 6 k − 1;

(S4) (x2k ∧ xi)⊗ xj , where i 6= 0, 2k and j 6= 0;

(S5) (x2k ∧ x0)⊗ xi, where i > k + 1;

(S6) (x2k ∧ xi)⊗ x0, where k + 1 6 i 6 2k − 1;

(S7) (xk ∧ xi)⊗ xj , where i 6= 0, k, 2k and j 6= 0, 2k;

(S8) (xk ∧ x0)⊗ x2k and (xk ∧ x2k)⊗ x0;
(S9) (xi ∧ xk+i)⊗ xk−i, where 1 6 i 6 k − 1;

(S10) (x2k−i ∧ xk−i)⊗ xk+i, where 1 6 i 6 k − 1.

Proposition 4.3. The set C+ is a monomial basis of cosyzygies for R with T -state

wT (C+) =
(
g2 − 1

)
(x0 + xk + x2k) + (6g − 6)

∑
i 6=0,k,2k

xi .

Proof. Notice that C+ contains precisely (3g−5)(g−1) cosyzygies and that it is invariant under
the Z2-involution of the ribbon described in Remark 3.2.

To calculate the T -state of C+, observe that x0, xk, x2k each appear g2− 1 times, and xi, for
every i 6= 0, k, 2k, appears 6g − 6 times. It follows that

wT (C+) =
(
g2 − 1

)
(x0 + xk + x2k) + (6g − 6)

∑
i 6=0,k,2k

xi .

We now verify that C+ is a monomial basis of cosyzygies. In view of the Z2-symmetry and the
dimensions of H0(ω3)d given in (4.2), we need to verify that the quotient

(
H0(ω)⊗H0(ω2)

)
d
/〈C+〉d

is at most 1-dimensional in u-degrees 0 6 d 6 k, and at most 2-dimensional in u-degrees k <
d 6 3k.

The key player in our argument is the monomial basis B+ from Proposition 3.7:

B+ = {x0xi}2ki=0 ∪ {xkxi}2k−1i=1 ∪ {x2kxi}
2k
i=1 . (4.3)

Tensoring B+ with the standard basis {x0, . . . , x2k} of H0(ω), we obtain the following basis of
H0(ω)⊗H0(ω2):

B := {xa ⊗m : 0 6 a 6 2k,m ∈ B+} .

Our argument now proceeds by u-degree.
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Degree 0 6 d 6 k. We have 〈B〉d = 〈xa ⊗ x0xd−a : 0 6 a 6 d〉. Evidently, we have xaxd−a =
x0xd in H0(ω2). It follows that

xa ⊗ x0xd−a = x0 ⊗ xaxd−a + (x0 ∧ xa)⊗ xd−a = x0 ⊗ x0xd + (x0 ∧ xa)⊗ xd−a ,

where (x0∧xa)⊗xd−a is a cosyzygy (S1). We conclude that 〈B〉d/〈C+〉d is spanned by x0⊗x0xd,
hence is at most 1-dimensional.

Degree k + 1 6 d 6 2k. We have

〈B〉d = 〈xa ⊗ x0xd−a, xb ⊗ xkxd−k−b : 0 6 a 6 d, 0 6 b < d− k〉 .

If b > 1, using the cosyzygies (S7) and (S1) and Lemma 3.8, we obtain

xb ⊗ xkxd−k−b = xk ⊗ xbxd−k−b + (xk ∧ xb)⊗ xd−k−b
= xk ⊗ x0xd−k + (xk ∧ xb)⊗ xd−k−b
= x0 ⊗ xkxd−k + (x0 ∧ xk)⊗ xd−k + (xk ∧ xb)⊗ xd−k−b .

Using (S1), we also have

xa ⊗ x0xd−a = x0 ⊗ xaxd−a + (x0 ∧ xa)⊗ xd−a .

It follows that 〈B〉d/〈C+〉d = 〈x0⊗xaxd−a : 0 6 a 6 d〉/〈C+〉d. In other words, every tensor of u-
degree d is reduced to a tensor of level 0. Since dim〈x0⊗xaxd−a : 0 6 a 6 d〉 = dim H0(ω2)d = 2,
we are done.

Degree 2k + 1 6 d 6 3k − 1. Write d = 2k + i for 1 6 i 6 k − 1. It is easy to see that
modulo C+, every tensor in

(
H0(ω) ⊗ H0(ω2)

)
d

can be reduced to a tensor of level 0, k, or 2k,
by using the cosyzygies (S1)–(S4) or (S7). In other words,

〈B〉d/〈C+〉d = 〈x0 ⊗ xkxk+i, x0 ⊗ x2kxi, xk ⊗ x0xk+i, xk ⊗ xkxi, x2k ⊗ x0xi〉/〈C+〉d .

Since dim〈xi⊗xax2k−a : 0 6 a 6 2k〉 = dim H0(ω2)2k = 2, it suffices to show that every tensor
in the previous display can be rewritten modulo C+ as a tensor of level i. First, we observe that

x2k ⊗ x0xi = x0 ⊗ x2kxi + (x0 ∧ x2k)⊗ xi (using cosyzygy (S3)) ,

x0 ⊗ xix2k = xi ⊗ x0x2k − (x0 ∧ xi)⊗ x2k (using cosyzygy (S2)) ,

xk ⊗ xixk = xi ⊗ x2k − (xk ∧ xi)⊗ xk (using cosyzygy (S7)) .

Since xk ⊗ x0xk+i = x0 ⊗ xkxk+i + (x0 ∧ xk)⊗ xk+i, it remains to show that x0 ⊗ xkxk+i can be
rewritten as a tensor of level i. To this end, we compute

x0 ⊗ xkxk+i = xk+i ⊗ x0xk − (x0 ∧ xk+i)⊗ xk = xk+i ⊗ xixk−i − (x0 ∧ xk+i)⊗ xk
= xi ⊗ xk+ixk−i + (xi ∧ xk+i)⊗ xk−i − (x0 ∧ xk+i)⊗ xk ,

where we have used a cosyzygy (S9) in the second line.

Degree d = 3k. Using the cosyzygies (S1), (S4), and (S7), every tensor in 〈B〉3k reduces
to a tensor of level 0, k, or 2k. It follows that

〈B〉3k/〈C+〉3k = 〈x0 ⊗ xkx2k, xk ⊗ x0x2k, xk ⊗ x2k, x2k ⊗ x0xk〉/〈C+〉3k .

Using the cosyzygies (S8), we see that x0 ⊗ xkx2k = xk ⊗ x0x2k and x2k ⊗ x0xk = xk ⊗ x0x2k
modulo C+. It follows that 〈B〉3k/〈C+〉3k is spanned by tensors of level k, hence is at most
2-dimensional.
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4.2 A construction of the second monomial basis

We define C− to be the union of the following sets of cosyzygies:

(T1) (xi ∧ xj)⊗ xj , where i 6∈ {j − k − 1, j − k, j, j + k, j + k + 1};
(T2) (xi ∧ xj+1)⊗ xj , where i > j + 1 or i = j − k + 1, but i 6= j + k and i 6= j + k + 1;

(T3) (xi ∧ xj−1)⊗ xj , where i < j − 1 or i = j + k − 1, but i 6= j − k and i 6= j − k − 1;

(T4) (xi ∧ xj)⊗ xj+k, where 0 < j < k and i > k;

(T5) (xi ∧ xj)⊗ xj+k+1, where 0 6 j < k and i > k;

(T6) (xi ∧ xj+k)⊗ xj , where 0 < j < k and i < k;

(T7) (xi ∧ xj+k+1)⊗ xj , where 0 6 j < k and i < k;

(T8) (xk ∧ x0)⊗ x0;
(T9) (xk ∧ x2k)⊗ x2k;

(T10) (xb(d−2k)/3c∧xd(d+2k)/3e)⊗xd−b(d−2k)/3c−d(d+2k)/3e, where 2k 6 d 6 4k, with the following
exception: if k ≡ 1 (mod 3) and d = 2k, then take instead (x0 ∧ xb4k/3c)⊗ xd2k/3e.

The construction of C− is motivated by the following basis of H0(ω2) from Proposition 3.7:

B− =
{
x2i
}2k
i=0
∪ {xixi+1}2k−1i=0 ∪ {xixi+k}

k−1
i=1 ∪ {xixi+k+1}k−1i=0 .

After tensoring with {x0, . . . , x2k}, the basis above yields the basis of H0(ω)⊗H0(ω2) given by

B := {xi ⊗m | 0 6 i 6 2k, m ∈ B−} .

Proposition 4.4. Suppose k > 5, so that g > 11. Then C− is a monomial basis of cosyzygies
for R with T -state

wT (C−) = (7g − 12)(x0 + x2k) + (7g − 15)xk + (9g − 18)
∑

i 6=0,k,2k

xi .

Remark 4.5. The exception for k ≡ 1 (mod 3) and d = 2k in (T10) is only necessary to get the
correct T -state for C−. One obtains a monomial basis regardless.

Proof of Proposition 4.4. Counting cosyzygies of each type in C−, we get 12k2 − 4k = (3g −
5)(g − 1) cosyzygies. The state calculation is also straightforward. We proceed to verify that C−
is a monomial basis of cosyzygies.

Before moving onto the key technical results used in the proof of Proposition 4.4, we introduce
some additional terminology. We call the forms x2j and xjxj+1 balanced and the forms xjxj+k
and xjxj+k+1 k-balanced. Likewise, we call a tensor xi ⊗ m balanced (respectively, k-balanced)
if m is balanced (respectively, k-balanced). Finally, we call a balanced tensor xi ⊗ m of degree d
well balanced if b(d− 2k)/3c 6 i 6 d(d+ 2k)/3e. Equivalently, a balanced tensor xi⊗xsx` is well
balanced if max(|i− s|, |i− `|) 6 k + 1.

Let Λ be the span in H0(ω) ⊗ H0(ω2) of all cosyzygies in C−, and let Λ′ be the span in
H0(ω)⊗H0(ω2) of the cosyzygies (T1)–(T7). Note that the relations given by Λ reduce a tensor
in B to a different tensor. For example, modulo (T1) we have

xi ⊗ x2j = xj ⊗ xixj .

Our goal is to show that the quotient
(
H0(ω)⊗H0(ω2)

)
/Λ is generated by at most one

element in degrees 0 6 d 6 k and 5k 6 d 6 6k, and by at most two elements in degrees
k < d < 5k. Proposition 4.6 does most of the heavy lifting toward this goal and, for the sake of
the argument, we assume its statement for now.
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By Proposition 4.6 and Remark 4.7, the quotient
(
H0(ω)⊗H0(ω2)

)
/Λ′ is generated by one

element in degrees 0 6 d < k and 5k < d 6 6k, by two elements in degrees k 6 d < 2k and
4k < d 6 5k and by three elements in degrees 2k 6 d 6 4k. Therefore, to complete the proof of
Proposition 4.4, it suffices to prove that the cosyzygies (T8) and (T9) impose a non-trivial linear
relation on the two generators in degree k and 5k, respectively, and that the cosyzygy (T10)
imposes a non-trivial linear relation on the three generators in degrees 2k 6 d 6 4k.

Let d = k. The two generators of
(
H0(ω)⊗H0(ω2)

)
/Λ′ in this degree are

σ1 := x{k/3} ⊗ xbk/3cxdk/3e and

σ2 := xk ⊗ x20 .

The relation imposed by (T8) is

xk ⊗ x20 = x0 ⊗ x0xk .

It is easy to see that by repeatedly applying (T1), (T2), or (T3), and Lemma 3.8, we obtain

x0 ⊗ x0xk = x0 ⊗ xbk/2cxdk/2e = xbk/2c ⊗ x0xdk/2e = xbk/2c ⊗ x⌊ k−bk/2c
2

⌋x⌈ k−bk/2c
2

⌉ = · · · = σ1 .

Therefore, (T8) does impose a non-trivial relation σ2 = σ1.

The case d = 5k follows symmetrically.

Let 2k 6 d 6 4k. The three generators of
(
H0(ω)⊗H0(ω2)

)
/Λ′ in degree d are

σ1 := x{d/3} ⊗ xdd/3exbd/3c ,
σ2 := xd(d+2k)/3e ⊗ xb(d−k)/3cx{(d−k)/3} , and

σ3 := xb(d−2k)/3c ⊗ x{(d+k)/3}xd(d+k)/3e .

For brevity, set ` = d(d+ 2k)/3e and s = b(d− 2k)/3c. The relation imposed by (T10) is

x` ⊗ xsxd−`−s = xs ⊗ x`xd−`−s . (4.4)

Assume d 6 3k; the case d > 3k follows symmetrically. Since d 6 3k, we have

s < b(d− k)/3c 6 {(d− k)/3} < d− `− s 6 k .

On the left-hand side of (4.4), we have by Lemma 3.8

x` ⊗ xsxd−`−s = x` ⊗ xb(d−k)/3cx{(d−k)/3}
= σ2 .

On the right-hand side of (4.4), working modulo (T6) and (T7), and applying Lemma 3.8, we
get

xs ⊗ x`xd−`−s = λxs ⊗ x{(d+k)/3}xd(d+k)/3e + µxs ⊗ xb(d−s−k)/2cxd(d−s+k)/2e ,
= λσ3 + µxd(d−s+k)/2e ⊗m , where m is balanced ,

= λσ3 + µ(ασ1 + βσ2 + γσ3) ,

where the last step uses Proposition 4.6. Furthermore, since k > 5, we have d(d − s + k)/2e >
d(d+ 2k)/3e. Hence Proposition 4.6(ii)(c) implies α < 0. Thus, (T10) imposes a relation

σ2 = λσ3 + µ(ασ1 + βσ2 + γσ3) .

If µ = 0, then this relation is clearly non-trivial. If µ 6= 0, the non-vanishing of the coefficient
of σ1 shows that the relation is non-trivial.
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Finally, we verify that the exceptional cosyzygy in (T10) for k ≡ 1 (mod 3) and d = 2k
imposes a non-trivial relation. The argument is almost the same. In this case, the cosyzygy gives

xb4k/3c ⊗ x0xd2k/3e = x0 ⊗ xd2k/3exb4k/3c . (4.5)

Applying Lemma 3.8 and Proposition 4.6(i), we obtain

xb4k/3c ⊗ x0xd2k/3e = xb4k/3c ⊗m , where m is balanced ,

= ασ1 + βσ2 + γσ3 .

Since b(d− 2k)/3c < b4k/3c < d(d+ 2k)/3e, Proposition 4.6(ii)(b) says that α > 0.

Similarly, reducing the right-hand side of (4.5), we get

x0 ⊗ xd2k/3exb4k/3c = λx0 ⊗ x2k + µx0 ⊗ xbk/2cxd3k/2e , where λ, µ > 0 ,

= λσ3 + µxd3k/2e ⊗ n , where n is balanced ,

= λσ3 + µ(α′σ1 + β′σ2 + γ′σ3) .

Since d3k/2e > d(d+ 2k)/3e, Proposition 4.6(ii)(c) implies α′ < 0. Thus, (T10) imposes

ασ1 + βσ2 + γσ3 = λσ3 + µ(α′σ1 + β′σ2 + γ′σ3) .

Since α > 0 whereas µα′ < 0, the relation is non-trivial.

Proposition 4.6. (i) Every element of
(
H0(ω)⊗H0(ω2)

)
/Λ′ can be uniquely expressed as a

linear combination of the following tensors:

(type 1)


xi ⊗ x2i , where 0 6 i 6 2k ,

xi ⊗ xixi+1 , where 0 6 i 6 2k − 1 ,

xi ⊗ xi−1xi , where 1 6 i 6 2k ,

(type 2)


xi+k ⊗ x2i , where 0 6 i 6 k ,

xi+k+1 ⊗ x2i , where 0 6 i 6 k − 1 ,

xi+k+1 ⊗ xixi+1, where 0 6 i 6 k − 1 ,

(type 3)


xi−k ⊗ x2i , where k 6 i 6 2k ,

xi−k−1 ⊗ x2i , where k + 1 6 i 6 2k ,

xi−k−1 ⊗ xixi−1 , where k + 1 6 i 6 2k .

(ii) Furthermore, let 2k 6 d 6 4k. Then there is precisely one tensor of degree d of each type
1–3. Suppose that the balanced tensor τ = xi ⊗ xb(d−i)/2cxd(d−i)/2e is expressed as

τ = ασ1 + βσ2 + γσ3 ,

where σt is of type t. Then

(a) α+ β + γ = 1;

(b) if b(d− 2k)/3c < i < d(d+ 2k)/3e, then α > 0, β > 0, γ > 0 (well-balanced case);

(c) if i > d(d+ 2k)/3e, then α < 0, β > 1, γ 6 0;

(d) if i < b(d− 2k)/3c, then α < 0, β 6 0, γ > 1.

Remark 4.7. In terms of the u-degree d, the list of tensors in Proposition 4.6 can be written
more compactly as follows:

(type 1) x{d/3} ⊗ xbd/3cxdd/3e, where 0 6 d 6 6k;
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(type 2) xd(d+2k)/3e ⊗ xb(d−k)/3cx{(d−k)/3}, where k 6 d 6 4k;

(type 3) xb(d−2k)/3c ⊗ xd(d+k)/3ex{(d+k)/3}, where 2k 6 d 6 5k.

Proof of Proposition 4.6. Using the cosyzygies (T1)–(T7), we reduce every element of the basis
B to a linear combination of the tensors of type 1, 2, and 3. Uniqueness then follows by counting
the dimensions.

Step 1: Reducing k-balanced tensors to balanced tensors. Consider a k-balanced tensor
xi⊗xb(d−i−k)/2cxd(d−i+k)/2e, where k 6 d−i 6 3k. Suppose i > k. Then modulo the cosyzygy (T4)
or (T5), we get

xi ⊗ xb(d−i−k)/2cxd(d−i+k)/2e = xb(d−i−k)/2c ⊗ xixd(d−i+k)/2e .

Since i > k and d(d− i+k)/2e > k, the form xixd(d−i+k)/2e is equal to a balanced form in H0(ω2)
by Lemma 3.8. The case i < k is analogous using cosyzygies (T6) or (T7).

Step 2: Reducing balanced tensors to well-balanced tensors. Consider a balanced tensor
xi ⊗ xb(d−i)/2cxd(d−i)/2e that is not well balanced. For brevity, set

s = b(d− i)/2c , ` = d(d− i)/2e .

Assume i > d(d + 2k)/3e (the case i < b(d − 2k)/3c follows symmetrically). We then have
i− s > k + 1 and hence i > `+ k > `. Modulo the cosyzygy (T1) or (T2), we get

xi ⊗ xsx` = x` ⊗ xsxi .

By Lemma 3.8, we have

xsxi = λm1 + µm′1 ,

where m1 is balanced, m′1 is k-balanced, and λ+ µ = 1. Since i− s > k + 1, we also have λ < 0.
Reducing the k-balanced tensor x` ⊗m′1 as in Step 1, we get

x` ⊗m′1 = x` ⊗ xb(d−`−k)/2cxd(d−`+k)/2e
= xd(d−`+k)/2e ⊗m2 modulo (T6) or (T7) ,

where m2 is balanced. We thus get an expression

xi ⊗ xsx` = λx` ⊗m1 + µxd(d−`+k)/2e ⊗m2 , (4.6)

where m1 and m2 are balanced, s = b(d− i)/2c, ` = d(d− i)/2e, λ+ µ = 1, λ < 0.

Note that we have the inequalities

b(d− 2k)/3c 6 ` 6 d(d+ 2k)/3e and

d(d+ 2k)/3e 6 d(d− `+ k)/2e < i .

In other words, the first tensor on the right in (4.6) is already well balanced and the second is
strictly closer to being well balanced than the original tensor. By repeated application of (4.6),
we arrive at a linear combination of well-balanced tensors.

Step 3: Reducing well-balanced tensors. We now show that all well-balanced tensors reduce
to linear combinations of tensors of type 1, 2, and 3. We will make use of the following result.

Lemma 4.8. Let τ = xi ⊗ xb(d−i)/2cxd(d−i)/2e be a well-balanced tensor of degree d. Modulo
(T1)–(T7), we have a reduction

τ = λτ1 + µτ2 , (4.7)
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where τ1 and τ2 are well balanced, λ + µ = 1, and λ, µ > 0. Moreover, if τ is not of type 2
or 3, then λ > 0. And, if τ is not of type 1, 2, or 3, then τ1 = xj ⊗ xb(d−j)/2cxd(d−j)/2e, where
|{d/3} − j| < |{d/3} − i|, and τ1 is not of type 2 or 3.

Proof of Lemma 4.8. Let τ = xi ⊗ xb(d−i)/2cxd(d−i)/2e. For brevity, set s = b(d − i)/2c and
` = d(d − i)/2e. If i = ` or i = s, then τ is of type 1. In this case, we take τ1 = τ and λ = 1,
µ = 0. If both xix` and xixs are k-balanced, then τ is of type 2 or 3. In this case, we take τ2 = τ
and λ = 0, µ = 1. Suppose neither of these is the case. We consider the case i > `; the case i < s
follows symmetrically. Note that ` satisfies

{(d− k)/3} 6 ` 6 {(d+ k)/3}. (4.8)

We first treat the special case i = s+ k. Since xix` and xixs are not both k-balanced by our
assumption, we must have s = `− 1. Therefore, we get

τ = xi ⊗ x`−1x`
= x`−1 ⊗ xix` modulo (T3)

= λx`−1 ⊗m1 + µx`−1 ⊗ x`+kx`−1 ,
where m1 is balanced, λ > 0, µ > 0, and λ+ µ = 1 (Lemma 3.8) ,

= λx`−1 ⊗m1 + µx`+k ⊗ x`−1x`−1 modulo (T6)

= λτ1 + µτ2 , as desired .

Now assume i 6= s+ k. Then 0 < i− ` 6 i− s < k. In this case, we get

τ = xi ⊗ xsx`
= x` ⊗ xsxi modulo (T1) or (T2) .

Using Lemma 3.8, we have

xsxi = λm1 + µm′1 ,

where m1 is balanced, m′1 is k-balanced, and λ+ µ = 1. Since 0 < i− s < k, we have λ > 0 and
µ > 0. Reducing the k-balanced tensor x` ⊗m′1 as in Step 1, we get

x` ⊗m′1 = xp ⊗m2 ,

where m2 is balanced and

p =

{
b(d− `− k)/2c if ` > k ,

d(d− `+ k)/2e if ` < k .

In either case, (4.8) implies

b(d− 2k)/3c 6 p 6 d(d+ 2k)/3e .

Setting τ1 = x` ⊗m1 and τ2 = xp ⊗m2, we thus get

τ = λτ1 + µτ2 ,

as claimed.

Finally, we note that if τ = xi ⊗ xsx` is not of type 1, 2, or 3, then by construction τ1 has
level j where either j = s in the case i = s + k, or j = ` in all other cases. In either case, it is
clear that |{d/3} − j| < |{d/3} − i|. (Informally, this means that τ1 is closer to being of type 1
than τ .) This finishes the proof of the lemma.
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τ

τ1 τ2

λ µ

Figure 1. The relations among well-balanced tensors as a Markov chain

Proof of Proposition 4.6, continued. Let Ω be the set of well-balanced tensors. Define a linear
operator P : 〈Ω〉 → 〈Ω〉 that encodes (4.7), namely

P : τ 7→ λτ1 + µτ2 .

By Lemma 4.8, we can interpret P as a Markov process on Ω (see Figure 1). Notice that the
absorbing states of this Markov chain are precisely the tensors of type 1, 2, and 3. Furthermore,
from every other tensor, the path τ → τ1 → · · · eventually leads to a tensor of type 1, again
by Lemma 4.8. As a result, P is an absorbing Markov chain. By basic theory of Markov chains,
for every v ∈ 〈Ω〉, the limit limn→∞ P

nv exists and is supported on the absorbing states. Taking
v = 1 · τ , we conclude that τ reduces to a linear combination of the absorbing states. We thus
get a linear relation

τ = ασ1 + βσ2 + γσ3 ,

where σt is of type t, as claimed.

The above analysis also lets us deduce the claims about the coefficients from part (ii) of the
proposition. Let 2k 6 d 6 4k. Say τ = xi ⊗ xsx` reduces as

τ = ασ1 + βσ2 + γσ3 ,

where σt is of type t.

For part (ii)(a), we note that α+ β + γ = 1 follows by passing to H0(ω3) and comparing the
coefficients of ud.

For part (ii)(b), assume b(d − 2k)/3c < i < d(d + 2k)/3e. Then τ is well balanced. The
non-negativity of P implies the non-negativity of α, β, and γ. Furthermore, since there is a path
of positive weight from τ to σ1, we have α > 0.

For part (ii)(c), note that if i = d(d + 2k)/3e, then α = 0, β = 1, and γ = 0. For i >
d(d+2k)/3e, we show by descending induction on i that α < 0 and γ 6 0. Then since α+β+γ = 1,
it follows that β > 1. For the induction, recall the reduction (4.6)

τ = λx` ⊗m1 + µxd(d−`+k)/2e ⊗m2 ,

where the mi are balanced, λ < 0, µ > 0, and λ+ µ = 1. Recall also the inequalities

b(d− 2k)/3c 6 ` 6 d(d+ 2k)/3e and

d(d+ 2k)/3e 6 d(d− `+ k)/2e < i .

Except in the extreme case (d, i) = (2k, 2k), both inequalities in the first line are strict. Say we
have the reductions

x` ⊗m1 = α′σ1 + β′σ2 + γ′σ3 and

xd(d−`+k)/2e ⊗m2 = α′′σ1 + β′′σ2 + γ′′σ3 .

By part (ii)(b), we have α′ > 0 and γ′ > 0. By the inductive assumption, we have α′′ 6 0 and
γ′′ 6 0. Since λ < 0 and µ > 0 in (4.6), we conclude the induction step. In the extreme case
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(d, i) = (2k, 2k), the reduction (4.6) becomes

τ = λσ3 + µxd3k/2e ⊗m2 .

The assertion now follows from that for xd3k/2e ⊗m2.

Finally, part (ii)(d) follows symmetrically from part (ii)(c).

4.3 A construction of the third (and final!) monomial basis

Let C? be the union of the following sets of cosyzygies:

(U1) the cosyzygies (T1)–(T9) in the description of C− from Subsection 4.2;

(U2) (xd−k ∧ x0)⊗ xk for 2k 6 d < 3k;

(U3) (x2k ∧ x0)⊗ xk;
(U4) (xd−3k ∧ x2k)⊗ xk for 3k < d 6 4k.

Proposition 4.9. The set C? is a monomial basis of cosyzygies for R with T -state

wT (C?) =
15g − 29

2
(x0 + x2k) + (8g − 16)xk + (9g − 20)

∑
i 6=0,k,2k

xi .

Proof. Let Λ′ be the span in H0(ω) ⊗ H0(ω2) of the cosyzygies in (U1). Then by Proposi-
tion 4.6 and the proof of Proposition 4.4 for the u-degrees d = k and d = 5k, the quotient(
H0(ω)⊗H0(ω2)

)
/Λ′ is generated by one element in degrees 0 6 d 6 k and 5k 6 d 6 6k, by two

elements in degrees k < d < 2k and 4k < d < 5k, and by three elements in degrees 2k 6 d 6 4k.
It suffices to prove that the cosyzygies (U2)–(U4) impose a non-trivial linear relation among
the three generators in degrees 2k 6 d 6 4k.

Let 2k 6 d < 3k. Recall that by Proposition 4.6(i) the three generators in this degree are

σ1 := x{d/3} ⊗ xdd/3exbd/3c ,
σ2 := xd(d+2k)/3e ⊗ xb(d−k)/3cx{(d−k)/3} , and

σ3 := xb(d−2k)/3c ⊗ x{(d+k)/3}xd(d+k)/3e .

The relation given by (U2) is

x0 ⊗ xd−kxk = xd−k ⊗ x0xk .

We reduce both sides modulo Λ′. Note that x0⊗xd−kxk = x0⊗m1 and xd−k⊗x0xk = xd−k⊗m2,
where the mi are balanced. Modulo Λ′, we have by Proposition 4.6

x0 ⊗m1 = ασ1 + βσ2 + γσ3 and

xd−k ⊗m2 = α′σ1 + β′σ2 + γ′σ3 .

The relation imposed by (U2) is therefore

ασ1 + βσ2 + γσ3 = α′σ1 + β′σ2 + γ′σ3 . (4.9)

On the one hand, since 0 6 b(d− 2k)/3c, Proposition 4.6(ii)(d) implies γ > 0, α 6 0, and β 6 0.
On the other hand, since b(d− 2k)/3c < d− k, we have either α′ > 0 (if d− k < d(d + 2k)/3e)
or β′ > 0 (if d(d+ 2k)/3e 6 d− k). In either case, relation (4.9) is non-trivial.

The same argument goes through for d = 3k.

The case 3k < d 6 4k follows symmetrically.

17



A. Deopurkar, M. Fedorchuk and D. Swinarski

We finish this section with an existence result for monomial bases of cosyzygies in low genus.
Recall that the set C− constructed in Section 4.2 is a monomial basis of cosyzygies for R only if
g > 11. The following proposition shows how to modify the basis in low genus.

Proposition 4.10. As before, R is the balanced ribbon of genus g.

(i) Suppose g = 7. There exists a monomial basis C− of cosyzygies for R with T -state

wT (C−) = 40x0 + 42x1 + 42x2 + 40x3 + 42x4 + 42x5 + 40x6 .

(ii) Suppose g = 9. There exists a monomial basis C− of cosyzygies for R with T -state

wT (C−) = 56x0 + 60x1 + 60x2 + 60x3 + 56x4 + 60x5 + 60x6 + 60x7 + 56x8 .

Proof. Both statements are proved by explicitly writing down a monomial basis of cosyzygies
of R. We provide details only in the case g = 7, the case g = 9 being similar. Let C− be the
following union of sets of cosyzygies:

(V1) u-degree 1: x0 ∧ x1 ⊗ x0;
(V2) u-degree 2: x0 ∧ x2 ⊗ x0, x0 ∧ x1 ⊗ x1;
(V3) u-degree 3: x0 ∧ x3 ⊗ x0, x0 ∧ x1 ⊗ x2, x0 ∧ x2 ⊗ x1;
(V4) u-degree 4: x0 ∧ x4 ⊗ x0, x0 ∧ x3 ⊗ x1, x1 ∧ x2 ⊗ x1, x0 ∧ x2 ⊗ x2;
(V5) u-degree 5: x0∧x5⊗x0, x0∧x4⊗x1, x1∧x3⊗x1, x1∧x2⊗x2, x0∧x2⊗x3, x0∧x1⊗x4;
(V6) u-degree 6: x0∧x6⊗x0, x0∧x5⊗x1, x1∧x4⊗x1, x2∧x3⊗x1, x0∧x2⊗x4, x1∧x2⊗x3,

x0 ∧ x3 ⊗ x3, x0 ∧ x1 ⊗ x5;
(V7) u-degree 7: x0∧x6⊗x1, x1∧x5⊗x1, x1∧x4⊗x2, x2∧x3⊗x2, x0∧x3⊗x4, x1∧x2⊗x4,

x1 ∧ x3 ⊗ x3, x0 ∧ x1 ⊗ x6, x0 ∧ x2 ⊗ x5;
(V8) u-degree 8: x2∧x6⊗x0, x2∧x5⊗x1, x2∧x4⊗x2, x0∧x4⊗x4, x2∧x3⊗x3, x1∧x3⊗x4,

x1 ∧ x2 ⊗ x5, x1 ∧ x4 ⊗ x3, x0 ∧ x3 ⊗ x5, x0 ∧ x2 ⊗ x6;
(V9) u-degree 9: x3∧x6⊗x0, x3∧x5⊗x1, x4∧x5⊗x0, x3∧x4⊗x2, x1∧x4⊗x4, x2∧x3⊗x4,

x2 ∧ x5 ⊗ x2, x1 ∧ x3 ⊗ x5, x1 ∧ x2 ⊗ x6, x0 ∧ x3 ⊗ x6;
(V10) u-degrees 10–18: the cosyzygies that are obtained from those above by the Z2-involution

described in Remark 3.2.

A straightforward but tedious linear algebra calculation, which we omit, shows that C− is a mono-
mial basis of cosyzygies for the genus 7 balanced ribbon. The T -state of C− is clearly

40x0 + 42x1 + 42x2 + 40x3 + 42x4 + 42x5 + 40x6 .

We note in closing that both parts of the proposition can also be verified by a direct search
using a computer.

5. Semi-stability of the first syzygy point

In this section, we prove that the balanced canonical ribbon R has semi-stable first syzygy point,
thus obtaining our main result. We begin with two preliminary lemmas.

Lemma 5.1. For the balanced canonical ribbon R of odd genus g > 5, we have K1,2(R) = 0.

Proof. The claim follows from the existence of a single monomial basis of cosyzygies. We exhibited
such a basis in Proposition 4.3.
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Remark 5.2. In the terminology of Bayer and Eisenbud [BE95, § 2], the Clifford index of the
genus 2k + 1 balanced ribbon R is k. Therefore, Lemma 5.1 is an immediate consequence of
Green’s conjecture for R, which is still open to the best of our knowledge.

Recall from Section 4 that we have constructed three monomial bases of cosyzygies for R,
namely, C+, C−, and C?, with the following T -states:

wT (C+) = (g2 − 1)(x0 + xk + x2k) + (6g − 6)
∑

i 6=0,k,2k

xi ,

wT (C−) = 40x0 + 42x1 + 42x2 + 40x3 + 42x4 + 42x5 + 40x6 if g = 7 ,

wT (C−) = 56x0 + 60x1 + 60x2 + 60x3 + 56x4 + 60x5 + 60x6 + 60x7 + 56x8 if g = 9 ,

wT (C−) = (7g − 12)(x0 + x2k) + (7g − 15)xk + (9g − 18)
∑

i 6=0,k,2k

xi if g > 11 ,

wT (C?) =
15g − 29

2
(x0 + x2k) + (8g − 16)xk + (9g − 20)

∑
i 6=0,k,2k

xi .

Lemma 5.3. Suppose g > 5. Let C+, C−, and C? be the monomial bases of cosyzygies for R
constructed in Section 4. Then the convex hull of the T -states wT (C+), wT (C−), and wT (C?)
contains the barycenter

3(3g − 5)(g − 1)

g

2k∑
i=0

xi .

Proof. Equivalently, we may show that the 0-state is an effective linear combination of wT (C+),
wT (C−), and wT (C?) modulo

∑2k
i=0 xi. First we deal with the low genus cases. We note that

wT (C+) = 24
2k∑
i=0

xi if g = 5 ,

wT (C+) + 6wT (C−) = 288
2k∑
i=0

xi if g = 7 ,

wT (C+) + 8wT (C−) = 528

2k∑
i=0

xi if g = 9 .

Assuming g > 11, we have

wT (C+) = (g − 5)(g − 1)(x0 + xk + x2k)
(
mod

2k∑
i=0

xi
)
,

wT (C−) = −(2g − 6)(x0 + x2k)− (2g − 3)xk
(
mod

2k∑
i=0

xi
)
,

wT (C?) = −3g − 11

2
(x0 + x2k)− (g − 4)xk

(
mod

2k∑
i=0

xi
)
.
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Form a positive linear combination L of the last two lines as follows:

L := 6wT (C?) + (g − 3)wT (C−)

= −(2g2 − 3g − 15)(x0 + xk + x2k)
(
mod

2k∑
i=0

xi
)
.

Plainly, the 0-state is a positive linear combination of wT (C+) and L.

Having established that CoSyz1(R) is well defined in Lemma 5.1, we are now ready to prove
our main theorem.

Theorem 5.4. Let g > 5 be odd. The balanced canonical ribbon R of genus g has an SLg-semi-
stable first syzygy point.

Proof. Because H0(R,ωR) is a multiplicity-free representation of Gm ⊂ Aut(R) by Proposi-
tion 3.1, it suffices to verify the semi-stability of CoSyz1(R) with respect to the maximal torus
T acting diagonally on the distinguished basis {x0, . . . , x2k} of H0(R,ωR) described in Proposi-
tion 3.1. For a proof of this reduction, see [MS11, Proposition 4.7], [AFS13, Proposition 2.4], or
[Lun75, Corollaire 2 and Remarque 1].

The non-zero Plücker coordinates of CoSyz1(R) diagonalizing the action of T are precisely
the monomial bases of cosyzygies for R. The T -semi-stability of CoSyz1(R) now follows from
Lemma 5.3 and the Hilbert–Mumford numerical criterion.

Corollary 5.5 (Theorem 2.6). A general canonical curve of odd genus g > 5 has a semi-stable
first syzygy point.

Proof. This follows from Theorem 5.4 and the fact that R deforms to a smooth canonical
curve [Fon93].

6. Computer calculations

For any given genus, the semi-stability of any syzygy point of the balanced ribbon can in princi-
ple be verified numerically by enumerating all the T -states and checking that their convex hull
contains the trivial state. We did calculations in Macaulay2 and polymake [GS, GJ] that estab-
lished the GIT semi-stability of the first syzygy point of the balanced ribbon for g = 7, 9, 11, 13
and the second syzygy point for g = 9, 11. (Computations for higher genera appear to be im-
practicable.) The main theorem of this paper (on first syzygies) and our calculations for second
syzygies in small genus provide the first evidence for feasibility of Farkas and Keel’s approach to
constructing the canonical model of Mg.
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