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Vanishing and identities of conformal blocks divisors

Prakash Belkale, Angela Gibney and Swarnava Mukhopadhyay

Abstract

Conformal block divisors in type A on M0,n are shown to satisfy new symmetries when
levels and ranks are interchanged in non-standard ways. A connection with the quantum
cohomology of Grassmannians reveals that these divisors vanish above the critical level.

1. Introduction

Given a simple Lie algebra g and suitable choice of weights ~λ for g at level `, there is a globally
generated vector bundle V

g,~λ,`
of conformal blocks on the moduli space M0,n of stable, n-pointed

rational curves. Global generation on M0,n comes from the surjection

A
g,~λ

= A
g,~λ
× M0,n � V

g,~λ,`
, where A

g,~λ
= (⊗ni=1Vλi)g =

⊗ni=1Vλi
g(⊗ni=1Vλi)

is the vector space of coinvariants, the largest quotient space on which g acts trivially. Here Vλ
is the irreducible finite-dimensional representation of g with highest weight λ. Consequently, one
obtains a morphism fV to a Grassmannian variety of rkV

g,~λ,`
quotients of A

g,~λ
:

M0,n
fV−→ Grassquo(rkV

g,~λ,`
,A

g,~λ
)

p
↪→ PN−1 , where N =

(
rkA

g,~λ

rkV
g,~λ

)
.

The composition of fV with the Plücker embedding p is given by c1(Vg,~λ,`
). These so-called

conformal blocks divisors D
g,~λ,`

= c1(Vg,~λ,`
) generate a full-dimensional sub-cone in the nef cone.

It is well known that given g and ~λ, there is an integer `0(g, ~λ) for which V
g,~λ,`

and A
g,~λ

are
isomorphic for all ` > `0. In particular, rkA

g,~λ
= rkV

g,~λ,`
, and so the conformal blocks divisor

D
g,~λ,`

vanishes and its map contracts everything, for all ` > `0.

Here we study two different bounds for `0: the critical level c(slr+1, ~λ) and the theta level
θ(g, ~λ). The critical level, which we introduce, is related to an interpretation of the ranks of the
bundles with g = slr+1 in terms of the quantum cohomology of the Grassmannian. If ` is greater
than either bound, then D

g,~λ,`
= 0 (Theorem 1.3 and Remark 1.5). While equal for r = 1, the

critical and theta levels are generally distinct, reflecting different aspects of the weights ~λ.

As an application of vanishing, we give sufficient conditions for divisors D
g,~λ,`

to be extremal

in the nef cone (Propositions 5.3 and 5.4), and show that the morphisms they define factor
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Vanishing and identities of conformal blocks divisors

through birational contraction maps to Hassett spaces (Theorems 6.2 and 6.3). We find a sur-
prising relationship between pairs of critical level bundles V

slr+1,~λ,`
and V

sl`+1,~λT ,r
, where ` is

the critical level for (slr+1, ~λ). In this case, r is the critical level for the pair (sl`+1, ~λ
T ), where

~λT = (λT1 , . . . , λ
T
n ) and the λTi are the representations given by the transposed Young diagrams

associated with the λi as described in Section 1.1.1. Namely, while the bundles V
slr+1,~λ,`

and

V
sl`+1,~λT ,r

are not isomorphic, their first Chern classes are equal, and the images of the maps

they define are related by Grassmann duality (Proposition 1.6).

In addition to the identity D
slr+1,~λ,`

= D
sl`+1,~λT ,r

for critical level pairs, we show that

D
slr+1,~λ,`

= D
slr+1,~λ∗,`

(Proposition 13.1). Here ~λ∗ = (λ∗1, . . . , λ
∗
n) and λ∗ denotes the highest

weight of (Vλ)∗. Taken together, these identities enhance our criteria for detecting the vanishing
of the conformal block divisors, and hence improve our understanding of the nef cone.

1.1 Definitions and precise statement of results

We now state our results, outline the paper and our methods, and put the work into context.

1.1.1 Notation. For a finite-dimensional simple Lie algebra g and a positive integer ` (called
the level), denote by P`(g) the set of dominant integral weights λ with (λ, θ) 6 `. Here θ is the
highest root and ( , ) is the Killing form, normalized so that (θ, θ) = 2. If Hθ is the co-root
corresponding to the highest root θ, then (λ, θ) = λ(Hθ).

To a triple (g, ~λ, `) such that ~λ ∈ P`(g)n, there corresponds a vector bundle of conformal
blocks V

g,~λ,`
on the moduli stack Mg,n [TUY89] (see also [Tsu93, Sor96, Fak12]).

Finite-dimensional irreducible polynomial representations for GLr+1 are parameterized by
Young diagrams λ = (λ(1) > λ(2) > · · · > λ(r) > λ(r+1) > 0). Young diagrams λ and µ give the
same representation of SLr+1 (or, equivalently, slr+1) if λ(a)−µ(a) is a constant independent of a.
We use the notation |λ| =

∑r
i=1 λ

(i). We say that λ ∈ P`(slr+1) if and only if λ(1) − λ(r+1) 6 `.
We refer to λ as normalized if λ(r+1) = 0. The normalization of λ is λ−λ(r+1) · (1, 1, . . . , 1). Also
note that (λ, θ) = λ(Hθ) = λ(1) − λ(r+1).

1.1.2 The critical level

Definition 1.1. Let ~λ = (λ1, . . . , λn) be an n-tuple of normalized integral weights for slr+1,
assume that r + 1 divides

∑n
i=1 |λi|, and define the critical level for the pair (slr+1, ~λ) to be

c(slr+1, ~λ) = −1 +
1

r + 1

n∑
i=1

|λi| .

One can define c(slr+1, ~λ) in general, by replacing each λi with its normalization.

Remark 1.2. (i) The non-zeroness of rkA
g,~λ

(similarly, of rkV
g,~λ,`

) for g = slr+1 is controlled

by a non-trivial system of inequalities [Kly98, KT99, Ful00, Bel08a, Bel10]. It is therefore
unreasonable to look for an optimal critical level valid for all data.

(ii) The ranks of A
g,~λ

and V
g,~λ,`

coincide with the ranks of global sections of line bundles

over suitable moduli spaces—the moduli spaces of (semistable) filtered vector spaces, and
of semistable parabolic bundles, respectively. One may look for levels at which parabolic
semistable bundles are necessarily trivial (as bundles), so that these moduli spaces and line
bundles are the same, and hence the ranks coincide. The resulting bounds for vanishing are
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weaker than the critical level bounds (by one); see Section 4.1 and Question 4.2.

Proposition 1.3. Suppose ~λ ∈ P`(slr+1)
n and ` > c(slr+1, ~λ). Then A

slr+1,~λ
= V

slr+1,~λ,`
and, in

particular, one has D
slr+1,~λ,`

= c1(Vslr+1,~λ,`
) = 0.

The proof of Proposition 1.3, given in Section 4, follows from an enumerative interpretation of
conformal blocks [Wit95] (also S. Agnihotri, Ph.D. thesis, Oxford, 1995) and of classical invariants
for slr+1 described in Section 3. As is explained in Section 3.2 one can compute the rank of
V
slr+1,~λ,`

by calculating a particular (quantum) product of Schubert cycles in a Grassmannian.

In case ` > c(slr+1, ~λ), the corresponding quantum cohomology structure coefficient equals the
classical structure constant, which gives the rank of the bundle of coinvariants.

The critical level is defined only for Lie algebras of form g = slr+1. The theta level which we
define next is valid for arbitrary simple Lie algebras.

1.1.3 The theta level and comparison to the critical level. The theta level, defined below,
arises from a description of V

g,~λ,`
as an explicit quotient of A

g,~λ
[GW86, FSV94, FSV95, Bea96].

For g = slr+1, this level can be related to critical levels for related data (see Lemma 13.3). Some
basic properties of the theta level are explored in [BGM13].

Definition 1.4. Given a pair (g, ~λ), we refer to

θ(g, ~λ) = −1 +
1

2

∑
(λi, θ) ∈

1

2
Z

as the theta level.

Remark 1.5. (i) It is an immediate consequence of the explicit quotient description of V
g,~λ,`

that if ` > θ(g, ~λ) and ~λ ∈ P`(g), then V
g,~λ,`

= A
g,~λ

and D
g,~λ,`

= c1(Vg,~λ,`
) = 0 (see [BGM13]

and Lemma 13.3).

(ii) It is easy to see that the theta and critical levels coincide for sl2. Lemma 13.3(a) shows that
the theta level for (slr+1, ~λ) is the average of the critical levels for (slr+1, ~λ) and (slr+1, ~λ

∗).

1.1.4 Applications of vanishing. A divisor on a projective variety X is nef if it non-negatively
intersects all curves on X. The set of nef divisors forms the nef cone, denoted by Nef(X).
Properties of Nef(X) reflect aspects of the morphisms admitted by X. The feasibility of studying
the birational geometry of a particular space X by way of its nef cone is highly variable. On one
extreme, if X is a so-called Mori Dream Space, then Nef(X) has a finitely number of extremal
rays, and each extremal ray is spanned by a base-point-free divisor.

It was recently shown that M0,n is not a Mori Dream Space for n > 13 [CT13, GK14].
Whether there are an infinite number of distinct extremal rays of the nef cone and whether those
rays are spanned by base-point-free divisors are two wide open questions.

Propositions 5.3 and 5.4 give criteria for detecting when a conformal blocks divisor D lies on
an extremal face of the nef cone given by a so-called F-curve. The extremality criteria allow us,
in Theorems 6.2 and 6.3, to prove that the morphisms given by certain conformal blocks divisors
D
g,~λ,`

factor through maps to Hassett spaces M0,A, where the weight data A is determined

by g, `, and ~λ.

1.1.5 Relations between divisors. When finding where in the nef cone the conformal blocks
divisors reside, we are interested not only in extremality (that results like Propositions 5.3 and 5.4
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tell us about), but also in questions of independence. An interesting feature of the set of conformal
blocks divisors is that together they generate a dense sub-cone of the nef cone. It is natural
to wonder whether they cover the entire nef cone, and whether the cone they span is finitely
generated. To answer such questions we would like to know their dependence on one another.

We study two types of relations between conformal blocks divisors given by different sets of
data. First, in Proposition 13.1, we point out the natural identity between divisors c1(Vg,~λ,`

) =

c1(Vg,~λ∗,`) that comes from an involution of the Weyl chamber. Second, in Theorem 1.8, we iden-

tify pairs of so-called critical level partner divisors c1(Vslr+1,~λ,`
) = c1(Vsl`+1,~λT ,r

). These divisor

class identities multiply our extremality results. Namely, Proposition 5.3 holds for D
slr+1,~λ,`

and

D
slr+1,~λ∗,`

(see Proposition 13.1), and Proposition 5.4 holds for D
slr+1,~λ,`

and D
sl`+1,~λT ,r

.

Next, we discuss the critical level identities, which involve a more robust statement about the
bundles themselves. To begin with, critical level bundles come in pairs. If λi ∈ P`(slr+1), then
λTi ∈ Pr(sl`+1), where λTi is obtained by taking the transpose of the Young diagram associated

with the weight λi. Since |λi| = |λTi |, it follow that ` = c(slr+1, ~λ) if and only if r = c(sl`+1,
~λT ).

Proposition 1.6. Suppose ~λ ∈ P`(slr+1)
n, where ` = c(slr+1, ~λ). Then

(a) one has

rkV
slr+1,~λ,`

+ rkV
sl`+1,~λT ,r

= rkA
slr+1,~λ

= rkA
sl`+1,~λT

; (1)

(b) critical level partner divisors are the same:

D
slr+1,~λ,`

= D
sl`+1,

~λT ,r
.

Definition 1.1, Theorem 1.3, and Proposition 1.6 (b) were discovered by Fakhruddin for r = 1
[Fak12]. In loc. cit., he defines the critical level in Section 4.3 and in Remark 5.3 he compares
the divisors

c1(V(sl2, (i1ω1, . . . , inω1), `)) and c1(V(sl`+1, (ωi1 , . . . , ωin), 1))

satisfying
∑n

j=1 ij = 2(` + 1), pointing out that the formulas he derives in Proposition 5.2 and
Equation 4.3 establish that the divisors are the same.

Remark 1.7. Our critical level symmetries are different from, but related to, the strange dualities
considered in the literature (for example [Bel08b, MO07, NT92, Oud11]). See Section 14.

Proposition 1.6 should be thought of as a corollary to the following result.

Theorem 1.8. Suppose ~λ ∈ P`(slr+1)
n, where ` = c(slr+1, ~λ). Then there is a natural isomor-

phism

A∗
slr+1,~λ

/V∗
slr+1,~λ,`

∼→ V
sl`+1,~λT ,r

. (2)

Remark 1.9. Proposition 1.6(a) and Theorem 1.8 hold even on M0,3, where the bundles are just
vector spaces, giving new statements about their ranks.

To prove Proposition 1.6 and Theorem 1.8, certain structure constant in the cohomology of
a Grassmannian is decomposed into sums of two quantum cohomology structure constants for
different Grassmannians, yielding (1) (see Section 9.9).
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1.2 A note on our methods

The main results of this paper are proved by using relations of conformal blocks to generalized
theta functions, and by arguments used in the geometric strange duality theory of vector bundles
[Bel08b, MO07, Oud11] and in the study of quantum cohomology of Grassmannians ([Wit95];
see also [Bel10]). The applications use standard intersection theoretic computations on M0,n and
the factorization formulas of [TUY89]. We recommend the Bourbaki article of Sorger [Sor96] for
some of the background on conformal blocks.

In [Fak12], Fakhruddin gives explicit formulas for the classes c1(Vg,~λ,`
). Explicit formulas

for the ranks of V
slr+1,~λ,`

are also known (the Verlinde formula; see Théorème 4.2.2 in [Sor96]).

Therefore it is an interesting question to ask whether Propositions 1.3 and 1.6 can be proved
using these explicit formulas. It is not clear, however, how to obtain these results from formulas
(see Remark 11.6) because of difficulties with factorization data and ranks.

2. Schubert varieties and the cohomology of Grassmannians

2.1 Notation

We write [m] = {1, . . . ,m} for all positive integers m. For an m-dimensional vector space W ,
denote by Fl(W ) the space of complete flags of vector subspaces of W :

F• : 0 ( E1 ( E2 ( · · · ( Em = W .

The determinant line ∧mW is denoted by detW . We fix a collection of n distinct and ordered
points S = {p1, . . . , pn} ⊆ P1, and for a vector bundle W on P1, define FlS(W) =

∏
p∈S Fl(Wp).

If E ∈ FlS(W), we will assume that it is written in the form E = (Ep• | p ∈ S).

2.2 Schubert varieties and their tangent spaces

Let E• ∈ Fl(W ) be a complete flag in an M -dimensional vector space W , where M = r + 1 + k.
Here we think of k as related to the level `. Suppose λ is a Young diagram that fits into an (r+1)×k
box. It is useful to associate with λ an (r+ 1)-element subset I of [M ] by I = {i1 < · · · < ir+1},
ia = k+a−λ(a), i0 = 0, i(r+1)+1 = M . The open Schubert cell Ωo

I(E•) = Ωo
λ(E•) is defined to be

the smooth subvariety of the Grassmannian Gr(r+1,W ) of (r+1)-dimensional vector subspaces
of W given by

Ωo
λ(E•) = {V ∈ Gr((r + 1),W ) | rk(V ∩ Ej) = a for ia 6 j < ia+1 , a ∈ [r + 1]} .

The closure Ωo
λ(E•) is denoted by Ωλ(E•). This is the set of V ∈ Gr(r + 1,W ) such that

rk(V ∩ Eia) > a, a ∈ [r + 1]. The codimension of Ωλ(E•) in Gr(r + 1,W ) is |λ|.
Suppose V ∈ Ωo

λ(E•). Let Q = W/V . It is easy to see that V and Q each receive induced
flags from E•; denote these by F• and G•, respectively. Then TΩo

λ(E•)V ⊆ T Gr(r + 1,W )V =
Hom(V,Q) is

TΩo
λ(E•)V = {φ ∈ Hom(V,Q) | φ(Fa) ⊆ Gk−λ(a) , a ∈ [r + 1]} . (3)

2.3 Grassmann duality

Let W be an M -dimensional vector space, where M = r + 1 + k. A natural identification
Gr(r + 1,W ) = Gr(k,W ∗) takes a subspace V ⊆ W to the kernel of the surjective map W ∗ →
V ∗. There is, similarly, an identification of the complete flag varieties Fl(W ) and Fl(W ∗). A
Schubert variety Ωλ(E•) ⊆ Gr(r+ 1,W ) can be identified with ΩλT (E′•) ⊆ Gr(k,W ∗), where E•
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and E′• correspond under the identification of Fl(W ) and Fl(W ∗). A natural group isomorphism
GL(W )→ GL(W ∗) acts equivariantly on the identifications above.

Let λ be a Young diagram which fits into an (r+1)×k box. Let λc be the complement of the
Young diagram λ. We consider the line bundles Lλc and Lλ on Fl(W ) and Fl(W ∗), respectively,
as defined in Section 8.1. The line bundle Lλ pulls back to Lλc ⊗ det(W ∗)k under the natural
map from Fl(W ) to Fl(W ∗), equivariantly under the action of groups SL(W )→ SL(W ∗), where
we note that the line bundle on Fl(W ) with fiber det(W ) is trivial as an equivariant SL(W )-line
bundle.

2.4 Classical cohomology of the Grassmannian

Recall that the cohomology H∗(X,Z) of a Grassmannian X = Gr(r + 1,M) = Gr(r + 1,CM ),
where M = r + 1 + `, is a commutative and associative ring, with an additive basis of cycle
classes σµ of Schubert varieties Ωµ(E•). Here µ runs through all Young diagrams which fit into
an (r+ 1)× ` grid (µ need not be normalized). Note that σµ ∈ H2|µ|(X,Z). The class of a point
[pt] is σ(`,`,...,`).

The coefficient of σλcn (λcn is the complement of λn in an (r + 1)× ` box) in the product

σλ1 · σλ2 · · · · σλn−1 ∈ H∗(X) = H∗(X,Z)

has the following enumerative interpretation: Pick a general element (E1
• , . . . , E

n
• ) of Fl(W )n,

where W = CM , and count the number of points in the intersection

∩ni=1Ωλi(E
i
•) .

One counts this as zero if this number is infinite.

2.5 Quantum Cohomology of the Grassmannian

We suggest [Ber97] for the basic notions of quantum cohomology. As an abelian group, the
quantum cohomology group of X = Gr(r + 1,M) = Gr(r + 1,CM ), where M = (r + 1) + k, is

QH∗(X) = QH∗(X,Z) = H∗(X,Z)⊗ Z[q] .

The multiplication in this graded commutative and associative ring is q-linear (σν has degree |ν|
and q has degree M). The coefficient of qdσλcn (λcn is the complement of λn in an (r+ 1)×k box)
in the quantum product

σλ1 ? σλ2 ? · · · ? σλn−1 ∈ QH∗(X)

has the following enumerative interpretation: Fix distinct points p1, . . . , pn ∈ P1 and a general
element (E1

• , . . . , E
n
• ) of Fl(W )n, where W = CM , and count the number of maps f : P1 → X of

degree d such that

f(pi) ∈ Ωλi(E
i
•) ⊆ X ∀i ∈ [n] ,

where if this number is infinite, the count is considered zero. Setting q = 0 in the product σµ ?σν ,
we recover the classical product σµ · σν ∈ H∗(X).

3. Witten’s theorem

Definition 3.1. A vector bundle W on P1 is said to be evenly split if W = ⊕Nj=1OP1(aj) with
|ai − aj | 6 1 for 0 < i < j 6 N .

Remark 3.2. It is easy to see that there are evenly split bundles of every degree and (non-zero)
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rank. These bundles are generic bundles of the given degree and rank.

Theorem 3.3 Witten’s Dictionary. Given ~λ ∈ P`(slr+1)
n, write

∑n
i=1 |λi| = (r + 1)(`+ s) ∈ Z.

Let W be an evenly split vector bundle of rank r+ 1 + ` and degree s, and let E ∈ FlS(W) be a
general point. Then rkV

slr+1,~λ,`
is equal to the cardinality of the set{

subbundles V ⊂ W :
deg(V) = 0, rk(V) = r + 1, and
Vpi ∈ Ωλi(E

pi
• ) ⊆ Gr(r + 1,Wpi), i ∈ [n]

}
,

which is finite by Kleiman transversality (see Section 2.4 of [Bel08a] for the application of
Kleiman’s theorem [Kle74]).

Remark 3.4. See [Bel08a, Theorem 3.6, Eq (3.10) and Remark 3.8] for a proof of Witten’s
Dictionary modeled on the proof of its classical counterpart described just after Remark 3.1
below (cf. [Ful00, Section 6.2]).

Remark 3.5. In the original form of Witten’s Dictionary one has quantum cohomology structure
coefficients (at any degree d) appear on one side, and the ranks of Verlinde bundles at degree −d
appear on the other side (the underlying bundle of parabolic bundles has degree −d, which may
not be zero). We choose to (cyclically) twist both sides so that the plain degree of the parabolic
bundles is now zero and give conformal blocks as in our paper ([Bel08a] explains how to twist
the enumerative side so that instead of counting subbundles of the trivial bundle (as in quantum
cohomology), one counts subbundles of arbitrary evenly split bundles).

3.1 Witten’s Dictionary, classical analogue

The classical counterpart of Witten’s Dictionary, which goes back at least to L. Lesieur [Les47]
(also [Ful00, Section 6.2]) is the following. Let λ1, . . . , λn be Young diagrams that each fit into
an (r+ 1)× ` box (not necessarily normalized), and let Vλi be the irreducible finite dimensional
representation of g with highest weight λi. Suppose further

∑n
i=1 |λi| = (r + 1)`. Then the

dimension of the vector space of co-invariants (Vλ1 ⊗ . . .⊗ Vλn)slr+1 equals the number of points
in

n⋂
i=1

Ωλi(E
i
•) ⊆ Gr(r + 1,W ) ,

where W is a vector space of dimension (r + 1) + `, and (E1
• , . . . , E

n
• ) is a general element

of Fl(W )n. We often refer to this dimension as the rank of the constant bundle A
slr+1,~λ

=

(Vλ1 ⊗ . . .⊗ Vλn)slr+1 ×M0,n introduced earlier.

We note that the dimension of the vector space of classical co-invariants above also equals the
multiplicity of the slr+1 (or GLr+1) representation Vλcn in the tensor product Vλ1 ⊗ . . .⊗ Vλn−1 .
Here λcn is the complement of the Young diagram λn in an (r+ 1)× ` grid (and flipped over) and
corresponds to the dual of Vλn as an slr+1 representation. Note that r + 1 and ` are fine-tuned
to the data of λi by our assumption that

∑n
i=1 |λi| = (r + 1)`.

3.2 Cohomological form of Witten’s Dictionary

To determine the rank of a conformal block V
slr+1,~λ,`

in terms of quantum cohomology of Grass-

mannians, write
∑
|λi| = (r + 1)(`+ s). By [Bel08a, Section 3.5], one proceeds as follows.

If s < 0, then the rank of V
slr+1,~λ,`

coincides with the rank of the classical coinvariant A
slr+1,~λ

.
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If s > 0, let λ = (`, 0, . . . , 0). The rank of V
slr+1,~λ,`

is the coefficient of qs[pt] = qsσ(`,`,...,`) in

σλ1 ? · · · ? σλn ? σsλ ∈ QH∗(Y ) ,

where Y = Gr(r + 1, r + 1 + `) and σsλ is the s-fold quantum ? product of σλ. We can write the
multiplicity above also as the coefficient of qsσλcn (λcn is the complement of λn in an (r + 1)× `
box) in

σλ1 ? σλ2 ? · · · ? σλn−1 ? σ
s
λ ∈ QH∗(Y ) .

Remark 3.6. The coefficient of qs[pt] in the quantum product σλ1 ? · · · ? σλn is denoted by
〈σλ1 , σλ2 , . . . , σλn〉s.

4. The proof of vanishing above the critical level

We now prove Proposition 1.3. Let ˜̀= `(slr+1, ~λ) + 1. We divide the proof into two cases:

(1) The Young diagrams λ1, . . . , λn are in P˜̀(slr+1);

(2) Some λi, say λ1, is not in P˜̀(slr+1).

In case (1), it suffices to prove that rkV
slr+1,~λ,˜̀

= rkA
slr+1,~λ

. The enumerative translation of

rkV
slr+1,~λ,˜̀

is the following (see Section 3): LetW be an evenly split bundle of rank N = r+ ˜̀+1

and degree s = 0; that is, W = O⊕N = W ⊗ O for an N -dimensional vector space W . Pick a
general point E ∈ FlS(W) (see Section 2.1). The enumerative problem is to count (a finite list
by Kleiman transversality) subbundles V of W of degree zero and rank r + 1 such that

Vpi ∈ Ωλi(E
pi
• ) ⊆ Gr(r + 1,Wpi) , i ∈ [n] .

Any such subbundle is clearly trivial, that is, of the form V ⊗ O for some r + 1-dimensional
subspace V ⊆W , and our count therefore equals the number of points in

n⋂
i=1

Ωλi(E
i
•) ⊆ Gr(r + 1,W ) ,

where rkW = N , and (E1
• , . . . , E

n
• ) is a general element of Fl(W )n. By Section 3.1, this classical

count is rkA
slr+1,~λ

and we are done.

Remark 4.1. We could have argued cohomologically as follows: The rank of V(slr+1, ~λ, ˜̀) is, by
Section 3.2, the coefficient of [pt] in the quantum product

σλ1 ? σλ2 ? · · · ? σλn ∈ QH∗(Y ) ,

where Y = Gr(r + 1, r + 1 + ˜̀), since s = 0 in our case. This is the classical part of quantum
cohomology, and our coefficient equals the rank of A

slr+1,~λ
, as desired.

In case (2), we claim that A
slr+1,~λ

is zero, and hence all slr+1-conformal blocks bundles

and divisors for ~λ are zero. Assume that k = λ
(1)
1 > ˜̀ is the maximum of the λ

(1)
i and write∑n

i=1 |λi| = (r + 1)k − p(r + 1) so that the λi fit into boxes of size (r + 1) × k and p > 0.
Therefore, if we set µ1 = · · · = µp = (1, 1, . . . , 1), then

∑n
i=1 |λi| +

∑p
j=1 |µj | = (r + 1)k. The

representation V(1,...,1) of GL(r+1) is trivial as a representation of slr+1. Therefore, applying the
classical theorem relating intersection numbers for X = Gr(r + 1, r + 1 + k) and invariants for
slr+1, we find that the rank of A

slr+1,~λ
equals the multiplicity of the class of a point in the cup

69



Belkale, Gibney and Mukhopadhyay

product

σλ1 · · ·σλn · σ
p
(1,1,...,1) ∈ H

∗(X) .

But it is easy to see that the cup product σλ1 · σ(1,1,...,1) equals zero in H∗(X). If V ∈
Ωλ1(F•) ∩ Ω(1,1,...,1)(G•) with F•, G• in general position, then V ⊆ Gr+k and V ⊇ F1 (since

λ
(1)
1 = k). But F1 is not a subset of Gr+k, therefore no such V exists and hence the cup product

is zero.

We could have argued also as follows: According to the classical Pieri rule (see, for example,
[Ful00]), σλ·σb,0,...,0 is a sum

∑
σµ over µ which can obtained from λ by addition of b boxes, no two

in the same column. Since the first column of λT1 is already of the full length k, σλT1
·σ(r+1,0,...,0) =

0 ∈ H∗(Gr(k, r + 1 + k)), and the desired vanishing holds by Grassmann duality.

4.1 Parabolic semistability

The duals of spaces of conformal blocks V
slr+1,~λ,`

over points of M0,n can be identified with global

sections of certain line bundles on suitable moduli spaces of semi-stable parabolic bundles on P1.
We note that it is not necessary (but perhaps sufficient) for all parabolic semistable bundles to
have trivial underlying bundles for V

slr+1,~λ,`
to be equal to the trivial bundle A

slr+1,~λ
(see Remark

11.5 for an example). As has been pointed out to us by an anonymous referee, it is instructive to
determine conditions on ` so that any semistable parabolic bundle V with weights |λi|/` has the
trivial splitting type. Suppose that the underlying bundle V has O(a) (with a > 0) as a direct
summand, and that O(a) meets the flags of V generically. For the subbundle O(a) to contradict

semistability, by an easy calculation, we get 1 + 1
1 · 0 > 0 + 1

(r+1) ·
∑ |λi|

` , which can happen only

when ` > 1
r+1

∑
|λi| = c(slr+1, ~λ) + 1.

This parabolic method misses ` = c(slr+1, ~λ)+1: Proposition 1.3 says that V
slr+1,~λ,`

coincides

with coinvariants for ` = c(slr+1, ~λ) + 1 whereas this argument is inconclusive. Therefore, the
critical level bound is strictly better that the bound obtained via parabolic semistability by one.
In fact, for ` = c(slr+1, ~λ) + 1 there are semistable parabolic bundles with non-trivial splitting
type (see, for example, Example (2) in Table 7, and Remark 11.5). Theorem 1.8 and many
others require the critical level as defined, and the connection of the critical level to quantum
cohomology is decisive. However, we believe such a parabolic semistability argument should give
bounds for all Lie algebras g, and should be further developed.

We ask the following natural question.

Question 4.2. Given a triple (g, ~λ, `) with ~λ ∈ P`(g)n, what are necessary and sufficient conditions
so that rkV

g,~λ,`
= rkA

g,~λ
?

This answer must be subtle. For example, Corollary 1.6 says that it is sufficient to take `
greater than the critical level, but that if ` is equal to the critical level, then in order to have
this rank identity it is necessary that the critical level partner bundle have rank zero. A look at
the first four lines of Table 7 shows that sometimes this happens, while other times it does not.
Another sufficient condition is given by the theta level (Remark 1.5).
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5. First application: extremality of the D = D
g,~λ,`

in the nef cone

In this section we give criteria (in Propositions 5.3 and 5.4) which come from Corollary 1.6
to detect certain so-called F-curves (see Definition 5.1) that get contracted by the associated
conformal blocks maps φD. This enables us to show in Section 6 that the morphisms φD factor
through certain Hassett contractions.

5.1 Notation

Definition 5.1. Fix a partition of [n] = {1, . . . , n} into four non-empty sets N1, N2, N3, N4 =
[n] \ (N1 ∪ N2 ∪ N3), and consider the morphism M0,4 −→ M0,n given by (C, (a1, a2, a3, a4)) 7→
(X, (p1, . . . , pn)), where X is the nodal curve obtained as follows. If |Ni| > 2, then one glues a copy
of P1 to the spine (C, (a1, a2, a3, a4)) by attaching a point (P1, {pj : j ∈ Ni} ∪ {αi}) ∈ M0,|Ni|+1

to ai at αi. If |Ni| = 1, one does not glue any curve at the point ai, but instead labels ai by pi.
We refer to any element of the numerical equivalence class of the image of this morphism as the
F-Curve F (N1, N2, N3) or as F (N1, N2, N3, N4), depending on the context.

Conjecture 5.2 (The F-Conjecture). A divisor D on M0,n is nef if and only if it non-negatively
intersects all F-curves.

5.2 Contraction results

Proposition 5.3. Suppose r > 1, ` > 1, and let ~λ = (λ1, . . . , λn) be an n-tuple in P`(slr+1). Let
N1, N2, N3, N4 be any partition of [n] into four non-empty subsets. Without loss of generality,
we may assume that they are ordered so that, if λ(Nj) =

∑
i∈Nj
|λi|, then λ(N1) 6 · · · 6 λ(N4).

If
∑

j∈{1,2,3} λ(Nj) 6 r + `, then the (possibly constant) morphism φD given by the divisor
D = D

slr+1,~λ,`
contracts F (N1, N2, N3) and, in particular, D is extremal in the nef cone.

Proof. The F-curve F (N1, N2, N3) is contained in the boundary divisor

∆N1∪N2∪N3
∼= M0,|N1∪N2∪N3|+1 ×M0,|N4|+1 ,

and is actually isomorphic to a curve contained in M0,|N1∪N2∪N3|+1 under the attaching map,
which attaches the leg with N4 marked points to the extra attaching point. Therefore, to show
that φD contracts F (N1, N2, N3), it suffices to show that D is trivial on M0,|N1∪N2∪N3|+1 × x for

a fixed x ∈ M0,|N4|+1. Let I = N1 ∪N2 ∪N3.

When pulled back to M = M0,|N1∪N2∪N3|+1 ×M0,|N4|+1, our bundle V
slr+1,~λ,`

breaks up (by

factorization) into a direct sum

⊕µ∈P`
Vslr+1,{λi:i∈I}∪{µ},` ⊗ Vslr+1,{λi:i∈N4}∪{µ∗},`

of tensor products of vector bundles pulled back from the two projections of M . It therefore
suffices to show that c1(Vslr+1,{λi:i∈I}∪{µ},`) = 0 for any µ ∈ P`. But |µ| 6 `r and∑

i∈I
|λi|+ |µ| 6 `+ r + `r < (`+ 1)(r + 1)

and hence ` is greater than the critical level for (slr+1, {λi : i ∈ I} ∪ {µ}). We may therefore
apply Proposition 1.3 to conclude that the desired c1 vanishes.

Using Remark 1.5 in place of Corollary 1.6 gives the following general result for arbitrary g.

Proposition 5.4. Suppose r > 1, ` > 1, and let ~λ = (λ1, . . . , λn) be an n-tuple in P`(g). Let
N1, N2, N3, N4 be any partition of [n] into four non-empty subsets. Without loss of generality,
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we may assume that they are ordered so that, if L(Nj) =
∑

i∈Nj
(λi, θ), then L(N1) 6 L(N2) 6

L(N3) 6 L(N4). If
∑

j∈{1,2,3} L(Nj) 6 `+ 1, then the (possibly constant) morphism φD given by
the divisor D = D

g,~λ,`
contracts the F-Curve F(N1, N2, N3), and, in particular, D is extremal in

the nef cone.

6. Second application: conformal blocks morphisms and Hassett contractions

As a step towards understanding the images of the morphisms φD for D = c1(V(g, ~λ, `)), we show
that if the weights λi satisfy prescribed conditions (as given in Theorems 6.2 and 6.3), then φD
factors through maps to Hassett’s moduli spaces M0,A of stable weighted pointed rational curves,
where the weight data is explicitly determined by the g, `, and λi.

6.1 Background on Hassett spaces

Consider an n-tuple A = {a1, . . . , an}, with ai ∈ Q, 0 < ai 6 1, such that
∑

i ai > 2. In [Has03],
Hassett introduced moduli spaces M0,A, parameterizing families of stable weighted pointed ra-
tional curves (C, (p1, . . . , pn)) such that (1) C is nodal away from its marked points pi; (2)∑

j∈J ai 6 1 if the marked points {pj : j ∈ J} coincide; and (3) if C ′ is an irreducible compo-
nent of C, then

∑
pi∈C′ ai plus the number of nodes on C ′ is greater than two. These Hassett

spaces M0,A receive birational morphisms ρA from M0,n that are characterized entirely by which
F-Curves (see Definition 5.1) they contract.

Definition/Lemma 6.1. For any Hassett space M0,A, with A = {a1, . . . , an}, there are bi-
rational morphisms ρA : M0,n −→ M0,A contracting all F-curves F (N1, N2, N3, N4) satisfying∑

i∈N1∪N2∪N3
ai 6 1 and no other F-curves, where, without loss of generality, we may assume

that the leg N4 carries the most weight.

6.2 Results on Hassett spaces

The following theorems generalize [Fak12, Proposition 4.7], where g = sl2 was considered.

Theorem 6.2. Let D = D
slr+1,~λ,`

be such that:

(i) 0 < |λi| 6 `+ r for all i ∈ {1, . . . , n};
(ii)

∑n
i=1 |λi| > 2(r + `).

Then the morphism φD factors through ρA : M0,n −→ M0,A, where A = {a1, . . . , an} with
ai = |λi|/(r + `).

Proof. For A = {a1, . . . , an} with ai = |λi|/(r+ `) as in the hypothesis, the condition |λi| 6 `+r
guarantees ai 6 1 for all i, and

∑n
i=1 |λi| > 2(r + `) guarantees

∑n
i=1 ai > 2.

By [Fak12, Lemma 4.6], we need to show that any F-curve F (N1, N2, N3, N4) contracted
by ρA is also contracted by φD. Suppose that ρA contracts the F-curve F (N1, N2, N3, N4), so
that, in particular, by Definition/Lemma 6.1,

∑
i∈N1∪N2∪N3

ai 6 1. Then∑
j∈{1,2,3}

λ(Nj) = (r + `)
∑

j∈{1,2,3}

aj 6 r + ` ,

and hence by Proposition 5.3, φD contracts F-curve F (N1, N2, N3, N4).

Using Proposition 5.4 in place of Proposition 5.3, we get the following result.
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Theorem 6.3. Let D = D
g,~λ,`

be such that λi 6= 0 for all i and

n∑
i=1

λi(Hθ) > 2(`+ 1) . (4)

Then the morphism φD factors through ρA : M0,n −→ M0,A, where A = {a1, . . . , an} with
ai = (λi, θ)/(`+ 1).

Note that if D = D
g,~λ,`

is non-trivial, then by Remark 1.5,
∑

(λi, θ) > 2(`+ 1).

7. Table

In these examples, computed using [Swi10], ` is a critical level for the pair (slr+1, ~λ), and Deg
(when n = 4) denotes the degree of V

slr+1,~λ,`
(and of V

sl`+1,~λT ,r
) over M0,4 = P1. In particular,

Deg = 0 means D
slr+1,~λ,`

= D
sl`+1,~λT ,r

= 0, even when the rank of V
slr+1,~λ,`

(and of V
sl`+1,~λT ,r

) is

non-zero. A ∗ in the Deg column indicates more than four marked points.

Deg (r + 1, `+ 1) n ~λ = (λ1, . . . , λn) rank rank rank
A V

slr+1,~λ,`
V
sl`+1,~λT ,r

* (3, 2) 6 (ω1, . . . , ω1) 5 1 4

1 (3, 2) 4 (ω1, ω1, ω2, ω2) 2 1 1

0 (4, 4) 4 (ω1, (2ω1 + ω3)
3) 2 1 1

* (3, 6) 5 (2ω1 + ω2, ω2, 2ω1, 2ω2, 3ω2) 7 7 0

* (3, 5) 5 (2ω1 + ω2, ω2, 2ω1, 2ω2, ω1 + ω2) 9 8 1

0 (4, 4) 4 (ω2 + ω3, ω1, ω1 + 2ω2, 2ω1 + ω3) 2 1 1

0 (4, 5) 4 (ω1, 2ω1 + ω2 + ω3, (3ω1 + ω3)
2) 2 1 1

1 (4, 5) 4 (ω1 + ω3, 2ω1 + 2ω2, 2ω1 + 2ω2, 4ω1) 4 1 3

* (3, 6) 8 ((2ω1)
6, ω2, 2ω2) 150 136 14

8. Proof of Theorem 1.8: main reductions

For the proof of Theorem 1.8, in addition to [Wit95], we use the geometric procedure of creating
invariants from Schubert calculus [Bel04]. Together with a standard formalism, this leads to a
duality isomorphism of classical invariant theory (reviewed in Section 8.1):

A∗
slr+1,~λ

∼→ A
sl`+1,~λT

. (5)

The proof of Theorem 1.8 then breaks up into two parts:

(i) We prove equality (1) by working over M0,n and using the connection between quantum
cohomology and conformal blocks, and a degeneration argument for Gromov–Witten invari-
ants (but working over a fixed point of M0,n).

(ii) We show that the natural morphism V∗
slr+1,~λ,`

→ V
sl`+1,~λT ,r

arising from the isomorphism (5)

is the zero map. To do so, we invoke the interpretation [Pau96] of V∗
slr+1,~λ,`

as global sections

of a line bundle on a moduli space of parabolic bundles (valid over M0,n, but not over M0,n).
Again, it suffices to work over M0,n.
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These two steps lead to an isomorphism (2). Let K
r+1,`,~λ

be the kernel of A
slr+1,~λ

→ V
slr+1,~λ,`

.

Consider the exact sequences

0→ V∗
slr+1,~λ,`

→ A∗
slr+1,~λ

→ K∗
r+1,`,~λ

→ 0 ,

0→ K
`+1,r,~λT

→ A
sl`+1,~λT

→ V
sl`+1,~λT ,r

→ 0 .

Step (2) gives rise to vertical arrows from the first exact sequence above to the second. We
therefore find a map (2). By the snake lemma, (2) is a surjective morphism of vector bundles of
the same rank, hence an isomorphism.

8.1 Classical strange duality and the map (5)

We recall from [Bel04] how Schubert calculus of Grassmannians can be used to produce natural
bases in the spaces of invariants and hence produces the duality isomorphism (5) by the (stan-
dard) strange duality formalism. The following is in analogy with the tangent space of a Schubert
cell Ωo

λ(E•) in a Grassmannian (see Section 3).

Let V and Q be vector spaces of dimensions r+1 and `+1, respectively. Let N = r+`+2 (as
before). Let ~λ = (λ1, . . . , λn) be an n-tuple of Young diagrams that each fit into an (r+1)×(`+1)
box. Assume

∑n
i=1 |λi| = (r+ 1)(`+ 1). We next define a divisor D in Fl(V )n×Fl(Q)n. A point

(F 1
• , . . . , F

n
• , G

1
• , . . . , G

n
• ) is an element of D if and only if there exists a non-zero map φ : V → Q

such that for a ∈ [r + 1] and i ∈ [n],

φ(F ia) ⊆ Gi`+1−λ(a)i

. (6)

We will make this precise by defining D as a determinantal scheme (see Section 11) and will
also identify O(D). We choose to write the answers in a symmetric manner. We set T = Q∗.
Note that Fl(Q) is canonically identified with Fl(T ). For a ∈ [r + 1], let La ∈ Pic(Fl(V )) be the
pull-back of the ample generator (top exterior power of the dual of the universal subbundle) of
Gr(a, V ) by the tautological map

Fl(V )→ Gr(a, V ) , F• 7→ Fa .

For non-negative integers ν1, . . . , νr+1, define a Young diagram λ = (λ(1), . . . , λ(r+1)) by

λ(a) = νa + νa+1 + · · ·+ νr+1

and a line bundle Lλ = Lν11 ⊗ . . .⊗L
νr+1

r+1 , whose fiber over F• is denoted by Lλ(V, F•) = Lλ(F•).

Proposition 8.1 (Borel–Weil). The following are isomorphic as representations of GL(V ):

H0(Fl(V ),Lλ) = V ∗λ .

8.1.1 For a Young diagram λ, define a vector bundle Pλ on Fl(V )× Fl(Q) with fiber over
(F•, G•) given by

{φ ∈ Hom(V,Q)|φ(Fa) ⊆ G`+1−λ(a) , a ∈ [r + 1]}
and Tλ = Hom(V,Q)/Pλ.

– The rank of Tλ equals |λ|.
– The fiber of the determinant of Tλ at a point (F•, G•) equals Lλ(F•)⊗ (detQ)r+1⊗Lµ(G•),

where µ = (µ(1), . . . , µ(`+1)) is the partition transpose to the partition (` + 1 − λ(r+1), . . . ,
`+ 1− λ(1)). (See [Bel04], and [BK10], formula 16, where µ is called the (`+ 1)-flip of λ.)

74



Vanishing and identities of conformal blocks divisors

– If G̃• ∈ Fl(T ) corresponds to G• ∈ Fl(Q) under the identification Fl(T ) = Fl(Q), we can
write the fiber of the determinant of Tλ symmetrically as Lλ(F•)⊗ LλT (G̃•).

8.1.2 One can view D as the zero locus of the determinant of the following morphism on
Fl(V )n × Fl(Q)n of vector bundles of the same rank:

Hom(V,Q)→
n⊕
i=1

pr∗i Tλi ,

where the pri are the projection maps.

Recall that if V → W is a map between vector bundles of the same rank on a scheme S, then
one gets a canonical element s ∈ H0(S, detW ⊗ (detV)∗). In this way, we get a line bundle on
Fl(V )n ×Fl(Q)n = Fl(V )n ×Fl(T )n, where T = Q∗, with a canonical section s whose zero locus
is D.

This line bundle has fiber at (F 1
• , . . . , F

n
• , G̃

1
• , . . . , G̃

n
• ) ∈ Fl(V )n × Fl(T )n (see Section 8.1.1),

equal to

⊗ni=1(Lλi(F
i
•)⊗ LλTi (G̃i•))⊗ (detV )`+1 ⊗ (detT )r+1 .

We therefore find an element

s ∈ H0(Fl(V )n,⊗ni=1Lλi)
SL(V ) ⊗H0(Fl(T )n,⊗ni=1LλTi )SL(T ) = A∗

slr+1,~λ
⊗A∗

sl`+1,~λT

and a duality map

A
sl`+1,~λT

→ A∗
slr+1,~λ

. (7)

8.2 Relation to Schubert calculus

We now explain why the duality map (7) above is an isomorphism. Let W be an N -dimensional
vector space equipped with n flags H1

• , . . . ,H
n
• in general position, where N = r + ` + 2. We

fix V and Q as above of dimensions r+ 1 and `+ 1, respectively. By Kleiman transversality, the
intersection ∩ni=1Ωλi(H

i
•) ⊆ Gr(r + 1, N) is finite, and transverse. Let V1, . . . , Vm be the points

in this intersection, and let Q1, . . . , Qm be the corresponding quotients, Qa = W/Va. Each of
the vector spaces V1, . . . , Vm, Q1, . . . , Qm receives n canonical induced flags (from W ), and hence
gives GL(V ) and GL(Q) orbits in Fl(V )n and Fl(Q)n, respectively (by choosing isomorphisms
Va → V and Qa → Q, respectively). We can dualize the GL(Q) orbits to obtain GL(T ) orbits in
Fl(T )n corresponding to each of Q1, . . . , Qm (see Section 2.3).

Choose orbit representatives x1, . . . , xm ∈ Fl(V )n and y1, . . . , ym ∈ Fl(T )n. From the setup,
it is known that m = rk(⊗ni=1V

∗
λi

)SL(V ) = rk(⊗ni=1V
∗
λTi

)SL(T ), and that s(xa, yb) 6= 0 if and only if

a = b. Therefore the sections s(·, ya) (well-defined up to scalars) form a basis for (⊗ni=1V
∗
λi

)SL(V )

(this was the main result of [Bel04]). Hence by the standard strange duality formalism, the duality
map (7) is an isomorphism; also see Lemma 8.3 with quotient stacks M = Fl(V )n/ SL(V ) and
N = Fl(T )n/SL(T ) (and A and B descents of ⊗ni=1Lλi and ⊗ni=1LλTi ).

Remark 8.2. We recall the reason for the vanishing s(xa, yb) = 0 for a 6= b: The natural non-zero
map φ : Va → Qb (inclusion in W followed by projection to Qb) satisfies the conditions of (6).
It is also easy to see that s(xa, ya) 6= 0: If (xa, ya) ∈ D, then any map φ in the definition of D
gives us an element in ∩ni=1TΩλi(H

i
•)Va = 0 (by transversality).

The map (2) is defined to be the inverse of (7). By Lemma 8.3, we have explicit control of (2)
when we lay out a suitable enumerative problem.
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8.3 A universal situation

We analyze the “strange duality” setting of schemes (or stacks) M,N equipped with line bundles
A and B and a section s of A�B in some detail (an instance of this has appeared in Section 8.2).
We will use this setting again in Section 11. Fix the following data:

(i) Let M and N be schemes (or quotient stacks X/G) with line bundles A and B, respectively.
Assume that H0(M,A) and H0(N,B) are both finite-dimensional of the same dimension m.

(ii) Suppose that we are given a section s of A � B on M × N . This gives rise to a (possibly
degenerate) “duality” s ∈ H0(M,A)⊗H0(N,B), or a map D : H0(M,A)∗ → H0(N,B).

Now suppose that we are able to manufacture points x1, . . . , xm ∈M and points y1, . . . , ym ∈
N such that s(xa, yb) is zero if a 6= b and non-zero (as an element of Axa ⊗ Bya) if a = b. Set
αa = s(x, ya) ∈ H0(M,A)⊗ Bya and βa = s(xa, y) ∈ Axa ⊗H0(N,B).

Lemma 8.3. (i) We have

s =
m∑
a=1

s(xa, ya)
−1αaβa . (8)

(ii) The duality mapD : H0(M,A)∗ → H0(N,B) is an isomorphism. It carries the element (well-
defined up to scalars) “evaluation at xa” in H0(M,A)∗ to the section βa (up to scalars).

Proof. From the given data, it is clear that the elements of {αa : a ∈ [m]} and of {βa : a ∈ [m]}
are linearly independent (we can ignore the twists by constant lines) and hence form a basis of
H0(M,A) and H0(N,B), respectively. Therefore, there is an expression of the form

s =

m∑
a=1

m∑
b=1

γa,bαaβb

with γa,b ∈ A−1xa ⊗B
−1
yb

. Evaluating this equation at points of the form (xa, yb), we obtain (8). It
is easy to see that (ii) follows from (8).

9. Proof of Proposition 1.6(a)

An outline of the proof of Proposition 1.6(a), that is, equality (1), is provided in Section 9.2, after
some notation has been introduced. The basic idea is to obtain enumerative interpretations for
the ranks of A

slr+1,~λ
, V

slr+1,~λ,`
, and V

sl`+1,~λT ,r
. The reckoning for A

slr+1,~λ
admits deformations:

in a particular degenerate situation, the enumerative problem breaks up into two parts which
are identified with the ranks of V

slr+1,~λ,`
and V

sl`+1,~λT ,r
, and Proposition 1.6(a) follows.

We first define a number of enumerative problems. We set N = r + ` + 2 and introduce the

notation Ip = {ip1 < · · · < ipr+1} for p ∈ S = {p1, . . . , pn}, by the formula λ
(a)
i = (`+ 1) + a− ipia

for a ∈ [r + 1], i ∈ [n]. Since ~λ is an n-tuple of normalized weights, ipr+1 = N and ip1 6= 1. Next,
we will establish three enumerative interpretations, for rkA

slr+1,~λ
, rkV

slr+1,~λ,`
, and rkV

sl`+1,~λT ,r
.

9.1 Enumerative problems

9.1.1 The enumerative problem corresponding to rkA
slr+1,~λ

. We first note that A
slr+1,~λ

and

A
sl`+1,~λT

have the same rank (by their enumerative interpretation and Grassmann duality; see

Section 2.3) and that these ranks equal the following enumerative number. Let W = O⊕N .
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Choose a general point E ∈ FlS(W). The enumerative problem is: Count subbundles V of degree
zero and rank r + 1 of W such that Vpi ∈ Ωλi(E

pi
• ) ⊆ Gr(r + 1,Wpi), i = 1, . . . , n.

Note that this is the same problem as counting classical intersections of generic translates of
Schubert varieties (corresponding to λi) in a Grassmannian Gr(r + 1, N).

9.1.2 The enumerative problem corresponding to rkV
slr+1,~λ,`

. Let W ′ = O(1) ⊕ O⊕N−2.
Choose a general point E ′ ∈ FlS(W ′). Count subbundles V of degree zero and rank r + 1 of W ′
such that Ωλi(E

′pi
• ) ⊆ Gr(r + 1,W ′pi), i = 1, . . . , n.

9.1.3 The enumerative problem corresponding to rkV
sl`+1,~λT ,r

. The enumerative problem

corresponding to V
sl`+1,~λT ,r

is counting subbundles of W ′ of degree zero and rank `+ 1 of W ′ =
O(1)⊕O⊕N−2 subject to incidence conditions at the points p ∈ S. We “Grassmann dualize” this
problem by considering the dual of quotients V = (W ′/T )∗ ⊆ (W ′)∗. The association of T with
V is one-one and we may write down equivalent conditions on V.

The resulting enumerative problem is the following: Let W = O(−1) ⊕ O⊕N−2. Choose
a general point E ∈ FlS(W). Count subbundles V of degree −1 and rank r of W such that
Vpi ∈ Ωλi(E

pi
• ) ⊆ Gr(r + 1,Wpi), i = 1, . . . , n.

9.2 Outline of the proof of Proposition 1.6(a)

The main idea is to degenerate the enumerative problem corresponding to A
slr+1,~λ

by replacing

O⊕N with its simplest degeneration O(1)⊕O(−1)⊕O⊕(N−2). The quot scheme corresponding
to O⊕N (actually a Grassmannian) degenerates (flatly) into a union of two smooth quot schemes
intersecting transversally.

For every bundle W of rank N and degree zero, we can pose an enumerative problem (to
ensure conservation of numbers, we will work with versions of the enumerative problems where
one is looking for points in projective varieties; see Section 12): Fix a general E ∈ FlS(W) and
“count” coherent subsheaves V ⊆ W of degree zero and rank r + 1 such that Vp → Wp/E

p
ipa

has kernel of dimension at least a for all a ∈ [r + 1] and p ∈ S. Note that for some W, the
problem above is not enumerative; that is, the solution scheme is not of the expected dimension
(or non-reduced). But we will show that for O⊕N and O(1)⊕O(−1)⊕O⊕(N−2), this problem is
enumerative.

When W = O⊕N , this is the counting problem of Section 9.1.1. Now replace O⊕N with
O(1) ⊕ O(−1) ⊕ O⊕(N−2). The degenerate enumerative number breaks up into two parts and
we identify these parts as ranks of conformal blocks. We show that the enumerative counts are
conserved in Section 9.8, and hence obtain equality (1).

9.3 Quot schemes and degenerations

Let Quot be the quot scheme of degree zero and rank r + 1 subsheaves of the bundle W =
O(1)⊕O(−1)⊕O⊕N−2. Note that the surjection W → O(−1) and the inclusion O(1)→W are
canonical (up to scalars). Hence the corresponding kernel and quotients are canonical.

Consider the evenly split sheaves W ′ = O(1) ⊕ O⊕N−2 ⊆ W and W = W/O(1). Let Quot1
be the (smooth) quot scheme of degree 0 rank r + 1 subsheaves of W ′ and Quot2 the (smooth)
quot scheme of degree −1 and rank r subsheaves of W.

Lemma 9.1. (i) We have Quot = Quot1 ∪Quot2, where Quot1 and Quot2 are smooth sub-

77



Belkale, Gibney and Mukhopadhyay

schemes and C = Quot1 ∩Quot2 is a subscheme of smaller dimension.

(ii) The scheme Quot is smooth in the complement of Quot1 ∩Quot2.

(iii) Points of Quot \Quot1 ∩Quot2 correspond to subbundles of W.

(iv) The dimensions of Quot1 and Quot2 equal (r + 1)(`+ 1).

9.4 Proof of Lemma 9.1

Consider a V ⊆ W such that Q =W/V is a point of Quot. Clearly V cannot have factors of the
type O(a), a > 2, as these do not admit non-zero maps to W. Any map O(1) → W has image
inside the standard copy O(1) ⊆ W. Therefore there cannot be more than one O(1) in such a V.

The maps Quotj → Quot, j = 1, 2, are clear. Let V ⊆ W correspond to a point on Quot.
If the composite V → W → O(−1) is the zero map, then the point is in Quot1. Otherwise, V
has a factor of O(1) which maps isomorphically to the canonical copy of O(1) in W. So V is
determined by the sub-sheaf V/O(1) ⊆ W, that is, a point of Quot2.

Points in C correspond to subsheaves ofW ′/O(1) of degree −1 and rank r. It is easy to show
that

dim Quot1 = dim Quot2 = dimC + 1 .

Let A = Quot1 \C ⊆ Quot and B = Quot2 \C. At points of A, V is of the form O⊕r+1. In
this case, clearly H1(P1,V∗ ⊗W) = 0. Long exact sequences in cohomology imply that H1(P1,
V∗ ⊗W) = 0 surjects onto H1(P1,V∗ ⊗W/V), and therefore the last group is zero. Therefore
Quot is smooth at such points.

At points of B, V is isomorphic to O(1) ⊕ O(−1) ⊕ Or−1 and S = O(1) ⊕ O⊕N−2 surjects
onto W/V. It is easy to see that H1(P1,V∗ ⊗ S) = 0; hence the required vanishing H1(P1,
V∗ ⊗W/V) = 0 follows. Therefore Quot is smooth at such points.

9.5 Degeneration of the Gromov–Witten numbers

With W as above, consider a generic point E ∈ Fl(W). For p ∈ S, the fiber Wp has a canonical
quotient τp : Wp → Lp (corresponding to τ : W → O(−1)) and a canonical line Mp ⊆ Wp

(corresponding to O(1) ⊆ W). In addition, τp(Mp) = 0. The genericity of the flags implies
that Ep1 surjects onto Lp via τp and Ep1 ∩ Mp = {0}. The induced flags E ′ ∈ FlS(W ′) (note
ker τ =W ′) are therefore suitably general. Note that E′p• is the flag

0 ⊆ Ep2 ∩W
′
p ⊆ E

p
3 ∩W

′
p ⊆ · · · ⊆ E

p
N ∩W

′
p =W ′p .

Similarly, the induced flags E ∈ FlS(W) (note W = W/O(1)) are suitably generic. Note
that E

p
• is the flag (here γ :W →W/O(1))

0 ⊆ γ(Ep1) ⊆ γ(Ep2) ⊆ · · · ⊆ γ(EpN−1) =Wp . (9)

We analyze the (degenerate) enumerative problem in Sections 9.6 and 9.7 below.

9.6 The part of the intersection in Quot1
Take a coherent subsheaf V ⊆ ker τ = W ′ with the corresponding induced (generic) flags. This
enumerative problem is the same as counting subsheaves of W ′ such that Vp → Wp/E

p
ipa

has

kernel of dimension at least a for all a ∈ [r + 1] and p ∈ S. So we need Vp → W ′p/E
p
ipa
∩W ′p to

have kernel of dimension at least a. But Ep
ipa
∩W ′p has rank ipa−1. Let Jp = {ip1−1 < · · · < ipN−1}

and let E′p• be the induced flag on W ′p. The conditions on V are therefore that Vp →W ′p/E
′p
jpa

has
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kernel of rank at least a. This is just the compactified enumerative problem of subsheaves of the
evenly split bundle W ′ of degree zero and rank r+ 1 with Schubert conditions given by λi at pi.
Note that we have

N − (r + 1) + a− ipa = (N − 1)− (r + 1) + a− (ipa − 1) = λ
(a)
i , pi = p .

This is the enumerative problem 9.1.2. Using Section 12, we conclude that the intersection in
Quot1 has rkV

slr+1,~λ,`
points and that the intersection lies entirely in the open part A (see Lemma

12.2(c)).

9.7 The part of the intersection in Quot2
Take a coherent subsheaf V ⊆ W with the corresponding induced (generic) flags. This enu-
merative problem is the same as counting subsheaves (of the evenly-split bundle W) such that,
setting V to be the inverse image of V under the surjection W → W, Vp → Wp/E

p
ipa

has kernel
of dimension at least a.

Let Ēp• be the induced flag on Wp and let ĒpN−1 = Wp. By an elementary calculation, the

kernel of Vp → Wp/Ē
p
ipa

is isomorphic to the kernel of Vp → Wp/E
p
ipa

for a 6 r. For this, write
exact sequences

0→ O(1)p → Vp → Vp → 0 and 0→ O(1)p →Wp/E
p
ip`
→Wp/Ē

p
ip`
→ 0 .

Also note that Ēp
ipa

has rank ipa.

So we want to count subsheaves ofW of rank r and degree −1 with Schubert conditions given
by the data λi at p = pi. We have

(N − 1)− r + `− ipa = N − (r + 1) + `− ipa = λ
(a)
i , a 6 r ,

N − (r + 1) + (r + 1)− ipr+1 = 0 .

Therefore the part of the enumerative problem in Quot2 is the enumerative problem 9.1.3. It has
rkV

sl`+1,~λT ,r
points, and these points lie entirely in B (again using Lemma 12.2 (c)).

9.8 Proof of equality (1)

Consider a family of vector bundles W over P1 × T , where T is a smooth curve such that Wt is
isomorphic to O⊕n for t 6= t0 and isomorphic to O(1) ⊕ O(−1) ⊕ O⊕(N−2) for t = t0. Let Et0 ∈
FlS(Wt0) be generic and consider a family of Et ∈ FlS(Wt) specializing to Et0 and specializing at
a fixed point t1 to a general element of FlS(Wt1) with t1 6= t0.

We have a relative quot scheme (of quotients of degree zero and rank `+1 ofWt) π : Q̃uot→ T

and the family of solutions to the enumerative problem i : C ↪→ Q̃uot. We note that:

(i) The morphism π is proper and i is closed.

(ii) The morphism π is smooth over T − {t0}.
(iii) Each irreducible component of C has dimension at least one. This is because the map C → T

is the pull-back of an universal C′ → T ′ by a map T → T ′. It turns out that C′ and T ′ have
the same dimension and hence the assertion follows from standard properties of dimensions
of fibers.

(iv) The morphism π is smooth at A ∪B ⊆ π−1(t0); it is not smooth at C ⊆ π−1(t0).
(v) We have (π ◦ i)−1(t0) ⊆ A ∪ B and (π ◦ i)−1(t0) is a reduced scheme consisting of finitely

many points.

79



Belkale, Gibney and Mukhopadhyay

By shrinking T if necessary around t0, we may assume that each component of C surjects onto T .
Since (π ◦ i)−1(t0) is a reduced scheme consisting of finitely many points and each irreducible
component of C has dimension at least one, we see that for c ∈ C over t0, OC,c is a discrete
valuation ring (the Zariski tangent space has dimension at most one). By shrinking T we may
assume C to be smooth and equidimensional of dimension one. It is now easy to see that C → T
is finite and étale over a neighborhood of t0. The generic fiber of C → T has rkA

slr+1,~λ
points,

and the special fiber over t0 has rkV
sl`+1,~λT ,r

+ rkV
slr+1,~λ,`

points. Therefore equality (1) holds.

9.9 Equality (1) stated in terms of quantum cohomology

Assume that ` is the critical level for ~λ. The rank rkA
slr+1,~λ

is the coefficient of the class of a

point [pt] in the classical product

σλ1 · σλ2 · · · · · σλn ∈ H∗(Gr(r + 1, r + `+ 2)) . (10)

Let λ be the (r + 1) × ` Young diagram (`, 0, . . . , 0). Then rkV
slr+1,~λ,`

(there is a similar

expression for rkV
sl`+1,~λT ,r

) is the coefficient of q[pt] in the small quantum product

σλ1 ? · · · ? σλn ? σλ ∈ QH∗(Gr(r + 1, r + `+ 1)) . (11)

Note that the Grassmannian appearing in (11) is different from the one in (10). In terms of
Gromov–Witten numbers (see Remark 3.6), the sum of

〈σλ1 , . . . , σλn , σ(`,0,...,0)〉1 and 〈σλT1 , . . . , σλTn , σ(r,0,...,0)〉1

computed for Gr(r + 1, r + ` + 1) and for Gr(` + 1, r + ` + 1), respectively, equals the classical
coefficient 〈σλ1 , . . . , σλn〉0 computed for Gr(r + 1, r + `+ 2).

Remark 9.2. One may ask whether structure constants in the classical cohomology of a G/P
(the above is a special case where G/P = Gr(r + 1, r + ` + 2)) similarly decompose as sums
of quantum cohomology structure constants (for possibly different groups). Any classical coho-
mology structure constant can be interpreted as the enumerative problem of counting suitable
reductions of the structure group of the trivial principal G-bundle on P1 (subject to incidence
conditions). We may replace the trivial principal G-bundle with its simplest degeneration and
then look at the corresponding enumerative problem, and ask if it breaks up into smaller pieces.

10. Conformal blocks as generalized theta functions

10.1 Notation

A quasi-parabolic SLr+1-bundle on P1 is a triple (V,F , γ) where V is a vector bundle on P1 of rank
r+1 and degree zero with a given trivialization γ : detV ∼→ O, and F = (F p1• , . . . , F

pn
• ) ∈ FlS(V)

is a collection of complete flags on fibers over p1, . . . , pn. Let Parr+1 be the stack parameterizing
quasi-parabolic SLr+1-vector bundles on P1.

10.2 Generalized theta functions

It is well known that conformal blocks for slr+1 on a smooth projective curve can be identified
with the space of sections, called “generalized theta functions”, of a suitable line bundle on the
moduli space of vector bundles of rank r + 1 with trivial determinant on that curve (see the
survey [Sor96]). A parabolic generalization for slr+1 was proved in [Pau96]; we recall it now (but
only for P1).
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Associated with the data ~λ = (λ1, . . . , λn) ∈ P˜̀(slr+1), we can form a line bundle P(slr+1, ˜̀, ~λ)
on Parr+1. The fiber over a point (V,F , γ) is a tensor product

D(V)
˜̀⊗⊗ni=1Lλi(Vpi , F

pi
• ) ,

where D(V) is the determinant of cohomology of V; that is, the line detH1(P1,V)⊗detH0(P1,V)∗

and the lines Lλi(Vpi , F pi• ) are as defined in Section 8.1.

It is known that the space of generalized theta functions is canonically identified (up to
scalars) with the dual of the space of conformal blocks [Pau96]. Let x = (P1, p1, . . . , pn) ∈ M0,n,
then we have

H0(Parr+1,P(slr+1, ˜̀, ~λ))
∼→ (V

slr+1,~λ,˜̀
)∗x . (12)

The determinant of cohomology D(V) of a vector bundle with a given trivialization γ : detV ∼→ O
carries a canonical element θ. To construct θ, let P ∈ P1 and consider

0→ V(−P )→ V → VP → 0 ,

which sets up an isomorphism D(V) = D(V(−P )) (note that detVP has a given trivialization γP ).
But χ(P1,V(−P )) = 0 and hence D(V(−P )) carries a canonical theta section. Hence one gets
an element θ of D(V). This element θ does not depend upon P because otherwise we would
get non-trivial functions in P ∈ P1. We may also apply the isomorphism (12) at level one with
vacuum representations at pi (that is, λi = 0) to construct θ.

The theta section of D(V(−P )) vanishes along the locus where dimH0(V(−P )) 6= 0. Since V
is of degree zero, this is same as saying that θ vanishes at V if and only if V is non-trivial as a
vector bundle.

Therefore one has a canonical section (also denoted by θ) of the determinant of cohomology
bundle on the moduli stack of vector bundles on P1 with trivialized determinant. Note that if
V = O⊕r+1, then θ ∈ D(V) coincides with 1 ∈ det(Cr+1)∗ = D(V).

Multiplication by θ ∈ D(V) sets up an injective map

H0(Parr+1,P(slr+1, ˜̀, ~λ))→ H0(Parr+1,P(slr+1, ˜̀+ 1, ~λ)) . (13)

Remark 10.1. The image of (13) necessarily vanishes at points (V,F , γ) ∈ Parr+1 with V not
isomorphic to O⊕r+1.

Note that Parr+1 has a classical part, Parcr+1, the open substack where the underlying vector
bundle is trivial. It is easy to see that

H0(Parcr+1,P(slr+1, ˜̀, ~λ)) = A∗
r+1,~λ

via the map π : Fl(V )n → Parcr+1, where V is a vector space of dimension r+ 1 with trivialized

determinant, which sets up Parcr+1 as a stack quotient Fl(V )n/ SL(V ) ( π pulls back P(slr+1, ˜̀, ~λ)
to ⊗ni=1Lλi). We therefore obtain injective maps

H0(Parr+1,P(slr+1, ˜̀, ~λ))→ A∗
r+1,~λ

, (14)

which are compatible with (13) (because the canonical section of D(V) is 1 on Fl(V )n with our
normalization). Note that if the map (14) is an isomorphism for ˜̀, then it is also an isomorphism
for ˜̀+ 1.

As a final compatibility (given (12)), we note that (14) is dual to the canonical surjection (up
to scalars)

A
r+1,~λ

→ (V
slr+1,~λ,˜̀

)|x .
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11. Proof of Theorem 1.8

To prove that the composite

V∗
slr+1,~λ,`

→ A∗
slr+1,~λ

→ A
sl`+1,~λT

→ V
sl`+1,~λT ,r

, (15)

is the zero map (see Section 8, Step 2), we use the enumerative interpretations of A
slr+1,~λ

and

A
sl`+1,~λT

. In the setting of Sections 8.3 and 8.2, the duality maps are explicit for sections that are

defined by the enumerative problem of classical Schubert calculus. To get explicit representatives
for the images of V∗

slr+1,~λ,`
in A∗

slr+1,~λ
, we use the (degenerate) enumerative problem of Section 9.5.

We will show that there are natural isomorphisms (assuming that ` is the critical level for ~λ)

H0(Parr+1,P(slr+1, `+ 1, ~λ))
∼→ A∗

r+1,~λ
,

H0(Par`+1,P(sl`+1, r + 1, ~λT ))
∼→ A∗

`+1,~λT
.

By Section 3, we already know the equality of ranks in these isomorphisms. The resulting duality
map

H0(Parr+1,P(slr+1, `+ 1, ~λ))
∼→ H0(Par`+1,P(sl`+1, r + 1, ~λT ))∗ (16)

can be controlled in terms of a basis of sections coming from the enumerative problem from
Section 9.5. This and Remark 10.1 allow us to chase elements through the composition (15).

Remark 11.1. The isomorphism (16) is an example of a “parabolic strange duality” isomorphism
[Oud11]. It reads via (12), for

∑
|λi| = (r + 1)(`+ 1), as

V
slr+1,~λ,`+1

|∗x
∼→ V

sl`+1,~λT ,r+1
|x .

This isomorphism is identified with the isomorphism (5). It is important for our considerations
to know that (5) is independent of any choices (of x = (p1, . . . , pn)).

11.1 Enlargement of the duality divisor D

Let M = Parr+1,N = Par`+1, Mc = Parcr+1, and N c = Parc`+1. There are natural maps
Mc →M and N c → N .

We will define a divisor D ⊆M×N extending the divisor onMc×N c of Section 8.1. A point
(V,F , T , G̃) is in D if and only if there is a non-zero map φ : V → Q such that for a ∈ [r + 1]
and i ∈ [n],

φ(F pia ) ⊆ Gpi
`+1−λ(a)i

, (17)

where Q = T ∗ and G ∈ Fl(Q) are the flags induced from G̃ ∈ Fl(T ).

We can recast this into a “determinantal scheme”. Define a locally free sheaf K onM×N×P1

as follows. The fiber of K at a point b = (V,F , T , G̃) is given by (as a bundle on P1)

0→ Kb → Hom(V,Q)→ ⊕ni=1ipi,∗
Hom(Vpi ,Qpi)
Pλi(F

pi
• , G

pi
• )
→ 0 .

With the conditions that we have assumed, χ(P1,Kb) = 0, so there is a canonical element
s ∈ D(Kb) which vanishes if and only if x ∈ D. The determinant of cohomology D(Kb) is given
by

⊗ni=1(Lλi(F
pi
• )⊗ LλTj (G̃pi• ))⊗D(V∗ ⊗ T ∗) .
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We can rewrite this as follows:

(⊗ni=1(Lλi(F
pi
• ))⊗D(V∗)`+1)� (⊗ni=1LλTi (G̃pi• )⊗D(T ∗)r+1) = AV,F � BT ,g̃ ,

where we have introduced the notation A = P(slr+1, `+ 1, ~λ) and B = P(sl`+1, r + 1, ~λT ), used
the canonical isomorphisms D(V) = D(V∗) and D(T ) = D(T ∗) (the determinants of V and T
are trivialized), and the following lemma (see, for example, [Fal93], Theorem I.1).

Lemma 11.2. Let V,W be vector bundles on P1. Suppose degV = degW = 0. There is a natural
isomorphism D(V ⊗ W) → D(V)rkW ⊗ D(W)rkV which specializes to the obvious one when
V = O⊕ rkV (note that D(O) is canonically trivial).

Let Ac and Bc be the pull-backs of A and B under the maps Mc → M and N c → N ,
respectively. The duality divisor D of M×N pulls back to the duality divisor of Section 8.1 on
Mc ×N c.

We introduce the following notation:

A` = P(slr+1, `, ~λ), Ar = P(sl`+1, r, ~λ
T ) .

To set the stage for the final verification, note that (comparing ranks and the enumerative
interpretation of Section 9.1.1), the maps

H0(M,A)
∼→ H0(Mc,Ac) ∼→ A∗

r+1,~λ
(18)

are isomorphisms. There are also natural maps (see (13)) H0(M,A`)→ H0(M,A). These maps
are compatible with (18) (see (14)). Let us also note that each y ∈ N gives us an element
“evaluation at y” evy ∈ H0(N ,B)∗ which is well defined up to scalars.

Remark 11.3. By Remark 10.1, it follows that the image of evy vanishes in H0(N ,Br)∗ if the
underlying bundle of y is non-trivial.

11.2 Geometric data

Recall the enumerative problem of Section 9.5 corresponding to a general point E ∈ FlS(W) with
W = O(1) ⊕ O(−1) ⊕ O⊕N−2. Let α = rkV

slr+1,~λ,`
, β = rkV

sl`+1,~λT ,r
, so α + β = rkA

slr+1,~λ
.

Solutions to the enumerative problem in A ⊆ Quot produce vector bundles on P1 equipped
with complete (induced) flags (V1,F1), . . . , (Vα,Fα), where Fi ∈ FlS(Vi). We obtain quotients
equipped with complete (induced) flags (Q1,G1), . . . , (Qα,Fα), where Qi = W/Vi and Gi ∈
FlS(Qi). Note that the bundles Qi are non-trivial since they have O(−1) as a direct summand
(see Section 9.4).

Similarly, solutions to the enumerative problem in B ⊆ Quot produce bundles and quotients
(each equipped with flags at points of S): (V ′1,F ′), . . . , (V ′1,F ′β) and (Q′1,G1), . . . , (Q′β,G′β) (again
V ′a ⊆ W and Q′a = W/V ′a). The bundles Va are non-trivial since they have O(1) as a subsheaf
(see Section 9.4).

Let (Ti, G̃i) and (T ′a , G̃a) be the duals of (Qi,Gi) and (Qa,Ga)), respectively, for i ∈ [α]
and a ∈ [β]. The bundles Vi, Ti,V ′a, T ′a , i ∈ [α], a ∈ [β] are of degree zero. We choose and fix
trivializations of their determinants. We therefore obtain

(i) points x1, . . . , xα; x′1, . . . , x
′
β ∈ M, where xi and x′a are the points (Vi,Fi) and (V ′a,F ′a),

respectively;

(ii) points y1, . . . , yα; y′1, . . . , y
′
β ∈ N , where yi and y′a are the points (Ti, G̃i) and (T ′a , G̃′a),

respectively.
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These points have the following properties:

(a) We have s(xi, y
′
a) = 0 and s(x′a, yi) = 0 for all i ∈ [α] and a ∈ [β]. This is because there are

natural non-zero maps Vi → Q′a “inclusion in W followed by projection” (resp. V ′a → Qj)
which satisfy the conditions of (17) (with the corresponding flags Fi and G′a (resp. F ′a
and Gi)).

(b) We have s(x′a, y
′
b) 6= 0 if and only a = b, and s(xi, yj) 6= 0 if and only if i = j, i, j ∈ [α]

and a, b ∈ [β]. This is a consequence of transversality in the enumerative problem (as in
Remarks 8.2 and Lemma 12.3(b)).

(c) By Lemma 8.3, δi = s(., yi) and γa = s(., y′a), i ∈ [α], a ∈ [β], form a basis for H0(M,A).

The desired vanishing of V∗
slr+1,~λ,`

→ V
sl`+1,~λT ,r

comes follows from the proposition below.

Proposition 11.4. The composition of the following maps is zero:

H0(M,A`)→ H0(M,A)→ H0(N ,B)∗ → H0(N ,Br)∗ .

Proof. The image of a section τ ∈ H0(M,A`) in H0(M,A) can be expressed as a linear com-
bination of basis elements δi and γa. Now evaluate such an expression at the points x′a. By
Remark 10.1, τ(x′a) = 0 because the vector bundle Va underlying x′a is non-trivial. Thus τ is
a linear combination of the sections δi by properties (a) and (b). By Lemma 8.3, the duality
map H0(M,A) → H0(N ,B)∗ sends δi to evyi . Remark 11.3 gives that the image of evyi in
H0(N ,Br)∗ is zero (because the vector bundle Q∗i underlying yi is non-trivial). Hence the image
of τ in H0(N ,Br)∗ is zero, as desired.

Remark 11.5. The points x′a in M have non-trivial underlying bundles, and are yet parabolic-
semistable for the linearization P(slr+1, `+ 1, ~λ). This is because of the existence of parabolic
bundles y′a and the non-existence of non-zero maps of parabolic bundles from x′a to y′a (using (b)
above and a parabolic generalization of a method of Faltings; see [Bel08b, A.1]).

Remark 11.6. – The proof of the vanishing statement, Proposition 1.3, even for sl2 (noted
in [Fak12]) uses some representation theory of sl2, and does not use explicit formulas
[Sor96]. We are not able to even see, using formulas, that for ` large enough and fixed ~λ,
c1(Vslr+1,~λ,`

) = 0.

– Formula (a) in Proposition 1.6 also does not seem to follow from explicit rank formulas
[Sor96] (even for n = 3). For example, the “denominators” in the explicit formulas are
(r + 1 + `) on one side and (r + 1 + ` + 1) on the other (in strange duality settings where
such equalities follow from formulas, the denominators are the same).

– Assuming Proposition 1.3 and part (a) of Proposition 1.6, one could ask if part (b) follows
from Fakhruddin’s Chern class formulas. The factorization data required (in the formulas
of [Fak12]) for V

slr+1,~λ,`
and V

sl`+1,~λT ,r
are not known to be related, even for n = 4 (in

particular, one cannot assume that the factorization data is again at critical level), so it is
not clear how to proceed with a formulaic approach.

12. Compactifications and Gromov-Witten numbers

In Section 9.2, we consider intersections in the entire Quot scheme instead of an open subset as
done in Gromov–Witten theory. The goal of this section is to show that compactifying parameter
spaces does not change the enumerative numbers. The main result of this section is Proposition
12.4, a generalization of a result of Bertram [Ber97].
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Let W be a vector bundle on P1 of rank N and degree −D. Let d and r̃ be integers with
N > r̃ > 0 (and d,D possibly negative). Define Gr(d, r̃,W) to be the moduli space of subbundles
of W of degree −d and rank r̃. This is an open subset of the quot scheme Quot(d, r̃,W) of
quotients of W of degree d−D and rank N − r̃.

Proposition 12.1. Suppose that W is evenly-split.

(i) The scheme Quot(d, r̃,W) is a smooth projective variety (possibly empty) of dimension
r̃(N − r̃) + dN −Dr̃.

(ii) The open subset Gr(d, r̃,W) ⊆ Quot(d, r̃,W) is dense and connected.

(iii) The subset Gro(d, r̃,W) of Gr(d, r̃,W) consisting of evenly split subbundles V ⊆ W such
that W/V is also evenly split is open and dense in Gr(d, r̃,W).

See Section 12.1 of [Bel08a] for a proof of the above (which is certainly well-known).

Consider a five-tuple (d, r̃,D,N, I) where d,D, r̃,N are as above and I assigns to each p ∈ S
an element Ip ∈

([N ]
r̃

)
. We will use the notation Ip = {ip1 < · · · < ipr̃} for p ∈ S, and introduce

Young diagrams λp by the formula λ
(a)
p = N − r̃ + a − ipa for a = 1, . . . , r̃. Assume that the

numerical condition (which leads to enumerative problems with finitely many solutions)

r̃(N − r̃)−Dr̃ + dN =
∑
p∈S
|λp| (19)

holds. Let W be a vector bundle of degree −D and rank N . Let E ∈ FlS(W). We fix the data of
E and W in this section.

Form the natural morphism

π : Gr(d, r̃,W)→
n∏
i=1

Gr(r̃,Wpi)

and consider

Ω = π−1(

n∏
i=1

ΩIpi (E
pi
• )) . (20)

Since
∏n
i=1 Gr(r̃,Wpi) is a homogeneous space, Kleiman transversality implies the following

result.

Lemma 12.2. Suppose that W is evenly split and E ∈ FlS(W) is general. Then:

(a) The set Ω is finite.

(b) The set Ω coincides with the intersection of inverse images of open Schubert cells
π−1(

∏n
i=1 Ωo

Ipi (E
pi
• )), and is therefore a transverse intersection.

(c) We have Ω ⊆ Gro(d, r̃,W) (Gro(d, r̃,W) was defined in Proposition 12.1).

If W is not general, we have a weaker result by replacing Gr(d, r̃,W) with its smooth open
(possibly empty) subset Grsm(d, r̃,W) of points where the tangent space is of the expected
dimension (that is, V ⊆ W such that Ext1(V,W/V) = 0). The following lemma was used in
Section 11.2.

Lemma 12.3. Suppose that E ∈ FlS(W) is general.

(a) The intersection Ω∩Grsm(d, r̃,W) is a smooth and transverse intersection in Grsm(d, r̃,W)
which coincides with Grsm(d, r̃,W) ∩ π−1(

∏n
i=1 Ωo

Ipi (E
pi
• )).
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(b) Suppose V ∈ Ω ∩ Grsm(d, r̃,W). Let Q = W/V, and let F ∈ FlS(V), G ∈ FlS(Q) be the
induced flags. There are no non-zero maps φ : V → Q such that for a = 1, . . . , r + 1 and
i = 1, . . . , n, the inclusion (17) holds.

Proof. Part (a) follows from Kleiman transversality by restricting the domain of π to the smooth
open subset Grsm(d, r̃,W). For part (b), note that the tangent space to Gr(d, r̃,W) at V is
Hom(V,Q), and the tangent spaces to Schubert cells are as described in Section 3. Now, part (b)
follows from the transversality and zero-dimensionality of the intersection Ω at V.

It is important to work with compact parameter spaces while degenerating enumerative prob-
lems. The set Gr(d, r̃,W) is not compact, but Quot(d, r̃,W) is a projective variety which contains
Gr(d, r̃,W) as an open subset. We therefore consider the following modified enumerative problem:

– Let Ω′ ⊆ Quot(d, r̃,W) be the set of subsheaves V ⊆ W of degree −d and rank r̃ such that
for all p ∈ S, a ∈ [r̃], the map Vp →Wp/Eipa has kernel of dimension at least a.

The following is due to Bertram (Lemma 2.2A in [Ber97]) when D = 0. We give an obvious
extension of Bertram’s proof for arbitrary D in Section 12.1.

Proposition 12.4 [Ber97]. Suppose that W is evenly split and E ∈ FlS(W) is general.
Then Ω = Ω′.

12.1 Proof of Proposition 12.4

We reproduce a variant of Bertram’s proof, adapted to our notation. We stratify Quot(d, r̃,W)
with strata Gr(ε) parameterized by functions ε : S → Z such that 0 6 ε(p) 6 r̃. We define Gr(ε)
to be the (quot) scheme of subsheaves V ⊆ W such that the map Vp → Wp has kernel Kp of
rank ε(p), p ∈ S. Let V be a generic point in Gr(ε) ∩ Ω′. Suppose that the subset Vp/Kp is a
subspace of Wp in the Schubert cell of Gr(r̃ − ε(p),Wp) corresponding to the (r̃ − ε(p))-tuple
Jp = {jp1 < · · · < jpr̃−ε(p)}. We clearly need jpa 6 i

p
a+ε(p), a ∈ [r̃ − ε(p)].

One therefore gets that the codimension of the Schubert cell corresponding to Jp is at least

the codimension of the Schubert cell corresponding to Ip minus
∑ε(p)

a=1(N − r̃ + a − ipa). The
dimension of each irreducible component of Gr(ε)∩Ω′ is therefore (by a simple calculation, using
(19) and Kleiman transversality) at most

dim Gr(ε)− dim Gr(d, r̃,W) +
∑
p∈S

ε(p)∑
a=1

(N − r̃ + a− ipa) . (21)

Lemma 12.5. Suppose Gr(ε) 6= ∅. Then Gr(ε) is smooth and connected, and

dim Gr(ε) = dim Gr(d, r̃,W)−N
∑
p∈S

ε(p) +
∑
p∈S

ε(p)(r̃ − ε(p)) .

Given the lemma, we see that the quantity (21) is less than or equal to

∑
p∈S

ε(p)∑
a=1

(a− ipa − ε(p)) < 0

unless ε(p) = 0 for each p. Therefore the enumerative intersection takes place over the stratum
corresponding to ε(p) = 0. This stratum has an open dense subset given by Gr(d, r̃,W). By
Kleiman transversality, the intersection occurs entirely on this subset.
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Proof of Lemma 12.5. Consider the variety A of tuples (Kp1 , . . . ,Kpn ,V) where V is a coherent
subsheaf of W of degree −d and rank r, n is the number of points in S, and Kp ⊂ Vp are ε(p)-
dimensional subspaces such that the composites Kp → Vp →Wp are zero for each p. Our Gr(ε)
is an open subset of A and so it suffices to find the dimension of A.

Given a datum (Kp1 , . . . ,Kpn ,V), we can define a coherent sheaf Ṽ containing V as follows:

– The sheaf Ṽ coincides with V outside of S.

– In a neighborhood Up of p ∈ S, sections of Ṽ are determined as follows. Let tp be a uni-

formizing parameter at p. Sections of Ṽ in Up are meromorphic sections s of V such that
tps is a regular section of V on U , with fiber at p in Kp.

Clearly Ṽ is a coherent subsheaf ofW. We also obtain subspaces Qp = im(Vp → Ṽp) ⊆ Ṽp of rank

r̃−ε(p) for all p ∈ S. Therefore one obtains a tuple (Qp1 , . . . , Qpn , Ṽ). Let B be the scheme of such

tuples. It is easy to see that (Kp1 , . . . ,Kpn ,V) can be recovered from (Qp1 , . . . , Qpn , Ṽ) (and vice-
versa; see Lemma A.2 in [Bel08a]). The schemes A and B are therefore isomorphic. We calculate
the dimension of B. The dimension of the space of such Ṽ is dim Gr(d, r,W) − N

∑
p∈S ε(p).

Adding the dimensions of the Grassmann bundles of Qp, we see that Lemma 12.5 holds.

13. Involution identities

There is an involution on P`(g) which sends a weight λ to the highest weight λ∗ = −w0(λ) of
(Vλ)∗, where w0 is the longest element of the Weyl group of g. For example, if g = slr+1 is of
type A, then λ∗ is given by λc for any weight λ represented by a Young diagram of size (r+1)×`.

Proposition 13.1. On M0,n, we have D
g,~λ,`

= D
g,~λ∗,`, where ~λ ∈ P`(g)n.

By results in [Fak12], Proposition 13.1 reduces to the case n = 4.

Lemma 13.2. On M0,4, we have degVg,~µ,` = degVg, ~µ∗,`.

Proof (of Lemma 13.2). Let µ be any dominant integral weight of g and let µ∗ = −w0(µ). The
Cartan Killing form is invariant under the action of the Weyl group of g, so (µ, µ + 2ρ) =
(µ∗, µ∗+2ρ), where ρ is the half sum of positive roots. We conclude the proof using Corollary 3.5
in [Fak12], and the above.

The following lemma relates the critical and theta levels for slr+1. Here, ~λ is an n-tuple of
normalized integral weights for slr+1 such that r+1 divides

∑n
i=1 |λi|. One also obtains a different

proof, only for g = slr+1, of theta level vanishing (Remark 1.5); see (b) below.

Lemma 13.3. (a) θ(slr+1, ~λ) = 1
2 · (c(slr+1, ~λ) + c(slr+1, ~λ

∗)).

(b) If ` > θ(slr+1, ~λ), then D
slr+1,~λ,`

= c1(Vslr+1,~λ,`
) = 0.

(c) If the weights λ∗1, . . . , λ
∗
n are a permutation of the weights λ1, . . . , λn, then c(slr+1, ~λ) =

θ(slr+1, ~λ).

Proof. To prove part (a), normalize λ∗i to obtain weights µi. It is easy to see that

|µi| = (r + 1)`− |λi| − (`− λ(1)i )(r + 1) = (r + 1)λ
(1)
i − |λi| ,

which yields part (a). It is easy to see that part (b) follows from part (a), and Propositions 13.1
and 1.3 (applied to ~λ and ~λ∗). Finally, part (c) follows from part (a).
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14. Strange duality and critical level symmetries

Several rank-level (or “strange”) dualities have been proposed by many authors (inspired by
work in mathematical physics, for example [NT92, Bel08b, MO07, Oud11]), over smooth pointed
curves. In genus zero these take the form of isomorphisms (well-defined up to scalars) over M0,n

of the form

V
g1,~λ,`1

|x ∼= Vg2,~µ,`2 |
∗
x (22)

for suitable conformal embeddings g1 ⊕ g2 ⊆ g and x = (P1, p1, . . . , pn) ∈ M0,n. These projective
isomorphisms are defined only on the interior M0,n. For example, there is an isomorphism on M0,n

[NT92, Oud11], well-defined up to scalars, of the form

V
slr+1,~λ,`

|x ∼= Vsl`,~µ,r+1|∗x (23)

(~λ↔ ~µ is essentially the transpose up to diagram automorphisms).

While our critical level symmetries are reminiscent of this “strange duality”, the bundles
V
slr+1,~λ,`

and V
sl`+1,~λT ,r

on M0,n are not dual, and often have different ranks. Because they are

both globally generated, their first Chern classes are base-point free, and hence effective. For two
effective divisors to be dual would mean they are trivial.

Moreover, the classical duality (5) can (eventually) be viewed as a special case of the general
strange duality (23) given above (see Remark 11.1). We could say that the critical level identities
of this paper are orthogonality relations “via” the strange duality (23). So whenever both sides of
(22) are classical, that is, coincide with co-invariants, there is perhaps a symmetry of conformal
blocks divisors (at levels `1 − 1, `2 − 1 for g1 and g2).

However, in [Muk13], the third author studies identities that do come from standard level-rank
dualities associated with conformal embeddings of affine Lie algebras. Very roughly speaking, a
conformal embedding of affine Lie algebras g1 ⊕ g2 ⊆ g producing a level rank duality gives rise
to a corresponding relation of conformal blocks divisors which takes the shape

D
g1,~λ,`1

+ Dg2,~µ,`2 = c · Dg,~ν,1 + E ,

where E is a sum of boundary and ψ classes and c 6= 0, determined by the embedding.

Acknowledgements

We would like to thank N. Fakhruddin, D. Jensen, L. Mihalcea, H-B. Moon, and C. Sherman for
useful discussions. We are grateful to the referees for their comments and suggestions. Proposition
1.3 and statement (b) of Proposition 1.6 are a generalization and sharpening of conjectures made
by the second author, and formed the starting point for this work.

References

Bea96 A. Beauville, Conformal blocks, fusion rules and the Verlinde formula, in Proceedings of the
Hirzebruch 65 Conference on Algebraic Geometry, Ramat Gan, 1993, Israel Math. Conf. Proc.
vol. 9, 75–96, Bar-Ilan Univ., Ramat Gan, 1996.

Bel04 P. Belkale, Invariant theory of GL(n) and intersection theory of Grassmannians, Int. Math. Res.
Not. 69 (2004), 3709–3721. http://dx.doi.org/10.1155/S107379280414155X.

Bel08a P. Belkale, Quantum generalization of the Horn conjecture, J. Amer. Math. Soc. 21 (2008), no. 2,
365–408. http://dx.doi.org/10.1090/S0894-0347-07-00584-X.

88

http://dx.doi.org/10.1155/S107379280414155X
http://dx.doi.org/10.1090/S0894-0347-07-00584-X


Vanishing and identities of conformal blocks divisors

Bel08b P. Belkale, The strange duality conjecture for generic curves, J. Amer. Math. Soc. 21 (2008),
no. 1, 235–258 (electronic). http://dx.doi.org/10.1090/S0894-0347-07-00569-3.

Bel10 P. Belkale, The tangent space to an enumerative problem, in Proceedings of the International
Congress of Mathematicians, vol. II, 405–426, Hindustan Book Agency, New Delhi, 2010.

Ber97 A. Bertram, Quantum Schubert calculus, Adv. Math. 128 (1997), no. 2, 289–305. http://dx.
doi.org/10.1006/aima.1997.1627.

BGM13 P. Belkale, A. Gibney, and S. Mukhopadhyay, Nonvanishing of conformal blocks divisors, version
of August 2013, available at https://sites.google.com/site/angelagibney/.

BK10 P. Belkale and S. Kumar, Eigencone, saturation and Horn problems for symplectic and odd
orthogonal groups, J. Algebraic Geom. 19 (2010), no. 2, 199–242. http://dx.doi.org/10.1090/
S1056-3911-09-00517-7.

CT13 A.-M. Castravet and J. Tevelev, M0,n is not a Mori Dream Space, arXiv:1311.7673

Fak12 N. Fakhruddin, Chern classes of conformal blocks, in Compact moduli spaces and vector bundles,
Contemp. Math., vol. 564, 145–176, Amer. Math. Soc., Providence, RI, 2012. http://dx.doi.
org/10.1090/conm/564/11148

Fal93 G. Faltings, Stable G-bundles and projective connections, J. Algebraic Geom. 2 (1993), no. 3,
507–568.

FSV94 B. Feigin, V. Schechtman, and A. Varchenko, On algebraic equations satisfied by hyperge-
ometric correlators in WZW models. I, Comm. Math. Phys. 163 (1994), no. 1, 173–184.
http://projecteuclid.org/euclid.cmp/1104270384

FSV95 B. Feigin, V. Schechtman, and A. Varchenko, On algebraic equations satisfied by hyperge-
ometric correlators in WZW models. II, Comm. Math. Phys. 170 (1995), no. 1, 219–247.
http://projecteuclid.org/euclid.cmp/1104272957.

Ful00 W. Fulton, Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Amer.
Math. Soc. (N.S.) 37 (2000), no. 3, 209–249 (electronic). http://dx.doi.org/10.1090/

S0273-0979-00-00865-X.
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