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Moduli of flags of sheaves and their K-theory

Andrei Negut,

Abstract

We introduce moduli spaces of flags of sheaves on P2, and use them to obtain functors
between the derived categories of the usual moduli spaces of sheaves on P2. These
functors induce an action of the shuffle algebra on K-theory, which we reinterpret in
terms of tautological classes. In particular, this action provides a K-theoretic version
of Baranovsky’s operators from [Bar00].

1. Introduction

Through the work of Grojnowski and Nakajima ([Gro96] and [Nak99], for r = 1) and Baranovsky
([Bar00], for general r), there is an action of the Heisenberg Lie algebra ĝl1 on the equivariant
cohomology group H of the moduli spaceM of rank r sheaves on a surface. This action is given
by the correspondences:

{(F ,F ′) such that F ⊃ F ′} ⊂ M×M (1.1)

Later, Feigin–Tsymbaliuk ([FT11]) and Schiffmann–Vasserot ([SV09]) introduced an action of
a certain larger algebra A on the equivariant K-theory group of M. This algebra is known by
many names:

– the double shuffle algebra,

– the Hall algebra of an elliptic curve,

– the doubly-deformed W1+∞-algebra,

– the spherical part of Cherednik’s DAHA,

– Uq(
̂̂
gl1).

We will mostly work with the presentation of A as a double shuffle algebra. As shown in
[Neg15], the standard generators uk,d of the elliptic Hall algebra correspond to shuffle elements
Pk,d ∈ A which are given by explicit formulas. When d = 0, these elements give rise to an

action of the q-Heisenberg algebra Uq(ĝl1) on K that deforms the construction of Baranovsky–
Grojnowski–Nakajima.

In this paper, we will interpret these shuffle elements geometrically. The correspondences (1.1)
will not be suitable for our purposes because they are too singular and contain too little geometric
information about K-theory. Instead, we will work with the moduli spaces of flags of sheaves Zk,
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whose points are chains of sheaves

(F0 ⊃ ... ⊃ Fk) (1.2)

such that the successive quotients are all skyscraper sheaves supported at the same point. As we
will see in Section 3, these varieties define functors between the derived categories of coherent
sheaves of M. Let us emphasize that these functors are not simply compositions of k usual
Nakajima correspondences (see Remarks 3.4 and 4.11). We hope that these functors may be
described by something like a categorical shuffle algebra, but we do not know how to define such
a categorification.

The situation is much more clear at the level of K-theory, where the linear maps defined
by the correspondences Zk are shown to be related to the shuffle algebra in Theorem 4.10. In
particular, the elements Pk,d ∈ A act by some tautological bundles on the correspondence Zk.
Our formulas allow us to explicitly compute the matrix coefficients of Pk,d in the basis of torus
fixed points. Certain special cases of these coefficients are interpreted as refined knot invariants
in [GN13], where many combinatorial and representation theoretic consequences are explored.

On a deeper level, the moduli spaces Zk of flags of sheaves (1.2) appear in a conjecture of
Bezrukavnikov and Okounkov concerning filtrations on the category of coherent sheaves on the
Hilbert scheme. As a special case of this conjecture, they are expected to be related to certain
modules of the rational Cherednik algebra (see [GN13]). We intend to develop the structure of Zk

in more detail in subsequent papers. Let us say a few words about the structure of the present
paper:

– In Section 2 we present the well-known moduli space of sheaves on P2.

– In Section 3 we introduce the moduli space of flags of sheaves on P2, and use it to construct
correspondences on the usual moduli of sheaves.

– In Section 4 we present the shuffle algebra A and its action on K. We show that the
generators Pk,d ∈ A act via the correspondences Zk given above.

– In Section 5 we compute the coefficients of the operators Pk,d in the basis of torus fixed
points.

– In Section 6 we present the well-known Ext bundle E and the Lagrangian correspon-
dences Vk, and compute the linear maps they induce on K.

2. The moduli space of sheaves on P2

2.1. Consider the projective plane, and fix a line∞ ⊂ P2. Fix a number r ∈ N, and letM =M(r)
denote the moduli space of rank r torsion free sheaves F on P2, together with an isomorphism
(framing)

F|∞ ∼= O⊕r∞ .

This latter condition forces c1(F) = 0, but c2(F) is still free to range over the non-positive
integers. For d > 0, we denote by Md ⊂ M the connected component of rank r sheaves of
second Chern class −d · [pt]. Its tangent spaces are given by

TFMd = Ext1(F ,F(−∞)) (2.1)

by the Kodaira–Spencer isomorphism. Using this, one can easily prove that Md is smooth of
dimension 2rd. We have a universal sheaf S on Md × P2, and pushing it forward under the
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standard projection gives us the tautological vector bundle:

T = R1pr1∗(S(−∞)) (2.2)

on Md. The twist is by the pull-back of the divisor ∞ ⊂ P2, and it forces R0 and R2 to vanish.
Therefore, T is a vector bundle, and a standard application of the Riemann–Roch Theorem
shows that it has rank d.

2.2. Consider the vector space

V = End(Cd)⊕ End(Cd)⊕Hom(Cr, Cd)⊕Hom(Cd, Cr)

and define the moment map:

µ : V 7→ End(Cd), µ(X,Y,A,B) = [X,Y ] +AB . (2.3)

The group GLd acts on this vector space by conjugating X and Y , left multiplying A and right
multiplying B. The well-known ADHM description presents the moduli of sheaves as

Md = µ−1(0)s/GLd ,

where the superscript s means ”stable points” and refers to the open set of points (X,Y,A,B) ∈
µ−1(0) such that Cd is generated by X and Y acting on Im A. A dimension count shows that

dim(Md) = d2 + d2 + dr + dr − d2 − d2 = 2dr ,

where the first four terms come from the degrees of freedom in X,Y,A,B, while the last two
terms come from the condition µ(X,Y,A,B) = 0 and from gauge transformations in GLd. Note
that the tautological vector bundle T of (2.2) simply has fibers Cd in the ADHM description,
but it is non-trivial on the whole of Md because we are taking the quotient by GLd.

2.3. The sheaf picture and the ADHM picture of Md are equivalent, and we refer the reader
to [Nak99] for the details. We will refer to a point of Md either as a sheaf F or as a quadruple
(X,Y,A,B). We will henceforth fix coordinates [x : y : z] on P2, with respect to which ∞ is
{z = 0}. Then the 2-dimensional torus C∗ × C∗ acts on Md:

– on sheaves F by

(q1, q2) · F = φq1,q2∗ F , where φq1,q2(x, y) = (q−1
1 x, q−1

2 y) ,

– on quadruples (X,Y,A,B) by

(q1, q2) · (X,Y,A,B) = (q1X, q2Y,A, q1q2B) ,

and the group GLr acts on Md:

– on sheaves F by

g · (F ,F|∞ ∼= O⊕r∞ ) −→ (F ,F|∞ ∼= O⊕r∞
g−1

∼= O⊕r∞ ) ,

– on quadruples (X,Y,A,B) by

g · (X,Y,A,B) = (X,Y,Ag−1, gB) .

2.4. We consider the maximal torus T ⊂ GLr×C∗×C∗ acting onMd as in the previous section.
We will study the T -equivariant derived categories of coherent sheaves

Cd = Db
T (Coh(Md)) .
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The tautological vector bundle T , in degree 0, is our first example of an object in these derived
categories. Another interesting example is the complex:

W = [qT Φ−→ q2T ⊕ q1T ⊕ O⊕r
Ψ−→ T ] (2.4)

in degrees −1, 0, 1, where q1 and q2 are the elementary characters of C∗ × C∗ (interpreted as
trivial line bundles with a non-trivial torus action) and q = q1q2. The maps in this complex are
given by

v
Φ7−→ (Xv, Y v,Bv), (v1, v2, w)

Ψ7−→ Xv2 − Y v1 +Aw . (2.5)

The stability condition forces Ψ to be surjective, hence Ker Ψ is a vector bundle and thus W
is quasi-isomorphic to a two-step complex of vector bundles. We call W the universal complex,
because it is a resolution of the restriction of the universal sheaf S to the origin of the plane.

2.5. We will also consider the Grothendieck groups of the categories Cd, namely the equivariant
K-theory groups

Kd = K∗T (Md) ,

which are all modules over K = C[t±1
1 , ..., t±1

r , q±1
1 , q±1

2 ]. Here, the ti are equivariant parameters
of the maximal torus of GLr, while q1 and q2 are equivariant parameters in the factors of C∗×C∗.
It will be convenient to work with all these spaces together:

K =
⊕
d>0

Kd .

We have the following equality of classes for the complex of (2.4):

[W] =

r∑
k=1

t−1
k − (1− q1)(1− q2) · [T ] . (2.6)

For any vector bundle V on M, we define its Λ class as

Λ(V, u) =

rk V∑
i=0

(−u)i[ΛiV∨] ∈ K[u] .

We can extend this notion multiplicatively to any complex on M, in particular to W of (2.4).
The Λ classes of the tautological bundle are particularly important because they generate the
entire K-theory group. The following proposition will be proved in Subsection 5.3.

Proposition 2.6. For each d > 0, the vector space

Kd ⊗K Frac(K)

is generated by products of tautological classes.

3. The moduli space of flags of sheaves on P2

3.1. We have so far studied the moduli spacesMd separately. But we are interested in studying
the relations between them, and this starts with the so-called simple correspondences:

Zd,d+1 = {F ⊃p F ′} ⊂ Md ×Md+1 ,
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where p = [0 : 0 : 1] ∈ P2. Here, the notation ⊃p means that the quotient of the two sheaves is
a skyscraper sheaf supported at p. These correspondences are known to be smooth of dimension
r(2d+ 1)− 1, although we will not need this.

3.2. If we generalized the definition above by requiring length(F/F ′) = k, we would obtain a
correspondence which is too singular and too coarse for our needs. Instead, we will consider the
moduli of flags of sheaves

Zd,d+k = {F0 ⊃p F1 ⊃p ... ⊃p Fk} ⊂ Md × ...×Md+k . (3.1)

The following conjecture will be explained in the following sections, after we introduce the ADHM
picture of Zd,d+k. Note that while it would be nice to have a proof of this conjecture, we can get
around it for the purposes of this paper.

Conjecture 3.3. The variety Zd,d+k is a local complete intersection of dimension

(2d+ k)r − 1 .

Remark 3.4. Note that the expected dimension of Zd,d+k is k − 1 greater than the expected
dimension of the composed correspondence Zd,d+1◦ ...◦Zd+k−1,d+k. Therefore, the functor defined
by Zd,d+k as a correspondence is not simply the composition of the usual Nakajima functors. We
will come back to this point in Remark 4.11.

3.5. In the ADHM picture, a point of Zd,d+k is given by tuples of matrices (Xi, Yi, Ai, Bi) ∈Mi

for i ∈ {d, ..., d+ k}, which preserve a fixed flag of quotients:

Cd+k � Cd+k−1 � ...� Cd . (3.2)

The matrices Xd, Yd, ..., Xd+k−1, Yd+k−1 are all determined by X = Xd+k and Y = Yd+k, which
lie in the subspace Matd,d+k of order d + k matrices that act nilpotently on the flag (3.2). In
coordinates, such matrices take the following form (pictured below for d = 2 and k = 3):

0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 ∗ ∗
0 0 0 ∗ ∗

 (3.3)

Similarly, the maps Ad+i are all determined by A = Ad+k : Cr −→ Cd+k and the maps Bd+i are
all determined by B = Bd : Cd −→ Cr. If we let

Matd,d+k ⊕Matd,d+k ⊕Hom(Cr,Cd+k)⊕Hom(Cd,Cr) η−→ Mat′d,d+k

η(X,Y,A,B) = [X,Y ] +AB ∈ Matd,d+k ,

where Mat′d,d+k ⊂ Matd,d+k denotes the subspace of matrices such that the first k− 1 entries on
the superdiagonal vanish, we see that

Zd,d+k = η−1(0)s/GLd,d+k ,

where GLd,d+k denotes the subgroup of invertible matrices which preserve the flag (3.2). As
before, the superscript s denotes stable points; that is, those such that the whole Cd+k is generated
by X and Y acting on Im A.
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3.6. The dimension of the affine space of matrices (X,Y,A,B) as above is 2d2 +2dk+k(k−1)+
(2d+k)r, whereas the number of equations imposed by setting η = 0 is d2 +dk+(k−1)(k−2)/2.
This implies that η−1(0) is an affine variety of dimension

dim(η−1(0)) > d2 + dk +
(k − 1)(k + 2)

2
+ (2d+ k)r . (3.4)

Since Zd,d+k is the quotient of η−1(0)s by a free action of a group of dimension d2+dk+k(k+1)/2,
we have

dim(Zd,d+k) > (2d+ k)r − 1 .

Conjecture 3.3 claims that this inequality is an equality. If we assume this conjecture, by the
discussion above, the condition η = 0 gives a system of equations that (locally) cut out Zd,d+k.

3.7. The variety Zd,d+k comes with natural projection maps to Md, ...,Md+k, and we can talk
about lifting tautological vector bundles from the various spaces Md+i. Restricted to Zd,d+k,
these bundles form a flag

Td+k � Td+k−1 � ...� Td (3.5)

whose fibers are precisely the flag (3.2). Because the maps X,Y : T• −→ T• are nilpotent, they
can actually be extended uniquely to maps T• −→ T•+1. We will be very interested in

Li = Ker (Td+i � Td+i−1) ∀i ∈ {1, ..., k}

which will be called tautological line bundles on Zd,d+k. We will also consider the following
complexes on Zd,d+k, close counterparts of (2.4):

W̃1 = [Td
Φ1−→ q−1

1 Td ⊕ q
−1
2 Td ⊕ q

−1O⊕r Ψ1−→ q−1Td+1] , (3.6)

W̃2 = [qTd+k−1
Φ2−→ q2Td+k ⊕ q1Td+k ⊕O⊕r

Ψ2−→ Td+k] , (3.7)

where the maps Φ and Ψ are given by the same formulas (2.5). Note that one of the tautological
bundles in each of these complexes has a different index from the others, and this is particular
to the situation of moduli spaces of flags of sheaves where the maps X and Y are nilpotent.

3.8. The advantage in studying the spaces Zd,d+k is that we can describe them inductively in k.
Namely, we have two projection maps

Zd,d+k

π−

yy

π+

%%
Zd,d+k−1 Zd+1,d+k

(3.8)

given in the sheaf picture by forgetting the last or first sheaf in the flag (3.1), respectively. In the
ADHM picture, the projection maps are given by forgetting Cd+k or Cd, respectively, in (3.2).

We need some notation for the following theorem. When V is a sheaf, we write P(V ) =
Proj(S∗V ). When V is a complex, the same notation holds, but the resulting object is a DG-
scheme.

Theorem 3.9. If we assume Conjecture 3.3, then

π+ : Zd−1,d+k = P(W̃∨1 [1]) −→ Zd,d+k , (3.9)

π− : Zd,d+k+1 = P(W̃2) −→ Zd,d+k . (3.10)

24



Moduli of flags of sheaves and their K-theory

The tautological line bundles which are forgotten by these projection maps are connected with
the Serre twisting sheaves via

L1 = Oπ+(−1), Lk+1 = Oπ−(1) (3.11)

Proof. To prove (3.9), let us first study the fiber of π+ above an arbitrary point p ∈ Zd,d+k.
The fiber consists of colength one quotients Td|p � Td−1|p, together with maps X,Y and B that
agree with the ones defining p. This datum is equivalent to a line inside Td which is annihilated
by X,Y and B; in other words, a line in

Ker Φ1|p = H−1(W̃1|p) . (3.12)

However, it is not true that the fiber of π+ above p is the projectivization of the vector space
above. That is because we have yet to impose the equations η = 0, which by Conjecture 3.3
cut out the varieties Zd,d+k and Zd−1,d+k scheme-theoretically. The −1-st and 0-th terms of

the complex W̃1 are precisely local generators and equations that cut out Zd−1,d+k. Therefore,

Zd−1,d+k is the projectivization of the whole complex W̃∨1 [1], precisely the claim (3.9).

As for (3.10), let us first show that the fiber of π− above an arbitrary point p ∈ Zd,d+k is
given by the following r-dimensional projective space:

(π−)−1(p) = P
(
H0(W̃2|p)

)
. (3.13)

Indeed, the fiber of π− above p consists of all colength one extensions Td+k+1|p � Td+k|p, together
with commuting maps X,Y and A. Since X and Y are nilpotent, this comes down to a one-
dimensional extension:

q2Td+k|p ⊕ q1Td+k|p ⊕O|⊕rp

))

Ψ2 // Td+k|p

Td+k+1|p

OOOO

or, in other words, a line in the cokernel of (Ψ2|p)∨. Since the extended maps X,Y and A must
satisfy the moment map equations [X,Y ] + AB = 0, this line must also lie in the kernel of
(Φ2|p)∨. This implies that the fiber of π− above p is the projective space of lines inside

Ker(Φ2|p)∨/ Im(Ψ2|p)∨ = H0(W̃2|∨p ) .

This proves (3.13). To obtain (3.10), one needs to show that the complex W̃2 has no other
cohomology than in degree zero. Semistability forces Ψ2 to be surjective, and hence the complex
W̃2 is exact at the last step. Meanwhile, if it failed to be exact at the first step, we would have an
open locus of points p ∈ Zd,d+k where Φ2 drops rank. This would imply an open locus of points

p ∈ Zd,d+k where H0(W̃2|p) has dimension larger than expected. This would imply that Zd,d+k+1

would have dimension larger than expected, contradicting Conjecture 3.3.

3.10. Since we do not yet have a proof of Conjecture 3.3, we let Theorem 3.9 be the definition
of the moduli spaces Zd,d+k. By this we mean that we define

Z±d,d =Md

and then iteratively define the DG-schemes Z±d,d+k as the projective towers given by the complexes

(3.9) and (3.10). Then Theorem 3.9 claims that Conjecture 3.3 implies Z±d,d+k
∼= Zd,d+k.
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With this nuisance in mind, let us note that all the functors defined in this paper will (strictly
speaking) pertain to the DG-schemes Z±d,d+k. However, Conjecture 3.3 is supported by a signif-
icant amount of evidence, and so we will suppress the extra notation ±. Henceforth, in all our
constructions, we will label either of these spaces simply by Zd,d+k, and keep the derived picture
only in the back of our minds.

3.11. The moduli of flags acts as a correspondence between Md and Md+k:

Zd,d+k

p−

{{

p+

%%
Md Md+k .

(3.14)

Indeed, one can use the maps (3.14) to define mutually adjoint functors on the equivariant derived
categories of the moduli spaces M•:

C• −→ C•±k
c 7−→ Rp±∗ (m(L1, ...,Lk)⊗ p∓∗(c)) (3.15)

for any Laurent polynomial m ∈ K[z±1
1 , ..., z±1

k ]. If we do not wish to assume Conjecture 3.3, then
we need to define the push-forward maps Rp±∗ as in the previous Subsection: a composition of
push-forwards down a projective tower. We will study the linear maps induced by these functors
at the level of K-theory:

x±m : K• −→ K•±k

x±m(c) = p±∗
[
m(l1, ..., lk) · p∓∗(c)

]
, ∀c ∈ K• , (3.16)

where li = [Li] ∈ K∗T (Z•,•+k). In Theorem 4.10, we will see that the maps (3.16) are described
by certain elements in the shuffle algebra, to be defined in Section 4.

3.12. In order to compute the linear maps (3.16), we will need to know how to push forward
classes under the projectivizations of Theorem 3.9:

π+ : Zd−1,d+k −→ Zd,d+k, π− : Zd,d+k+1 −→ Zd,d+k .

We denote by l the class of the tautological line bundle which is forgotten by the map π+ or π−;
that is, l = l1 or l = lk, respectively. We have the following result.

Lemma 3.13. For any rational function r(u) with coefficients in Zd,d+k, we have

π+
∗ (r(l)) =

∫
r(u)Λ(W̃1, u)Du ,

π−∗ (r(l)) = −
∫
r(u)Λ(−W̃∨2 , u−1)Du ,

where the contour separates the following subsets of complex numbers:

Poles(r(u)) ∪ {0,∞} from Poles(Λ(±W̃∗[ , u
±1)) ,

where (∗, [) = ( , 1) or (∨, 2). For a rational function with coefficients in K-theory, we define
its poles by formally decomposing K-theory classes into Chern roots, and treating these Chern
roots as complex numbers. We abbreviate Du = du/2πiu.
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Proof. Because of the choice of contour, it is enough to prove the statement for r(u) = uk. In
this case, (3.11) gives us

π+
∗ (lk) = π+

∗ [O(−k)] =
[
S−kW̃∨1 [−1]

]
.

Let us write [W̃1] =
∑
±wi formally as an alternating sum of Chern roots, and obtain

π+
∗ (lk) = coefficient of u−k in

∏
i

(
1− u

wi

)±1

=

∫
ukΛ(W̃1, u)Du .

In Section 5, we will interpret the Chern roots as the virtual characters of the torus action in
the fibers of W̃1 above fixed points. The case of π− is treated analogously.

4. The double shuffle algebra

4.1. Consider an infinite set of variables z1, z2, ..., and take the K-vector space

V =
⊕
k>0

K(z1, ..., zk)
Sym (4.1)

of rational functions which are symmetric in the variables z1, ..., zk. We can endow this vector
space with a K-algebra structure by the multiplication:

P (z1, ..., zk) ∗Q(z1, ..., zl) =
1

k!l!
· Sym

P (z1, ..., zk)Q(zk+1, ..., zk+l)

k∏
i=1

k+l∏
k+1=j

ω

(
zi
zj

) , (4.2)

where

ω(x) =
(x− 1)(x− q)

(x− q1)(x− q2)
, q = q1q2 (4.3)

and Sym denotes the symmetrization operator

Sym (P (z1, ..., zk)) =
∑

σ∈S(k)

P (zσ(1), ..., zσ(k)) .

4.2. The shuffle algebra A+ is defined as the subspace of V consisting of rational functions of
the form:

P (z1, ..., zk) =
p(z1, ..., zk) ·

∏
i 6=j(zi − zj)∏

i 6=j(zi − zjq1)(zi − zjq2)
, (4.4)

where p is a symmetric Laurent polynomial that satisfies the wheel conditions:

p(z, q1z, q1q2z, w4, ..., wk) = p(z, q2z, q1q2z, w4, ..., wk) = 0 (4.5)

for all variables z, w4, ..., wk. This condition is vacuous for k 6 2. It is straightforward to show
that A+ is an algebra, and it is shown in [Neg15] to be generated by the rational functions in
one variable zd := zd1 , as d goes over Z.

4.3. Let us define the extended shuffle algebra A> to be generated by A+ and commuting gen-
erators H0, H1, ..., under the relation:

P (z1, ..., zk) ∗H(z) = H(z) ∗

[
P (z1, ..., zk)

k∏
i=1

ω(zi/z)

ω(z/zi)

]
, (4.6)
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where

H(z) =
∑
n>0

Hn · z−n .

Note that H0 is central, and define commuting generators p1, p2, ... by

H(z) = H0 · exp

( ∞∑
n=1

pn ·
(qn1 − 1)(qn2 − 1)(q−n − 1)z−n

n

)
. (4.7)

It is an easy exercise to show that relation (4.6) is equivalent to

[pn, P (z1, ..., zk)] = P (z1, ..., zk)(z
n
1 + ...+ znk ) (4.8)

for all n ∈ N and P ∈ A+.

4.4. It was shown in [Neg15] that A> possesses a coproduct and a bialgebra pairing, which allow
us to construct the Drinfeld double A = DA> (see [Neg15] for details; the coproduct and pairing
in loc. cit. depend on two parameters c1 and c2, which in the present paper are set equal to
c1 = q−1 and c2 = 1). This double algebra is isomorphic to the elliptic Hall algebra, which in
turn is isomorphic to the spherical part of the (N −→∞) double affine Hecke algebra of type slN .
Explicitly, the algebra A has generators

A =
〈
P+, P̃−, H+

n , H
−
n

〉
over all shuffle elements P ∈ A+ and over all n > 0. As algebras, the negative generators P̃−

satisfy the same relations as those satisfied by the positive generators P+. We will actually
employ the slightly different notation

P− = τ̃(P )
−
,

where τ : A+ −→ A+ is the anti-automorphism P (z1, ..., zk) −→ P (z−1
1 , ..., z−1

k ). Now, the P−

satisfy the opposite relations as those satisfied by the P+:

(P ∗Q)− = Q− ∗ P−

for all P,Q ∈ A+.

4.5. As for the relations between positive and negative generators, they look simpler when defined
on the degree one generators:

[(zd)+, (zd
′
)−] =

(1− q1)(1− q2)

1− q
(
H−−d−d′δ−d−d′>0 −H+

d+d′δd+d′>0

)
. (4.9)

In fact, since the zd generate the whole algebra A+ (as proved in [Neg15]), this relation actually
determines all relations between positive and negative shuffle algebra elements.

4.6. For any set of variables S, we write

ΛSd =
∏
s∈S

Λ(Td, s) , (4.10)

and note that by Proposition 2.6, such classes span Kd. The following theorem was proved (in a
different, but equivalent language) in [FT11] and [SV09]. Let ε = 1 or 0 depending on whether
the sign is ±, and also write W+ =W, W− =W∨.
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Theorem 4.7. There is an action of A on K, given by H± = (−qε)rt1...tr,

p±n · c = ±([T ]±n) · c (4.11)

for all c ∈ K, and

P± · ΛSd = (±1)kΛSd±k :

∫
: P (u1, ..., uk)

k∏
i=1

Λ(±W±d±k, u
±1
i qε)

urεi
∏
s∈S

(
1− s

ui

)±1 (4.12)

for all P ∈ A+ and all sets of variables S (the exponent above [T ] in (4.11) refers to a plethysm:
if [T ] = a1 + ...+ ad, then [T ]n = an1 + ...+ and ).

To see that Theorem 4.7 corresponds to the ones in [FT11] and [SV09], it is enough to
check that their action of the degree one elements (zd)± ∈ A± on K is given by these integral
formulas. In either of loc. cit. these elements are defined by tautological line bundles on the
correspondences Zd,d+1, which will be shown to equal (4.12) in Theorem 4.10 below. Alternatively,
one could prove Theorem 4.7 directly from the formulas above, by showing that they satisfy the
relations in the shuffle algebra and (4.9). This is a straightforward computation, and we leave it
to the interested reader.

4.8. We define the normal ordered integrals to only count the residues at k-tuples (u1, ..., uk)
such that 

ui ∈ Poles(Λ(±W±, z±1qε)) or

ui = q1uj for some ± j > ±i or

ui = q2uj for some ± j > ±i .

To explain this way of counting residues, let us recall Proposition 3.5 of [Neg15], which states
that any shuffle element is a linear combination of shuffle elements of the form

zn1 ∗ ... ∗ znk = Sym

zn1
1 ...znk

k

∏
16i<j6k

ω

(
zi
zj

) . (4.13)

For such shuffle elements, the residue count above gives rise to the following actual integral for
the right-hand side of (4.12):

(±1)kΛSd±k

∫
un1

1 ...unk
k

∏
16i<j6k

ω

(
ui
uj

) k∏
i=1

Λ(±W±d±k, u
±1
i qε)

urεi
∏
s∈S

(
1− s

ui

)±1Dui , (4.14)

where recall that Du = du/2πiu. The integrals are over contours that separate S ∪ {0,∞} from
Poles(Λ(±W±, z±1qε)), with u1 being closest or farthest from the latter set depending on whether
the sign is + or −, respectively. It is easy to see that these formulas are actually imposed by
iterating (4.12) k times to compute the action of zn1 ∗ ... ∗ znk . The reason the order of the
contours differs in the cases + and − is that the creation shuffle elements P+ satisfy the opposite
algebra relations from the annihilation shuffle elements P−.

4.9. The shuffle algebra formalism allows us write down explicitly many elements of A, and then
the formulas above tell us how they act on K. In particular, an important class of elements of

29



Andrei Negut,

A that were defined in [Neg15] is:

Xm = Sym

 m(z1, ..., zk)(
1− z2q

z1

)
...
(

1− zkq
zk−1

) ∏
16i<j6k

ω

(
zi
zj

) ∈ A+

for any Laurent polynomial m(z1, ..., zk). It is shown in Proposition 6.2 of [Neg15] that Xm ∈ A+

for any m, and they therefore act on K via Theorem 4.7 given above. In fact, it is easy to see
that (4.12) implies

X±m · ΛSd = (±1)kΛSd±k

∫ m(u1, ..., uk)
∏
i<j ω

(
ui
uj

)
(

1− u2q
u1

)
...
(

1− ukq
uk−1

) k∏
i=1

Λ(±Wd±k, u
±1
i qε)∏

s∈S

(
1− s

ui

)±1 Dui , (4.15)

where the contours separate the sets S∪{0,∞} from Poles(Λ(±W±, z±1qε)), with u1 the contour
closest or farthest from the latter set depending on whether the sign is + or −, respectively. One
of the main points of this paper is to give a geometric description of the operator (4.15), and
this will be achieved via the moduli space Zk of flags of sheaves.

Theorem 4.10. For any Laurent polynomial m(z1, ..., zk), the geometric correspondence
x±m : K −→ K of (3.16) is given by the shuffle element

X±m(zk,...,z1)·(z1...zk)rε ∈ A
± −→ End(K) .

Remark 4.11. Theorem 4.10 shows us why the geometric correspondences xm are not simply
compositions of simple Nakajima correspondences. If they were, the operators they define on
K-theory would be shuffle elements of the form (4.13), and thus act on K by (4.14). These differ
from the shuffle elements Xm by the absence of the denominator(

1− z2q

z1

)
...

(
1− zkq

zk−1

)
.

In fact, this denominator appears in the shuffle element associated to x±m because of Td+1 and
Td+k−1 in the definitions of the complexes (3.6) and (3.7) that define the correspondences x+

m

and x−m, respectively.

Proof. We need to compare the geometric operators x±m with the shuffle elements X±m. By Propo-
sition 2.6, it will be enough to compare their action on products of tautological classes. By (3.16),
we have

x±m · ΛSd = p±∗

[
m(l1, ..., lk)

∏
s∈S

Λ(p∓∗(Td), s)

]
.

Comparing the various tautological sheaves on the variety Zd,d+k, we see that

Λ(p∓∗(Td), s) = Λ(p±∗(Td±k), s)
k∏
i=1

(
1− s

li

)∓1

, (4.16)

and therefore

x±m · ΛSd = ΛSd±k · p±∗

[
m(l1, ..., lk)

∏
s∈S

k∏
i=1

(
1− s

li

)∓1
]
. (4.17)
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The maps p± factor as

p+ : Zd,d+k
π+
1−→ Zd+1,d+k

π+
2−→ ...

π+
k−1−→ Zd+k−1,d+k

π+
k−→Md+k ,

p− : Zd−k,d
π−k−→ Zd−k,d−1

π−k−1−→ ...
π−2−→ Zd−k,d−k+1

π−1−→Md−k ,

where the individual maps π±i are the projectivizations that appear in Theorem 3.9. By Lemma
3.13, we have, for any rational function r,

π+
i∗(r(li)) =

∫
r(u)Λ(W̃1, u)Du =

∫
r(u)Λ(Wd+i, uq)(

1− uq
li+1

) Du ,

π−i∗(r(li)) = −
∫
r(u)Λ(−W̃∨2 , u−1)Du = −

∫
r(u)Λ(−W∨d+i−k−1, u

−1)(
1− li−1q

u

) Du .

The equalities on the right simply follow from the definitions of W̃1 and W̃2, where Wi denotes
the complex (2.4) on each Mi. We can use (4.16) to express these complexes in terms of Wd+k

and Wd−k, respectively:

π+
i∗(r(li)) =

∫
r(u)Λ(Wd+k, uq)(

1− uq
li+1

) ∏
i<j

ω

(
lj
u

)
Du ,

π−i∗(r(li)) = −
∫
r(u)Λ(−W∨d−k, u−1)(

1− li−1q
u

) ∏
j<i

ω

(
u

lj

)
Du .

Iterating these integral formulas gives us the following equality for (4.17):

x±m · ΛSd = (±1)kΛSd±k ·
∫ m(u1, ..., uk)

∏
i<j ω

(
uj
ui

)
(

1− u1q
u2

)
...
(

1− uk−1q
uk

) k∏
i=1

Λ(±W±d±k, u
±1qε)∏

s∈S

(
1− s

ui

)±1 Dui ,

where the contours separate S ∪ {0,∞} from Poles(Λ(±W, ·)), with u1 farthest or closest to
the latter set, depending on whether the sign is + or −, respectively. Changing the variables to
vi = uk+1−i gives us precisely (4.15).

4.12. In [Neg15], we define explicit shuffle elements Pk,d ∈ A for all k, d ∈ Z2\(0, 0). It is shown
in loc. cit. that they are the images of the elliptic Hall algebra generators studied in [BS12], and
are permuted by an (almost) SL2(Z) action of automorphisms on A. To write them out explicitly,
let us write n = gcd(k, d) and a = k/n. Then Theorem 1.1 of [Neg15] states that1

P±k,d = X±mk,d
(4.18)

for all k > 0, where the Laurent polynomial mk,d is given by

mk,d(z1, ..., zk) =

k∏
i=1

z
b idk c−

⌊
(i−1)d

k

⌋
i

n−1∑
x=0

qx
za(n−1)+1...za(n−x)+1

za(n−1)...za(n−x)
.

When k = 0, the corresponding elements coincide with the Cartan generators of Subsection 4.3:
P0,±d = p±d for any d > 0.

1Note that our Pk,d and those of loc. cit. are off by a constant of (q1 − 1)k(1 − q2)k/((qn1 − 1)(1 − qn2 )). This is
done in the present paper purely for cosmetic reasons.
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4.13. For each pair of coprime natural numbers a, b, the elements Pna,nb determine a q-Heisenberg
algebra

[Pna,nb, Pn′a,n′b] =
δ0
n+n′q

−na(qn1 − 1)(qn2 − 1)

(q−n − 1)

[
(H−0 )na − (H+

0 )na
]

for all n > 0 and all n′ ∈ Z. In particular, {Pn,0}n∈Z will determine a geometric action of
the q-Heisenberg algebra on K that deforms the construction of Baranovsky in cohomology. This
follows from Theorem 4.10, which implies that the K-theoretic version of Baranovsky’s operators
are:

P±k,0(c) = p±∗

[
(l1...lk)

−rε
k∑
i=1

qi−1 l1
li
· p∓∗(c)

]
, ∀c ∈ K (4.19)

for all k > 0, where p± : Zk −→M are the projections (3.14) from the moduli of flags of sheaves
Zk = tdZd,d+k. A similar geometric result holds for all P±k,d, simply by replacing the sum of
monomials in the li by mk,d(lk, ..., l1) · (l1...lk)−rε.

4.14. At the suggestion of Boris Feigin, we will prove the following result.

Proposition 4.15. The vector v =
∑

d>0 1d ∈ K is an eigenvector of all Pk,d corresponding to
lattice points (k, d) in a certain cone:

P−k,0 · v = v , (4.20)

P−k,d · v = 0 (4.21)

for all −kr < d < 0, and

P−k,−kr · v = [(−1)rt1...tr]
−k · v . (4.22)

Proof. Formulas (4.15) and (4.18) imply that P−k,0 · 1d equals

(−1)k
∫ 1 + ukq

uk−1
+ ...+ ukq

k−1

u1(
1− u2q

u1

)
...
(

1− ukq
uk−1

) ∏
16i<j6k

ω

(
ui
uj

) k∏
i=1

Λ(−W∨d−k, u−1
i )Dui ,

where the contours go around the poles of the rational function Λ(−W∨, z−1), with u1 being the
outermost one. We can deform the contours to small loops around 0 and ∞, with u1 being the
closest to the poles. There is no pole at 0 in u1 (because the function Λ(−W∨, z−1) vanishes to
order r), but there is a simple pole at ∞ in u1, because of the first fraction. The residue equals

(−1)k−1

∫ 1 + ukq
uk−1

+ ...+ ukq
k−2

u2(
1− u3q

u2

)
...
(

1− ukq
uk−1

) ∏
26i<j6k

ω

(
ui
uj

) k∏
i=1

Λ(−W∨d−k, u−1
i )Dui .

We can integrate over u2, u3, ... in the same way, and the result yields (4.20).

For any −kr < d < 0, formula (4.15) implies that P−k,d · 1d equals

(−1)k
∫

mk,d(u1, ..., uk)(
1− u2q

u1

)
...
(

1− ukq
uk−1

) ∏
16i<j6k

ω

(
ui
uj

) k∏
i=1

Λ(−W∨d−k, u−1
i )Dui ,

where by (4.18) and −kr < d < 0, the monomial mk,d only has terms of degree {−1, ...,−r}
in u1. Hence the integral above is regular at u1 = 0, and it has at most a single pole at u1 =∞,
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but only if it has degree exactly r in mk,d. If this happens, the corresponding residue is

(−1)k−1

∫
m′(u2, ..., uk)(

1− u3q
u2

)
...
(

1− ukq
uk−1

) ∏
26i<j6k

ω

(
ui
uj

) k∏
2=1

Λ(−W∨d−k, u−1
i )Dui ,

where the monomial m′ only has terms of degree {−1, ...,−r} in u2. We may repeat the same
argument, and this procedure will eventually end with 0, because the hypothesis −kr < d ensures
that at some step, the monomial in the numerator will not have degree −r in the variable that
needs integrating.

Formulas (4.15) and (4.18) imply that P−k,−kr · 1d equals

(−1)k
∫ 1 + ukq

uk−1
+ ...+ ukq

k−1

u1(
1− u2q

u1

)
...
(

1− ukq
uk−1

) ∏
16i<j6k

ω

(
ui
uj

) n∏
i=1

u−ri Λ(−W∨d−k, u−1
i )Dui ,

where the contours go around the poles of the rational function Λ(−W∨, z−1), with u1 being the
outermost one. We can deform the contours to small loops around 0 and ∞, with u1 being the
closest to the poles. There is no residue at∞ in u1, because of u−r1 . As for the residue at 0 in u1,
it equals

(−1)k−1

∫
(−1)rt−1

1 ...t−1
r ·

ukq
k−2

u2(
1− u3q

u2

)
...
(

1− ukq
uk−1

) ∏
26i<j6k

ω

(
ui
uj

) k∏
i=2

u−ri Λ(−W∨d−k, u−1
i )Dui .

We can now integrate over u2, u3, ... in the same way, and the result yields (4.22).

5. Fixed points

5.1. In this section, we will use the language of partitions λ = (λ0 > λ1 > ...). To any
such partition, we can associate its Young diagram, which is a collection of lattice squares in
the first quadrant. For example, the following is the Young diagram of the partition (4, 3, 1):

t
t

t

d
d

d
d

(4, 0)

(4, 1)(3, 1)

(3, 2)(1, 2)

(1, 3)(0, 3)

Figure 5.1

The hollow circles indicate the inner corners of the partition, while the solid circles indicate
the outer corners. Given two partitions, we will write λ 6 µ if the Young diagram of λ is
completely contained in that of µ. A standard Young tableau (denoted by SYT, plural SYTx)
of shape µ− λ is an arrangement of the numbers 1, 2, ..., k in the boxes of µ− λ, in such a way
that the numbers decrease as we go up or to the right. There is a bijection between SYTx and
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all collections of intermediary partitions

λ = ρk 6 ρk−1 6 ... 6 ρ1 6 ρ0 = µ

such that each partition ρi has size one more than ρi+1.

5.2. Formulas (4.15) are given in terms of tautological classes, but they can also be expressed
in terms of torus fixed points. In our case, the torus action of T on the smooth variety Md has
finitely many fixed points, and these determine a linear basis of the K-theory group Kd. Namely,
we have the following localization formula:

c =
∑
p∈MT

d

[p] · c|p
Λ(TpMd, 1)

, ∀c ∈ Kd , (5.1)

where [p] denotes the class of the skyscraper sheaf above the point p. Therefore, the classes [p]
form a basis for the K-theory group, after tensoring it with Frac(K). The torus fixed points of
Md are indexed by r-tuples of partitions λ = (λ1, ..., λr) whose sizes sum up d, and are given by

Iλ := Iλ1 ⊕ ...⊕ Iλr .

In the above, for any partition λi = (λi0 > λi1 > ...), we consider the monomial ideal Iλi =

(xλ
i
0y0, xλ

i
1y1, ...). As seen in (5.1), the following constants will be important:

gλ = Λ(TλMd, 1) ∈ K . (5.2)

While there are many explicit formulas for the character of T in the tangent space to Md, and
hence also for gλ, these constants have an important combinatorial meaning.

5.3. We will often apply the language of partitions to r-tuples of partitions. Namely, a square
or corner in an r-tuple will simply be a square or corner in one of its constituent partitions. For
r-tuples of partitions λ and µ, a SYT of shape µ− λ is a way to fill the boxes of this r-tuple of
skew diagrams with the numbers 1, ..., k, in such a way that the numbers decrease as we go up
or to the right. Given an r-tuple of partitions λ, the weight of a square with lower left corner
(i, j) is defined to be

χ(�) = qi1q
j
2t
−1
k ,

where k ∈ {1, ..., r} indicates which partition the square lies in. The character of T acting in the
fibers of the tautological bundle T is given in terms of these weights:

charT (T |λ) =
∑
�∈λ

χ(�) , (5.3)

where the sum goes over all the boxes in the r constituent partitions of λ. Therefore, the character
in the fibers of W is

charT (W|λ) =

r∑
k=1

t−1
k − (1− q1)(1− q2)

∑
�∈λ

χ(�)

=

� inner∑
corner of λ

χ(�)−
� outer∑

corner of λ

χ(�) . (5.4)

Proof of Proposition 2.6. Note from (5.3) that the class [T ] of the tautological bundle has dif-
ferent restrictions to all torus fixed points. Since the Vandermonde determinant is non-zero, the
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class [λ] of any torus fixed point can be written as a combination of the powers of [T ]. Then
(5.1) implies that any class in Kd can be written as a combination of these powers.

5.4. In the proof of Theorem 4.10, we have shown how the shuffle elements X±m (or alternatively,
the geometric correspondences x±m) act on tautological classes ΛSd . In this section, we will rephrase
those computations in the basis of torus fixed points, which will give rise to a new interpretation
of formulas (4.15).

Proposition 5.5. For any Laurent polynomial m, the matrix coefficients of the operators X±m
in the torus fixed point basis [λ] are given by

〈µ|X±m|λ〉 =
gλ
gµ

SYT∑
shape ±µ∓λ

m(χ1, ..., χk)
∏
i<j ω

(
χi

χj

)
(

1− χ2q
χ1

)
...
(

1− χkq
χk−1

) k∏
i=1

χ−rεi Λ(±W|±µ , χ±1
i qε) ,

where χ1, ..., χk denote the weights of the squares labeled 1, 2, ..., k inside each standard Young
tableau.

Remark 5.6. Note that each summand on the right-hand side of the expressions above has
precisely k linear factors which vanish in the denominator. These factors have to be removed in
order for the corresponding summand to make sense (alternatively, one can multiply the right-
hand side by 0k). The reason for this will become apparent in the proof, which will compute the
integrals (4.15) via residues. Essentially, we will repeatedly use identities of the form∫ ∏

i(u− ai)∏
j(u− bj)

Du =
∑
k

∏
i(bk − ai)∏

j 6=k(bk − bj)
. (5.5)

Under this analogy, the quantity displayed on the right-hand side of Proposition 5.5 would be∑
k

∏
i(bk − ai)∏

all j(bk − bj)
,

so the terms bk − bk need to be removed from the denominators in order to obtain the correct
right-hand side of (5.5).

Proof. The localization formula (5.1) implies that

ΛSd =
∑
λ`d

[λ]

gλ

∏
s∈S

∏
�∈λ

(
1− s

χ(�)

)
,

where the notation λ ` d means that λ is an r-tuple of partitions whose sizes add up to d.
Equation (4.15) therefore gives

X± · ΛSd =
∑
λ`d

X±m · [λ]

gλ

∏
s∈S

∏
�∈λ

(
1− s

χ(�)

)
=
∑
µ`d±k

[µ]

gµ

∏
s∈S

∏
�∈µ

(
1− s

χ(�)

)
·

· (±1)k
∫ m(u1, ..., uk)

∏
i<j ω

(
ui
uj

)
(

1− u2q
u1

)
...
(

1− ukq
uk−1

) k∏
i=1

 Λ(±W|±µ , u±1
i qε)

urεi
∏
s∈S

(
1− s

ui

)±1Dui

 , (5.6)
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with u1 or uk being closest to the set of poles of Λ(±W|±µ , z±1qε), depending on whether the
sign is + or −, respectively. Let us compute this integral by summing over the residues at these
poles. By looking at (5.4), we see that

Λ(W|µ, uq) =

∏� inner
corner of µ

(
1− uq

χ(�)

)
∏� outer

corner of µ

(
1− uq

χ(�)

) , Λ(−W|∨µ , u−1) =

∏� outer
corner of µ

(
1− χ(�)

u

)
∏� inner

corner of µ

(
1− χ(�)

u

) .
When the sign is + and we integrate over u1, we pick up a residue whenever u1q equals the
weight of some outer corner of the partition µ. When the sign is − and we integrate over uk, we
pick up a residue whenever uk equals the weight of some inner corner of the partition µ. When
the sign is +, let �1 be the square whose weight is χ1 := χ(�1) = u1. When the sign is −,
let �k be the square whose weight is χk := χ(�k) = uk. We may remove this square from the
partition when the sign is + or add it to the partition when the sign is −; then ρ1 = µ−�1 or
ρk−1 = µ+�k, respectively, is a partition in its own right. The integral in (5.6) then becomes:

(±1)k−1
ρ16µ or∑
ρk−1>µ

∫ m(u1, ..., uk)
∏
i<j ω

(
ui
uj

)
(

1− u2q
u1

)
...
(

1− ukq
uk−1

) k∏
i=1

 Λ(±W|±µ , u±1
i qε)

urεi
∏
s∈S

(
1− s

ui

)±1Dui

 ∣∣∣u1=χ1 or

uk=χk

.

Now we need to integrate over u2 or uk−1, respectively. When the sign is +, we pick up poles when
either u2q is the weight of some outer square of µ, or u2 = χ1q

−1
1 or u2 = χ1q

−1
1 . When the sign

is −, we pick up poles when either uk−1 is the weight of some inner square of µ, or uk−1 = χkq
−1
1

or uk−1 = χkq
−1
1 . In either of these cases, note that u2 = χ1 or uk−1 = χk, respectively, is not a

viable option for a pole anymore, because the numerator of ω eliminates it. If the sign is +, let
�2 be the square whose weight is χ2 := χ(�2) = u2. Note that ρ2 = ρ1 −�2 is also a partition.
If the sign is −, let �k−1 be the square whose weight is χk−1 := χ(�k−1) = uk−1. In this case,
ρk−2 = ρk−1 +�k−1 is also a partition. We conclude that the integral (5.6) equals

(±1)k−2
ρ26ρ16µ or∑
ρk−2>ρk−1>µ

∫ m(u1, ..., uk)
∏
i<j ω

(
ui
uj

)
(

1− u2q
u1

)
...
(

1− ukq
uk−1

) k∏
i=1

 Λ(±W|±µ , u±1
i qε)

urεi
∏
s∈S

(
1− s

ui

)±1Dui


evaluated at u1 = χ1, u2 = χ2 when the sign is + or at uk = χk, uk−1 = χk−1 when the sign is −.
Repeating the procedure above for the remaining integrals gives us the following result for the
integral (5.6)

λ6ρk−16...6ρ16µ or∑
λ>ρ1>...>ρk−1>µ

m(χ1, ..., χk)
∏
i<j ω

(
χi

χj

)
(

1− χ2q
χ1

)
...
(

1− χkq
χk−1

) k∏
i=1

Λ(±W|±µ , χ±1
i qε)

χrεi
∏
s∈S

(
1− s

χi

)±1 ,

where χi is the weight of the square ρi−1−ρi. Since such a flag of partitions precisely determines
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a SYT, we conclude that (5.6) implies∑
λ`d

X±m · [λ]

gλ

∏
s∈S

∏
�∈λ

(
1− s

χ(�)

)
=

∑
µ`d+k

[µ]

gµ

∏
s∈S

∏
�∈µ

(
1− s

χ(�)

)
·

·
∑

SYT of shape ±µ∓λ

m(χ1, ..., χk)
∏
i<j ω

(
χi

χj

)
(

1− χ2q
χ1

)
...
(

1− χkq
χk−1

) k∏
i=1

Λ(±W|±µ , χ±1
i qε)

χrεi
∏
s∈S

(
1− s

χi

)±1 .

Since this relation must hold for all sets of variables S, this implies that they hold for each λ
individually after canceling all the terms that contain s ∈ S.

Using (4.18), Proposition 5.5 tells us how to compute the matrix coefficients of the operators
P±k,d acting on K in the basis of torus fixed points, for all k 6= 0. The matrix coefficients of
P0,±n = p±n are simply the ±n-th power sums of the weights of the boxes at the fixed point in
question.

6. Other geometric constructions

6.1. We will consider the vector bundle E on Md− ×Md+ whose fibers are

E|F−,F+ = Ext1(F+,F−(−∞)) .

As a class in K-theory, it can be written as

[E] = p∓∗ ([TM])± q−εp∓∗
(
[W]±

)
·
[
p+∗ ([T ])− p−∗ ([T ])

]∓
, (6.1)

where p+, p− :M×M−→M are the projections to the two factors. We will show how to prove
this formula in Section 6.8. Note that by (2.1), we see that the restriction of E to the diagonal
∆ ⊂ Md ×Md is precisely the tangent space to Md. Therefore, (6.1) also gives us a formula
for the character in these tangent spaces, and thus a formula for computing the constants gλ of
(5.2). Consider the long exact sequence

Hom(F+,F−) −→ Hom(F+,F−|∞) −→ Ext1(F+,F−(−∞)) .

We have the tautological map F+ −→ F+|∞ ∼= F−|∞, viewed as an element in the middle Hom
space. Pushing this element to Ext1 gives us a section

s ∈ Γ(Md− ×Md+ , E) . (6.2)

It is easy to see from the exact sequence above that this section vanishes precisely when F+ ⊂ F−.

6.2. Just like the moduli of flags of sheaves Zk, many constructions consisting of nested sheaves
are singular. The main exception is the variety

Vk = {(F ,F ′) such that F ⊃ F ′ ⊃ F(−ν)} ⊂ Md ×Md+k , (6.3)

where ν = {y = 0} is a line in P2. This is a particular type of smooth moduli space of parabolic
sheaves, and it is well known to be Lagrangian inside the product of symplectic varieties Md ×
Md+k. Alternatively, we will show in Section 6.10 that Vk can be regarded as the fixed locus of
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a Z/2Z-action on the moduli space M2d+k and this will allow us to compute its tangent space:

[TVk] = p±∗([TM])∓ q−εp±∗([W]±) · l∓ − (1− q−1
1 ) · l · l∨ . (6.4)

Here, q1 is the equivariant parameter in the direction of the line ν and l = [L] is the K-theory
class of the tautological rank k vector bundle on Vk:

L|F⊃F ′ = RΓ(P2,F/F ′) .

We will show how to prove (6.4) in Section 6.10.

6.3. These constructions give rise to functors on the derived categories of Md:

C• −→ C•±k , c 7−→ Rp±∗ (Ks(E)⊗ p∓∗(c)) , (6.5)

C• −→ C•±k , c 7−→ Rp±∗ (OVk ⊗ p∓∗(c)) ,

where p−, p+ :M×M−→M are the projections onto the first and second factors. Here, Ks(E)
denotes the Koszul complex of the vector bundle E∨ with respect to the section s of (6.2):

[Λrk EE∨ −→ ... −→ Λ2E∨ −→ E∨
s∨−→ OMd−×Md+

] .

Note that we have chosen the Koszul complex in (6.5) because it induces the class Λ(E) in K-
theory. As for the choice of the section s with respect to which the complex is defined, this was
chosen so that when d+ = d− + 1, (6.5) coincides with (3.15) for m = 1. Indeed, in that case,
the section s scheme-theoretically cuts out the correspondence Zd,d+1.

At the level of K-theory, these functors give rise to linear operators

a±k : K• −→ K•±k , c 7−→ p±∗ (Λ(E, 1) · p∓∗(c)) ,
b±k : K• −→ K•±k , c 7−→ p±∗ (OVk · p∓∗(c)) . (6.6)

In the remainder of this paper, we will compute these operators in terms of the shuffle algebra.

6.4. The following elements of the shuffle algebra were defined in [FHHSY09]:

Ak =
(1− q)k

(1− q1)k(1− q2)k

∏
16i 6=j6k

(zi − zj)(zi − qzj)
(zi − q1zj)(zi − q2zj)

∈ A+ , (6.7)

Bk =
q

k(k−1)
2

1

(1− q1)k

∏
16i 6=j6k

zi − zj
zi − q1zj

∈ A+ . (6.8)

As shown in [FHHSY09], [Neg15], these elements lie in the commutative subalgebra generated
by {P1,0, P2,0, ...} ⊂ A+. It is also very easy to compute their coproduct, which was described in
[Neg15] and denoted therein by ∆0:

∆0(Ak) =

k∑
i=0

Hk−i
0 Ai ⊗Ak−i , ∆0(Bk) =

k∑
i=1

Hk−i
0 Bi ⊗Bk−i .

Elements with this coproduct are called group-like, and they are always exponentials of the
q-Heisenberg generators:

∞∑
k=0

Akz
k = exp

( ∞∑
k=1

αk
Pk,0z

k

k

)
,

∞∑
k=0

Bkz
k = exp

( ∞∑
k=1

βk
Pk,0z

k

k

)
, (6.9)

where αk, βk ∈ Frac(K) are some constants.
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6.5. To determine these constants, we will use the multiplicative linear map ϕ of [Neg15] (we
set d = 0 in the notation of loc. cit.):

ϕ : 〈P1,0, P2,0, ...〉 −→ Frac(K)

ϕ(R) =

R(z1, ..., zk)
∏

16i 6=j6k

zi − q1zj
zi − zj


zi=q

−i
1

q
− k2

2
+k

1

(1− q2)k

k∏
i=1

qi−1
1 − q2

qi1 − 1
.

It is easy to see that

ϕ(Ak) =
q

k
2
1

(1− q1)k(1− q2)k

k∏
i=1

1− qi1q2

qi1 − 1
,

ϕ(Bk) =
q

k
2
1

(1− q1)k(1− q2)k

k∏
i=1

qi−1
1 − q2

qi1 − 1
.

while

ϕ(Pk,0) =
(−1)kq

k
2
1 (1− qk2 )

(1− q1)k(1− q2)k

was computed in 6.12 of [Neg15] (the discrepancy between this formula and loc. cit. is due to
the fact that we have renormalized our Pk,0). Since ϕ is multiplicative, plugging these identities
in (6.9) gives us

αk =
(1− qk)

(1− qk1 )(1− qk2 )
, βk =

(−1)k−1

1− qk1
,

so we conclude that

∞∑
k=0

Akz
k = exp

( ∞∑
k=1

(1− qk)
(1− qk1 )(1− qk2 )

·
Pk,0z

k

k

)
,

∞∑
k=0

Bkz
k = exp

( ∞∑
k=1

(−1)k−1

1− qk1
·
Pk,0z

k

k

)
.

6.6. We will now show that these shuffle elements act on K via the geometric operators of (6.6).

Proposition 6.7. As endomorphisms of K, we have

a±k = A±k (z1, ..., zk) · (z1...zk)
rε , (6.10)

b±k = q
− k(k+1)

2
1 B±k (z1, ..., zk) · (z1...zk)

rε , (6.11)

where recall that ε is 1 or 0 depending on whether the sign is + or −, respectively.

Proof. By the equivariant localization formula (5.1), we have

a±k · Λ
S
d =

∑
λ+,λ−∈MT

[λ±]

gλ±
·

Λ(Eλ−,λ+ , 1)

Λ(Tλ∓M, 1)
· ΛSλ∓ . (6.12)

Let us remark that Eλ−,λ+ contains a trivial character 1, and so the numerator above vanishes
unless λ− 6 λ+. The reason for this is that the section s ∈ Γ(E) vanishes on the locus F− ⊃ F+.
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Therefore, (6.12) becomes

a±k · Λ
S
d =

∑
λ±∈MT

[λ±] · ΛSλ±
gλ±

∑
λ−6λ+

Λ(Eλ−,λ+)

Λ(Tλ∓M)

∏
s∈S

∏
�∈λ+−λ−

(
1− s

χ(�)

)∓1

. (6.13)

From (6.1), we infer that

[Eλ−,λ+ ]− [Tλ∓M] = ±q−εW±
λ∓ · ([Tλ+ ]− [Tλ− ])∓ = ±q−εW±

λ∓ ·
∑

�∈λ+−λ−

χ(�)∓1

= ±q−εW±
λ± ·

∑
�∈λ+−λ−

χ(�)∓1 + (1− q−1
1 )(1− q−1

2 )
∑

�,�′∈λ+−λ−

χ(�)

χ(�′)
. (6.14)

and therefore, (6.13) becomes∑
λ±∈MT

[λ±] · ΛSλ±
gλ±

·
∑

λ−6λ+

∏
�,�′∈λ+−λ−

ω

(
χ(�)

χ(�′)

) ∏
�∈λ+−λ−

Λ(±W±
λ± , χ(�)±1qε)∏

s∈S

(
1− s

χ(�)

)±1 .

The sum goes over all λ− 6 λ+ with |λ+| − |λ−| = k. If we fix the partition λ+ or λ−, the sum
goes over all the ways to remove or add, respectively, k non-ordered boxes � from this partition.
We claim that the corresponding χ(�) are precisely the poles of a rational function, in that the
relation above becomes

a±k · Λ
S
λ∓ =

∑
λ±∈MT

[λ±] · ΛSλ±
gλ±

:

∫
:
∏

16i,j6k

ω

(
ui
uj

) k∏
i=1

 Λ(±W±
λ± , u

±1
i qε)∏

s∈S

(
1− s

ui

)±1Dui

 .
The reason we need to take the normal ordered integral of Section 4.8 is that we must count
each configuration of added or removed boxes exactly once. We need to remove the zeroes ui−ui
from the numerator of ω(ui/ui), since they precisely account for the residue computation (see
Remark 5.6). Delocalizing the above, we see that

a±k · Λ
S
d = ΛSd±k

[
±(1− q)

(1− q1)(1− q2)

]k
:

∫
:
∏

16i 6=j6k
ω

(
ui
uj

) k∏
i=1

 Λ(±W±, u±1
i qε)∏

s∈S

(
1− s

ui

)±1Dui

 .
Comparing this with the formulas for A±k given by (6.7) proves (6.10). As for (6.11), we need to
play the same game

b±k · Λ
S
d =

∑
λ−6λ+

[λ±]

Λ(T(λ−,λ+)Vk, 1)

∏
s∈S

Λ(Tλ∓ , s) . (6.15)

We can use relation (6.4) to compute

[Tλ±M]− [T(λ−,λ+)V
k] = ±q−ε[W±

λ± ]
∑

�∈λ+−λ−

χ(�)∓ + (1− q−1
1 )

∑
�,�′∈λ+\λ−

χ(�)

χ(�′)
.

This formula differs from (6.14) only in the coefficient in front of the last term, which is 1− q−1
1

instead of (1 − q−1
1 )(1 − q−1

2 ). Therefore, the whole discussion that applied to a±k allows us to
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write (6.15) as the normal ordered integral

b±k · Λ
S
d = ΛSd±k

[
±1

1− q1

]k
:

∫
:
∏

16i 6=j6k

ui − uj
uiq1 − uj

k∏
i=1

 Λ(±W±, u±1
i qε)∏

s∈S

(
1− s

ui

)±1Dui

 .
Comparing this with the formulas for B±k given by (6.8) proves (6.11).

6.8. Formula (6.1) follows from the proposition below.

Proposition 6.9. We have the following equality of K-theory classes:

[E] =
r∑
i=1

ti · [T−] +
r∑
i=1

q−1t−1
i · [T+]∨ − (1− q−1

1 )(1− q−1
2 ) · [T−] · [T+]∨ , (6.16)

where T− and T+ denote the tautological bundles on the first and second factors of M×M,
respectively.

Proof. By the localization formula (5.1), it is enough to prove that both sides of (6.16) have the
same restriction to all torus fixed points. We have

[Eλ,µ] =
r∑
i=1

r∑
i′=1

ti
ti′
· [Ext1(Iµi , Iλi′ (−∞))] ,

where the last equality holds because Ext0 and Ext2 vanish, the former because of the twist
by ∞, and the latter because of Serre duality. The characters in the Ext1 spaces have been
computed, for example, in Lemma 4.14 of [FFNR11]:

[Eλ,µ] =
r∑
i=1

r∑
i′=1

ti
ti′

∑
j′>0

q
λi
′
j′

1 − 1

q1 − 1
qj
′

2 + q−1
∑
j>0

q
−µij
1 − 1

q−1
1 − 1

q−j2

− (1− q−1
1 )(1− q−1

2 )
∑
j>0

∑
j′>0

(q
λi
′
j′

1 − 1)(q
−µij
1 − 1)

(q1 − 1)(q−1
1 − 1)

qj
′−j

2

 .

Comparing this with the character in the tautological sheaves from (5.3) gives us

[Eλ,µ] =
r∑
i=1

ti · [Tλ] +
r∑
i=1

q−1t−1
i · [Tµ]∨ − (1− q−1

1 )(1− q−1
2 ) · [Tλ] · [Tµ]∨ .

Delocalizing this relation gives us precisely (6.16).

6.10. Let us now look at the varieties Vk of Subsection 6.2, and show that they are smooth and
compute the character (6.4) in their tangent spaces. We can interpret a flag of two sheaves (6.3)
as a single sheaf: (

F ⊃ F ′ ⊃ F(−ν)
)

↔ F̃ = τ∗(F ′) + τ∗(F)(−ν) , (6.17)

where

τ : C2 −→ C2, τ(x, y) = (x, y2) .

This makes F̃ into a sheaf on C2, but we can glue a trivial sheaf at ∞ to make it into a
trivialized sheaf on P2. Moreover, F̃ is Z/2Z-invariant under the action of Z/2Z on P2 given
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by [x : y : z] 7−→ [x;−y; z]. Therefore, we have a map

Vd,d+k −→M
Z/2Z
2d+k .

This map is an isomorphism onto a certain connected component of the Z/2Z-fixed locus on the
right. This allows us to compute the tangent spaces to Vk as the Z/2Z-fixed loci of the tangent
spaces to M:

[TF⊃F ′V
k] = Z/2Z− invariant part of [TF̃M] . (6.18)

The K-theory class of [TF̃M] is given by restricting (6.16) to the diagonal of M:

[TM] =

r∑
i=1

ti · [T̃ ] +

r∑
i=1

q−1t−1
i · [T̃ ]∨ − (1− q−1

1 )(1− q−1
2 ) · [T̃ ] · [T̃ ]∨ , (6.19)

where T̃ denotes the tautological bundle on M. Under the inclusion (6.18), it is related to the
tautological bundles on Vk by [T̃ ] = [T ′] + q2[T ]. Therefore, (6.18) and (6.19) imply

[TVk] = Z/2Z− invariant part of

r∑
i=1

ti ·
(
[T ′] + q2[T ]

)
+

r∑
i=1

q−1t−1
i ·

(
[T ′]∨ + q−1

2 [T ]∨
)
− (1− q−1

1 )(1− q−1
2 )

(
[T ′] + q2[T ]

) (
[T ′]∨ + q−1

2 [T ]∨
)
.

Taking the Z/2Z-invariant means only keeping those terms which contain q2k
2 for some integer k,

and replacing that with qk2 . Therefore, the relation above gives us

[TVk] =

r∑
i=1

ti · [T ′] +

r∑
i=1

q−1t−1
i · [T ]∨ (6.20)

− (1− q−1
1 )

(
[T ′] · [T ′]∨ + [T ] · [T ]∨ − [T ] · [T ′]∨ − q−1

2 [T ′] · [T ]∨
)
.

Together with (6.19), formula (6.20) implies (6.4).
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