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Moduli problems in abelian categories and the

reconstruction theorem

John Calabrese and Michael Groechenig

Abstract

We give a moduli-theoretic proof of the classical theorem of Gabriel, stating that
a scheme can be reconstructed from the abelian category of quasi-coherent sheaves
over it. The methods employed are elementary and allow us to extend the theorem
to (quasi-compact and separated) algebraic spaces. Using more advanced technology
(and assuming flatness) we also give a proof of the folklore result that the group of
auto-equivalences of the category of quasi-coherent sheaves consists of automorphisms
of the underlying space and twists by line bundles. We apply our strategy to prove
analogous statements for categories of sheaves twisted by a Gm-gerbe. Our methods
allow us to treat even gerbes not coming from a Brauer class. As a pleasant consequence,
we deduce a Morita theory for sheaves of abelian categories.

Introduction

In [Gab62] Gabriel showed that a scheme X is completely determined by its abelian category of
quasi-coherent sheaves qc(X). This implies that, for schemes X and Y, if there is an equivalence of
abelian categories qc(X) ' qc(Y), then X and Y are isomorphic. Gabriel’s original formulation was
for noetherian schemes and was later extended to arbitrary quasi-separated schemes by Rosenberg
[Ros04, Proposition 10.7.1].

In trying to generalise this theorem away from schemes, one immediately realises that it fails
miserably for algebraic stacks. For example, one may take G = Z/2Z and its classifying stack BG
over C. A quick inspection shows that qc(BG) is equivalent to qc(X), where X = SpecCq SpecC
is the disjoint union of two points. In fact, both categories are equivalent to that of Z/2Z-graded
complex vector spaces. Clearly this breaks Gabriel’s reconstruction theorem, as the two are
non-isomorphic. (We must mention that if one is willing to consider qc(X) as a monoidal category,
then the reconstruction theorem can be extended considerably [Bal05, Lur05, BKS07, BC12].)
However, sitting in between schemes and stacks are algebraic spaces, and a natural question to ask
is whether Gabriel’s theorem still holds in this context. Indeed, the answer is yes, at least in the
separated case. The goal of this paper is to provide a short and easy proof of the reconstruction
theorem which also applies to algebraic spaces.
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Theorem 2.10 (cf. page 10). Let X and Y be quasi-compact and separated algebraic spaces over
a ring R. If we have an equivalence qc(X) ' qc(Y) of R-linear categories, then there exists an
isomorphism X ' Y of algebraic spaces over SpecR.

Of course in the noetherian setting one can freely interchange qc(X) with the category of
coherent sheaves coh(X). This is possible as qc(X) = Ind coh(X), where Ind stands for the category
of ind-objects [Lur05, Lemma 3.9], and coh(X) is recovered as the subcategory of compact objects
of qc(X). The trivial corollary to the theorem is then that, for noetherian and separated algebraic
spaces over R, coh(X) ' coh(Y) ⇐⇒ X ' Y.

The original proof by Gabriel was topological in spirit and cannot be ported naively to
algebraic spaces. The first step in his construction was to extract a sort of spectrum out of
an abelian category, so that from qc(X) one would recover the underlying Zariski topological
space |X|. This is possible as there is a correspondence between irreducible closed subsets of X
and certain subcategories of qc(X).

If X is an algebraic space and not a scheme, however, the ringed space (|X|,OX) is not enough
to recover X. A novel approach is required as one must reconstruct the functor defining X. The
key idea is simple: X can be viewed as a subspace of points (or pointlike objects) of qc(X). As we
wish to recreate the functor of points of X, we need to know all maps S→ X. In other words, we
need to know what families of points of qc(X) are.

There is a natural procedure to promote qc(X) to a sheaf or, rather, stack of abelian categories.
This is accomplished by assigning to any S the category qc(S×X). What is crucial for our purposes
is that one can make sense of this purely in terms of the category theory of qc(X), see Remark 1.2.
Within this sheaf one singles out a subsheaf of suitably defined pointlike objects Ptqc(X) ⊂ qc(X).
The main idea is that a family of pointlike objects P ∈ Ptqc(X)(S) over S should look like the
structure sheaf of the graph of a morphism S→ X. Roughly, one defines a family of points over S
to be a quasi-coherent module P ∈ qc(S×X) which is fibrewise over S a skyscraper. Categorically
one phrases this by imposing a Schur -like condition, for example over a field one requires P to
have only trivial subobjects. By establishing a correspondence between points in the categorical
sense and graphs we are able to reassemble the functor of points of the original algebraic space.

A more sophisticated manner of stating the fact that Ptqc(X) recovers X is that Ptqc(X) is
in fact X × BGm, the trivial Gm-gerbe over X. If one starts instead with a category of twisted
sheaves qc(X,α), where α is a Gm-gerbe, one analogously concludes that Ptqc(X,α) is indeed the
Gm-gerbe on X corresponding to α. Thus the general version of our main theorem provides a proof
of Căldăraru’s conjecture [Căl02, Conjecture 4.1], extended to algebraic spaces and arbitrary
Gm-gerbes.

Theorem 3.5 (cf. page 13). Let R be a base ring and let X and Y be two quasi-compact and
separated algebraic spaces over R. Let α and β be two Gm-gerbes on X and Y respectively. If
qc(X,α) ' qc(Y,β) as R-linear abelian categories, then there exists an isomorphism f of R-spaces
between X and Y such that f∗β = α.

In [Per09, Theorem 1] the theorem is proved for schemes smooth and separated over a field
and Brauer classes, but it is not shown whether the induced isomorphism f carries over the
gerbes. This issue was remedied for smooth and projective varieties in [CS07, Corollary 5.3].
Another proof of the theorem appeared in [Ant13], which works for arbitrary quasi-compact and
quasi-separated schemes and Brauer classes. The present paper extends the range of the theorem
to (separated) algebraic spaces and arbitrary Gm-gerbes, and uses only elementary and underived
technology.
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Antithetically, by using the existence of integral kernels (which is very much a derived result),
we can describe the group of auto-equivalences of qc(X).

Theorem 4.2 (cf. page 14). Let X be a quasi-compact and separated algebraic space, flat
over a ring R. Then AutR(qc(X)) ' AutR(X) n Pic(X), where AutR(qc(X)) is the group of
isomorphism classes of auto-equivalences of qc(X) as an R-linear category and AutR(X) is the
group of automorphisms of X as a space over SpecR.

At least under the assumption of X being a smooth and projective variety, this theorem is well
known (see for example [Huy06, Corollary 5.24]). This is the only result in this paper relying on
any advanced machinery. The flatness assumption is there to ensure that the product X× X need
not be derived. We also prove an analogous result for categories of twisted sheaves, Theorem 4.3.
In the recent preprint [Bra13] the group Aut(qc(X)) is described for an arbitrary quasi-separated
scheme, without any flatness assumptions and using underived methods.

Finally, we classify sheaves of abelian categories on an algebraic stack which are smooth-locally
equivalent to qc (Corollary 5.2). We call these sheaves of abelian categories invertible, by analogy
with invertible sheaves of modules. This result can be regarded as a Morita theory for sheaves of
abelian categories and fulfils the request in Remark 7.2 of [Ant13].

Structure of the paper. The first two sections are stack-free and are devoted to proving Gabriel’s
theorem for algebraic spaces. In the third section we generalise the result to gerbes. In the fourth
section we use the existence of Fourier–Mukai kernels to describe the group of auto-equivalences
of the category of quasi-coherent sheaves. The last section contains a minor corollary, a Morita
theory for sheaves of abelian categories and a marginal remark about derived schemes.

Conventions. All rings and algebras will be commutative and unital. Given a base ring R, we
view an algebraic space X as a functor

X : R-Alg −→ Set

with domain the category of R-algebras and target the category of sets (and satisfying the axioms
of being an algebraic space). Similarly, we view algebraic stacks as living inside the category of
(weak) functors from R-Alg to the 2-category Grpd of groupoids. For us a prestack over SpecR will
be any groupoid-valued functor on R-Alg, that is, not necessarily satisfying any kind of descent.

On an arbitrary site (usually the étale site of a space X) one also has prestacks and stacks
of abelian categories. However, we shall informally refer to the latter also as sheaves of abelian
categories, to psychologically distinguish them from algebraic stacks.

Given an algebraic space X we will denote by qc(X) its category of quasi-coherent sheaves and
by |X| the underlying Zariski topological space. Given an abelian category C we denote by D(C)
its unbounded derived category. Given a ring R we will write D(R) for D(R-Mod) and given
an algebraic space X we will write D(X) for D(qc(X)). Finally, to avoid any ambiguity with
other standard definitions, we should point out that for X quasi-compact with affine diagonal
D(X) coincides with Dqc(OXét

- Mod), the triangulated category of complexes of étale sheaves of
OX-modules with quasi-coherent cohomology (modulo quasi-isomorphisms) [SP, Tag 08H1].
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1. Abelian categories

1.1. Base change. We start by recalling the constructions needed from [Gai05]. Given a
category C we define its centre to be Z(C) = End(1C), the monoid of endomorphisms of the identity
functor. When C is additive, Z(C) has the structure of a ring. In particular, when C =R-Mod is
the category of modules over a ring R, then Z(C) is precisely the centre of R. As all the rings we
care about are commutative, we will always have Z(R-Mod) = R.

Let us now fix a ground ring R for the remainder of this section. Given an abelian category C,
an R-linear structure on C consists of a morphism R→ Z(C). Unwrapping the definition shows
that this is the same as a functorial action R→ HomC(M,N) for any two objects M,N ∈ C. The
prototypical example of such a structure is the following. Let π : X → SpecR be a scheme (or
algebraic space) over R and take C = qc(X) to be the category of quasi-coherent sheaves on X.
Then all Hom-spaces are naturally modules over R.

Moreover, qc(X) is also endowed with an action of R-Mod, in the sense that quasi-coherent
sheaves on X can be tensored with modules over R using the pullback π∗. In general we have the
following fact.

Proposition 1.1. If C is an R-linear and cocomplete abelian category, there is a bifunctor (which
we call pullback or action)

C× R-Mod 3 (E,M) 7−→ E⊗RM ∈ C

defined as follows:

– E⊗ R = E,

– E⊗ R⊕I = E⊕I, for any indexing set I,

– as any module M can be written as a cokernel of a morphism R⊕J → R⊕I, define E⊗M to
be the cokernel of E⊕J → E⊕I.

The last definition is independent of the chosen presentation of M. In other words, E⊗R (−)
is the left adjoint of HomC(E,−). We define an object E ∈ C to be R-flat if the action functor
M 7→ E⊗RM is exact.

Given an R-linear category C and a ring homomorphism R→ R ′, we can form the base change
category C ′ = C⊗R R ′. One way to define this category is via a universal property: it is the initial
cocomplete R ′-linear abelian category admitting a colimit-preserving R-linear functor C → C ′.
Another way to define it, or to show that such a category exists, is as follows. The objects of C ′

are given by pairs (E,α), where E ∈ C and

α : R ′ ⊗ E→ E

is such that the two natural morphisms R ′ ⊗ R ′ ⊗ E→ E are equal. With this model it is easy to
see that there are pullback C→ C ′ and forgetful C ′ → C functors, which are respectively left and
right adjoints of one another.

Remark 1.2. When C = qc(X) is the category of quasi-coherent sheaves of an algebraic space X
over R, then the category qc(X)⊗R R ′ we abstractly defined is simply qc(X ′), where X ′ is the base
change X×SpecR SpecR ′. This is because the projection q : X ′ → X is affine and thus OX-modules
are the same as q∗OX-modules. A more modern way to spell this out would be to appeal to the
Barr–Beck theorem, namely the underived and affine version of [BZFN10, Theorem 4.7]).
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1.2. Finiteness conditions. We will be interested in characterising categorically quasi-
coherent sheaves of finite type. In an abstract abelian category A one can make the following
definition. We say that an object M is of finite type (or finitely generated) if for any directed
system of objects (Ni)i∈I, the natural morphism

lim−→Hom (M,Ni)−→Hom(M, lim−→Ni).

is injective. We will check the equivalence with the standard definition in Proposition 3.4.

Remark 1.3. Although we shall not need it, we would like to point out a different characterisation
of finite type quasi-coherent sheaves, which is meticulously explained in [Mura]. We might call an
object M ∈ A categorically finitely generated if, for any family of subobjects Mi ⊂M such that∑
iMi =M there exists an i0 such that Mi0 =M. Using the fact that, on a quasi-compact and

quasi-separated space, any quasi-coherent module is the direct limit of its finite type submodules
[RG71, Proposition 5.7.8], one sees that categorically finitely generated objects coincide with
finite type objects.

The other notion we need is that of compactness for objects of the derived category. An
object C of a triangulated category is said to be compact if Hom(C,−) commutes with arbitrary
coproducts. For what we require we need to know the following facts hold for a quasi-compact
and quasi-separated algebraic space: compact objects of the derived category are the same as
perfect complexes [SP, Tag 09M8]; the (derived) dual of a perfect complex is perfect; the pullback
of a perfect complex is perfect; the structure sheaf is a perfect complex.

2. Points and graphs

Let us fix a ground ring R. We view an algebraic space X over R as a functor

X : R-Alg −→ Set

assigning to any R-algebra A the set X(A) of morphisms (over R) SpecA→ X. Thus we confuse X
with the moduli functor it represents, or in other words its functor of points. When X is associated
to the description of some objects, it is customary to call X(A) the set of families of objects
parameterised by SpecA. The essence of this section is that, to an abelian category C over R, one
can associate a moduli functor PtC. Thus, if one wishes to define PtC one needs to declare its
values over all R-algebras; that is, one needs to define what is a family of points. To be precise,
the functor PtC takes values not in the category of sets but rather in the 2-category of groupoids,
namely PtC is a moduli stack.

2.1. Points. We now introduce our main definition, which mimics the properties enjoyed by
graphs. Let us fix a ground ring R. Given an R-linear category C and a morphism R→ A we shall
denote the base change category C⊗RA also by CA. If P ∈ CA and (−)⊗A P denotes the action of
A-Mod on P, then a surjection A�M is sent to an epimorphism P �M⊗A P. This operation
induces a well-defined function between equivalence classes of quotients of A with equivalence
classes of quotients of P

{quotients of A} {quotients of P} .
−⊗AP

Definition 2.1. Let C be a cocomplete R-linear abelian category and let A be an R-algebra. An
A-point of C (or a family of pointlike objects of C parameterised by SpecA) is an object P ∈ CA
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such that, for any morphism of R-algebras A→ A ′, the following hold (denote by P ′ the pullback
of P to CA ′):

(1) P ′ is a finitely generated object of CA ′ ;

(2) P ′ is flat over A ′;

(3) the functor

RHom
CA ′

(−
L

⊗ A ′,P ′) : D(C)op → D(A ′) (2.1)

sends compact objects to compact objects;

(4) the functor Φ = (−)⊗A ′ P ′ is fully faithful;

(5) Φ induces a bijection between equivalence classes of quotients of A ′ and equivalence classes
of quotients of P ′.

We form a groupoid PtC(A) consisting of all A-points together with isomorphisms between them.

From the definition we immediately see that the assignment A 7→ PtC(A) defines a prestack
over SpecR. To obtain an honest set-valued functor, one relies on the usual trick. Define

PC : R-Alg −→ Set (2.2)

A 7−→ PC(A) =
{
P ∈ Pt

C
(A)
}
/∼

where ∼ stands for the equivalence relation which identifies two A-points P1 and P2 if there exists
a line bundle L on SpecA such that L⊗ P1 ' P2. Notice that if P is a pointlike object, then P⊗ L
is also pointlike, as tensoring with L is an auto-equivalence of CA and thus preserves pointlike
objects. As our definition of pointlike objects is purely in terms of the category theory of C, the
following lemma is merely an observation.

Lemma 2.2. Let C and D be two cocomplete R-linear abelian categories. If C ' D as R-linear
categories, then PtC ' PtD as prestacks over SpecR and PC ' PD as presheaves over SpecR.

In some sense, the first four axioms defining points are technical, while the last one makes up
the core. Let us now unpack the definition in a geometric setting.

Remark 2.3. Let X be a quasi-compact and separated algebraic space over R. We want to
understand the definition for C = qc(X). Given an R-algebra A we have projection morphisms

S× X X

S

π

q

where S = SpecA and the product S× X is taken over SpecR.

An S-point of qc(X) is a quasi-coherent sheaf P ∈ qc(S× X) such that the following properties
hold (universally with respect to S):

(1) P is of finite type;

(2) P is flat over S;

(3) for every compact complex E ∈ D(X), the complex Rπ∗RHom(Lq∗(E),P) is compact;

(4) the natural map M→ π∗HomS×X(P,P ⊗ π∗M) is an isomorphism for all M ∈ qc(S);

(5) π∗(−)⊗ P induces a bijection between closed subschemes of S and quotients of P.
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A few comments are in order. The fact that qc(X)⊗R A ' qc(S× X) was already explained in
Remark 1.2. The condition on compact complexes (see Subsection 1.2) is overkill and appears
exclusively to ensure that π∗P (corresponding to the case E = OX) is of finite type; see the step of
Proposition 2.5 where we prove that π∗P is a line bundle. By general category theory, Φ (which
is a left adjoint) is fully faithful if and only if the unit is an isomorphism. In practice we shall
only use this for M being the structure sheaf: OS ' π∗Hom(P,P). Notice again that if P is an
S-point, then so is P ⊗ π∗L, for all line bundles L on S.

We should mention that if one is solely interested in noetherian algebraic spaces, then derived
categories are unnecessary and one can replace (2.1) with

Hom(−⊗A ′,P) : C→ A ′-Mod

and compact objects of the derived category with finite type objects of the abelian category. This
will be made clearer in Remark 2.9. Our main goal now is to show that from Ptqc(X) one can
recover X.

2.2. Graphs. Let us now verify that graphs are indeed examples of pointlike objects. Fix
again a base ring R, all fibre products are implicitly taken over SpecR.

Proposition 2.4. Let X be a quasi-compact and separated algebraic space, A be an R-algebra
and S = SpecA. Let f : S → X be a morphism. Consider the graph Γ : S → S × X. Then the
structure sheaf of the graph Γ∗OS is an S-point of the abelian category qc(X).

The relevant diagrams are the following (notice that the square is Cartesian):

S× X X

S

π

q
S S× X

X X× X

f

Γ

(f,id)

∆

Proof. Let P be Γ∗OS.

– As Γ is a closed immersion (we are using the separatedness of X), we have that P = Γ∗OS is
of finite type.

– The functor π∗(−)⊗ P = π∗(−)⊗ Γ∗OS = Γ∗Γ
∗π∗ = Γ∗ is exact, therefore P is flat over S.

– Let E be a compact complex on X and recall Subsection 1.2, which in particular says that in
our setting compact objects are the same as perfect complexes [SP, Tag 09M8]. We have

Rπ∗RHom(Lq∗E,P) = R(πΓ)∗RHom(L(qΓ)∗E,OS) = RHom(Lf∗E,OS).

As E is perfect, the pullback Lf∗E is also perfect and so is its dual.

– As Γ is a closed immersion, Γ∗ is fully faithful.

The last axiom of being pointlike follows as we have already seen that the functor Φ = π∗(−)⊗ P
is just Γ∗, which satisfies the required property. Finally, to make sure these properties hold
universally on S, notice that if m : S ′ → S is a morphism of affine schemes over R, then we have a
Cartesian diagram
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S ′ S

S ′ × X S× X

m

Γ ′ Γ

mX

where the vertical morphism on the left is given by the graph Γ ′ of fm. As all morphisms in the
diagram are affine, base change holds, and we have m∗XΓ∗(OS) = Γ

′
∗m
∗OS = Γ ′∗OS ′ .

2.3. Points are graphs. The rest of this section is devoted to the crux of the paper: we
prove that pointlike objects give rise to graphs.

Proposition 2.5. Let X be an algebraic space over a base ring R such that the structure morphism
X→ SpecR is quasi-compact and separated. Let A be an R-algebra, S = SpecA and P an S-point
of qc(X). Then there exists a unique morphism f : S→ X of R-spaces such that, up to a twist by
a unique line bundle on S, P is the structure sheaf of its graph.

We will divide the proof into small steps. We start by fixing some notation. Let Z be the
schematic support of P. Denote its inclusion by ι and put ρ = πι.

Z S× X X

S

ι

ρ

q

π

Remark 2.6. Before we start, a triple of general remarks.

– As Z is the support of P, it follows P ' ι∗ι∗P and, more generally, E⊗ P ' ι∗ι∗E⊗ P for any
E ∈ qc(S× X).

– Additionally, as P is flat over S, it follows that ι∗P is also flat over S.

– If S ′ = SpecA ′ → S is a morphism and P ′ is the pullback of P to S ′ × X, then, although a
priori the schematic support of P ′ might not be equal to Z×S S ′, the underlying topological
spaces will be the same: | suppP ′| = |Z×S S ′| [SP, Tag 07TZ].

Because it will come up as a key step below and because it makes for a good warmup, let us
consider the case of a field.

Lemma 2.7. Assume the ring A to be a field. Then ρ is an isomorphism.

Proof. As A lacks any proper ideals, we deduce that any morphism P → Q is either the zero
morphism or injective (this follows by using axiom (5) of Remark 2.3 and considering the image of
P in Q). As a consequence we have that if P � Q is a surjection then either Q = 0 or P ' Q. Let
Z be the schematic support of P and let us abuse notation by writing P for the restriction of P to
Z. Let I be a quasi-coherent ideal sheaf of Z defining a closed algebraic subspace W ⊂ Z. Then
P/IP is either zero or isomorphic to P. We want to show that then I = 0 or I = OZ. We have

|suppP/IP| = |supp (P ⊗ OZ/I)| = |suppP| ∩ |W| = |W|

and therefore: if P/IP = 0, then W = ∅ and I = OZ; if P/IP = P, then I ⊂ Ann(P) = 0.

Thus we see that OZ has no non-trivial quasi-coherent ideal sheaves and thus is set-theoretically
a singleton. We also know that there exists a dense open subset of Z which is a scheme [SP, Tag
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06NH], hence Z is a scheme. A scheme which has no non-trivial subschemes is the spectrum of a
field.

We now have a morphism of fields A→ k, where Speck = Z. By Remark 2.3(4) the composition
A → k → Homk(P,P) is an isomorphism. As P has no non-trivial quotients, we deduce P ' k
and therefore A ' Homk(P,P) = k. Thus, ρ is an isomorphism.

Let us now go back to the general case.

The morphism ρ is a universal homeomorphism. Lemma 2.7 and the third point of
Remark 2.6 imply that ρ is universally bijective. It is now enough to prove that ρ is universally
closed. The functor Φ : qc(S)→ qc(S× X) given by Φ(−) = π∗(−)⊗ P is the composition of ρ∗

followed by ι∗(−) ⊗ P. Denote by C the essential image of Φ. By assumption Φ induces an
equivalence between qc(S) and C. Moreover, we know that Φ induces a bijection between the
equivalence classes of quotients of OS and of P. If we combine this with the fact that suppP = Z,
we will see that ρ∗ induces (up to thickenings) a bijection between quotients of OS and of OZ.
Drawing the following commutative diagram might be useful.

qc(S) C

qc(Z)

Φ

ρ∗ ι∗(−)⊗P

As a linguistic matter, we say that two quotients M→M1, M→M2 of a fixed object M are
isomorphic as quotients if they are isomorphic as objects in the under-category of M (or, in other
words, if they have the same kernel).

Lemma 2.8. Let Y be an algebraic space, F ∈ qc(Y) a quasi-coherent sheaf of finite type such that
supp F = Y; that is, the schematic support of F is equal to Y. Let I, J be two quasi-coherent ideal
sheaves defining two subspaces YI, YJ ⊂ Y. If F/IF ' F/JF as quotients of F, then the underlying
topological spaces |YI| = |YJ| are the same. In other words, the operation −⊗F induces an injection
(up to thickenings) from quotients of OY to quotients of F.

Proof. Notice that F/IF ' F/JF as objects under F if and only if IF = JF. We have

|YI| = |supp F| ∩ |YI| = |supp F/IF| = |supp F/JF| = |supp F| ∩ |YJ| ,

hence we are done.

Let us now show that the morphism Z → S is closed. Let OZ � OZ ′ be a quotient of OZ
defining a closed algebraic subspace Z ′ ⊂ Z. Tensoring by P gives a quotient of P, which by
assumption must lie in C, the image of Φ. Thus there exists a quotient OS � OS ′ such that
π∗(OS ′)⊗ P = ι∗(OZ ′ ⊗ P), as quotients of P. Call OZ ′′ = ρ

∗OS ′ and notice that by construction
ι∗(OZ ′′ ⊗ P) = ι∗(OZ ′ ⊗ P) as quotients of P. By the previous lemma we thus have that the
topological spaces |Z ′| = |Z ′′| are the same. Moreover, as OZ ′′ = ρ

∗OS ′ , we have |Z ′| = ρ−1(|S ′|).

As noted earlier, ρ is universally bijective and, in particular, surjective. Therefore one has
ρ(|Z ′|) = ρρ−1(|S ′|) = |S ′|, thus implying the desired closedness of ρ. To prove universal closedness
of ρ, and not just closedness, we appeal once again to the third point of Remark 2.6.

The sheaf π∗P is a line bundle. Here is where we use (2.1). As Z → S is a universally
closed and separated morphism with affine fibres, it follows that it is affine [Ryd13, Theorem 8.5].1

1Many thanks are due to David Rydh for pointing out this key fact.
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As we have already observed that ι∗P is flat over S, it now follows that the sheaf π∗P = ρ∗ι
∗P is

flat over S. To conclude that π∗P is a bundle it suffices to show it is of finite presentation.

Recall Subsection 1.2, in particular perfect and compact complexes coincide. In axiom (3)
we may take E = OX to be the structure sheaf, which is perfect and hence compact. This
tells us that Rπ∗P is compact and hence perfect. Using the fact that ρ is affine we have that
Rπ∗P = R(πι)∗ι

∗P = ρ∗ι
∗P = π∗P is a complex concentrated in degree zero. As a perfect complex

concentrated in degree zero is of finite presentation [SP, Tag 066Q], we obtain the claim. Using
Lemma 2.7 we can compute the rank of π∗P at each point of S, which is constantly one. Hence,
π∗P is a line bundle.

Remark 2.9. If we assumed all our spaces to be noetherian, one could slightly simplify the
definition of a family of pointlike objects P. Instead of working with perfect complexes it would
suffice to ask that for any finite type quasi-coherent sheaf E on X, the module π∗Hom(q∗E,P) were
of finite type. However, in the non-noetherian setting it is not clear whether graphs of morphisms
would even satisfy this property! In fact, for a morphism f : S→ X with graph P = Γ∗OS, we have
π∗Hom(q∗E,P) = f∗E∨. In general, the dual of a finite type module need not be of finite type.

The sheaf P is (up to a twist) a graph. Let us abuse notation and denote ι∗P by P. As
we know that ρ∗P is a line bundle, we have that the following sequence

OS → ρ∗OZ→ End
ρ∗OZ

(ρ∗P)→ End
OS

(ρ∗P) ' OS

composes to the identity, therefore the first morphism is injective and the third is surjective.
However, the third morphism is also injective (as it is a forgetful map), from which it follows that
the second is surjective. As the second is also injective (as suppP = Z), it follows that it is an
isomorphism and therefore so is the first. As ρ is affine, it follows that Z→ S is an isomorphism.
If we denote by f its inverse, with graph Γ : S→ S× X, we have Γ∗OS = P ⊗ π∗(π∗P)∨.

Adding together the results obtained so far allows us to prove Gabriel’s theorem for algebraic
spaces. We present here the version suitable for audiences allergic to stacks and we then repeat
the theorem in the next section using the language of gerbes, which is more natural from this
paper’s perspective.

Theorem 2.10. Let X be a quasi-compact and separated algebraic space over a ring R. Then,
recalling the definition in (2.2), the moduli functor Pqc(X) is isomorphic to X. In particular, if Y
is another quasi-compact and separated algebraic space over R, then qc(X) ' qc(Y) as R-linear
abelian categories if and only if X ' Y as algebraic spaces over SpecR.

Proof. The proof has already been carried out in this section. What we have proved is that any A-
point of qc(X) is, up to a twist of a line bundle on SpecA (see the last step of the previous proof),
the graph of a morphism. That is, we have exhibited a functorial bijection between Pqc(X)(A)
and morphisms SpecA→ X. Yet in other words, we have shown that the functors Pqc(X) and X
are isomorphic. The second half of the theorem is immediate in light of Lemma 2.2.

3. Gerbes

Let us fix yet once more a base ring R and assume fibre products to be taken over R. Given a
cocomplete R-linear abelian category C we consider PtC as a prestack over SpecR, assigning to an
R-algebra A the groupoid PtC(A) of A-points of C. We can soup up Lemma 2.2 as follows.
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There is an action BGm × PtC → PtC given as follows. Over a base SpecA, A-linear auto-
equivalences act on PtC(A). In particular, tensoring with line bundles on SpecA realises an action
of BGm on PtC.

Lemma 3.1. Let C and D be two cocomplete R-linear abelian categories. If C ' D as R-linear
categories, then PtC ' PtD as prestacks over SpecR. Moreover, there is a canonical morphism

Equiv
R

(C, D) −→
BGm

Iso
R

(Pt
C

, Pt
D
) (3.1)

from the groupoid of equivalences of R-linear categories EquivR(C, D) to the groupoid of isomorph-
isms of prestacks IsoBGm

R (PtC, PtD) compatible with the BGm-action.

The core of the previous section can be summarised as follows.

Theorem 3.2. Let X be a quasi-compact and separated algebraic space over the base ring R.
The stack Ptqc(X) is isomorphic to X× BGm.

Proof. We define a map of stacks X× BGm → Ptqc(X) . If A is an R-algebra and S = SpecA, the
groupoid X× BGm(S) is given by the product of the set of morphisms S→ X and the groupoid
of line bundles BGm(S) on S. The natural map

(X× BGm)(S)→ Pt
qc(X)

(S)

sends the pair (f : S→ X,L) to (Γf)∗L, which is equivalent to the structure sheaf of the graph of f,
twisted by the line bundle L. Propositions 2.4 and 2.5 show that a family of pointlike objects P
over S is the same datum as a morphism S→ suppP → S× X→ X together with a line bundle
over S, given by π∗P. Therefore, this map of groupoids is fully faithful and essentially surjective.
This implies that we have defined an equivalence of stacks.

As an immediate consequence we obtain again Theorem 2.10 by killing off all automorphisms
of Ptqc(X). In other words, we obtain the functor Pqc(X), defined in (2.2), by taking the quotient
of Ptqc(X) by the action of the group-stack BGm.

3.1. General gerbes. We remind the reader of the following equivalent concepts:

(1) an element α ∈ H2
ét(X,Gm),

(2) a BGm-torsor X on X,

(3) a gerbe α : X→ X with band BGm (Gm-gerbe).

We refer the reader to Section 2.1 in [Lie07] for a definition of the concepts above. Items
(2) and (3) yield equivalent groupoids, while item (1) yields a set of objects which is equivalent
to the set of isomorphism classes of the groupoid of gerbes. We say that a Gm-gerbe α is
neutral if α = 0 in H2(X,Gm). A neutralization, when it exists, is the choice of an equivalence
X ∼= X× BGm

∼= [X/Gm] as gerbes.

Remark 3.3. The group H2
ét(X,Gm) contains two distinguished subgroups: Br(X) and Br ′(X),

called respectively the Brauer group and the cohomological Brauer group of X. A Brauer class
is a class α ∈ H2

ét(X,Gm) which is induced by an Azumaya algebra, while Br ′(X) is the torsion
subgroup of H2

ét(X,Gm). One has Br(X) ⊂ Br ′(X) ⊂ H2
ét(X,Gm) and in general both inclusions

are strict.
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Let α : X → X be a Gm-gerbe on X; that is, étale locally on X equivalent to X× BGm. The
abelian category qc(BGm) decomposes as a product

∏
n∈Z qc(BGm)n. Each piece qc(BGm)n is

equivalent to qc(SpecR). One obtains an analogous weight decomposition

qc(X) ∼=
∏
n∈Z

QC(X,αn),

see Definition 2.1.2.1 in [Lie07]. The category of α-twisted sheaves qc(X,α) is defined by means of
this decomposition. A potential neutralization of α would induce an equivalence qc(X,α) ∼= qc(X).
We can rephrase Theorem 3.2 as saying that Ptqc(X) is the trivial Gm-gerbe over X. If one replaces
qc(X) by qc(X,α), the category of α-twisted quasi-coherent sheaves (where α is a Gm-gerbe),
one still has a stack of points Ptqc(X,α) and the theorem can be generalised. Before we do so, we
discuss the notion of twisted sheaves of finite type.

In the following proposition we give a categorical characterization of finitely generated twisted
sheaves. We denote by Hom(−,−) the sheaf-hom in the category OX-Mod of étale OX-modules
on an algebraic space X. For two α-twisted sheaves M, N, the (untwisted) sheaf Hom(−,−) is
well defined. Characterizations of quasi-coherent sheaves of finite type as in the proposition below
are well known (see for instance [Bou07, Proposition 1.5.8]).

Proposition 3.4. Let X be an algebraic stack over a ring R which is quasi-compact and quasi-
separated. Let α be a Gm-gerbe on X. For an α-twisted sheaf M ∈ qc(X,α), the following
assertions are equivalent:

(1) M is finitely generated;

(2) for a directed system of α-twisted sheaves (Ni)i∈I, we have that lim−→Hom(M,Ni) →
Hom(M, lim−→Ni) is injective in OX-Mod;

(3) for a directed system as above, we have that lim−→Hom(M,Ni)→ Hom(M, lim−→Ni) is injective
in R-Mod.

Proof. One should compare this proof with [Murb, Proposition 71].

(1)⇒ (2): Since being finitely generated is an étale local notion, we may assume without loss of
generality that X is an affine scheme and that the gerbe α is neutral. Thus M is simply a module
over an R-algebra R ′, with generators m1, . . . ,mn ∈M. For an element (fi)i∈I ∈ lim−→Hom(M,Ni)
to induce the zero map M→ lim−→Ni, we must have that for every k 6 n there exists an ik ∈ I
with i > ik implying fi(xk) = 0. Taking an upperbound j ∈ I for the ik, we have that for i > j
the map fi is zero. Thus the system (fi)i∈I is also zero as an element of lim−→Hom(M,Ni).

(2) ⇒ (3): The global section functor Γ(X,−) preserves directed colimits and maps injective
maps of OX-modules to injective maps of abelian groups [SP, Tag 0739].

(3) ⇒ (1): Let f : U → X be a quasi-compact and quasi-separated map of algebraic spaces.
The functor i∗ : qc(U, i∗α)→ qc(X,α) preserves directed colimits. Let (Ni)i∈I ∈ qc(U, i∗α) be a
directed system of i∗α-twisted sheaves on U. Applying the adjunction between i∗ and i∗ to the
injective map

lim−→Hom
X

(M, i∗Ni)→ Hom
X

(M, lim−→ i∗Ni) ,

we obtain that

lim−→Hom
U

(i∗M,Ni)→ Hom
U

(i∗M, lim−→Ni)

is injective. If U is an affine étale cover of X neutralising the gerbe α, one reduces to the well-known
case of rings [Bou07, Proposition 1.5.8].
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If one replaces “finitely generated” with “finitely presented” in (1) and “injective” with
“bijective” in (2) and (3), the theorem still holds with a slight modification to the proof. We can
now state the reconstruction theorem for categories of twisted sheaves.

Theorem 3.5. Let X be a quasi-compact and separated algebraic space over the base ring R and
let α : X→ X be a Gm-gerbe. The stack Ptqc(X,α) is isomorphic to the gerbe corresponding to α.

Moreover, if Y is a second quasi-compact and separated algebraic space equipped with a
Gm-gerbe β : Y→ Y, (3.1) translates into a morphism

Equiv
R

(qc(X,α), qc(Y,β)) −→
BGm

Iso
R

(X,Y)

from the groupoid of equivalences of R-linear categories EquivR(qc(X,α), qc(Y,β)) to the groupoid
of BGm-compatible isomorphisms of R-stacks IsoBGm

R (X,Y).

Proof. First off, let X be an algebraic space and let α be a Gm-gerbe given by α : X→ X. Denote
by T the category qc(X,α) of α-twisted sheaves over X. Given S → SpecR the base changed
category TS = T ⊗R S is isomorphic to qc(S × X,q∗α), where recall that q : S × X → X is the
second projection.

We will define a morphism X → PtT. As above, let S be an affine R-scheme. The groupoid
of S-points X(S) is canonically equivalent to the groupoid of pairs (f,ν), where f : S→ X is an
S-point of X and ν : X×BGm

∼= f∗X is a neutralization of the pullback of α. The neutralization ν
induces an equivalence of categories qc(S) ∼= qc(S, f∗α), which we denote by n.

The graph of f : S→ X gives rise to a pushforward functor (Γf)∗ : qc(S, f∗α)→ qc(X× S,α).
The map X → PtT sends the S-point (f,ν) to the family of points (Γf)∗n(OS). Paralleling the
proof of Proposition 2.5, if P ∈ PtT(S), we conclude that the schematic support Z = suppP of P
is universally homeomorphic to S through the first projection π : S× X→ S. This implies that Z
and S have isomorphic étale sites [Ryd10, Theorem 5.21], therefore any open cover of Z trivialising
the gerbe structure on P is the pullback of a cover on S. Passing to such a cover tells us that Z
and S are isomorphic. Take now an open cover U of S which trivialises f∗α. The untwisted case
(Theorem 3.2) and faithfully flat descent now imply that the morphism X→ PtT is fully faithful
and essentially surjective.

A simple variant of the reasoning above allows us to generalise [Ant13, Theorem 6.1], thereby
removing the dependency on derived algebraic geometry from [Ant13].

Corollary 3.6. Let X be a quasi-compact and quasi-separated scheme and let α, β be two
Gm-gerbes on X. If qc(X,α) and qc(X,β) are equivalent as Zariski stacks of OX-linear categories,
then α ' β.

Proof. For every affine open U ⊂ X, we have an equivalence of Γ(U,O)-linear categories
qc(U,α|U) ' qc(U,β|U). According to Theorem 3.5, this induces an equivalence of gerbes
α|U, β|U on U. Since the intersection of finitely many affine open subsets is quasi-compact and
separated, we obtain the descent data of an equivalence α ' β.

4. Auto-equivalences

It is folklore that for a smooth and projective variety X, the group of auto-equivalences of the
category coh(X) is isomorphic to the semidirect product Aut(X)n Pic(X) (see for example the
end of the proof of [Huy06, Corollary 5.24], and [Zhu09]). Here, Aut(X) denotes the group of
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automorphisms of X, and Pic(X) the group2 of line bundles on X. We will generalise this result to
quasi-compact and separated algebraic spaces flat over a ring R.

For the last time, let us fix a ground ring R and assume all fibre products to be taken over it.
If X is an algebraic space over R, there is an obvious morphism

σ : Aut
R

(X)n Pic(X)→ Aut
R

(qc(X)) , (4.1)

as automorphisms act on qc(X) via pullback and line bundles via tensor product. The reason the
product of groups above is semidirect is that the two actions do not commute: f∗(M)⊗ L is in
general different from f∗(M⊗ L). Going in the opposite direction, (3.1) provides a morphism

Aut
R

(qc(X)) −→
BGm

Aut
R

( Pt
qc(X)

). (4.2)

For X quasi-compact and separated, Theorem 3.2 says that Ptqc(X) ' X× BGm. To connect this
with our previous discussion we remind the reader of the following simple fact.

Lemma 4.1. If X is an algebraic space over R, then AutBGm
R (X× BGm) ' AutR(X)n Pic(X).

Proof. A BGm-equivariant automorphism X× BGm → X× BGm is given by a morphism

X→ X× BGm

which induces an isomorphism X→ X. By the universal property of fibre products, it therefore
breaks off into an isomorphism X→ X and a map X→ BGm, which corresponds to a line bundle
on X.

Thus the combination of (4.1), (4.2) and the previous lemma tell us there is a right-split short
exact sequence of groups

1→ QX → Aut
R

(qc(X))→ Aut
R

(X)n Pic(X)→ 1

where QX is just defined to be the kernel of (4.2). Assuming flatness of X over R one can show
that QX vanishes.

Theorem 4.2. Let X and Y be quasi-compact and separated algebraic spaces over a ring R and
assume either X or Y to be flat over a ring R. The natural morphism of Theorem 3.5

Equiv
R

(qc(X), qc(Y)) −→
BGm

Iso
R

( Pt
qc(X)

, Pt
qc(Y)

)

is an equivalence of groupoids. In particular, AutR(qc(X)) ' AutR(X)n Pic(X).

The proof of this theorem is short, if one admits the existence of integral kernels for functors
between derived∞-categories. Since these results require methods from derived algebraic geometry,
the claim of elementariness in the abstract does not extend to this section.

Proof. Assume X to be flat over R. We denote by QC(X) the unbounded derived category of qc(X),
which we view as an R-linear stable ∞-category. An equivalence ψ : qc(X) → qc(Y) extends
automatically to an equivalence Ψ : QC(X)→ QC(Y). We also denote by ϕ : Ptqc(X) → Ptqc(Y) the
isomorphism corresponding to ψ. In [BZFN10, Theorem 1.2 (2)] (see also [Orl97], [Toë07]) it is

2For the categorically minded, both Aut(qc(X)) and Pic(X) are actually 2-groups. As one usually does, however,
we shall treat both as ordinary groups by taking isomorphism classes. In the discussion which follows one can easily
categorify our results, as the higher structure of Aut(qc(X)) and Pic(X) will always match up.

14



Moduli problems and the reconstruction theorem

shown that any such Ψ is given by a Fourier–Mukai transform, provided X and Y are perfect in
the sense of [BZFN10, Definition 3.2]. Notice that here we use the flatness assumption to ensure
that the derived fibre product of X and Y over SpecR is just the ordinary fibre product X× Y.
Any quasi-compact algebraic space with affine diagonal is perfect thanks to [BZFN10, Proposition
3.9], [SP, Tag 09M8] and [SP, Tag 09IY]. Let K ∈ QC(X× Y) be the integral kernel representing Ψ.
Then OX � K ∈ QC(X× X× Y) is the kernel of a Fourier–Mukai equivalence ΨX between X× X
and X× Y, seen as spaces over X. A standard computation with Fourier–Mukai functors shows
that K = ΨX(∆∗OX), where ∆∗OX is the image of the structure sheaf of the diagonal of X× X.
Since Ψ comes from the equivalence ψ, we see that K = ϕ(∆∗OX) ∈ Ptqc(Y)(X) is an X-family of
points of qc(Y). Accordingly, we see that Ψ (and thereby ψ) is completely determined by ϕ.

Theorem 4.3. Let X and Y be quasi-compact and separated algebraic spaces over R and let
α : X → X, β : Y → Y be two Gm-gerbes on X, respectively Y. Assume either X or Y to be flat
over R. Then the natural map

Equiv
R

(qc(X,α), qc(Y,β)) −→
BGm

Iso
R

(X,Y)

is an equivalence.

Proof. Perfectness of X boils down to knowing whether the unbounded derived category QC(X,α)
is compactly generated. In forthcoming work of Hall-Rydh this is shown to be true for a broad
class of spaces, including Gm-gerbes over tame Artin stacks. Hence we can apply the formalism
of [BZFN10, Theorem 1.2(2)]. To a colimit-preserving functor QC(X,α)→ QC(Y,β) we associate
the colimit-preserving functor

QC(X) ∼=
∏
n∈Z

QC(X,αn)→
∏
n∈Z

QC(Y,βn) ∼= QC(Y) (4.3)

given by the zero functor for n 6= 1. By virtue of [BZFN10, Theorem 1.2(2)] there is a complex of
sheaves K ∈ QC(X× Y,α−1�β) which gives rise to the functor of (4.3). The identity functor from
QC(X,α) to QC(X,α) is given by endowing the sheaf ∆∗OX with the structure of an α−1�α-twisted
sheaf. This is possible, since the gerbe ∆∗(α−1 � α) is neutral. One can now repeat the proof of
Theorem 4.2.

5. Remarks

Remark 5.1. In [Gai05] it is shown that there is also a functioning theory of descent for abelian
categories. So far we have worked with a base ring R. If we replace SpecR by a general scheme or
(higher) stack S, one can speak about S-linear abelian categories and sheaves (or rather stacks) of
abelian categories over S. The prototypical example being again qc(X) for a stack X over S. It is
not surprising that in the affine case S = SpecR, a sheaf of abelian categories is equivalent to
its global sections category. The following weak result can then be bootstrapped from our main
result.

Corollary 5.2. If S is an algebraic stack and X and Y are stacks over S which are relatively
representable by quasi-compact and separated algebraic spaces, then X ' Y as S-stacks if and
only if qc(X) ' qc(Y) as sheaves of OS-linear abelian categories.

In a similar vein, one can study sheaves of abelian categories over a stack X which are locally
isomorphic to the sheaf qc of quasi-coherent sheaves. This produces a Morita theory for sheaves
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of abelian categories. Simply put, this is a higher version of the statement that a line bundle is
the same thing as a Gm-torsor. The way we prove this is by realising that the cocycle description
for either is identical: an automorphism of a line bundle is given by an element of O×.

Let X be a quasi-compact and quasi-separated algebraic stack over a ring R. To be safe, we
note that if U→ X and V → X are quasi-compact and quasi-separated algebraic stacks mapping
to X, then so is U ×X V. A BGm-torsor, or a Gm-gerbe, can be given a cocycle description
as follows. If {Ui → X}i is a trivialising smooth cover (which we can assume to be affine)
we are left with the datum of: Ui × BGm on each Ui, a BGm-equivariant equivalence over
each double intersection Uij (that is, a line bundle Lij on Uij) and 2-isomorphisms between
the compositions of the 1-isomorphisms above over triple intersections Uijk (equivalently, an
isomorphism Lij|⊗ Ljk| ' Lik|, where | stands for “restriction to Uijk”) satisfying the quadruple
cocycle identity in O×Uijkl .

On the other hand, one can apply Theorem 3.5 to obtain the very same description for sheaves
of abelian categories. Let C be a sheaf of OX-linear abelian categories over X for the smooth
topology. We say that C is invertible if there exists a smooth cover {Ui → X}i together with
OUi-linear equivalences C(Ui) ' qc(Ui) (cf. [Lie04, Definition 2.1.4.1 and Proposition 2.1.5.6]).
By Theorem 4.2, AutOUij (qc(Uij)) ' Pic(Uij) (and similarly for n-tuple intersections),3 so that

the cocycle description of C is identical to that of a Gm-gerbe over X. In other words we have the
following result.

Corollary 5.3. Let X be a quasi-compact and quasi-separated algebraic stack. The 2-groupoid
(that is, 2-category where morphisms and 2-morphisms are invertible) of BGm-torsors on X is
equivalent to the 2-groupoid of invertible sheaves of OX-linear abelian categories on X.

Remark 5.4. Another class of spaces where one might consider a generalisation of Gabriel’s
theorem is that of derived schemes. In this context one must consider the whole triangulated (or
rather stable ∞-)category QC(X) of unbounded quasi-coherent modules, as it does not arise as a
derived category. It is well known that QC(X) as a triangulated category does not recover X, for
example when X is an abelian surface [Muk81, Theorem 2.2].

However, QC(X) comes with a t-structure, whose heart is qc(X0), the category of quasi-coherent
sheaves on the underlying underived scheme. One might then consider the pair (QC(X), qc(X0)),
consisting of a triangulated category equipped with a t-structure. Unfortunately, even in this
sense, the reconstruction theorem seems to fail already for derived affine schemes. 4
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