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Adequate moduli spaces and
geometrically reductive group schemes

Jarod Alper

ABSTRACT

We introduce the notion of an adequate moduli space. The theory of adequate moduli
spaces provides a framework for studying algebraic spaces which geometrically approx-
imate algebraic stacks with reductive stabilizers in characteristic p. The definition of an
adequate moduli space generalizes the existing notion of a good moduli space to char-
acteristic p (and mixed characteristic). The most important examples of an adequate
moduli space are: (1) the morphism from the quotient stack [X*°/G] of the semistable
locus to the GIT quotient X* //G and (2) the morphism from an algebraic stack with
finite inertia to the Keel-Mori coarse moduli space. It is shown that most of the funda-
mental properties of the GIT quotient X*°//G follow from only the defining properties
of an adequate moduli space. We provide applications of adequate moduli spaces to
the structure of geometrically reductive and reductive group schemes. In particular,
results of Seshadri and Waterhouse are generalized. The theory of adequate moduli
spaces provides the possibility for intrinsic constructions of projective moduli spaces in
characteristic p.

1. Introduction

Background and motivation

In characteristic 0, any representation of a finite group G is completely reducible. Therefore, the
functor from G-representations to vector spaces V — V& given by taking invariants is exact. In
particular, if G acts on an affine scheme X and Z C X is an invariant closed subscheme, every
G-invariant function on Z lifts to a G-invariant function on X. In fact, for any algebraic group G,
these properties are equivalent and give rise to the notion of a linearly reductive group.

In characteristic p, if p divides the order |G| = N of a finite group G, then the above properties
can fail. However, if f is a G-invariant function on an invariant closed subscheme Z of an affine
scheme X and fis any (possibly non-invariant) lift to X, then [ | 9eG 9° fis a G-invariant function
on X which is a lift of fIV. This motivates the definition of geometric reductivity for an algebraic
group G: for every action of G on an affine scheme X, every invariant closed subscheme Z C X
and every f € I'(Z,0z)%, there exist an integer n > 0 and g € I'(X, Ox)% extending f".

In positive characteristic, linearly reductive groups are rare (as the connected component
is always a torus) while many algebraic groups (for example, GL,,, SL,, PGL,) are geometri-
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cally reductive. The notion of geometric reductivity of an algebraic group G was introduced by
Mumford in the preface of [Mum65]. Nagata showed in [Nag64] that if a geometrically reductive
group G acts on a finite type affine scheme Spec(A) over a field k, then A% is finitely generated
over k and Spec(A%) is a suitably nice quotient. Mumford conjectured that the notions of geo-
metric reductivity and reductivity were equivalent for an algebraic group; this result was proved
by Haboush [Hab75]. Therefore, geometric invariant theory (GIT) for reductive group actions
could be developed in positive characteristic (see [MFK94, Appendix 1.C]), which in turn was
employed with great success to construct various moduli spaces in characteristic p. Since the
Hilbert-Mumford criterion holds in positive characteristic (see [MFK94, Appendix 2.A]), most
arguments using GIT to construct moduli spaces in characteristic 0 extend to positive charac-
teristic. For instance, one can use GIT to construct moduli spaces of bundles and sheaves over
projective varieties in positive characteristic; see [Mar77], [Gie77], and [Ses82].

If G is a geometrically reductive group acting on an affine scheme X = Spec(A) over a field k,
then we can consider the quotient stack X = [X/G]. There is a natural map

¢: X =Y := Spec(AY)
which is easily seen to have the following properties:

(1) For every surjection of quasi-coherent Ox-algebras A — B and section ¢ € I'(X, B), there
exist an integer N > 0 and a section s € I'(X, A) such that s — tV.

(2) The morphism I'(Y, Oy) — I'(X, Ox) is an isomorphism.

These properties motivate the following definition: for any algebraic stack X, we say that a
morphism ¢ : X — Y to an affine scheme is an adequate moduli space if properties (1) and (2)
are satisfied. Because Y is assumed to be affine, property (1) is intrinsic to X and independent
of the morphism ¢. When Y is not affine, one has to consider the local versions of properties (1)
and (2); see the following definition.

The purpose of this paper is to develop the theory of adequate moduli spaces and then
consider applications to the structure of geometrically reductive group schemes over an arbitrary
base.

The definition and main properties
The main definition of this paper is the following.

DEFINITION. A quasi-compact and quasi-separated morphism ¢ : X — Y from an algebraic stack
to an algebraic space is an adequate moduli space if the following two properties are satisfied:

(1) For every surjection of quasi-coherent Oy-algebras A — B, étale morphism p : U =
Spec(A) — Y and section t € T'(U, p*¢.B8) there exist N > 0 and a section s € I'(U, p*¢..A)
such that s — ¢,

(2) The morphism Oy — ¢,Ox is an isomorphism.

Before going further, we state now the two main examples of an adequate moduli space that
the reader should keep in mind. First, if G is a reductive group over a field k acting on an affine
k-scheme Spec(A), then [Spec(A)/G] — Spec(A%) is an adequate moduli space (see Theorem
9.1.4). More generally, if G acts on a projective scheme X and L is an ample G-linearization,
then the quotient of the semistable locus

[X*/G) — X* /G := Proj(P T(X, L))
d=0
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is an adequate moduli space. It turns out that many of the standard properties of the GIT
quotient X% — X% //G can be seen to follow directly from properties (1) and (2); see the Main
Theorem below. Second, for an algebraic stack X with finite inertia, the morphism ¢ : X — Y
to the Keel-Mori coarse moduli space is an adequate moduli space (see Theorem 8.3.2).

One of the key insights in this paper is a generalization of Serre’s criterion providing a
characterization of affineness of an algebraic space in terms of the existence of liftings of powers
of sections along a surjective morphism of sheaves of quasi-coherent algebras. More specifically,
we define a morphism to be adequately affine if property (1) in the above definition is satisfied
(see Definition 4.1.1) and we provide various equivalent formulations (see Lemmas 4.1.7 and
4.1.8). We prove the following generalization of Serre’s criterion: if f : X — Y is a quasi-compact
and quasi-separated morphism of algebraic spaces, then f is adequately affine if and only if f is
affine (see Theorem 4.3.1).

The notion of a good moduli space (see [Alpl3]) is defined by replacing property (1) with
the requirement that the push-forward functor ¢. be exact on quasi-coherent sheaves (that is, ¢
is cohomologically affine). Any good moduli space is certainly an adequate moduli space; the
converse is true in characteristic 0 (see Proposition 5.1.4).

Section 3 is devoted to characterizing ring maps A — B with the property that for all b € B,
there exist N > 0 and a € A such that a +— b"; such ring maps are called adequate (see Definition
3.1.1) and play an essential role in this paper. This notion is not stable under base change so we
introduce universally adequate ring maps (see Definition 3.2.1). The key fact here is that A — B
is universally adequate with locally nilpotent kernel if and only if Spec(B) — Spec(A) is an
integral universal homeomorphism which is an isomorphism in characteristic 0 (see Proposition
3.3.5); we refer to this notion as an adequate homeomorphism (see Definition 3.3.1). In the case of
actions by finite groups (or more generally finite group schemes), the integer N in the definition
above can be chosen to be the size of the group. However, for non-finite geometrically reductive
groups (for example, SLy), Example 5.2.5 shows that the integer N cannot be chosen universally
over all quasi-coherent O y-algebras.

The following theorem summarizes the main geometric properties of adequate moduli spaces.

MAIN THEOREM. Let ¢ : X — Y be an adequate moduli space. Then:

(1) The morphism ¢ is surjective, universally closed and universally submersive (Theorem 5.3.1
(1, 2 and 3)).

(2) Two geometric points z1 and x2 € X(k) are identified in Y if and only if their closures {z;}
and {z2} in X Xz k intersect (Theorem 5.3.1 (4)).

(3) Y’ =Y is any morphism of algebraic spaces, then X' Xy Y =Y’ factors as an adequate
moduli space X Xy Y’ — Y followed by an adequate homeomorphism Y — Y” (Proposition
5.2.9).

(4) Suppose that X is of finite type over a Noetherian scheme S. Then Y is of finite type over
S and for every coherent Oxy-module F, ¢, F is coherent. (Theorem 6.3.3).

(5) The morphism ¢ is universal for maps to algebraic spaces which are either locally separated
or Zariski-locally have affine diagonal (Theorem 7.2.1).

(6) Adequate moduli spaces are stable under flat base change and descend under morphisms
Y’ — Y which are fpqc (that is, faithfully flat and every quasi-compact open subset of Y is
the image of a quasi-compact open subset of Y') (Proposition 5.2.9).
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Part (4) above can be considered as a generalization of Hilbert’s 14th problem and the
statement that if G is a reductive group over k and A is a finitely generated k-algebra, then A“
is finitely generated over k (see [Nag64] or [MFK94, Appendix 1.C]). It also generalizes [Alp13,
Theorem 4.16(xi)]) and Seshadri’s result [Ses77, Theorem 2]. See the discussion in Section 6.1.

Part (5) implies that adequate moduli spaces are unique in a certain subcategory of algebraic
spaces with a mild separation hypothesis. This result implies that GIT quotients by reductive
groups over a field are also unique in this subcategory of algebraic spaces.

We also prove the following characterization of algebraic stacks admitting Keel-Mori coarse
moduli spaces (Theorem 8.3.2).

THEOREM. If X is an algebraic stack with quasi-finite and separated diagonal, the following are
equivalent:

(1) The inertia Iy — X is finite.
(2) There exists a coarse moduli space ¢ : X — Y with ¢ separated.
(3) There exists an adequate moduli space ¢ : X — Y.

Applications to geometrically reductive group schemes

The theory of adequate moduli spaces allows for several interesting applications to the structure
of geometrically reductive and reductive group schemes. Building off the work of Seshadri in
[Ses77], we first systematically develop the theory of geometrically reductive group schemes in
Section 9 and we then deduce the foundational properties of quotients by geometrically reductive
group schemes (see Theorem 9.1.4). Our approach differs from Seshadri’s [Ses77] where the main
interest is only studying quotients by reductive group schemes. We can also consider group
schemes which may not be smooth, affine or have connected fibers.

DEFINITION. Let S be an algebraic space. A flat, finitely presented, separated group algebraic
space G — S is geometrically reductive if BG — S is an adequate moduli space.

If S = Spec(R), then G — Spec(R) is geometrically reductive if for every surjection A — B
of G-R-algebras and b € BY, there exist N > 0 and a € A® such that a — bY. The notion of
geometric reductivity can be formulated in various ways (see Lemmas 9.2.1 and 9.2.5). When
G — Spec(R) is smooth with R Noetherian and satisfies the resolution property, this definition
is equivalent to Seshadri’s notion (see [Ses77, Theorem 1] and Remark 9.2.6). Furthermore,
Seshadri’s generalization of Haboush’s theorem can be extended as follows (see Theorem 9.7.6).

THEOREM. Let G — S be a smooth group scheme. Then G — S is geometrically reductive if
and only if the geometric fibers are reductive and G/G° — S is finite.

Generalizing the main result of [Wat94], we prove the following result (see Theorem 9.6.1).

THEOREM. Let G — S be a quasi-finite, separated, flat group algebraic space. Then G — S is
geometrically reductive if and only if G — S is finite.

We offer the following generalization of Matsushima’s theorem (see Section 9.4 for a historical
discussion, and Theorem 9.4.1 and Corollary 9.7.7 for the proof).

THEOREM. Let G — S be a geometrically reductive group algebraic space and H C G a flat,
finitely presented and separated subgroup algebraic space. If G/H — S is affine, then H — S
is geometrically reductive. If G — S is affine, the converse is true. In particular, if G — S is a
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reductive group scheme and H C G a flat, finitely presented and separated subgroup scheme,
then H — S is reductive if and only if G/H — S is affine.

Potential applications

The theory of good moduli spaces (which is the analogous notion in characteristic 0) has already
had several interesting applications to the log minimal model program for M, (see [AFS14]
and [AFSvdW14]). The theory of adequate moduli spaces is likely indispensable in extending
these results to characteristic p. In fact, adequate moduli spaces have already made a prominent
appearance in [MV13] and [BEMV13].

One might hope that the theory of adequate moduli spaces allows for intrinsic constructions
of proper (or projective) moduli spaces in characteristic p. The general strategy is:

(i) Show that the moduli problem is represented by an algebraic stack X.

(ii) Use geometric properties of the moduli problem to show that there exists an adequate
moduli space X — Y, where Y is an algebraic space.

(iii) Use a valuative criterion on X’ to show that Y is proper. To show that Y is projective, show
that a certain tautological line bundle on X descends to Y and then use intersection theory
techniques to show that the descended line bundle is ample.

Step (1) can often be accomplished by verifying deformation-theoretic properties of the moduli
problem [Art74]. It can be the case that X is not a global quotient stack such as for the moduli
stack of semistable curves (see [Krel3]). Moreover, it is often the case that X’ is not known to
be a global quotient stack such as for the moduli stacks parameterizing Bridgeland semistable
objects (see [AP06] and [Tod08]). Therefore, to construct an adequate moduli space, one cannot
rely on the machinery of GIT. The construction of the adequate moduli space in step (2) is often
the most challenging ingredient in this procedure and can be viewed as a generalization of the
Keel-Mori theorem [KM97] which guarantees the existence of coarse moduli spaces for algebraic
stacks with finite inertia. The verification of properness in step (3) involves showing that the
moduli stack satisfies a weak valuative criterion analogous to Langton’s theorem [Lan75] for the
moduli stack of torsion-free sheaves on a smooth projective variety or [AP06, Theorem 4.1.1]
for the moduli stack of Bridgeland semistable objects. The strategy to establish projectivity in
step (3) is analogous to Kollar’s proof of the projectivity of M, [Kol90]. Although this three-step
procedure is ambitious, the analogous strategy has been successfully employed in characteristic 0
in [AFSvdW14] to construct the second flip of M.

2. Conventions

We use the terms algebraic stack and algebraic space in the sense of [LMBO00]. In particular, all
algebraic stacks and algebraic spaces have a quasi-compact and separated diagonal (although
we sometimes superfluously state this hypothesis). If X’ is an algebraic stack, the lisse-étale site
of X, denoted Lis-ét(X'), is the site where objects are smooth morphisms U — X from schemes U,
morphisms are arbitrary X-morphism, and covering families are étale.

2.1 G-R-modules and algebras

Let G — S = Spec(R) be a flat, finitely presented and separated group scheme. Let € :
I'G,0c) — R, v : T'(G,0q) — I'(G,0¢) and ¢ : I'(G,0q) — I'(G,0q) ®r I'(G,Og) be
the counit, coinverse and comultiplication, respectively. A (left) G-R-module is an R-module M
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with a coaction oy : M — I'(G,Og) ®r M satisfying the commutative diagrams

M I I(G,0q) @r M M —XT(G,0q) 9r M
| i TN e
oM id®o s e®id
I(G,0¢) @r M —2 T(G,0¢) @ T(G,0¢) @r M, M.

A morphism of G-R-modules is a morphism of R-modules v : A — B such that (id® ) oops =
on o a. The operators of direct sum and tensor products extend to G-R-modules. A (left) G-R-
algebra is a G-R-module A with the structure of an R-algebra such that R — A (where R has the
trivial G- R-module structure) and multiplication A®r A — A are morphisms of G-R-modules. A
morphism of G-R-algebras is a morphism of G-R-modules « : A — B which is also a morphism
of R-algebras.

Let BG = [S/G] be the classifying stack of G — S. The category of G-R-modules (of finite
type) is equivalent to the category of quasi-coherent sheaves (of finite type, respectively) on BG.
The category of G-R-algebras (of finite type) is equivalent to the category of quasi-coherent
Opg-algebras (of finite type, respectively). (One defines a G-R-module or G-R-algebra to be of
finite type if the underlying R-module or R-algebra, respectively, is of finite type.)

2.2 Locally nilpotent ideals

Recall that an ideal I of a ring R is locally nilpotent if for every x € I there exists N > 0 such
that 2V = 0. Of course, if I is finitely generated, this is equivalent to requiring the existence of
N > 0 such that IV = 0. An ideal Z C A of a quasi-coherent O x-algebra A is locally nilpotent if
for every object (U — X') € Lis-ét(&X') and section € Z(U — X), there exists N > 0 such that
=V =0.

2.3 Symmetric products

If X is an algebraic stack and F is a quasi-coherent or finite type Ox-module, then the symmetric
algebra Sym* F is a quasi-coherent Oy-algebra or a finite type Oy-algebra, respectively. This
construction is functorial: a morphism of quasi-coherent O y-modules 7 — G induces a morphism
of quasi-coherent Oy-algebras Sym* F — Sym* G. Note that if M C A is sub-Oy-module of a
quasi-coherent O y-algebra F, then there is an induced morphism Sym* M — A of quasi-coherent
O y-algebras.

LEMMA 2.3.1. If X is a Noetherian algebraic stack, then every quasi-coherent O y-algebra is a
filtered inductive limit of finite type sub-Ox-algebras. If A is a finite type O x-algebra, then there
exists a coherent sub-Oy-module M C A such that Sym* M — A is surjective.

Proof. This follows formally from [LMBO00, 15.4] as in [Gro67, 1.9.6.6]. Namely, [LMBO00, 15.4]
implies that any quasi-coherent Oy-algebra is a filtered inductive limit of coherent sub-O x-
modules and each sub-Oy-module generates a finite type sub-Oy-algebra. O

3. Adequacy for rings

3.1 Adequate ring homomorphisms

DEFINITION 3.1.1. A homomorphism of rings A — B is adequate if for every element b € B,
there exist an integer N > 0 and a € A such that a — b"V.
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It is clear that the composition of adequate ring maps is again adequate.

LEMMA 3.1.2. Let ¢ : A — B be an adequate homomorphism. Then:

(1) If S C A is a multiplicative set, then S™'A — S~ A ®4 B is adequate.

(2) If I C A is an ideal, then A/I — B/IB is adequate.

(3) For every prime p C A, the homomorphisms A, — A, ®4 B and k(p) — k(p) ®4 B are
adequate.

(4) For every q C B with p = ¢~1(q), the maps Ay, — Bq and k(p) — k(q) are adequate.

(5) If A is local with maximal ideal m 4, then B is local with maximal ideal \/mB.

Proof. Let b/g € S~!'B. For some integer N > 0, we have b" € A and therefore (b/g)" € S1A.

Statements (2) — (4) are clear. For statement (5), for b ¢ v/maB, there exist N >0 and a € A
with a — bY but then a ¢ m4 so b is a unit. O

LEMMA 3.1.3. Let A — B be a ring homomorphism and let A — A’ be a faithfully flat ring
homomorphism. If A" — A’ ® 4 B is adequate, then so is A — B.

Proof. We may assume that A — B is injective. Since A — A’ is faithfully flat, there is a
commutative diagram

A A A @4 A

. |

B——=B4A —x BaA @44,

where the rows are exact. If b € B, there exist ' € A’ and N > 0 such that ¢’ — b" ® 1. Since
the elements o’ ® 1 and 1 ® a’ are equal in A’ ® 4 A’, we have o’ € A and o’ — b" in B. O

LEMMA 3.1.4. Let A < B be an adequate inclusion of rings. Then Spec(B) — Spec(A) is an
integral homeomorphism.

Proof. 1t is clear that A — B is integral. By Lemma 3.1.2, for every p C A, the fiber k(p) —
k(p) ® 4 B is adequate, which implies that (k(p) ® 4 B)red is a field. Since Spec(B) — Spec(A) is
integral, injective and dominant, it is a homeomorphism. O

LEMMA 3.1.5. Let A — B be an adequate inclusion of Q-algebras. Then A = B.

Proof. An element b € B determines a ring homomorphism 7 : Q[z] — B and 7 }(A) < Qlx]
is adequate. It thus suffices to handle the case when A C B = Q|x]. There exists an n > 0 such
that Q[z"] € A C Q[z], so that A — B = Q|x] is finite and A is necessarily Noetherian. For
a maximal ideal ¢ C B with p = qN A, the map A, — By is adequate, where By is a discrete
valuation ring. If I = ker(Ay[t] — By) where t — z, then for some N > 0 and a € Ay, we have
(t+ 1)V —a € I. It follows that Qp,/a, = 0 as N(t + 1)V=ldt = 0 and t + 1 € By is a unit.
Therefore, Spec(B) — Spec(A) is finite and étale. By Lemma 3.1.4, it is also a homeomorphism
and therefore an isomorphism. O

LEMMA 3.1.6. Let k — k' be an adequate inclusion of fields of characteristic p. Suppose that k
is transcendental over Fy,. Then k < k' is purely inseparable.

Proof. There is a factorization k C kg C k' such that k C kg is separable and kg C k' is purely
inseparable. Since k — kg is adequate, it suffices to show that for every adequate and separable
field extension k < k' with k transcendental over F,,, we have k = k'

495



JAROD ALPER

We may assume that & = k(«a) with a? = a € k, where ¢ # p is a prime and a € k is
transcendental over F,. Suppose that k() : k| = g, so that 1,q,...,a9"! form a basis of k'
over k. There exists N > 0 such that (o + a)N = b € k. Write N = p* N’ with p { N’. Then
(a+a)N = (o +a? )N €k, k(a?") = k(a) and (a?")? = a?" € k is transcendental. So we may
assume p{ N. We can write

N _ i N—i _ N—j—qi+i\ j
a—+a) = . Ja'a = ) . a o
cra =R (=05 () )
=0 7=0 =0
By looking at the coefficient of «, since p does not divide NN, we obtain a monic relation for
a over [F,, which is a contradiction. Suppose that |k(a) : k| < ¢, so that 27 — a is reducible
over k. Then a = b? for some b € k (see [Lan02, Theorem 9.1]). Then ab™! = ¢, is a gth
root of unity and k' = k(§;). Let ¢t € k be a transcendental element. There exists an integer
N > 0 such that (t + &)Y = b € k. We may assume that p { N. In the expansion of (t + &)V

in terms of the basis 1,&,,..., 372 of k' over k, the coefficient of &; is a polynomial g(t) =
NtN=1 4 ...+ (lower degree terms) € F,[t] which must be 0. This contradicts the fact that t € k
is transcendental. O

Remark 3.1.7. The hypothesis that £ be transcendental over [F,, is necessary. An inclusion of
finite fields Fg — Fgn is adequate as every element satisfies 24"~ = 1. In fact, if k is algebraic
over [Fp, then k& — F, is adequate.

3.2 Universally adequate ring homomorphisms

If A — B is an adequate inclusion of rings, the base change A’ — A’ ® 4 B by an A-algebra A’ is
not necessarily adequate; similarly, Spec(B) — Spec(A) is a homeomorphism (see Lemma 3.1.4)
but is not necessarily a universal homeomorphism. For instance, F, < F,» is adequate but

]Fqn — Fqn ®Fq ]Fqn & X?:l]Fqn

is not adequate. Furthermore, if B is any F,-algebra and m C B is a maximal ideal with residue
field Fn with n > 1, then let A = 7—!(F,) where 7 : B — Fyn. Then A C B is adequate but this
is not stable under base change. This discussion motivates the following definition.

DEFINITION 3.2.1. A ring homomorphism A — B is universally adequate if for every A-algebra
A’ the ring homomorphism A’ — A’ ® 4 B is adequate.

Remark 3.2.2. A ring homomorphism A — B is universally adequate if and only if for every n
the ring homomorphism A[zy,...,x,] = Blx1,...,z,] is adequate. Indeed, any b’ € A’ ®4 B is
the image of an element in B[zy,...,x,] for some n. Furthermore, by Lemma 3.1.3, the property
of being universally adequate descends under faithfully flat ring homomorphisms.

LEMMA 3.2.3. Let A — B be an inclusion of Fj-algebras. The following are equivalent:

(1) The homomorphism A — B is universally adequate.
(2) For every b € B, there exists r > 0 such that b?" € A.

Furthermore, if A — B is of finite type, then the above conditions are also equivalent to:
(3) There exists r > 0 such that for all b € B, b?" € A.

In particular, an inclusion of fields is universally adequate if and only if it is purely inseparable.
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Proof. Since condition (2) is easily seen to be stable under arbitrary base change, we have
(2) = (1). For (1) = (2), we first show that a universally adequate inclusion of fields
k — k' is purely inseparable. Indeed, let k& < k' be a separable field extension which is universally
adequate and let k denote an algebraic closure of k. Then k < k ®y, &k’ is adequate, which implies
by Lemma 3.1.6 that k ®; k' = k and that k = £’

Now suppose that A and B are Artin rings. We can immediately reduce to the case where A
is local with maximal ideal m4. Then B is a local ring with maximal ideal vVmaB by Lemma
3.1.2. Since A/my4 — B/+/m4B is universally adequate, it is a purely inseparable field extension.
Therefore, for b € B, there exist a € A and n > 0 such that b — a?" € /m4B, but then for some
m >0, (b—a " =pP" — """ =0,

In the general case, an element b € B determines an [F,-algebra homomorphism F,[z] — B.
If this map is not injective, the image By C B is an Artin ring and since Ag < By is an
adequate inclusion, there exists a prime power of b in A. Otherwise, denote Ay = Fp[z] N A.
Since Frac(Ag) — Fp(z) is a purely inseparable field extension, Frac(Ag) = F,(x?) for a prime
power q. Denote by A[z9] C F,[z] the subring generated by Ay and z9. Then f : Spec(Ap[z?]) —
Spec(Ap) is an isomorphism over the generic point. Let I = Supp(Ap[z?]/Ag) C Ap. Since
Ao /T — Ap[z]/IAp[27] is an adequate extension of Artin rings, there exists a prime power ¢’ such
that (Ag[z9]/IAg[2z9))? C Ag/I. Tt follows that the inclusion Ay < Ag[z97] is an isomorphism,
so 2% € A.

It is clear that (3) == (2). Conversely, if A — B is of finite type, let by, --- ,b, € B
be generators for B as an A-algebra. Choose r > 0 such that b;?" € A. Then b*" € A for
all b € B. O

Remark 3.2.4. If A — B is not of finite type, a universal r as in Lemma 3.2.3(3) cannot be

. . 2 3
chosen. For instance, consider Fy[zf, 25, 2b .. .] — Fplz1, v, 23,.. .

3.3 Adequate homeomorphisms

DEFINITION 3.3.1. A morphism f : X — Y of algebraic spaces is an adequate homeomorphism
if f is an integral, universal homeomorphism which is a local isomorphism at all points with a
residue field of characteristic 0. A ring homomorphism A — B is an adequate homeomorphism
if Spec(B) — Spec(A) is. If X is an algebraic stack, a morphism A — B of quasi-coherent
Ox-algebras is an adequate homeomorphism if Specy (B) — Specy(A) is.

Remark 3.3.2. A morphism f : X — Y of algebraic spaces is a local isomorphism at x € X if
there exists an open neighborhood U C X containing x such that f|y is an open isomorphism. If
f: X — Y is alocally of finite presentation morphism of schemes, then f is a local isomorphism
at x if and only if Oy ¢,y — Ox, is an isomorphism ([Gro67, 1.6.5.4, IV.1.7.2]). The property
of being an adequate homeomorphism is stable under base change and descends in the fpqc
topology. Therefore the property also extends to representable morphisms of algebraic stacks.
We note that by [Ryd10b, Corollary 4.20], any separated universal homeomorphism of algebraic
spaces is necessarily integral.

We first consider the characteristic p case and offer a slight generalization of [Kol97, Propo-
sition 6.6].

PRroprosITION 3.3.3. Let A — B be an homomorphism of Fj-algebras. Then the following are
equivalent:

(1) The morphism Spec(B) — Spec(A) is an integral universal homeomorphism.
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(2) The morphism Spec(B) — Spec(A) is an adequate homeomorphism.
(3) The ideal ker(A — B) is locally nilpotent and A — B is universally adequate.

(4) The ideal ker(A — B) is locally nilpotent and for every b € B, there exist r > 0 and a € A
such that a +— b"".

If A — B is of finite type, then the above are also equivalent to:

(5) The ideal ker(A — B) is locally nilpotent and there exists r > 0 such that for all b € B,
there exists a € A such that a v+ b?".

Proof. By definition, we have (1) <= (2). Lemma 3.1.4 shows that (3) = (1). Lemma 3.2.3
shows that (3) <= (4) as well as (4) <= (5) if A — B is of finite type.. We need to show
that (1) = (4). We may assume that A — B is injective. For b € B, there exists a finite
type A-subalgebra A C By C B containing b. Then Spec(By) — Spec(A) is an integral universal
homeomorphism. We may assume that A — B is finite. Suppose first that A is a local ring, so B
is also a local ring (Lemma 3.1.2). Let m4 and mp denote the maximal ideals. Let by,...,b, be
generators for B as an A-module. Since A/m4 — B/mp is a purely inseparable field extension,
there exists r > 0 such that for each 4, the image of b”" in B/msB is contained in A/my4.
Let B, be the A-subalgebra of B generated by bP" giving inclusions A C B, C B. For each i, the
image of b;”" in (B,/A)®4 A/my is 0. Therefore (B,/A) ®4 A/m = 0 so by Nakayama’s lemma
A = B,. For the general case, let b € B. For each p € Spec(A), there exists r and a/g € A,
such that a/g — b?" in A, ®4 B. Since Spec(A) is quasi-compact, there exists » > 0 and a finite

collection of functions g1,...,gs € A generating the unit ideal such that for each i, g;b?" € A.
We may write 1 = fig1 + -+ + fsgs with f; € A. Therefore b?" = f1g1b?" + --- + fogsb? € A
which establishes (4). O

Remark 3.3.4. Note that if condition (5) is satisfied with » > 0, then for any A-algebra A’ and
V € A’ ®4 B, there exists a’ € A’ such that a’ — bP". If A is Noetherian, then condition (5)
above is equivalent to requiring the existence of a factorization

X = Spec(B) — Spec(A) — X

where X — X (@ is the geometric Frobenius morphism for some ¢ = p'.

We now adapt the proof of [Kol97, Lemma 8.7].

PROPOSITION 3.3.5. Let A — B be a homomorphism of rings. Then the following are equivalent:

(1) The morphism Spec(B) — Spec(A) is an adequate homeomorphism.
(2) The ideal ker(A — B) is locally nilpotent, ker(A — B) ® Q = 0 and A — B is universally
adequate.

If A — B is of finite type, then the above conditions are also equivalent to:

(3) The ideal ker(A — B) is locally nilpotent, ker(A — B) ® Q = 0 and there exists N > 0 such
that for every A-algebra A’ and b € A' ® 4 B, there exists a’ € A’ such that a/ — b'V.

Proof. Let B’ =im(A — B) and consider the factorization A — B’ < B. The statement is clear
for A - B’. We may therefore reduce to the case where A < B is injective.

For (2) = (1), Spec(B) — Spec(A) is a universal homeomorphism by Lemma 3.1.4 and an
isomorphism at all points with characteristic 0 residue field by Lemma 3.1.5. For (1) = (2),
let b € B. By taking a finitely generated A-subalgebra By C B containing b, we can reduce to
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the case where A < B is of finite type. In this case, we will show that (1) = (3). Define
@ = B/A. Since Spec(B) — Spec(A) is an isomorphism in characteristic 0, we have Q ®7 Q = 0.
Since @ is a finite A-module, there exists m > 0 such that m@Q = 0.

We claim that there exists N > 0 such that for all A/mA-algebras A" and V' € A’ ® /4
B/mB, there exists a’ € A’ with o’ — ¥'N. Write m = p{* ---p*. There are decompositions
A/mA=A1®---® A, and B/mB = B1 & --- @ By, with Spec(B;) — Spec(A4;) a finite universal
homeomorphism of Z/p;"-schemes. If for each i, there exists N; with the desired property for
A; — B;, then N =[], N; satisfies the claim. Assume m = p" and that A — B is an inclusion of
Z/mZ-algebras. By Lemma 3.2.3 since Spec(A/pA) — Spec(B/pB) is a finite universal homeo-
morphism, there exists 7 > 0 such that for all b € B/pB, there exists a € A/pA with a + bP".
Therefore, for any b € B, we may write b?" = a + pb; € A + pB. Then

o
b = (0 + b )P =a?" + i<p, )apn_ibi =a’ € A
(a+ pby) ;p . |
since p" divides p (p;) for ¢ > 0. Furthermore, the same argument applied to A — A’ ® 4 B for
an A-algebra A’ shows that the property holds with the same choice of r. This establishes the
claim.

For any A-algebra A’ if Q' = coker(A" — A’ ®4 B), then Q@' = Q ®4 A’ and mQ’ = 0.
Therefore, for any b’ € A’ ®4 B, there exists a’ € A’'/mA’ with a’ — V' in A'®4 B/m(A’®4 B),
which shows that the image of ¥"N € @' is contained in m@Q’ = 0 and so there exists a’ € A’
with o’ — bV, O

Remark 3.3.6. We note that since property (1), (2) or (3) implies that A — B is integral, A — B
is of finite type if and only if A — B is finite. If in addition A — B is injective, then A is
Noetherian if and only if B is Noetherian.

EXAMPLE 3.3.7. The condition that a morphism f : Spec(A) — Spec(B) be an adequate home-
omorphism is not equivalent to the ring homomorphism B — A being universally adequate with
locally nilpotent kernel. For instance, consider Spec(Q) — Spec(Ql[e]/(€2)).

3.4 Universally adequate Oy-algebra homomorphisms

DEFINITION 3.4.1. Let X be an algebraic stack. A morphism A — B of quasi-coherent O y-
algebras is universally adequate if for every object (U — X') € Lis-ét(X) and section s € B(U —
X), there are an étale cover {U; % U} and integers N; > 0 and ¢; € A(U; — X) such that
t;i — (grs)Ni.

Remark 3.4.2. Tt is clear that this is a Zariski-local condition on X and that the composition
of two universally adequate morphisms is again universally adequate. For an object (U — X)) €
Lis-ét(X') with U quasi-compact and section s € B(U — &), a universal N can be chosen.

LEMMA 3.4.3. A morphism A — B of quasi-coherent O y-algebras is universally adequate if and
only if for every smooth morphism Spec(A) — X and s € B(Spec(A) — X), there exist an étale
surjective morphism g : Spec(A’) — Spec(A), an integer N > 0 and t € A(Spec(A’) — X) such
that t — (g*s)".

Proof. This is clear. O

LEMMA 3.4.4. If X = Spec(R) is an affine scheme, a morphism of quasi-coherent Ox-algebras
A — B is universally adequate if and only if I'(X, A) — I'(X, B) is universally adequate.
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Proof. Let A = I'(X,A) and B = I'(X, B). The “if” direction is clear since for any smooth
R-algebra R', the ring homomorphism A ®p R’ — B ®p R’ is adequate. Conversely, by Remark
3.2.2, it suffices to show that for each n, Alxy,...,z,] — B[z1,...,x,] is adequate. For each
b € Blz1,...,2,], the hypotheses imply that there exist a faithfully flat R[z1, ..., z,]-algebra R/,
an integer N > 0 and ¢’ € A ®g R’ such that o’ — b ® 1 in B @ R’. But this then implies as
in Lemma 3.1.3 that there exists a € A[zy,...,z,] such that a +— bV. O

LEMMA 3.4.5. Let X be a quasi-compact algebraic stack and let f : Spec(R) — X be a smooth
presentation. A morphism A — B of quasi-coherent O y-algebras is universally adequate if and
only if I'(Spec(R), f*A) — I'(Spec(R), f*B) is universally adequate.

Proof. The “if” direction is clear. The “only if” direction follows from the same proof as that of
Lemma 3.4.4. ]

LEMMA 3.4.6. Let f : X — Y be a morphism of algebraic stacks. Suppose that A — B is a
morphism of quasi-coherent Oy-algebras. Then:

(1) If A — B is universally adequate, then f*A — f*B is universally adequate.

(2) If f is fpqc and f* A — f*B is universally adequate, then A — B is universally adequate.

Proof. We may assume that X and ) are quasi-compact. Let ¢ : Spec(R) — X and Spec(S) —
Spec(R) xy X be smooth presentations. This gives a 2-commutative diagram

Spec(S) AN Spec(R)

P

x—7 .y
with f’ : Spec(S) — Spec(R) faithfully flat. Then Lemma 3.4.5 implies that A — B and
f*A — f*B are universally adequate if and only if T'(Spec(R),q*A) — T'(Spec(R),¢*B) and
I'(Spec(S),p* f*A) — I'(Spec(S), p* f*B) are universally adequate, respectively. Part (1) is now
clear and part (2) follows from Lemma 3.1.3. O

LEMMA 3.4.7. Let X be an algebraic stack and let A — B be a homomorphism of quasi-coherent
Ox-algebras. Then the following are equivalent:

(1) The ideal sheaf ker(A — B) is locally nilpotent, ker(A — B) ® Q = 0 and A — B is
universally adequate.

(2) The morphism A — B is an adequate homeomorphism.

(3) The morphism Specy(B) — Specy(A) is an adequate homeomorphism.

Proof. This follows from the definitions and fpqc descent using Lemma 3.4.6 and Proposi-
tion 3.3.5. O

4. Adequately affine morphisms

In this section, we introduce a notion characterizing affineness for non-representable morphisms of
algebraic stacks which is weaker than cohomological affineness and will be an essential property of
adequate moduli spaces. This notion was motivated by and captures the properties of a morphism
[Spec(A)/G] — Spec(AF) where G is a reductive group.
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4.1 The definition and equivalences

DEFINITION 4.1.1. A quasi-compact, quasi-separated morphism f : X — ) of algebraic stacks
is adequately affine if for every surjection A — B of quasi-coherent O y-algebras, the push-
forward fi. A — f.B is universally adequate. A quasi-compact, quasi-separated algebraic stack X
is adequately affine if X — Spec(Z) is adequately affine.

Remark 4.1.2. By Lemma 3.4.4, a quasi-compact, quasi-separated algebraic stack X" is adequately
affine if and only if for every surjection A — B of quasi-coherent O y-algebras, the ring homo-
morphism I'(X, A) — I'(X, B) is universally adequate. Even though the notion of adequacy is
not stable under base change, the above notion is equivalent to the seemingly weaker require-
ment that for every surjection A — B of quasi-coherent Oy-algebras, the ring homomorphism
(X, A) — I'(X,B) be adequate; see Lemma 4.1.8(3).

Remark 4.1.3. A quasi-compact, quasi-separated morphism X — Spec(A) is adequately affine if
and only if X is adequately affine if and only if X — Spec(I'(X, Ox)) is adequately affine.

Remark 4.1.4. Recall from [Alp13, Section 3] that a quasi-compact, quasi-separated morphism
f: X = Y of algebraic stacks is said to be cohomologically affine if the push-forward functor f,
is exact on quasi-coherent O y-modules.

LEMMA 4.1.5. Let f : X — Y be a quasi-compact, quasi-separated morphism of algebraic stacks.
Then f is cohomologically affine if and only if for every surjection A — B of quasi-coherent
Ox-algebras, f.A — f.B is surjective.

Proof. The “only if” direction is clear. Conversely, let 7 — G be a surjection of quasi-coherent
Ox-modules. Then Sym* F — Sym* G is a surjection of graded quasi-coherent O y-algebras. As f,
is exact on the category of quasi-coherent Ox-modules, f, Sym* F — f, Sym* G is surjective and
it follows that f.F — f.G is surjective. O]

We now establish a key lemma which will be used to prove that adequate moduli spaces and
good moduli spaces are equivalent notions in characteristic 0 (see Proposition 5.1.4).

LEMMA 4.1.6. Let f : X — Y be a quasi-compact, quasi-separated morphism of algebraic stacks
defined over Spec(Q). Then f is adequately affine if and only if f is cohomologically affine.

Proof. This follows from Lemmas 4.1.5 and 3.1.5. O

LEMMA 4.1.7. Let f : X — Y be a quasi-compact, quasi-separated morphism of algebraic stacks.
The following are equivalent:

(1) For every universally adequate morphism A — B of quasi-coherent Oy-algebras with ker-
nel Z, the morphism f, A/ f.Z — f.B8 is an adequate homeomorphism.

(2) The morphism f is adequately affine.

(3) For every surjection F — G of quasi-coherent Oy-modules, the morphism f, Sym* F —
f« Sym* G is universally adequate.

If in addition X is Noetherian, then the above are equivalent to:

1) For every universally adequate morphism A — B of finite type quasi-coherent Ox-algebras
Y Y Y g

with kernel Z, the morphism f.A/f.Z — f.BB is an adequate homeomorphism.

(2") For every surjection A — B of finite type quasi-coherent O y-algebras, the morphism f, A —
f+«B is universally adequate.

501



JAROD ALPER

(3") For every surjection F — G of coherent O y-modules, the morphism f, Sym* F — f, Sym* G
is universally adequate.

Proof. 1t is obvious that (1) = (2) == (3). We now show that (3) = (2) = (1).
Suppose that property (3) holds and let A — B be a surjection of quasi-coherent O y-algebras.
The natural map Sym* B — B has a section, so that f, Sym* B — f.B is surjective. There is a
commutative diagram

f«Sym" A—— f, Sym" BB
| |
feA fiB.

Since the composition f, Sym* A — f, Sym* B — f.B is universally adequate, so is fy A — filB,
which establishes property (2). Suppose that property (2) holds. We may assume that X and ) are
quasi-compact. Let A — B be a universally adequate morphism of quasi-coherent O y-algebras.
Let B’ = im(A — B). Then f,A — f.B is universally adequate so we may assume that A — B
is injective. Let V' — Y and U — &y := X X3 V be smooth presentations with U and V' affine.
Let R =U xu, U. This gives a diagram

Xy

l :

X

Uxy, U—2U

o=

We have a diagram of exact sequences

[AV 5 V) —— AU - X) —= AU xx, U = X)

| |

BV - V) ——B(U = X)—= BU xx, U = X).

Since A — B is universally adequate, Lemma 3.4.5 implies that the middle vertical arrow is
universally adequate. Therefore, for s € f.B(V — V), there exist N > 0 and t € A(U — X) with
t — sV, By exactness, we must have t € f, A(V — Y). Therefore f, A(V — V) — f.B(V = V) is
universally adequate, which establishes that f..A — f.B is universally adequate. Statement (1)
follows.

In the locally Noetherian case, direct limit methods imply that for each i € {1,2,3}, (i) <—
(7'). We spell out the details only for (2) <= (2'). Given an arbitrary surjective morphism
of Oy-algebras a : F — G, we apply Lemma 2.3.1 to write G = @ga with each G, C G
a finite type Ox-algebra. The inverse F, = a 1(G,) is a quasi-coherent Ox-algebra. If we
knew the proposition for G of finite type, then each f.F, — f«G, is universally adequate.
Given (Spec(B) — )) € Lis-ét(Y) and s € f.G(Spec(B) — )), then as f.G(Spec(B) — V) =
li_r>nf*ga(Spec(B) — Y), there exists a such that s € f.G,(Spec(B) — Y). But then there exist
N >0 and t € f.F.(Spec(B) — V) with t + s)Y. We may now assume G is a finite type Ox-
algebra. By apply Lemma 2.3.1 again, we may write F = liLn}"a. Then there exists « such that
Fo — G is surjective and f,F, — f«G is universally adequate, which implies that f.F — f.G is
universally adequate. ]

LEMMA 4.1.8. Let X be a quasi-compact and quasi-separated algebraic stack. The following are
equivalent:

502



ADEQUATE MODULI SPACES

(1) For every universally adequate morphism A — B of quasi-coherent Oy-algebras with ker-
nel KC, the induced algebra homomorphism I'(X, A)/T'(X,K) — I'(X,B) is an adequate
homeomorphism.

(2) The algebraic stack X is adequately affine.

(3) For every surjection A — B of quasi-coherent Oy-algebras, the induced homomorphism
I'x, A) — I'(X, B) is adequate.

(4) For every surjection F — G of quasi-coherent Oxy-modules, the induced homomorphism
(X, Sym* F) — I'(X,Sym* G) is adequate.

(5) For every surjection F — Oy of quasi-coherent Oy-modules, there exist N > 0 and f €
['(X,Sym™ F) such that f — 1 under I'(X,Sym” F) — T'(X, Ox).

If in addition X is Noetherian, then the above are equivalent to:

(1") For every universally adequate morphism A — B of finite type quasi-coherent O y-algebras
with kernel IC, the induced algebra homomorphism I'(X, A)/T'(X,K) — I'(X, B) is univer-
sally adequate.

(2") For every surjection A — B of finite type quasi-coherent O y-algebras, the homomorphism
I'(x,A) — I'(X, B) is universally adequate.

(3") For every surjection A — B of finite type quasi-coherent O x-algebras, the homomorphism
I'x, A) — I'(X, B) is adequate.

(4') For every surjection F — G of coherent Ox-modules, the homomorphism I'(X, Sym* F) —
['(X,Sym* G) is adequate.

(5') For every surjection F — Oy of coherent Oy-modules, there exist N > 0 and [ €
I'(X,Sym™ F) such that f ~ 1 under I'(X,Sym” F) — T'(X, Ox).

If in addition X has the resolution property (that is, for every coherent Ox-module F, there
exists a surjection V — F from a locally free Oxy-module of finite rank), then the above are
equivalent to

(5") For every surjection V — Oy from a locally free O y-module of finite rank, there exist N > 0
and f € T'(X,Sym® V) such that f — 1 under T'(X,Sym" V) — I'(X,Ox).

Proof. 1t is immediate that (1) = (2) = (3) = (4) = (5). Lemma 4.1.7 shows
that (2) = (1). For (3) = (2), let A — B be a surjection of quasi-coherent Ox-algebras.
By Remark 3.2.2, it suffices to show that for each n, the homomorphism I'(X, A)[z1,...,z,] —
(X, B)[x1,...,zy,] is adequate, but this corresponds to

F(X,A@OX Ox[l‘l, R ,xn]) — F(X,B@@X Ox[l‘l, - ,xn]),

which is adequate by statement (3). The same argument of Lemma 4.1.7 shows that (4) = (3).
For (5) = (3), suppose that A — B is a surjection of quasi-coherent Oy-algebras. A section
s € I'(X,B) gives a morphism of Ox-modules Oy — B. Consider the fiber product and the
induced diagram

AXB OXHOX Sym*(A XBOX)HS}/HI*OX%OX[JJ] T
A B A B 5.

There exist N > 0 and ¢ € ['(X, Sym*(F x¢g Oy)) with t — 2V under I'(X, Sym*(F xg Ox)) —
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(X, Sym* Ox) 2 T'(X,0x)[x]. If t is the image of ¢ under the composition
['(X,Sym*(A xp Ox)) = T'(X,Sym* A),

then ¢ +— s" which establishes statement (3). Direct limit methods show the equivalences of
(i) < (¢) for i € {1,...,5}. The equivalence of (5') <= (5”) is immediate. O

4.2 Properties of adequately affine morphisms

PROPOSITION 4.2.1.

(1) Adequately affine morphisms are stable under composition.

(2) A cohomologically affine morphism f : X — Y of algebraic stacks is adequately affine. In
particular, an affine morphism f : X — Y of algebraic stacks is adequately affine.

(3) If f: X — Y is an adequately affine morphism of algebraic stacks over an algebraic space S
and S’ — S is a morphism of algebraic spaces, then fg = Xg — Yg/ is adequately affine.

Consider a 2-cartesian diagram of algebraic stacks:

yl
T
x—1 .y

RN

(4) If g is faithfully flat and f’ is adequately affine, then f is adequately affine.
(5) If f is adequately affine and g is a quasi-affine morphism, then f’ is adequately affine.

(6) If f is adequately affine and ) has quasi-affine diagonal over S, then f’ is adequately affine.
In particular, if Y is a Deligne—-Mumford stack with quasi-compact and separated diagonal,
then f adequately affine implies that f’ is adequately affine.

Proof. Part (1) follows from Proposition 4.1.7. Part (2) is clear. For part (4), suppose that
a: A — Bis a surjection of Oy-algebras. Since ¢’* is exact and f’ is adequately affine, fLg™*« is
universally adequate. By flat base change, g* f.« is canonically identified with f.¢*«. By Lemma
3.4.6(2), f.a is universally adequate. Therefore f is adequately affine.

For part (5), let a : A" — B’ be a surjection of Oys-algebras. Suppose first that g : ' — Y is
a quasi-compact open immersion. Let B = im(g,.A — g.B). Since g" g, A’ = A’ and g"¢,B' = B/,
there is a factorization A" — ¢*B < B’ and we conclude that there is a canonical isomorphism

¢*B = B. Since f is ‘adequately affine, f.g, A" — f.B is universally adequate. By Lemma 3.4.6(1 );

G f.d. A = g*f.g.B is universally adequate but this is identified with flg"*¢g/ A" — flg"*¢.B,
which is identified with f/A" — f.B’. Now suppose that g : ' — ) is an affine morphism, so
that the functors g, and ¢/ are faithfully exact on quasi-coherent sheaves. It is also easy to see
that a morphism C — D of quasi-coherent Oyr-algebras is universally adequate if and only if
9xC — ¢, D is. Since f is adequately affine, f.g.a = g, f.«a is universally adequate and it follows
that flo is universally adequate. This establishes part (5).

For part (6), the question is Zariski-local on ) and )’ so we may assume that they are quasi-
compact. Let Y — ) be a smooth presentation with Y affine. Since Ay 5 is quasi-affine, Y — Y
is a quasi-affine morphism. We may choose a smooth presentation Z — yg/ =)' xyY with Z
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an affine scheme. We have the 2-cartesian diagram:

z z
Xy Yy
X! / V'
Xy Y
v
X V.

Since X — ) is adequately affine and Y — ) is a quasi-affine morphism, by part (5) Xy — Y is
adequately affine. The morphism Z — Y is affine, which implies that Z — Z is adequately affine.
Since the composition Z — 4§, — )’ is smooth and surjective, by descent X’ — )’ is adequately
affine. For the final statement of part (6), Ay/g : Y — )V xg ) is separated, quasi-finite and
of finite type so by Zariski’s Main Theorem for algebraic spaces, Ay g is quasi-affine. Finally,
part (3) follows formally from parts (4) and (5). O

Remark 4.2.2. Part (5) can fail if ) — ) is not quasi-affine and part (6) can fail if J does not
have quasi-affine diagonal. As in the example given in [Alp13, Remark 3.11], if A is an abelian
variety over a field k, then Spec(k) — BA is cohomologically affine (and therefore adequately
affine) but A = Spec(k) x pa Spec(k) — Spec(k) is not adequately affine.

LEMMA 4.23. Let f: X — Y, g: Y — Z be morphisms of algebraic stacks where either g is
quasi-affine or Z has quasi-affine diagonal over S. Suppose that g o f is adequately affine and
that g has affine diagonal. Then f is adequately affine.

Proof. This is clear from the 2-cartesian diagram

id, f
) sy oy

Y2 YxzY
and Proposition 4.2.1. O

4.3 Generalization of Serre’s criterion

THEOREM 4.3.1. A quasi-compact, quasi-separated morphism f : X — Y of algebraic spaces is
adequately affine if and only if it is affine.

Proof. By Proposition 4.2.1, we may assume that Y is an affine scheme. We first show that the
proof of [Gro67, I1.5.2.1] generalizes when X is a scheme. Set R = I'(X, Ox). For a closed point
qg € X, let U be an open affine neighborhood of ¢ with ¥ = X ~ U. Consider the surjective
morphism of quasi-coherent Ox-algebras

Sym* Iy — Sym* k(q) = k(q)[x].
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Since X is adequately affine, there exist an integer N and f’ € I'(X,Sym* Zy) with f’ — 2.
Let f € R be the image of f' under I'(X,Sym*Zy) — I'(X,O0x) = R. We have ¢ € X; C U.
Furthermore, X is an affine scheme since X; = Uy.

Since X is quasi-compact, we may find functions f1,..., f,, € R such that the affine schemes
Xy, cover X. Since affineness is Zariski-local, it suffices to show that fi,..., f,, generate the unit
ideal of R. There is a surjection of Ox-algebras

a: Oxlty, ..., tg] = Ox|x]
defined by sending t; to f;z. Therefore
I'a): R[t1,...,tk] = R[z]

is adequate and there exist an integer N > 0 and g € RJ[t1,...,t;] of degree N such that
g — V. But this implies that the monomials of [L i of degree N generate the unit ideal and
thus (f;) = R.

In general, if X is an algebraic space, by [Ryd10a, Theorem B] there exists a finite surjective
morphism X’ — X from a scheme X’. Since X' is adequately affine, X’ is affine. By Chevalley’s
criterion for algebraic spaces (see [Con07, Corollary A.2] or [Ryd10a, Theorem 8.1]), X is affine.

O

COROLLARY 4.3.2. A quasi-compact, quasi-separated representable morphism f : X — ) of
algebraic stacks, where ) has quasi-affine diagonal, is adequately affine if and only if it is affine.

Proof. This follows from Proposition 4.2.1 and Theorem 4.3.1. O

Remark 4.3.3. As in Remark 4.2.2, the corollary can fail if ) does not have quasi-affine diagonal;
if A is an abelian variety over a field k, then Spec(k) — BE is adequately affine but not affine.

5. Adequate moduli spaces

We introduce the notion of an adequate moduli space and then prove its basic properties.

5.1 The definition

DEFINITION 5.1.1. A quasi-compact, quasi-separated morphism ¢ : X — Y from an algebraic
stack X to an algebraic space Y is called an adequate moduli space if the following properties
are satisfied:

(1) The morphism ¢ is adequately affine.

(2) The natural map Oy = ¢,Ox is an isomorphism.

Remark 5.1.2. A quasi-compact, quasi-separated morphism p : X — S from an algebraic stack
to an algebraic space S is adequately affine if and only if the natural map X — Spec(p.Ox) is
an adequate moduli space.

Remark 5.1.3. As in [Alpl3, Remark 4.4], one could also consider the relative notion for an
arbitrary quasi-compact, quasi-separated morphisms of algebraic stacks ¢ : X — ) satisfying
the two conditions in Definition 5.1.1.

In characteristic 0, the notions of good moduli spaces and adequate moduli spaces agree.
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PROPOSITION 5.1.4. A quasi-compact, quasi-separated morphism ¢ : X — Y over Spec(Q) from
an algebraic stack X to an algebraic space Y is a good moduli space if and only if it is an
adequate moduli space.

Proof. This follows from Lemma 4.1.6. O

5.2 First properties

We establish the basic properties of adequate moduli spaces as well as provide examples where
the correspondingly stronger property of good moduli spaces does not hold.

LEMMA 5.2.1. Suppose that ¢ : X — Y is an adequately affine morphism of algebraic stacks
where Y is an algebraic space. Let A be a quasi-coherent O y-algebra and let T be a quasi-coherent
sheaf of Oy-ideals. Then

G AT = ¢ (AJTA) (5.2.1)

is an adequate homeomorphism.

Proof. The quasi-coherent sheaf Z.A is the image of ¢*Z — A. The surjection A — A/Z.A induces
an adequate homeomorphism ¢.A/p.ZA — ¢.(A/ZA) since ¢ is adequately affine. It suffices
to show that the surjection ¢, A/Z — ¢ A/P.(ZA) is an adequate homeomorphism. Since it
is an isomorphism in characteristic 0, it suffices to show that the kernel is locally nilpotent.
Since the question is local in the fpqc topology, we may assume that Y is an affine scheme; let
A=T(Y,A) and I =T(Y,Z). A choice of generators f; for j € J of I C A induces a surjection
Alzj;j € J] = @50 1" where z; — f;. This induces a surjection Alz;;j € J| = @,5,I"A.
Since ¢ is adequately affine,
Alzj;j € J) - @PT(X,I"A)
n=0

is adequate, which shows that for every f € I'(X,Z.A), there exists N > 0 such that f¥ € I. O

Remark 5.2.2. Let S be an affine scheme and let G be a geometrically reductive group scheme
over S (see Section 9) acting on an affine scheme Spec(R). Let I C R be an ideal. Then Lemma
5.2.1 implies that the map

RY/I - (R/IR)“

is an adequate homeomorphism.
EXAMPLE 5.2.3. This example shows that the map (5.2.1) need not be surjective. Consider the
action of Z/pZ on A? = F,[z,y] over F, where a generator acts by (x,y) — (z + y,y). Let
z=z(x+y) - (r+ (p—1)y). Then

¢: X = [A?/Z/pZ] — Spec(Fyly, 2]) =Y
is an adequate moduli space (see Theorem 9.1.4) and the map (5.2.1) applied with the ideal (y)
corresponds to

Fpla?] = Fply, 21/ (y) = (Fplz, 41/ (1) Fplz, y]) = Fpla],
which is not surjective.
EXAMPLE 5.2.4. This example shows that the map (5.2.1) need not be injective. Consider the
action of Z/pZ on X = Spec(R) = Fplx1,22,y]/(z122) over F, where a generator acts by

(z1,22,y) — (z1,22,21 + y). Let I = (x1,22). Then the invariant zoy € IR N RS is not in I.
That is, x2y is a non-zero element in the kernel of R%/I — (R/IR)®.
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ExaMPLE 5.2.5. The following example due to Johan de Jong shows that in the definition of an
adequately affine morphism X — ), the degree of the exponent required to lift sections cannot
be universally bounded over all quasi-coherent Oy-algebras. In particular, for a geometrically
reductive group scheme (see Section 9), the degree of the exponent required to lift invariant
sections cannot be universally bounded over all G-modules. However, for finite flat group schemes
G — S, such a universal bound can be chosen. Consider the geometrically reductive group SLo
over Fo. We show that there does not exist N > 0 such that for every surjection V' — Fo of SLo-
representations, the map (SymN V)SL2 — Fg is non-zero. Let W = Fax @ Foy be the standard
representation of SLy. For each n > 0, consider the representation

V, = Sym?@" = (W)
which has basis elements Z; ; = x'y/ where i + j = 2(2" — 1) with 4,5 > 0. Consider the

SLs-equivariant surjection
1 ifi=j=2"-1

Vn — kv Zl»] = { 0 OtheI‘WiSe-

If~v= <(1) i) € SLg, one can check that

N Zon_1gn_1 = Zon_19n_1 +tZon_gon + 1 Zon_gony1 + - + 752n_1Z0,2(2n—1) .

Suppose that for some d > 0, there exists a non-zero invariant element

Un = (Zan 120 1)" + Y (Zon1901)"Fa(Zijii # j) € (Sym? V)%
a<d

for some elements F, € Symd_a V,,. We claim that d > 2". The coefficient of (Zgn_ggn)d in
v (Zgn,wn,l)d is tY. By expanding v - v, and by considering the coefficient of td(ZQn,g,gn)d
in the equality v, = = - v,, we see that there must exist some a such that the coefficient of
td(ZQn,QQn)d in (ZQn,LQn,l)aFa(Zijj;i 7& ]) is non-zero. The coefficient of Z2n7272n n v Zi,j is
non-zero only if ¢ > 2™ — 2, in which case the corresponding term is

) - on

One can check that this binomial coefficient is divisible by 2 for all ¢ in the range 2" — 1 < i <
2(2" — 1). When i = 2(2" — 1), this term is a multiple of 2" Zon_g9n. If d < 27, there is thus
never a non-zero coefficient of td(ZQn_272n)d in (Zon_19n-1)"Fo(Zij31 # j)-

LEMMA 5.2.6. Suppose X is an algebraic stack and ¢ : X — Y is an adequate moduli space.
Then for any quasi-coherent Oy -algebra B, the adjunction morphism B — ¢.¢*B is an adequate
homeomorphism.

Proof. The question is local in the étale topology on Y so we may assume that Y is affine. As ¢,
and ¢* commute with arbitrary direct sums, the adjunction map B — ¢.¢*B is an isomorphism
if B is a polynomial algebra over I'(Y, Oy ). In general, we can write B as a quotient of a polynomial
algebra B’ over R and the statement follows directly from Lemma 5.2.1. 0

Remark 5.2.7. With the notation of Remark 5.2.2, Lemma 5.2.6 implies that for an R¢-algebra B,
the adjunction map

B — (B®pe R)Y
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is an adequate homeomorphism. If S = Spec(k) where k is a field of characteristic p and G is a
reductive group, this is [MFK94, Fact (1) on p. 195].

ExXAMPLE 5.2.8. With the notation of Example 5.2.3, the quasi-coherent Oy-algebra B associated
with kly, z]/y on Spec(k[y, z]) provides an example where ¢*¢, B — B is not surjective. With
the notation of Example 5.2.4, the quasi-coherent Oy-algebra B associated with RY/(x1,z2)
provides an example where ¢*¢,.8 — B is not injective.

PROPOSITION 5.2.9. Suppose that X and X' are algebraic stacks and that

P L/) X
lqy O lfﬁ
A i
is a cartesian diagram with Y and Y’ algebraic spaces. Then:
(1) If g is flat and ¢ : X — Y is an adequate moduli space, then ¢' : X' — Y’ is an adequate

moduli space.

(2) If g is fpqc and ¢' : X' — Y’ is an adequate moduli space, then ¢ : X — Y is an adequate
moduli space.

(3) If ¢ is an adequate moduli space, then Oy — ¢,Oy is an adequate homeomorphism. The
morphism ¢’ factors as an adequate moduli space X' — Specy(¢,Oxy) followed by an
adequate homeomorphism Specy (¢, Oxr) — Y.

(4) If A is quasi-coherent O y-algebra, the adjunction morphism g*¢.A — ¢.g"* A is an adequate
homeomorphism.

Proof. For part (1), Proposition 4.2.1(6) implies that ¢’ is adequately affine. If ¢ is flat, then
flat base change implies that Oy — ¢/ O is an isomorphism. For part (2), Proposition 4.2.1(4)
implies that ¢ is adequately affine and fpqc descent implies that Oy — ¢,Oy is an isomorphism.

For part (3), since ¢’ is adequately affine, X’ — Specy (¢, Ox-) is an adequate moduli space.
Since the question is local in the fpqc topology, we may assume that Y’ — Y is affine and defined
by a quasi-coherent Oy-algebra B. By Lemma 5.2.6, B — ¢.¢*B is an adequate homeomorphism,
but this maps corresponds canonically to g.Oyr — g.@,Ox.

For part (4), the diagram
Specap (g A) ——= Specy(A)
Lo
Specy (g ¢« A) —= Specy (¢+.A)
is cartesian, so the statement follows from statement (3). O

EXAMPLE 5.2.10. With the notation of Example 5.2.3, we have a diagram
[Spec(k[x])/Zy)—— [A?/Z)]

e I

Spec(k[z]) —— Spec(k[a?)) "> Spec(k[y, 2))

where the square is cartesian and ¢ and ¢ are adequate moduli spaces. The base change ¢’ is
not an adequate moduli space but Spec(k[z]) — Spec(k[zP]) is an adequate homeomorphism.
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LEMMA 5.2.11. Let X be an algebraic stack and let ¢ : X — Y be an adequate moduli space.
Let A be a quasi-coherent sheaf of O x-algebras. Then Specy(A) — Specy (¢«.A) is an adequate
moduli space. In particular, if Z C X is a closed substack, then Z — Y’ := Spec(¢.Oz) is an
adequate moduli space. The induced morphism Y’ — im Z to the scheme-theoretic image of Z
in Y is an adequate homeomorphism.

Proof. Since Specy(A) — Y is adequately affine, it follows that Specy (A) — Specy (¢..A) is an
adequate moduli space. The final statement follows directly from Lemma 5.2.1. O

LEMMA 5.2.12 (Analogue of Nagata’s fundamental lemmas). (Analogue of Nagata’s fundamental
lemmas) Let ¢ : X — 'Y be an adequately affine morphism. Then:

(1) For any quasi-coherent sheaf of ideals Z on X, the inclusion

¢*OX/¢*I - d’*(OX/I)

is an adequate homeomorphism.

(2) For any pair of quasi-coherent sheaves of ideals I;,Zy on X, the inclusion ¢.Z; + ¢Zo —
¢«(Z1 + I») induces an adequate homeomorphism

Oy [(9+L1 + ¢+TL2) — Oy /d(T1 + I2) .
In other words, for every section s € I'(Spec(A) — Y, ¢.(Z1 + I2)), there exists N > 0 such
that s™ € T'(Spec(A) — Y, .71 + ¢.T»).
Proof. Part (1) is obvious. For part (2), we may assume that Y is affine. The exact sequence
071 >T1+Zo > T/ Th NIy — 0
induces a commutative diagram

(X, 1)

T~

OHF(X,Il) 4>]_—‘(X,11 +IQ) HF(X,IQ/Z& ﬂZg)

where the bottom row is left exact. Let s € I'(X,Z; + Z2) with image s in I'(X,Zy/Z; N Iy).
Since ¢ is adequately affine, there exist N > 0 and ty € I'(X,Zs) such that to — sV, It follows
that t — sV € T'(X, ). O

Remark 5.2.13. Part (2) above implies that for any set of quasi-coherent sheaves of ideals Z,,

Oy /(D 6Ta) = Oy /(6> Ta))

is an adequate homeomorphism.

Remark 5.2.14. With the notation of Remark 5.2.2, property (1) translates into the statement
that the natural inclusion A% /(I'NA%) < (A/I)¢ is universally adequate for any invariant ideal
I C A. Property (2) translates into the statement that for any pair of invariant ideals I, Io C A,
the induced inclusion (I; N A%) + (I, N A%) < (I + I) N A€ has the property that for any
s € (Iy + I) N A%, there exists N > 0 such that sV € (I; N A%) + (I, N A%). Note that if S
is defined over [F),, then by Lemma 3.2.3, the integer N can be chosen to be a prime power. If
S = Spec(k) where k is a field of characteristic p and G is a reductive group, this is [Nag64,
Lemma 5.1.B and 5.2.B] and [MFK94, Lemma A.1.2 and Fact (2), p. 195].
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ExXAMPLE 5.2.15. Example 5.2.3 illustrates that the map in part (1) is not always surjective. For
an example where the map in part (2) is not an isomorphism, consider the dual action of G = Z»
on A = Falz1,22,y]/(22,23) given by (x1,z2,y) — (x1,72,y + o1 + x2). Then the inclusion
(1) N AG + (29) N AC < (21, 29) N A is not surjective as y(x1 + x2) € (21, 22) N A® is not in
the image.

5.3 Geometric properties

THEOREM 5.3.1. Let X be an algebraic stack and let ¢ : X — Y be an adequate moduli space.
Then:

(1) The morphism ¢ is surjective.

(2)
(3) The morphism ¢ is universally submersive.
(4) If Zy, Zy are closed substacks of X, then

The morphism ¢ is universally closed.

imZ1 Nim Zy = im(21 N ZQ)

where the intersections and images are set-theoretic.

(5) For an algebraically closed field k, there is an equivalence relation defined on [X (k)] by
x1 ~ x9 € [X(k)] if {x1} N{xe} # 0 in X Xz k inducing a bijective map [X (k)]/~ — Y (k).
That is, k-valued points of Y are k-valued points of X up to orbit closure equivalence.

Proof. For part (1), if Spec(k) — Y is an arbitrary map from a field k, then Proposition 5.2.9(3)
implies that X’ xy Spec(k) is non-empty. For part (2), if Z C X is a closed substack, then Lemma
5.2.11 implies that Z — Y’ = Specy (¢+2) is an adequate moduli space and Y’ — im Z is an
adequate homeomorphism. Using part (1), it follows that the composition Z — Y’ — im Z is
surjective, so that ¢(Z) is closed. Proposition 5.2.9(3) then implies that ¢ is universally closed.
Part (3) follows from parts (1) and (2). Part (4) follows from Lemma 5.2.12(2). Part (5) follows
from (4) as in the argument of [Alp13, Theorem 4.16(iv)]. O

5.4 Preservation of properties

PROPOSITION 5.4.1. Let P € {reduced, connected, irreducible, normal} be a property of algebraic
stacks. Let X be an algebraic stack and let ¢ : X — Y be an adequate moduli space. If X has
property P, then so does Y.

Proof. The first three are clear. For P = “normality”, we may assume that Y is affine and
integral and the statement follows since ¢ is universal for maps to affine schemes. O

5.5 Flatness

If ¢ : X - Y is a good moduli space with both X and Y defined over a base S and F is quasi-
coherent Oy-module flat over S, then ¢.F is also flat over S (see [Alp13, Theorem 4.16(ix)]).
The following example shows that the corresponding property does not hold for adequate moduli
spaces.

EXAMPLE 5.5.1. Let R = Fa[z,y]/zy and consider the dual action of G = Z/2Z on A = R[z,w]
given by (z,w) + (z+x,w+7). Then R — A flat but we claim that R — A% is not flat. Indeed,

since the annihilator of y in R is the ideal (z), we have the injection R/x < R. But AC)x — A9
is not injective. The element f = zw € A satisfies fy = 0 but is not divisible by x.
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5.6 Vector bundles

If ¢ : X - Y is a good moduli space with X locally Noetherian and F is a vector bundle on X
such that at all points x : Spec(k) — X with closed image, the G,-representation F @k is trivial,
then F is the pullback of a vector bundle on Y (see [Alp13, Theorem 10.3]). This is not true for
adequate moduli spaces.

EXAMPLE 5.6.1. Suppose char(k) = p. Let S = k[e]/(¢?) be the dual numbers. Consider the
group scheme o, s = Spec(k[x,€]/(e?,2P)). Then Ba, s — S is an adequate moduli space (see
Theorem 9.6.1). Trivial representations of o, over the closed point have non-trivial deformations.
Consider the line bundle £ on Bay, s corresponding to the character

ap — Gm,S’ = Spec(k:[e, t]t/(62))
l+ex+it.

This restricts to the trivial line bundle under the closed immersion Bay,; < Ba, g but is not
the pullback of a line bundle on S. One can construct similar examples for Z/pZ.

6. Finiteness results

6.1 Historical context

In this section, we show that if X — Y is an adequate moduli space defined over a Noetherian
algebraic space S, then X — S of finite type implies that Y — S is of finite type. This can
be considered as a generalization of Nagata’s result that if G is a geometrically reductive group
over k and A is a finitely generated k-algebra, then A% is finitely generated over k (see [Nag64] or
[MFK94, Appendix 1.C]). See [New78, Section 3.6] for a more complete discussion on the finite
generation of the invariant rings. Theorem 6.3.3 generalizes Seshadri’s result [Ses77, Theorem 2]
for actions by reductive group schemes G — Spec(R) where R is universally Japanese as well
as Borsari and Ferrer Santos’s result [BFS92, Theorem 4.3] on actions by geometrically reduc-
tive commutative Hopf algebras over fields. The theorem here also generalizes [Alp13, Theorem
4.16(xi)] where the analogous statement is proved for good moduli spaces over an excellent base.
In [AdJ13], a categorical framework for the adequacy condition is considered and the main re-
sult simultaneously generalizes Theorem 6.3.3 and the finiteness results in [BF'S92] for actions of
geometrically reductive non-commutative Hopf algebras.

6.2 General result about finite generation of subrings
We will apply the following result, which was discovered jointly with Johan de Jong.
THEOREM 6.2.1. Consider a commutative diagram of schemes
X
N
Assume that:
(a) The schemes Y and S are Noetherian.
(b) The morphism X — S is of finite type.

(¢) The morphism X — Y is quasi-compact and universally submersive.

Then Y — S is of finite type.
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Remark 6.2.2. This theorem generalizes several known special cases:

(i) If X — Y is faithfully flat, this is [Gro67,IV.2.7.1]. (This is true even without the Noetherian
hypothesis.)
(i) If X — Y is pure, this is [Has05, Theorem 1]. (Here Y does not need to be assumed
Noetherian as it is immediately implied by the Noetherianness of X and purity.)
(iii) If X — Y is surjective and universally open, Y is reduced and S is a universally cate-
nary Nagata scheme, this is [Has04, Theorem 2.3]. (This is true without assuming Y is
Noetherian.)

(iv) If X — Y is surjective and proper and S is excellent, this is [Has04, Theorem 4.2].

Proof. We may assume that S = Spec(R) and Y = Spec(B) are affine. Furthermore, since a
Noetherian scheme is of finite type over a ring R if and only if the reduced subschemes of the
irreducible components are of finite type over R, we may assume that Y is integral ([Fog83,
p. 169)).

The morphism X — Spec(B) is flat over a non-empty open subscheme U C Spec(B). By
[RG71, Theorem 5.2.2], there exists a U-admissible blowup

b:Y — Y = Spec(B)

such that the strict transform X’ of X is flat over Y. For every point y &€ Y we can find a
discrete valuation ring V' and morphism Spec(V) — Y whose generic point maps into U and
whose special point maps to y. By assumption there exist a local map of discrete valuation rings
V — V' and a commutative diagram

X

Spec(V’)

|

Y <—Y <— Spec(V).

By definition of the strict transform we see that the product map Spec(V’) — Y xy X maps
into the strict transform. Hence we conclude there exists a point on X’ which maps to y, that
is, we see that X’ — Y is surjective. By [Gro67, IV.2.7.1], we conclude that Y — Spec(R) is of
finite type.

Let I C B be an ideal such that Y is the blowup of Spec(B) in I. Choose generators f; € I,
i=1,...,n. For each I the affine ring

in the blowup is of finite type over R. Write B = colimycp By as the union of its finitely generated
R-subalgebras. After shrinking A we may assume that each B) contains f; for all i. Set I\ =
> fiBx C By and let

B)\yi = B)\[fj/fi; j = 1, . ,%, .. n] C ff(B)\) C ff(B) .

After shrinking A we may assume that the canonical maps B); — B; are surjective for each i
(as B; is finitely generated over R). Hence for such a A\ we have B); = B;! So for such a X the
blowup of Spec(B,) in I is equal to the blowup of Spec(B) in I. Set Y\ = Spec(B)). Thus the
composition

17—>Y—>YA
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is a projective morphism and we see that
(Y — YA)*OY C (f/ — Y,\)*Of,

and the last sheaf is a coherent Oy,-module ([Gro67, I11.3.2.1]). Hence (Y — Y)).Oy is also
coherent so that Y — Y, is finite and we win. ]

Let ¢ : X — Y be an adequate moduli space where X is an algebraic stack of finite type over
a Noetherian base S. If we knew a priori that Y is Noetherian, then the above theorem would
immediately imply that Y — S is of finite type by using property Theorem 5.3.1(3). However,
it is not true in general that if X’ is Noetherian then Y is Noetherian.

EXAMPLE 6.2.3. We quickly recall Nagata’s example (see [Nag69] and [Kol97, Example 6.5.1])
of a Noetherian affine scheme Spec(R) which is defined but not of finite type over F,, such that
RZ/PL is not Noetherian. Let K = Fp(z1,x2,...). Let D := ixﬁ-’ﬂa%i be a derivation of K.
Then R = KJe]/(€?) is a local Artin ring (and thus Noetherian). There is a dual action of Z/pZ
on R given on a generator by f+eg+— f+¢e(g+ D(f)). One can show that the ring of invariants
RZ/IPL = F 4 ¢K is non-Noetherian, where F = {f € K | D(f) = 0}.

6.3 The main finiteness result

The proof of Theorem 6.3.3 will be by Noetherian induction. Consider the following property of
a Noetherian algebraic stack X defined over a Noetherian ring R.

(x) The ring I'(X,Ox) is a finite type R-algebra and for every coherent Oxy-module F, the
I['(X,Ox)-module I'(X, F) is of finite type.

LEMMA 6.3.1. Let X be an adequate algebraic stack of finite type over a Noetherian ring R.
Let Z be a coherent sheaf of ideals in Oy such that I'(X,Ox/T) is a finite type R-algebra. Then
I'(X,0x/T) is a finite type I'(X, Ox)-module and im(I'(X, Ox) — I'(X,Ox/Z)) is a finite type
R-algebra.

Proof. Since X is adequate, I'(X,Oy) — T'(X,0x/Z) is adequate and, in particular, integral.
Since I'(X, Oy /Z) is a finite type R-algebra, the subalgebra im(I'(X,Oy) — I'(X, Ox /7)) also is.
O

LEMMA 6.3.2. Let X be an adequate algebraic stack of finite type over a Noetherian ring R.
Suppose that T and J are quasi-coherent sheaves of ideals in Oy such that ZJ = 0. If (x) holds
for the closed substacks defined by T and J, then (%) holds for X.

Proof. By Lemma 6.3.1, there exists a finite type R-subalgebra B C T'(X,Ox) such that B —
im(I'(X,0x) = T'(X,0x/Z)) and B — im(I'(X,0x) — I'(X,0x/J)) are surjective. Since (x)
holds for the closed substack defined by J and Z is an Oy /J-module, we may choose generators
Z1,...,xy of D(X,Z) as an I'(X, Ox/J)-module. We claim that Blzi,...,z,] — ['(X,0x) is
surjective. Let f € I'(X,0Ox). There exists g € B such that f and g have the same image
in I'(X,0x/Z), so we may assume f € I'(X,Z). We can write f = a1z1 + -+ + a,x, with
a; € T'(X,Oy). But there exists a; € B such that a; and @} have the same image in I'(X, Ox /J),
so f=ajx1+ -+ alxy, is in the image of Blz1,...,z,] = I'(X,Ox). Therefore, I'(X,Oy) is a
finite type R-algebra.
Let F be a coherent Oy-module. Consider the exact sequence

0—>T(X,ZF) - T (X, F) = T(X,F/IF).
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Now ZF is a Oy /J-module and F/ZF is a Oy /Z-module, so by the hypotheses both T'(X, ZF)
and I'(X, F/ZF) are finite type I'(X, Ox)-modules. It follows that I'(X,F) is a finite type
I'(X, Ox)-module. O

THEOREM 6.3.3. Let X be a finite type algebraic stack over a locally Noetherian algebraic
space S. Let ¢ : X — Y be an adequate moduli space where Y is an algebraic space over S.
Then Y — S is of finite type and for every coherent O y-module F, the module ¢, F is coherent.

Proof. We may assume that S = Spec(R). By Noetherian induction, we may assume that (x)
holds for any closed substack Z C X defined by a non-zero sheaf of ideals. For f # 0 € I'(X, Ox),

if ker(Ox EN Oy) is non-zero, then by applying Lemma 6.3.2 with the ideals sheaves (f) and

ker(Ox EN Ox), we see that (x) holds for X. Therefore, we may assume that every f # 0 €
I'(X,0x) is a non-zero divisor; that is, I'(X, Oy) is an integral domain.

Let I CT(X,0x) be an ideal and let f # 0 € I. Since f is a non-zero divisor, we have an
exact sequence

0= DX, 0x) L DX, 02) = im(D(X,0x) — T(X, Ox/(f))) = 0.

By the induction hypothesis and Lemma 6.3.1, T'(X,Ox)/(f) is a finite type R-algebra. The
image of I in I'(X,Ox)/(f) is a finitely generated ideal. Therefore, I is finitely generated and
I'(X,Ox) is Noetherian.

If U — X is a smooth presentation, then the composition U — X — Y is universally
submersive by Theorem 5.3.1(3). It follows from Theorem 6.2.1 that Y — Spec(R) is of finite
type.

Let F be a coherent Oxy-module. We wish to show that I'(X, F) is a finite type I'(X, Ox)-
module. By Noetherian induction again, we may assume that for every proper quotient F —» F’,
the I'(X, Oy )-module T'(X, F') is of finite type. The statement is true if I'(X, F) = 0; otherwise,
let s # 0 € I'(X,F). Denote by s - F the image of s : Ox — F, so that s-F = Ox/T where
Z = ker(s: Oy — F). Consider the exact sequence

0 T(X,s - F) > T(X,F) > T(X, F/s- F).

By the induction hypothesis, I'(X, F/s - F) is a finite type I'(X, Oy)-module. If Z = 0, then
s+ F = Oy and as I'(X,Ox) is Noetherian, I'(X, F) is also a finite type I'(X, Ox)-module. If
Z # 0, then by the inductive hypothesis and Lemma 6.3.1, T'(X, s - F) is a finite type I'(X, Ox)-
module, so that I'(X, F) is also. O

7. Uniqueness of adequate moduli spaces

In this section, we show that if ¢ : X — Y is an adequate moduli space, then ¢ is universal for
maps to algebraic spaces which are locally separated or Zariski-locally have affine diagonal; that
is, for any other morphism ¢ : X — Z to an algebraic space Z which is either locally separated
or Zariski-locally has affine diagonal, there exists a unique morphism x : Y — Z such that
1) = x o ¢. We believe that an adequate moduli space should be universal for maps to arbitrary
algebraic spaces.

7.1 General result

It follows from general methods that an adequate moduli space ¢ : X — Y is universal for
maps to locally separated algebraic spaces. The following technique was used by David Rydh in
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[Ryd13] to show that geometric quotients are universal for such maps.

If an algebraic stack X' admits an adequate moduli space, then the relation that z ~. y € X (k)
if {z} N{y} # 0 in |X xz k| defines an equivalence relation (see 5.3.1(5)). This is not true for an
arbitrary stack; consider [P!/G,,]. However, by using chains of orbit closures, we can define an
equivalence relation as follows: two geometric points z,y € X (k), are said to be closure equivalent
(denoted z ~ y) if there is a sequence of points * = x1,29, -+ ,Tp—1,2, =y € X (k) such that
fori=1,---n—1, {xi}ﬂ{xi_,_l} #* 0 in |X X7 k"

PROPOSITION 7.1.1. Let X be an algebraic stack and let Y be an algebraic space. Suppose that
¢ : X =Y is a morphism such that

(a) The map [X(k)]/~. — Y (k) is bijective for all algebraically closed Og-fields k.

(b) The morphism ¢ is universally submersive.

(¢) The map Oy — ¢.Oyx is an isomorphism.

Then ¢ is universal for maps to locally separated algebraic spaces.

Remark 7.1.2. Condition (a) says that Y has the right points, condition (b) says that Y has
the right topology and condition (c¢) says that Y has the right functions. Conditions (a) and
(b) are stable under arbitrary base change while condition (c) is stable under flat base change.
Conditions (a)—(c) descend in the fpqc topology.

Proof. We need to show that for any locally separated algebraic space Z
Hom(Y, Z) — Hom(X, Z)

is bijective. The injectivity is straightforward (see [Ryd10b, Proposition 7.2]). Consider a mor-
phism 9 : X — Z where Z is a locally separated algebraic space. Since X — Y is universally
submersive, it follows from [Ryd10b, Theorem 7.4] that

Hom(Y, Z) — Hom(X, Z) = Hom((X xy X)_.,Z)

red?

is exact. Therefore, it suffices to show that 1 o p; = 1 o po where p; and ps are the projections
(X xy X),.., = X. We note that ¢ o p; = 1 o py if and only if there exists a A : (¥ xy X)), —

re

X Xz X such that

(X xy X) S sXxz X
|
X x X
commutes. Consider the cartesian diagram

w (X Xy X)red
| o]

X Xz X X xX
.
Z 4 X Z.

The monomorphism W — (X xy X)_, is surjective by property (1) and also an immersion
since Z is locally separated. It follows that W — (X xy &), is an isomorphism and that

Y opy =1pops. ]
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Remark 7.1.3. Tt is not true that the conditions (a)—(c) imply that ¢ is universal for maps
to arbitrary algebraic spaces. Indeed, if X is the non-locally separated affine line (that is, the
bug-eyed cover), then X — A! satisfies conditions (a)—(c) but is not an isomorphism.

7.2 Universality for adequate moduli spaces

THEOREM 7.2.1. Let X be an algebraic stack and let ¢ : X — Y be an adequate moduli space.
Then ¢ is universal for maps to algebraic spaces which are either locally separated or Zariski-
locally have affine diagonal.

Proof. Let Z be an algebraic space. We need to show that the natural map
Hom(Y, Z) — Hom(X, Z)

is bijective. The injectivity of the map is straightforward. Proposition 7.1.1 shows that it is
surjective if Z is locally separated. Let v : X — Z be a morphism where Z is an algebraic space
which Zariski-locally has affine diagonal. The argument of [Mum65, Remark 0.5] (see also [Alp13,
Theorem 4.16(vi)]) shows that the question is Zariski-local on Z; in particular, the statement
holds when Z is a scheme. Therefore we may assume that Z is quasi-compact and has affine
diagonal. The question is also étale local on Y, so we may assume Y = Spec(A) is an affine
scheme. Furthermore, by replacing Z with Specy,(¢¥.Ox), we may assume that Oz — 1, Oy is
an isomorphism. Since Y is affine, there exists a unique morphism 7 : Z — Y such that ¢ = no¢.

Since Z has affine diagonal, ) : X — Z is an adequate moduli space (see Lemma 4.2.3).
Let W — Z be a finite surjective map from a scheme W ([Ryd10a, Theorem B]). Therefore, by
Proposition 5.2.9 there exists a diagram

XXz W—4X

e N
W W 7z sy
where X x z W — W' is an adequate moduli space and W/ — W is an adequate homeomorphism
(and in particular integral and surjective). Since X xz W is adequately affine, X x; W —
Spec(T(X xz W, Oxx,,w)) is also an adequate moduli space. But since W is a scheme and since
we know adequate moduli spaces are universal for maps to schemes, it follows that W’ is affine.
The composition W' — W — Z is integral and surjective. It follows from Chevalley’s criterion
([Ryd10a, Theorem 8.1]) that Z is affine and Z — Y is an isomorphism. O

8. Coarse moduli spaces

Recall that if X is an algebraic stack, a morphism ¢ : X — Y to an algebraic space Y is a coarse
moduli space if

(1) for any algebraically closed field k, the map [X(k)]/~ — Y (k) from isomorphism classes of
k-valued points of X to k-valued points of Y is bijective, and

(2) the morphism ¢ is universal for maps to algebraic spaces; that is, for any morphism ¢ : X — Z
to an algebraic space Z, there exists a unique map x : Y — Z such that £ = x o ¢.

8.1 Keel-Mori

THEOREM 8.1.1. ([KM97], [Con05], [Ryd13]) Suppose that X is an algebraic stack with finite
inertia Iy — X. Then there exists a coarse moduli space ¢ : X — Y such that:
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(1) The morphism ¢ is separated.

(2) If X is locally of finite type over a locally Noetherian algebraic space S, then Y — S is
locally of finite type.

In [KM97], the theorem was proved when X was locally of finite presentation over a locally
Noetherian scheme S. The Noetherian hypothesis of S was removed in [Con05]. The finiteness
assumptions of A were removed in [Ryd13].

We also recall the following proposition which follows from the proof of the Keel-Mori theorem
in [KM97]. For the generality stated below, we need [Ryd13, Theorem 7.13].

PROPOSITION 8.1.2. Let X be a quasi-compact algebraic stack with finite inertia Iy — X and let
¢ : X =Y be its coarse moduli space. Then there exists an étale surjective morphism Y’ —Y
such that X xy Y’ admits a finite, flat, finitely presented morphism from an affine scheme.

8.2 Keel-Mori coarse moduli spaces are adequate
PROPOSITION 8.2.1. Suppose that X is an algebraic stack with finite inertia Iy — X. Let
¢ : X =Y be its coarse moduli space. Then ¢ : X — Y is an adequate moduli space.

Proof. By Proposition 8.1.2 and Proposition 5.2.9, it suffices to assume that there exists a finite,
flat morphism p : U = Spec(C) — X. We may assume that p is locally free of rank N. Let
s,t : R = Spec(D) = U be the groupoid presentation. If CF = Eq(C = D), then ¢ : X =Y =
Spec(C)% is the coarse moduli space.

Let « : A — B be a surjective morphism of quasi-coherent Ox-algebras. Then A and B
correspond to C-algebras A and B, and isomorphisms 84 : A ®cs D = A ®cy D and fp :
B®cs D = B ®cy: D, respectively, satisfying the cocycle condition. We have a commutative
diagram

Bao(id®1)
ARC s A——= A ®c D

l l id®1
BBO(1d®1) ‘L

BEC—~B—=Bw®c; D
id®1

of exact sequences with A¥ =T'(X, A) and Bf =T'(X, B).
Let b € Bf and choose a € A with a ~— b. Then multiplication by fa(a® 1) € A®c, D is an
A-module homomorphism (viaid ® 1 : A =+ A ®c, D). The characteristic polynomial is

P\ Ba(a®1)) =AY —ony_ 1 AV (=) N oy € AR[N],
which maps under « to the characteristic polynomial of Sp(b® 1) =b® 1:
P\ Be(b® 1) =(A-0b)".
By examining the constant term, we see that og € A and o¢ — b. O

8.3 Equivalences
LEMMA 8.3.1. Suppose that X and X' are algebraic stacks and that

x oy
A

N v
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is a commutative diagram with ¢ and ¢’ adequate moduli spaces. Assume that the following
hold:

(a) The morphism f is representable, quasi-finite and separated.
(b) The morphism g is integral.

(¢c) The morphism f maps closed points to closed points.

Then f is finite.

Proof. Tt suffices to show that X" — X xy Y is integral, so we may assume that Y = Y. By
Zariski’s Main Theorem ([LMB00, Theorem 16.5]), there exists a factorization f : X" — X — X
with 7 : X’ < X an open immersion and ¢ : X — X integral. Since f maps closed points to
closed points, so does i. It follows from Lemma 5.2.11 that X — Y is an adequate moduli space.
If z € |[X] \ |X7] is a closed point, then ¢(x) € Y is closed. Let ' be the unique closed point
in the fiber ¢'~1(y). Then i(2’) € |X| is the unique closed point in the fiber ¢~!(y) by Theorem
5.3.1(5), so i(a') = z. It follows that X' = X and X’ — X is integral. O

THEOREM 8.3.2. Suppose that X is an algebraic stack with quasi-finite and separated diagonal.
Then the following are equivalent:

(1) The inertia Iy — X is finite.

(2) There exists a coarse moduli space ¢ : X — Y with ¢ separated.

(3) There exists an adequate moduli space ¢ : X — Y.

Proof. The Keel-Mori theorem (see Theorem 8.1.1) shows that (1) <= (2). Proposition 8.2.1
shows that (2) = (3). Suppose that statement (3) holds. We may assume that Y is separated.
First note that X — X x X maps closed points to closed points. Since p X ¢ : X X X - Y x Y
is adequately affine, there exists a diagram

X—A x X
b
Y VA

where ¢ : X X X = Z := Specy vy (¢ X ¢)+Oxxx is an adequate moduli space and Y — Z is
integral (by Proposition 5.2.9(3)). It follows from Lemma 8.3.1 that X — X x X is finite. O

ExAMPLE 8.3.3. Let X be the bug-eyed cover of the affine line over a field k£ with char(k) # 2;
that is, X is defined by the quotient of the étale equivalence relation

7.)27 x A* < {(=1,0)} = A = Spec(k[z])

where Z/27 acts via  +— —x. Then X — A! = Spec(k[z?]) is a universal homeomorphism such
that T'(X, Ox) = k[2?]. However, X — A! is not an adequate moduli space. If char(k) = 0, then
taking global sections of the surjection Ox — Ox/I? where I is ideal sheaf of the origin yields
k[x?] — k[x]/z?%, which is not adequate. If char(k) = p # 2, then consider the quasi-coherent O x-
algebra Ox|t] where the action is given by ¢ — —t. Then taking global sections of the surjection
Ox[t] — Ox[t]/I?Ox|t] yields k[x?,t?] — k[x,t]/x?. But there is no power of x + t € k[x,t]/x?
which is in the image.
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9. Geometrically reductive group schemes and GIT

In this section we introduce the notion of a geometrically reductive group algebraic space G — S
over an arbitrary algebraic space S. Our notion is equivalent to Seshadri’s notion in [Ses77] (see
Lemma 9.2.5 and Remark 9.2.6) when G — Spec(R) is a flat, separated, finite type group scheme
over a Noetherian affine scheme which satisfies the resolution property.

The following are the main examples of geometrically reductive group algebraic spaces.

(i) Any linearly reductive group algebraic space is geometrically reductive (see Remark 9.1.3).
(ii) Any flat, finite, finitely presented group algebraic space is geometrically reductive (see The-
orem 9.6.1). In particular, any finite group is geometrically reductive.

(iii) Any smooth affine group scheme G — S such that G° — S is reductive and G/G° — S
is finite is geometrically reductive (see Theorem 9.7.6). In particular, any reductive group
scheme (for example, GL,, s — S, PGL,, s — S or SL;, ¢ — S) is geometrically reductive.

9.1 Definition and GIT

DEFINITION 9.1.1. Let S be an algebraic space. A flat, separated, finitely presented group alge-
braic space G — S is geometrically reductive if the morphism BG — S is adequately affine.

Remark 9.1.2. In other words, this definition is requiring that for every surjection A — B of
quasi-coherent G-Og-algebras, AS — B is adequate.

Remark 9.1.3. This notion is stronger than the notion of linearly reductivity introduced in [Alp13,
Section 12]. Recall that a flat, separated, finitely presented group algebraic space G — S is
linearly reductive if BG — S is cohomologically affine; that is, if the functor from quasi-coherent
G-Og-modules to quasi-coherent Og-modules given by taking invariants

QCoh%(S) — QCoh®, F i F¢

is exact. If S is defined over Spec(Q), then it follows from Lemma 4.1.6 that G — S is linearly re-
ductive if and only if G — S is geometrically reductive. We emphasize that it is in characteristic p
where the notions are not equivalent. The group schemes Z/pZ and GLg are geometrically re-
ductive but not linearly reductive. In fact, an algebraic group G over an algebraically closed field
of characteristic p is linearly reductive if and only if the connected component of the identity G°
is a torus and G/G° has order prime to p [Nag62].

THEOREM 9.1.4. Let S be an algebraic space. Let G — S be a geometrically reductive group
algebraic space acting on an algebraic space X with p: X — S affine. Then

¢+ [X/G] = Specs(p.Ox)©
is an adequate moduli space.

Proof. Since [X/G] — BG is affine, the composition [X/G] — BG — S is adequately affine so,
the statement follows. O

Remark 9.1.5. With the notation of Theorem 9.1.4, if S is affine and X = Spec(A), then the
theorem implies that

¢ : [Spec(A)/G] — Spec(AY)

is an adequate moduli space.
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9.2 Equivalences

We will give equivalent definitions of adequacy first in the general case G — S of a group algebraic
space, then in the case where S is affine, and finally in the case where S is the spectrum of a
field. We call a morphism A — B of quasi-coherent G-Og-algebras universally adequate if the
corresponding morphism of Opg-algebras is.

LEMMA 9.2.1. Let S be an algebraic space. Let G — S be a flat, separated, finitely presented
group algebraic space.

(1) For every universally adequate morphism A — B of G-Og-algebras with kernel T, the mor-
phism A% /T — BS is an adequate homeomorphism.

(2) The morphism G — S is geometrically reductive.

(3) For every surjection F — G of G-Og-modules, the morphism (Sym* F)¢ — (Sym* G)% is
universally adequate.

If in addition S is Noetherian, then the above are equivalent to:

(1") For every universally adequate morphism A — B of finite type G-Og-algebras with kernel Z,
the morphism A% /TG — B is an adequate homeomorphism.

(2') For every surjection A — B of finite type G-Og-algebras, the morphism A% — BS is
universally adequate.

(3") For every surjection F — G of finite type G-Og-modules, the morphism (Sym* F)¢ —
(Sym* G)¢ is universally adequate.

Proof. This follows from Lemma 4.1.7. ]
We recall the following notion.

DEFINITION 9.2.2. A flat, separated, finitely presented group algebraic space G — S satisfies
the resolution property if for every finite type G-Og-module F, there exists a surjection V — F
from a locally free G-Og-module V of finite rank.

Remark 9.2.3. If S = Spec(R) is affine, then this is equivalent to requiring that for every finite
type G-R-module M, there exists a surjection V' — M of G-R-modules from a free finite type
G-R-module V. Indeed, suppose that V' — M is a surjection of G-R-modules where V is a
locally free G-R-module. We may choose a surjection R®" — V as R-modules which then splits
as R®" = V@ V', If we give V' the trivial G- R-module structure, we see that we have a surjection
R® -V — M of G-R-modules.

Remark 9.2.4. In [Tho87], Thomason shows that a group scheme G — S satisfies the resolution
property in the following cases:

(i) The scheme S is a separated, regular Noetherian scheme of dimension < 1 and G — S is
affine.

(ii) The scheme S is a separated, regular Noetherian scheme of dimension < 2 and 7 : G — S
is affine, flat and finitely presented such that m,Og is locally a projective module over Og
(for example, G — S is smooth with connected fibers).

(iii) The scheme S has an ample family of line bundles (e.g., S is regular or affine), G — S is
a reductive group scheme such that either (i) G is split reductive, (ii) G is semisimple, (iii)
G has isotrivial radical and coradical or (iv) S is normal.
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LEMMA 9.2.5. Let G — Spec(R) be a flat, separated, finitely presented group algebraic space.
The following are equivalent:

(1) For every universally adequate morphism A — B of G-R-algebras with kernel K, the induced
R-algebra homomorphism A% /K% — B¢ is an adequate homeomorphism.

(2) The morphism G — S is geometrically reductive.

(3) For every surjection A — B of G-R-algebras, the homomorphism A% — B is adequate.

(4) For every surjection M — N of G-R-modules, the homomorphism (Sym* M) — (Sym* N )&
is adequate.

(5) For every surjection M — R of G-R-modules where R has the trivial G-R-module structure,
there exist N > 0 and f € (Sym”™ M) such that f — 1 under (Sym™ M)% — R is adequate.

If in addition R is Noetherian, then the above are equivalent to:

(1") For every universally adequate morphism A — B of finite type G-R-algebras with kernel K,
the induced R-algebra homomorphism A% /K% — B¢ is an adequate homeomorphism.

(2") For every surjection A — B of finite type G-R-algebras, the homomorphism AC — BC is
universally adequate.

(3") For every surjection A — B of finite type G-R-algebras, the homomorphism A¢ — B% is
adequate.

(4") For every surjection M — N of finite type G-R-modules, the homomoprhism (Sym* M)% —
(Sym* N)¢ is adequate.

(5") For every surjection M — R of finite type G-R-modules where R has the trivial G-R-module
structure, there exist N > 0 and f € (Sym”™ M) such that f — 1 under (Sym™ M) — R
is adequate.

(6") For every finite type free G-R-module V', R-algebra k with k a field and non-zero homomor-
phism of G-R-modules V — k, there exists n > 0 such that (Sym” V)% — k is non-zero.

If in addition G — Spec(R) satisfies the resolution property, then the above are equivalent to:

(1") For every universally adequate morphism R[xy,--- ,x,] — B of finite type G-R-algebras
with kernel K, the induced R-algebra homomorphism R[x1,--- ,x,]¢ /K% — B is an ade-
quate homeomorphism.

(2") For every surjection Rlxy,--- ,x,] — B of finite type G-R-algebras, the homomorphism
Rlxy,- -+ ,x,)% — BY is universally adequate.

(3") For every surjection R[x1,--- ,z,] — B of finite type G-R-algebras, the homomorphism
R[z1, - ,2,]% — BY is adequate.

(4") For every surjection V. — N of finite type G-R-modules where V is free as an R-module,
the homomorphism (Sym* M)% — (Sym* N)¢ is adequate.

(5") For every surjection V. — R of finite type G-R-modules where V is free as an R-module
and R has the trivial G-R-module structure, there exist N > 0 and f € (SymN V)& such
that f — 1 under (Sym” V)% — R is adequate.

(6”) For every finite type G-R-module V' which is free as an R-module, R-algebra k with k a
field and non-zero homomorphism of G-R-modules V' — k, there exists n > 0 such that
(Sym™ V)¢ — k is non-zero.
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(7") For every finite type G-R-module V which is free as an R-module and invariant vector v €
V& such that R % V is injective, there exists a non-zero homogenous invariant polynomial
f € (Sym™ V)¢ with f(v) = 1.
Proof. The equivalences (1)—(5), (1)—(5") and (1”)—(5") follow from Lemma 4.1.8. It is clear that
that (5') = (6’). Conversely, suppose that M — R is a surjection of finite type G-R-modules.
Let Q be the cokernel of the induced map « : (Sym* M)¥ — (Sym* R) = R[x]. We need to show
that there exists N > 0 such that the image of 2V in @ is 0. For every p € Spec(R), we know there
exist n > 0 and f € (Sym™ V)& such that f(p) # 0; that is, a(f) = ca” with ¢ € R~ p. Therefore,
for every p € Spec(R), there exists n > 0 such that 2™ is non-zero in @Q)y. Since R is Noetherian,
there exists N > 0 such that %V = 0 € Q. The equivalences (5") <= (6") <= (7") are
similar. O

Remark 9.2.6. Property (6”) translates into the geometric condition that for every linear action
of G on X = A%, = Spec(Sym V") over R, where V is a finite type G-R-module which is free as
an R-module, and for every field-valued point zo € X (k) = V ®g k which is G x g k-invariant,
there exist n > 0 and a G-invariant element f € (Sym” VY)Y such that f(zo) # 0. This is
precisely Seshadri’s condition of geometric reductivity in [Ses77, Theorem 1] (see also [MFK94,
Appendix G to Ch. 1]).

Remark 9.2.7. Property (5”) translates into the geometric condition that for every linear action

of G on X = A%, = Spec(Sym V") over R, where V is a finite type G-R-module which is free

as an R-module, and for every G-invariant x € X (R) which is given by an inclusion R < V of

G-R-modules, there exists f € (Sym™ V")% such that f(z) = 1.

LEMMA 9.2.8. Let G — Spec(k) be a finite type group scheme where k is a field. The following

are equivalent:

(1) The group scheme G is geometrically reductive.

(2) For every surjection V. — W of G-representations and w € W&, there exist N > 0 and
v € (Sym™ V)& with v — w™.

(3) For every linear action of G on A", closed invariant subscheme Z and G-invariant function f
on Z , there exists N > 0 such that fV extends to a G-invariant function on X.

(4) For every linear action of G on A™ and closed invariant k-valued point ¢ € A", there exists
a homogenous invariant non-constant polynomial f such that f(q) # 0.

(5) For every G-representation V and codimension one invariant subspace W C V| there ex-
ist ¥ > 0 and a dimension one invariant subspace Q@ C SymP V such that SymP V =
(W -Sym?” 1V) @ Q.

If G — Spec(k) is affine and smooth, then (1)-(5) are equivalent to:

(1) The group scheme G is reductive.

(2) For every action of G on a finite type k-scheme Spec(A), the ring of invariants R is finitely
generated.

If char(k) = 0, then (1)—(5) are equivalent to:
(8) The group scheme G is linearly reductive.
If char(k) = p, then (1)—(5) are equivalent to:

(8) For every linear action of G on A™ and closed invariant k-valued point ¢ € A", there exists
a homogenous invariant polynomial f of degree p” for some r > 0 such that f(q) # 0.
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Proof. The equivalence (1) <= (2) <= (3) <= (4) is provided by Lemma 9.2.5. Statement
(5) was Mumford’s original formulation of geometric reductivity in [Mum65, Preface] and is
easily seen to be equivalent to the others. The equivalence (1) <= (6) is Haboush’s theorem
[Hab75]. The equivalence (6) <= (7) is provided by [MFK94, Lemma A.1.2]. The equivalence
(1) < (8) follows from Lemma 4.1.6 and (1) <= (9) follows from Lemma 3.2.3. O

9.3 Base change, descent and stabilizers

PROPOSITION 9.3.1. Let S be an algebraic space and let G — S be a flat, finitely presented and
separated group algebraic space. Let S’ — S be a morphism of algebraic spaces.

(i) If G — S is geometrically reductive, so is G xg S’ — 5.
(ii) If 8" — S is faithfully flat and G xg S’ — S’ is geometrically reductive, then so is G — S.

Proof. Since BG' = BG xg S’, this follows directly from Proposition 4.2.1. O
The following definition is justified by fpqc descent in Proposition 4.2.1(4).

DEFINITION 9.3.2. If X’ is an algebraic stack, a point £ € |X| has a geometrically reductive
stabilizer if for some (equivalently any) representative x : Spec(k) — X, the stabilizer group
scheme G, — Spec(k) is geometrically reductive.

Remark 9.3.3. If X is locally Noetherian, then there exists a residual gerbe G¢ C X and & € |X|
has geometrically reductive stabilizer if and only if G¢ is adequately affine.

The following is an easy but useful fact ensuring that closed points have geometrically reduc-
tive stabilizers.

ProproSITION 9.3.4. Let X be a locally Noetherian algebraic stack and let ¢ : X — Y be an
adequate moduli space. Any closed point £ € |X| has a geometrically reductive stabilizer. For
any y € Y, the unique closed point ¢ € |X,| has a geometrically reductive stabilizer .

Proof. The point £ induces a closed immersion G¢ < X. By Lemma 5.2.11, the morphism from
Ge — Spec(k(€)) is an adequate moduli space, so that £ has geometrically reductive stabilizer. [J

9.4 Matsushima’s theorem

In [Mat60, Theorem 3], Matsushima proved using analytic methods that if G is a semisimple
complex Lie group and H C G is a closed, connected complex subgroup, then H is reductive if
and only if G/H is affine. Bialynicki-Birula gave an algebro-geometric proof in [BB63] using a
result from [BBHMG63] that if G is a reductive group over a field of characteristic 0 and H C G
is a closed subgroup, then H is reductive if and only if G/H is affine. It was known that the
transcendental proof given in [BHC62, Theorem 3.5] works in arbitrary characteristic but it
relied on sophisticated étale cohomology methods. Richardson gave a direct proof in [Ric77] that
this holds for arbitrary algebraically closed fields k£ using Haboush’s theorem equating reductive
groups and geometrically reductive groups. Haboush establishes in [Hab78, Proposition 3.2] that
if G is a geometrically reductive linear algebraic group over any field k and H C G is a closed
subgroup, then H is geometrically reductive if and only if G/ H is affine; from Haboush’s theorem,
he therefore deduces the analogous statement for reductive groups. There is also a proof by Ferrer
Santos in [F'S82], based on the techniques in [CPS77], of the statement for geometrically reductive
groups over an algebraically closed field.

We now give a generalization of Matsushima’s theorem. See also Corollary 9.7.7.
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THEOREM 9.4.1. Suppose that S is an algebraic space. Let G — S be a geometrically reductive
group algebraic space and let H C G be a flat, finitely presented and separated subgroup algebraic
space. If G/H — S is affine, then H — S is geometrically reductive. If G — S is affine, the
converse is true.

Proof. Consider the cartesian diagram

G/H S
N
BH——~ BG.

If G/H — S is affine, then by descent BH — BG is affine. Therefore, the composition BH —
BG — S is adequately affine, so H — S is geometrically reductive. Conversely, if G — S is
affine and H — S is geometrically reductive, then G/H — BH is affine and the composition

G/H — BH — S is adequately affine. It follows from the generalization of Serre’s criterion
(Theorem 4.3.1) that G/H — S is affine. O

COROLLARY 9.4.2. Let S be an algebraic space. Suppose that G — S is a geometrically reductive
group algebraic space acting on an algebraic space X affine over S. Let x : Spec(k) — X. If the
orbit o(x) C X xgk is affine, then G, — Spec(k) is geometrically reductive. Conversely, if G — S
is affine and G5 — Spec(k) is geometrically reductive, then the orbit o(x) is affine.

9.5 Quotients and extensions

ProrosiTioN 9.5.1. Consider an exact sequence of flat, finitely presented and separated group
algebraic spaces

1G>G —->G"—>1.

(i) If G — S is geometrically reductive, then G" — S is geometrically reductive.
(ii) If G’ — S and G” — S are geometrically reductive, so is G — S.

Proof. Consider the 2-commutative diagram

BG' —'» BG —L~ BG" BG' —'+ BG

- lﬂ% lﬂ'G/ O i]
S P

S BG"

where the right square is cartesian and the functors i* and j* are exact (on quasi-coherent
sheaves). The natural adjunction morphism id — j.j* is an isomorphism; indeed it suffices
to check that p* — p*j,j* is an isomorphism and there are canonical isomorphisms p*j,j* =
Tart*j* = ey pt such that the composition p* — mgr, 75 p* corresponds the composition
of p* and the adjunction isomorphism id — mgr, 7gy.

To prove part (1), we have isomorphisms of functors

>~

TGy = Ty jad”™ = mGa "
and since j* is exact and 7 is adequately affine, o is adequately affine.

To prove part (2), j is adequately affine since p is faithfully flat and G’ — S is geometri-
cally reductive. As mg = mwgr o j is the composition of adequately affine morphisms, G — S is
geometrically reductive. O
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9.6 Flat, finite, finitely presented group schemes are adequate

It was shown in [Wat94, Theorem 1] than any finite group scheme G (possibly non-reduced) over
a field k is geometrically reductive. We show that this holds over an arbitrary base.

THEOREM 9.6.1. Let S be an algebraic space and let G — S be a quasi-finite, separated, flat
group algebraic space. Then G — S is geometrically reductive if and only if G — S is finite.

Proof. This follows directly from Theorem 8.3.2. 0

EXAMPLE 9.6.2. Let k be a field and let G — A! = Spec(k[z]) be the group scheme with fibers
isomorphic to Zso everywhere except over the origin where it is trivial. It follows from Theorem
9.6.1 that since G — A! is quasi-finite but not finite, G — A! is not adequate. One can also see
this directly. Suppose char(k) # 2. Consider the action of G on X = Spec(k[z,y]) over Al given
by the involution o : k[z,y]s — k[z,y], defined by o(y) = —y. Then if X = [X/G] and Z is the
closed substack defined by x = 0, then

k[xﬁgﬂ = F(X7OX) - F(X7OZ) = k[y]

is not adequate as there is no prime power of y + 1 which lifts. (One can show in a similar way
that G — Al is not adequate if char(k) = 2.).

9.7 Reductive group schemes are geometrically reductive

Following Seshadri [Ses77], we generalize Haboush’s theorem [Hab75] to show that reductive
group schemes are geometrically reductive. Seshadri’s result [Ses77, Theorem 1] states that any
reductive group scheme G — Spec(R) with R Noetherian satisfies property 9.2.5(6”). We show
that Seshadri’s method generalizes to establish that a reductive group scheme is geometrically
reductive according to Definition 9.1.1. We stress that this is only a mild generalization of [Ses77,
Theorem 1] as our notion is equivalent to Seshadri’s notion for flat, finite type, separated group
schemes G — S that satisfy the resolution property with S Noetherian and affine .

The only improvement in our proof is that systematically developing the theory of geometri-
cally reductive group schemes (for example, properties of base change, descent and extensions)
simplifies the reductions to the case where G is a semisimple group scheme over a discrete valua-
tion ring (DVR) with algebraically closed residue field. However, the heart of the argument is in
the representation theory in [Ses77, Property I and II on pg. 247] (see Lemmas 9.7.2 and 9.7.4).

DEFINITION 9.7.1. A group scheme G — S is reductive if G — S is affine and smooth such that
the geometric fibers are connected and reductive.

Let G — Spec(R) be a split reductive group scheme ([Gro64, Exp. XXII, Definition 1.13]).
Fix a split maximal torus 7' C G and a Borel subgroup scheme B D T. Let U C B be the
unipotent subgroup scheme. Denote by X (7') the group of characters T' — G,,. Let p € X(T)
be the half sum of positive roots. Then p extends to a homomorphism p : B — G, defined
functorially by p(tu) = p(t) for t € T and u € U. For a positive integer m, define

Winp = {f € T(G,0c) | f(gb) = p(b)" f(g) for all b € B}.

If L is the line bundle on G/ B associated with p, then one can identify W,,, with the R-module
of sections I'(G/B, L™).

LEMMA 9.7.2. ([Ses77, Property I on pg. 247]) Let G be a split semisimple and simply connected
group scheme over a DVR R with algebraically closed residue field . Fix a maximal torus T' and
a Borel B containing it. Then:
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(1) Form >0, (Wy,, @ Wnp)¢ = R.
(2) IfV is a finite type free G-R-module and v € V&, for m > 0, there is a homomorphism of
G-R-modules

@:V = Wiy @r Wip
such that the image of p(v) in Wy, ®g Wi, ®g k is non-zero.

Remark 9.7.3. Statement (1) above differs from [Ses77, Property I(a)] which states that
((me XR k) Rk (me QR k))GXRk = k7
but follows in the same way from [Ses77, Lemma 3].

LEMMA 9.7.4. ([Ses77, Property II on pg. 247]) Let G be a split semisimple and simply connected
group scheme over a DVR R with algebraically closed residue field . Fix a maximal torus T and
a Borel B containing it. Then:

(1) If char(k) = 0, then for all m > 0 there is an isomorphism W, , = Winp-

(2) If char(k) = 0, then for m = p” — 1 with v a positive integer there is an isomorphism
Wro = Winp.

THEOREM 9.7.5. Let G — S be a smooth group scheme with connected fibers. Then G — S is
geometrically reductive if and only if G — S is reductive.

Proof. First, suppose that G — S is geometrically reductive. By Proposition 9.3.1, for every
s : Spec(k) — Spec(R), the base change G5 — Spec(k) is a geometrically reductive, smooth and
connected group scheme. Let R, C G be the unipotent radical. Since Gs/R,, is an affine group
scheme, Theorem 9.4.1(1) shows that R, is geometrically reductive. It follows that R, is trivial
and that G is reductive.

Now suppose that G — S is reductive. By [Gro64, Exp. XXII, Corollary 2.3|, there exists
an étale cover S’ — S such that G’ = G xg 8" — S’ is a split reductive group scheme. By
Proposition 9.5.1(1), it suffices to prove that G’ — S’ is geometrically reductive. There exists a
split reductive group scheme H — Spec(Z) such that H Xgpec(z) S’ = G’. By Theorem 9.4.1(1),
it suffices to prove that H — Spec(Z) is geometrically reductive. Furthermore, by Proposition
9.5.1(1), we may assume that G is a reductive group scheme over a DVR R with algebraically
closed residue field k.

The radical R(G) of G is a torus and thus geometrically reductive. By Proposition 9.5.1(2), it
suffices to show that G/R(G) is geometrically reductive. If G — G/R(G) is the simply connected
covering of G/R(G), then G — Z is a split semisimple and simply connected group scheme.
Furthermore, by Proposition 9.5.1(1), it suffices to show that Gis geometrically reductive. Thus,
we may assume that G is a split semisimple and simply connected group scheme over a DVR R
with algebraically closed residue field x.

Since dim R = 1, G satisfies the resolution property (see Remark 9.2.4). Using the equivalence
of Lemma 9.2.5 and Remark 9.2.7, we need to show that given a finite type G-R-module V which
is free as an R-module and 2 : R — V an inclusion of G-R-modules, there exists f € (Sym" VY)&
such that f(z) = 1. By Lemma 9.7.2(2) and Lemma 9.7.4 there exist m > 0 and a homomorphism
of G-R-modules

©:V = Wiy @r W, = Homp(Wip, Win,)

such that the image of ¢(v) in Wi,, ® g Wi, ®R & is non-zero. Furthermore, by Lemma 9.7.2(1),
Hompg (W, me)G is isomorphic to R and is generated by the identity map idy,,, It follows that
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¢(v) = X-idw,,, where A € R is a unit. By multiplying ¢ by A~1, we may assume ¢(v) = idyw,,,-
The determinant function det : Hompg(W,,, Win,) — R is a non-zero homogenous invariant
polynomial. Therefore the composition

£V 5 Homp(Winp, Winp) <% R

is a non-zero homogenous invariant polynomial; that is, f € (Sym"VY)% for some n > 0.
Furthermore, f(v) = det p(v) = 1, so we have constructed the desired invariant. O

If G — S is a smooth group scheme, then [Gro64, Exp. VIp, Theorem 3.10] implies that the
functor
(Sch /S) — Sets
(T - S) = {g € G(T) ‘VS €5, gs(Ts) - (Gs)o}

is representable by an open subgroup scheme G° C G which is smooth over S.

THEOREM 9.7.6. Let G — S is a smooth group scheme. Then G — S is geometrically reductive
if and only if the geometric fibers are reductive and G/G° — S is finite.

Proof. If G — S is geometrically reductive, then Theorem 9.4.1 implies that G/G° — S is
geometrically reductive and Theorem 9.6.1 implies that G/G° — S is finite. Furthermore, the
geometric fibers are geometrically reductive by Proposition 9.3.1 and therefore reductive by
Theorem 9.7.5. Conversely, Theorem 9.7.5 implies that G° — S is geometrically reductive and
Theorem 9.6.1 implies that G/G° — S is geometrically reductive. It follows from Proposition
9.5.1(2) that G — S is geometrically reductive. O

COROLLARY 9.7.7. If G — S is a reductive group scheme and H C G is a flat, finitely presented
and separated subgroup scheme, then H — S is reductive if and only if G/H — S is affine.

Proof. This follows from Theorems 9.4.1 and 9.7.5. O

We end with another immediate application of the theory of adequacy. This result is well
known to the experts but we are unaware of a reference.

PROPOSITION 9.7.8. Let G — S be a geometrically adequate group scheme (for example, a
reductive group scheme). Let X — Y be a morphism of algebraic spaces over S which is a
principal homogenous space for G. If X is affine over S, then so is Y.

Proof. Let p denote the structure morphism X — S. By Theorem 9.14, [X/G] = Y —
Specg(psO X)G is an adequate moduli space. In particular, Y — Specg(p.O X)G is an adequately
affine morphism of algebraic spaces so by the generalization of Serre’s criterion (Theorem 4.3.1),
it is also affine; it follows that Y is affine over S. O
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